Query examples with the Visual Query Plug-in
Example 1
Ontology: http://www.daml.org/2003/01/periodictable/PeriodicTable#

(http://www.daml.org/2003/01/periodictable/ to download and description)

Suppose you want to know which are the chemical elements are non-metallic and have an atomic weight of less than 50. The condition could be written as:
(element.classification = non-metallic) AND (element.atomicWeight <50)
This example search shows a simple query with 2 conditions with an AND operator, the condition dialog for a Object Property (classification) and the condition dialog for a numeric datatype condition (atomicWeight)
To perform this query in the visual query one has to:

1. Select the class element in the Class browser
[image: image1.png]CLASS BROWSER

For Project: @ PeriodcTable

Class Hierarchy AN %X~
[owiThing

© Block

© Classicaion

® Eenert

® oo
@ Period
© Standardstate

Figure 1. Class Browser with the Element class selected
2. Select the classification property in the Properties list
[image: image2.png]Properties
i tomichumber
I tomicWeight
[block.

M classifiation
= color

= aroup

= rame

o period

o standarastate
i symbol

Figure 2. Properties List with the classification property selected
3. Select the AND root condition in the Conditions tree
[image: image3.png]Conditions ® o ov ot B

0 Ao

Figure 3. Conditions tree. Without any user conditions, just the initial AND root condition.
4. Click in the Add Condition Button [image: image4.png]

5. A Dialog with a list of the possible values that the classification property can take will appear:
a. A Dialog with the Metallic, Non-metallic and Semi-metallic Instances appear. Select non-metallic and click OK.

[image: image5.png]Pick Instance

@ Sernetalic

Figure 4. A Pick instance Dialog, showing instances of the classification class.
b. After pressing OK, the Conditions tree should look like this:
[image: image6.png]D

[Element classifcation s Non-metalic:

Figure 5. Conditions tree with one condition.
6. Select the atomicWeight property in the Properties List
[image: image7.png]Properties
= ctomichiumber
B stomiciVelght

. biock

™ classification

= coor

™ group

= name

™ period

™ standardstte.
= symbol

Figure 6 Properties list with the atomicWeight property selected.
7. Click in the Add Condition Button [image: image8.png]

a. A dialog with a dropdown box and a text field appears. Select the “<” operator in the dropdown box (is the default) and write 50 in the Value Text Field. Click OK
[image: image9.png]Velue

Figure 7. Insert Datatype Condition Dialog. In the case of a numeric property, like atomicWeight, a dropdown box with different numeric operators and a value text field appear.
b. After pressing OK, the Conditions tree should look like this:

[image: image10.png]D

[Element slassitication s Non-metalic
03 Elemert atomicweight < 50

Figure 8. Condition tree with two conditions. Notice that thanks to the AND root condition, this condition tree mean that both conditions must be satisfied for an instance to be included in the Instance result list
8. Click the Run button. The following list should appear:
[image: image11.png]Instances

Figure 9. Instances List, showing the elements that have an atomic weight of less than 50 and are non-metallic.
Example 2

Ontology: http://www.daml.org/2003/01/periodictable/PeriodicTable#

(http://www.daml.org/2003/01/periodictable/ to download and description)

Now we want to find chemical elements that either belong to period 2, or have a atomic number greater than 9 and less than 37 and have an “a” inside its name. (Like Calcium or Aluminium). The condition could be written as:
(Element.period = period_2) OR
(
(element.atomicNumber<37) AND
(element.atomicNumber>9) AND
(element.name contains “a”)
)

This example shows the creation of a bit more complicated condition tree, and the use of regular expressions for conditions (modelling the “contains” condition).
1. Select class element in the Class Browser
[image: image12.png]CLASS BROWSER

For Project: @ PeriodcTable

Class Hierarchy A
[owt Thing

© Block

© Classification

© Element

® Growp.
@ Period
© Standardstate

Figure 10.
2. Select the AND root condition in the Conditions tree
[image: image13.png]co
neition
© ad ov
60
=
X
-

SEe

Figure 11
3. Click on the OR Button [image: image14.png]

[image: image15.png]Conditions ® o0d ov ot X -

>

Figure 12. The AND root condition with a nested OR
4. Select period property

[image: image16.png]Properties
i tomichumber

I tomicWeight

(o block.

[classification

= color

= aroup

i period

(standarastate

i symbol

Figure 13
5. Select the OR node in the Conditions tree
[image: image17.png]® el ow o B X >
)
DRl

Figure 14
6. Click on the Add Condition Button [image: image18.png]

a. Pick period_2 in the list of instances of class period and press OK
[image: image19.png]£ pick Instance

Properties

(@ period_7
@ period s

Figure 15. Pick Instance condition dialog.
7. Select the OR node in the Conditions tree
[image: image20.png]conditions @ 800 ¢ 6ot 1| ¢ >

A
V& oR

1) Eement periodis period_2

Figure 16. OR Condition with a condition on the period property.
8. Click on the AND Button. [image: image21.png]

[image: image22.png]Conditions ® 80 @ 0t BB XK >
a0
v &R

) Elment periodis period_2

-0 ao

Figure 17
9. Select the newly added AND node
[image: image23.png]conditions @ 800 ¢ w6t I8 XK >

Ao
V- or
0 Element period i period_2

0 o]

Figure 18
10. Select the atomicNumber property

[image: image24.png]Properties

I atomicWeight
(o block.

[classification
= color

= aroup

= rame

o period

o standarastate
. symbol

Figure 19
11. Click on the Add Condition Button [image: image25.png]

a. Write 37 in the value text field and select the “<” operator in the dropdown box. Click OK

[image: image26.png]

Figure 20
12. Select the atomicNumber property (it should be still selected)
[image: image27.png]Properties

I atomicWeight
(o block.

[classification
= color

= aroup

= rame

o period

o standarastate
. symbol

Figure 21
13. Click on the Add Condition Button
a. Write 9 in the value text field and select the “>” operator in the dropdown box. Click OK.
[image: image28.png]

Figure 22
[image: image29.png]conditions @ 800 ¢ 6ot 1| ¢ >

ano
V- or
[Element period i period_2

V& A
[Etement atorichumoer < 37
[Element stomichumiber > 9

Figure 23
14. Select the name property

[image: image30.png]Properties
= ctomichiumber
B ctomiciVeight

I block

™ classification

= coor

™ group

™ period

™ standardstte.
. symbol

Figure 24
15. Click on the Add Condition Button [image: image31.png]

a. Select “regex” in the dropdown box, and write “.*[aA].*” (without the parenthesis) in the value text field. This is a regular expression that matches any string that has an “a” (or an “A”) inside.

[image: image32.png]

Figure 25. Datatype condition, this time checking with a Regular Expression on the values of the property.
[image: image33.png]Conditions ® 80 o oot (1] X >

Ao
V-G or
[Element period i period_2
V-G AN
) Eement atomichiumber <37
03 Etement atomichiumber >
1) Elementname regex aA]*

Figure 26. Final Condition Tree of this example. Notice the Regular expression condition at the end of the tree.
16. Click on the Run Button [image: image34.png]

[image: image35.png]Instance:
'y :
.
*a
ec
®ca
¢
®ce
*ar
e
on
eca
: o

g
®as

Figure 27. Result instances.
Example 3

Ontology: http://www.co-ode.org/ontologies/pizza/2005/05/16/pizza.owl
This example requires de addition of some instances to the original Ontology. For this example to work, it is required to you add:
1. An instance of TomatoTopping, and name it Alice_TomatoTopping
2. An instance of MozarellaTopping, and name it Alice_MozarellaTopping
3. An instance of Pizza, name it Alice_Plain_Pizza, and add a hasTopping property with value Alice_TomatoTopping
4. An instance of Pizza, name it Bob_Plain_Pizza, and add a hasTopping property with value Alice_TomatoTopping
5. An instance of Margherita, name it Alice_Margherita, and add a hasTopping property with value Alice_TomatoTopping, and a hasTopping property with value Alice_MozarellaTopping
 These instances will be used in the next 2 examples too.
The query that we will do know is simple: find the pizzas with a Tomato Topping. We could write the condition like this:

Pizza.hasTopping = Alice_TomatoTopping

This example shows that the plug-in looks also for instances of subclasses of the class specified in the query.
1. Select the Pizza class in the Class Browser
[image: image36.png]CLASS BROWSER

For Project: @ piza.owl

ClassHierarchy 5+ W # X ¥
[owt Thing
v @ DomainConcept

© country

® iceCream

» ©pizza

» @ PizzaBase

b @ PizzaTopping
» @ ValuePartition

Figure 28.
2. Select the hasTopping property in the Property List
[image: image37.png]Properties
M hasBase — <Base0!
8 hasTopping — (<ToppingO

Figure 29
3. Select the AND root condition in the Condition tree
[image: image38.png]‘D Ao

Figure 30
4. Click the Add Condition Button [image: image39.png]

[image: image40.png]Pick Instance.

Properties
(@ Aice_HozzarsliaTopring
@ Aice_TonatoTopring

Figure 31
a. Select Alice_TomatoTopping and Click OK.
[image: image41.png]conditions @ 904 ov ol [X »
AD

) Pzza nasTopping s Alce_TomatoTopping

Figure 32
5. Click the Run Button [image: image42.png]

[image: image43.png]Instances
@ Alce Viargherta
@ 5ob_Plin Pizza
@ Alce Plin Pizza

Figure 33. The instance Alice_Margherita is an instance of Margherita, not of pizza. It is shown because the Visual Query looks for instances of subclasses too.

Example 4

This is example is almost identical to the previous, so we’re just going to present the steps that are different from Example 3.
The condition we’re going to use this time is:
Margherita.hasTopping = Alice_TomatoTopping

This will show that, only the instances of classes and subclasses are searched. In Example 3, 3 Pizza instances are shown to have the Alice_TomatoTopping. Here it will be shown that only one of those instances are instances of the Margherita class.
Different steps:

1. Select class Margherita in the Class Browser
[image: image44.png]CLASS BROWSER

For Project: @ piza.owl

Class Hierarchy £+ ¥
v @ NamedPizza
® American
® Americantot
® caivn
® capricciosa
® caprina
® Fiorentina
® FourSeasons
® Fruttiiviare.
® Giardiniera
® LaReine
© Margherita

® tushroom

Figure 34.
The rest of the steps stay the same, but you are going to see 2 things different:

[image: image45.png]Conditions @ a0t o0 wet B X >

A

) Margherta hasTopping s Aice_TomatoTopping

Figure 35. Now the condition says Margherita.hasTopping
[image: image46.png]Instances

@ e tagperta

Figure 36. Only the instance of Margherita is shown.
Example 5
Ontology: Same as previous examples, but with two additions:

1. add a Alice_DeepPanBase instance to the class DeepPanBase
2. set the property hasBase of instance Bob_Plain_Pizza to Alice_DeepPanBase
The condition we want to test is:

​​​​¬(Pizza.hasBase = Alice_DeepPanBase)
I.e. instances that don’t have an Alice_DeepPanBase as value in the hasBase property.

This example shows how the NOT Condition works.

1. Select the class Pizza in the Class Browser
[image: image47.png]CLASS BROWSER

For Project: @ piza.owl

Class Hierarchy AN %X~

[owt Thing
v @ DomainConcept
© country
® iceCream
v ®rizza
© Cheeseypizza
O InterestinaPizza

Figure 37
2. Select the hasBase in the Properties List
[image: image48.png]Properties
[hasBase — 15035207
I8 hasTopping — isToppingOf

Figure 38
3. Add the condition to the Condition tree
a. Select the AND root condition
[image: image49.png]it ® ed o wo B X [w

]

Figure 39
b. Click the Add NOT Condition button [image: image50.png]

[image: image51.png]Conditions ® end ov i BB X -

D
~[wor

Figure 40
c. Click the Add condition on property button. [image: image52.png]

[image: image53.png]Conditions @ @10 00 028 1B X [w]

A
V-G ot

[PizzahasBase is Allce_DeepPanBase

Figure 41
d. Select Alice_DeepPanBase in the Instance list and click OK.

[image: image54.png]Pick Instance

@ Alce _DespParase

Figure 42
4. Click the Run Button
[image: image55.png]Instances
@ Germany

@ Aice_MozzareliaTopring
@ Aice_TomatoTopring

@ taly

@ Alce_DecpParase

& Aice_argherta
& Ameica
® Ace_Piain_Pizza
@ Engand

& France

Figure 43. Notice that the list includes instances of other classes, like Country or PizzaTopping. This happens because the condition (Figure 41) says instances that NOT satisfy he condition Pizza.hasBase = Alice_DeepPanBase
Example 6
This example extends the previous example. In Example 5, the returned instances included instances of Country and PizzaTopping, which is probably not wanted in most cases. To exclude undesirable instances we only have to add a “instance of” condition.
To do this, proceed just like in Example 5 until you get to the step 3-d and then:

Select the AND root condition and click Add Instance of condition button.

[image: image56.png]Conditons @ &1 07 08 I X [w]

Ao
V- not

) PizzahasBase is Alice_DeeppanBase
[instance of Pizza

Figure 44 Condition tree with an “instance of” Condition
Then continue with the normal flow of the example. Then the instances you should see are:

[image: image57.png]nstances
@ Alce tiargherta

® Al

Figure 45. Only Pizza instances.
If instead of leaving Pizza selected in the Class Browser, you click on Margherita and then click on the Add instance of condition Button, you would see:

[image: image58.png]Condtons @ &0 o7 0 1B X [»]

A
¥ Not

) PizzanasBase is Alice_DeeppanBase
[instance of Marghertta

Figure 46 Condition tree with a instance of condition that limits the instances to being of class Margherita
[image: image59.png]Instances

"mwmm—‘

Figure 47. Result of the search.
Comments on the condition Tree

The tree
The most important element in the interface for the Visual Query is the Condition Tree. The purpose of the tree is to present the user a simple visualization of the conditions the instances have to fulfil, and at the same time provide the user the power to create an arbitrarily complex condition expression.

[image: image60]
Figure 48. A logic expression and two tree representations of it.

Figure 48 shows why the tree metaphor was chosen. Any logic expression can be represented as a tree where the logic operators are branch nodes, and atomic conditions can be represented as leaf nodes. In Figure 48, a logic expression is at left, an abstract tree representation in the middle, and the representation as a JTree widget of the Java swing library. The tree widget is widely used in user interfaces, for example when presenting a file system in many operating systems. This means that most users are familiar with the widget and can grasp the meaning of the widget quickly.
The root condition
[image: image61.png]Conditions ® o ov ot B

0 Ao

Figure 49. Initial Condition tree

Figure 49 shows a Condition Tree as it can be seen when the user has not added any conditions. You can see that is not empty, as it already has a AND condition on it. This condition throughout this document is called AND root condition. It cannot be erased (note that in Figure 48 the Delete Button is disabled), but the conditions are added as child nodes to it. Its only purpose is to keep the consistency of the visual representation with the actual logic expression that the program will evaluate.
Operators in the tree

The operators behave in a way consistent with what in programming is known as minimal evaluation. This means that an AND condition will return false when the first of its child conditions return false, without checking the rest of its children. An OR condition will return true when the first of its child conditions returns true, without checking the rest of its children. Both conditions will return false if empty.
c

or

b

a

and

(a and b) or c

[image: image62.png]¢ R
De
% E3AND
Da
Do

