
Learning Decision Trees From Histogram Data

Ram B. Gurung
Dept. of Computer and

Systems Sciences

Stockholm University, Sweden

Email: gurung@dsv.su.se

Tony Lindgren
Dept. of Computer and

Systems Sciences

Stockholm University, Sweden

Email: tony@dsv.su.se

Henrik Boström
Dept. of Computer and

Systems Sciences

Stockholm University, Sweden

Email: henrik.bostrom@dsv.su.se

Abstract—When applying learning algorithms to histogram
data, bins of such variables are normally treated as separate
independent variables. However, this may lead to a loss of
information as the underlying dependencies may not be fully
exploited. In this paper, we adapt the standard decision tree
learning algorithm to handle histogram data by proposing a
novel method for partitioning examples using binned variables.
Results from employing the algorithm to both synthetic and
real-world data sets demonstrate that exploiting dependencies
in histogram data may have positive effects on both predictive
performance and model size, as measured by number of nodes
in the decision tree. These gains are however associated with an
increased computational cost and more complex split conditions.
To address the former issue, an approximate method is proposed,
which speeds up the learning process substantially while retaining
the predictive performance.

Index Terms—histogram learning, histogram tree

I. INTRODUCTION

Standard machine learning algorithms are designed for han-

dling data represented by numeric and categorical variables.

Even in cases when it is known that the data does have

some structure, e.g., some groups of variables are related,

such information is lost when the data is encoded as ordi-

nary numeric and categorical variables and provided as input

to the standard learning algorithms. One particular type of

structure that we focus in this paper is histogram data, i.e.,

sets of variables representing the frequency distributions of

some (implicit) variables. For example, we may use three

variables (bins) to represent the relative frequency distribution

of days during a month with average temperature lower than

zero degrees, between zero and twenty degrees, and above

twenty degrees. Histogram data is frequently encountered in

domains where multiple observations are aggregated. One

reason for aggregating data can simply be to save storage

space, e.g., when dealing with big data, while in other cases

the aggregation is necessary for being able to represent all

data points (observations) on the same format, i.e., with the

same number of variables. For example, if each customer in a

database corresponds to one data point, where information on

the purchase amounts should somehow be represented, then

since the number of purchases may vary from customer to

customer, each single purchase cannot be represented by a

unique variable without introducing problems with missing

variables and undesired ordering effects. Instead, the informa-

tion can readily be represented by a histogram, e.g., where the

different bins correspond to intervals for the purchase amounts.

Histograms are also widely used to aggregate data streams

where data are collected over time, e.g., readings in sensor

networks.

Research on complex data structures, such as histograms,

has been undertaken within the field of symbolic data analysis

(SDA) [1]. Symbolic data represents complex data types which

do not fall under the traditional categories of numeric and

categorical variables. One specific type of histograms that

have been studied are categorical in nature with a relative

frequency assigned to each bin. Such histograms are classified

as modal multi-valued variables in the terminology of the

SDA framework, while Diday [2] refers to such histograms

as categorical histogram data. More formally, for observations

with n categorical histogram variables Xi, i = 1...n , with mi

bins xij , j = 1...mi each bin is assigned a relative frequency

rij such that
∑mi

j=1 rij = 1 and each observation is associated

with a class label Y . For all observations, bin descriptions of a

histogram variable are identical. This is the type of histogram

we will be considering in this study.

Research on learning from histogram data is still at an

early stage. To the best of our knowledge, no studies have

been published on learning classifiers from histogram data.

However, there have been some studies on applying linear

regression [3], [4], PCA [5] and clustering [6] to histogram

data. While most of the considered approaches take into

account the actual bin boundaries, the work on adapting PCA

for categorical histogram data [5] deals with data of the same

type as considered here. It should be noted, however, that

the approach in [5] is aimed for dimensionality reduction

and not for performing classification. The type of histogram

data considered in this study and in [5] is closely related to

”compositional” variables within compositional data analysis

[7], where weights associated with each variable represent

distributions over possible values. However, the research in

compositional data analysis has not been on learning classi-

fiers.

In this paper, we will propose an adaptation of the stan-

dard decision tree algorithm [8] to allow for learning from

categorical histogram variables. We will compare the per-

formance of the adapted learning algorithm to using the

standard learning algorithm with histogram data represented

by ordinary variables, i.e., with no structural information. The

main contributions of the paper are:

Int'l Conf. Data Mining | DMIN'15 | 139

• A novel approach for learning decision trees from his-

togram data, including an approximation to allow for

substantial speedup

• An empirical evaluation comparing the new approach to

the standard decision tree learning algorithm on both

synthetic and real-world data sets

• Findings concerning the utility of exploiting the structure

in histogram data when learning decision trees

In the next section, the novel approach for learning decision

trees from histogram data is presented. In Section III, the

experimental setup and results are presented. The empirical

findings and limitations of the proposed approach are dis-

cussed in Section IV. Finally, in Section V, we summarize the

main conclusions and point out directions for future research.

II. METHOD

The standard decision tree algorithm [8] was adapted to

learn from histogram data. Therefore, the approach can be

viewed as a generalization of the standard algorithm where

the bins of each histogram is handled as a vector and par-

titioning takes place by finding a separating hyperplane in

the corresponding space. Fig. 1 provides an illustration of the

approach. The best split plane for each histogram variable is

obtained and then compared to the best splits of the other

histogram variables, as well as to splits obtained from the

regular numeric and categorical variables. The split with the

highest information gain is finally selected for partitioning

the examples in the node. Similar approaches to employing

multivariate splits have been proposed in the past, e.g., using

linear combination of multiple features to perform splits at

each intermediate nodes [9], [10]. In these approaches, all the

features are considered simultaneously for splitting, while in

our case, multiple variables considered for a split are bins

of same histogram variables with unit sum constraint. Hence,

there can be more than one histogram variable in a dataset

that would require evaluation of multiple multivariate splits.

In this section, we first provide a formalization of the node-

splitting part of the adapted decision tree learning algorithm

and then illustrate its workings with two very simple examples.

We proceed by providing an analysis of the computational

complexity of the algorithm and end the section by proposing

an approximation of the original method for speeding up the

node-splitting process.

A. The node-splitting algorithm

The aim of the algorithm is to find the optimal node splitting

hyperplane. Because of the unit sum constraint, a histogram

with m bins is a vector point that lies in a hyperplane, which

is represented by

x1 + x2 + ...+ xm = 1 (1)

Let the equation for the linear splitting hyperplane be

c1x1 + c2x2 + c3x3 + ...+ cmxm = 1 (2)

Fig. 1. Overview of the node splitting approach

where C = (c1, c2, c3, ..., cm) are the unknown coefficients to

be solved. Hyperplanes represented by equation 1 and 2 are

assumed to be orthogonal, which results in

[
1 1 ... 1

] ·

⎡
⎢⎢⎢⎣

c1

c2

|
cm

⎤
⎥⎥⎥⎦ = 0

c1 + c2 + c3 + ...+ cm = 0 (3)

Solving for m unknowns in C requires m linear equations.

In addition to equation 3, substituting m-1 points for

X = (x1, x2, ..., xm) in equation 2 would give sufficient

number of equations to solve for C. Selection of m-1 points

out of n data points can be done in
(

n
m−1

)
ways. The resulting

system of linear equations can be solved as follows.

⎡
⎢⎢⎢⎣

1 1 ... 1

x1,1 x1,2 ... x1,m

| | | |
xm−1,1 xm−1,2 ... xm−1,m

⎤
⎥⎥⎥⎦×

⎡
⎢⎢⎢⎣

c1

c2

|
cm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

1

|
1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

c1

c2

|
cm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 1 ... 1

x1,1 x1,2 ... x1,m

| | | |
xm−1,1 xm−1,2 ... xm−1,m

⎤
⎥⎥⎥⎦

−1

×

⎡
⎢⎢⎢⎣

0

1

|
1

⎤
⎥⎥⎥⎦

Algorithm 1 specifies the node splitting process. For an

m binned histogram, m-1 vector points are chosen in
(

n
m−1

)
ways. Each combination is examined for a split plane (lines 5

to 24). The left hand sides of m linear equations are captured

in mXm square matrix A (line 6). The right hand sides of

these linear equations are represented as column vector B of

size m (line 8). If the inverse of A exists, the product of the

inverse of A and B results in coefficients of the split plane

(line 9). For all the points in the node, the scalar product of

the point and coefficient vector gives a value that determines

whether to assign the point to the left or the right node (lines

10 to 17). The information gain obtained from the split can

be calculated and compared with the previous best gain (lines

18 to 22).

140 Int'l Conf. Data Mining | DMIN'15 |

Algorithm 1 Finding best split plane in a node

Input: obs: observations in a node

histogram variables: names of histogram variables

Output: best split plane: coefficients of best split plane

1: for all histogram in histogram variables do
2: m← number of bins in histogram
3: h points← histogram values in obs
4: combinations ← ways of choosing m-1 points from

h points
5: for all combn in combinations do
6: A ← matrix of m-1 points in combn with all

elements of first row 1.

7: if A−1 exists then
8: B ← column vector of m-1 ones, first element 0.

9: split plane coefs← multiply A−1 and B
10: for all point in h points do
11: value ← multiply point and

split plane coefs
12: if value < 1 then
13: l obs← assign point to left node

14: else
15: r obs← assign point to right node

16: end if
17: end for
18: info gain← get information gain of the split

19: if info gain is greater than previous best then
20: best info gain← info gain
21: best split plane← split plane coefs
22: end if
23: end if
24: end for
25: end for

B. Examples

We illustrate the workings of the algorithm using histogram

variables with two and three bins respectively. The left graph in

Fig. 2 shows the splitting process when the histogram variable

has two bins x1 and x2. All the points (x1, x2) lie on the line

AB. The splitting line CD is orthogonal to AB and passes

through a point in AB. The coefficients of CD, a and b, can

be determined by solving two linear equations. The process

is repeated allowing CD to pass through all the points and

choosing the one that gives the highest information gain. The

process is similar for a histogram variable with three bins, as

illustrated by the right graph in Fig. 2, in which all vector

points are spread in the 3-D plane ABC. A three-dimensional

splitting plane DEFG can be defined by the equation ax1 +
bx2+cx3 = 1. DEFG is orthogonal to ABC and passes through

two vector points. Three linear equations on a, b and c can be

formed to solve for these unknowns.

Figure 3 shows a 3-D scatter plot for a small sample set

of 100 observations that has a histogram variable with three

bins x1, x2 and x3. A simple pattern was injected in the data,

if x1 + x3 < 0.3 then class label y = 1 else y = 0. Green

Fig. 2. Splitting in two and three binned histogram

Fig. 3. Split plane in 3-binned histogram variable

and blue points correspond to the negative and positive cases

respectively. The red plane is the splitting plane discovered by

the algorithm. The equation of this splitting plane turns out to

be: 0.885x1−1.769x2+0.885x3+1 = 0. Projecting the plane

intothe 2-D plane of x1 and x3 would result in x1+x3 = 0.29
which is approximately the same pattern injected in the data

set. More experimental results will be presented in Section III.

C. Computational complexity

The computational cost of the proposed approach increases

as the number of observations n and number of bins m
increase. The cost is due to the combinatorial explosion of

having to evaluate
(

n
m−1

)
combinations while searching for

the best separating hyperplane. Therefore, the computational

complexity of the algorithm is proportional to O(nm).

D. Speeding up the node-splitting process

The computational cost can be reduced by either limiting the

number of bins m or the number of observations n or both.

The former was in this study handled in a straightforward

manner, by merging bins for details see Real-world Data in

the Experiments section. The latter, i.e., limiting the number

of observations, was addressed using a more elaborate approx-

imation method.

1) Approximation Approach: Each observations in a node

for a histogram variable can be considered as a point in a

m-dimension space, m being the number of bins. So, for

convenience, observations in a node shall be referred as points

Int'l Conf. Data Mining | DMIN'15 | 141

henceforth. In this approach, instead of using all the points

in a node to build and evaluate splitting planes as described

in algorithm 1, we generate small number of candidate split

points and then build and evaluate split planes out of those

newly generated points. It should be noted that new points

are synthetically generated from original ones as will be

described later in algorithm 2. The parameter num points is

the number of such candidate split points, as a consequence the

algorithm only needs to consider
(
num points

m−1

)
combinations.

By choosing num points < n, the computational cost can

be significantly reduced. In order for such approximate plane

to make a good split, the new points that the plane passes

through should be carefully generated.

As shown in the right half of figure 4, if there exist an

optimal decision boundary, we want best split plane to pass

along this decision boundary as shown by red line. This is

only possible when newly created synthetic split points lie

close to the optimal decision boundary as shown by asterisks

(*). Therefore, the first step in the approximation approach is

to generate new candidate split points that are likely to fall

around optimal decision boundary. Algorithm 2 describes the

process of generating new synthetic candidate split points.

The algorithm first tries to locate the boundary regions since

new synthetic points should come from such regions. This is

done by examining the neighborhood around each point. For

each point, a certain number e.g. 10 nearest neighbors are

taken to form a group, which we shall simply refer as a cluster.

The size of a cluster i.e. the number of nearest neighbors

around the point is treated as parameter (Nc). Basically, the

algorithm builds a cluster of Nc neighboring points around

each point in a node. If the cluster lies in boundary region,

its member points will be of different classes. As shown in

the left half of figure 4, cluster A and C have all its members

of same class whereas cluster B has a mix of both classes.

So, cluster B is an ideal type of clusters that the algorithm

prioritizes. The entropy value of the cluster determines how

ideal the cluster is. Higher entropy values are preferred. Once

the entropy of the clusters is calculated, they are prioritized

according to the entropy value. A certain number of best

clusters (num points) e.g. 15 are selected and their centers

are obtained. The cluster centers are used as new synthetic

candidate split points to build and evaluate an approximate

split plane.

If we were to use a standard clustering algorithm e.g. K-

means it probably would result in new split points from regions

that are not useful in finding optimal splits, as K-means do not

focus on finding clusters with high class entropy (actually it

would penalize different classes). As shown in the left half

of figure 4, split points around the region of cluster A and

C will not contribute much in finding optimal split. However,

evaluating these points to search for an optimal split plane

would consume valuable search time. Therefore, the tailored

approach of obtaining relevant split points as explained in the

algorithm 2 was preferred.

A scatter plot of a small sample training set with three

binned histogram is shown in figure 4. Blue and green points

Algorithm 2 Finding split points around decision boundary

Input: h points: observations for a histogram variable

class: class label of h points
num points: number of split points required

Nc: number of nearest neighbors to consider

Output: split points: candidate split points

1: if |h points| > num points then
2: for all point in h points do
3: cluster ← find Nc nearest points around point
4: center ← find center of cluster
5: entropy ← get entropy of cluster using class
6: list← save center and entropy in a list

7: end for
8: d list← sort list in descending order of entropy

9: new points← get top num points centers in d list
10: split points← new points
11: else
12: split points← sample points
13: end if

Fig. 4. Left: Generating split points, Right: Forming splitting plane

correspond to examples from each of the two classes, respec-

tively. In the right part, the points marked with an asterisk (*)

are the candidate split points generated by using algorithm 2.

The approximate split plane obtained by using the algorithm

is shown as red line which passes through two of these split

points. In the left part, three clusters A, B and C are shown just

for illustration with some cluster centers marked with asterisks

(*).

III. EXPERIMENTS

The proposed approach has been implemented in R1. Exper-

iments were performed on a synthetic, a semi-synthetic and a

real-world data. The bin values in the synthetic data set were

obtained using uniform random sampling. The bins of a his-

togram were later normalized to satisfy the unit sum constraint.

Synthetic dependencies among the bins were then injected by

labeling the examples according to a set of formulated rules.

The purpose of synthetic data set is to show that the algorithm

can exploit the dependencies in the bins better by treating

them together compared to when bins are treated individually.

1http://www.r-project.org/

142 Int'l Conf. Data Mining | DMIN'15 |

The semi-synthetic data set was derived from the publicly

available ’iris’ data set [11] where original numeric variables

were converted into histogram variables. The purpose of the

semi-synthetic experiment was to investigate the robustness

of the algorithm when bins have no inherent dependencies,

i.e., the class labels are not dependent on interactions among

the bins. The real-world data was provided by the heavy

truck manufacturing company Scania CV AB and consists of

histogram variables that describe operational profiles of trucks.

Certain pattern among the bins of a histogram might reveal

information about the truck’s usage that could be associated

to the breakdown of various component in the truck. The goal

of the algorithm therefore is to discover useful pattern among

the histogram bins by treating them together. The predictive

performance of both standard decision tree learning algorithm

and the proposed approach are compared with respect to

classification accuracy measured using cross validation. In

addition to accuracy, the tree size, i.e., the number of nodes, is

also presented for each method. We here report only the results

of applying the histogram approach using the approximation

method. Using the exact approach, i.e., using all samples

for generating split planes, was practically infeasible due to

the excessive computational cost. Brief descriptions of the

data sets, the experimental settings and the results observed

from the experiment with each data sets are provided in the

following sub-sections.

A. Synthetic Data

Two synthetic datasets, each consisting 1000 observations

with equal proportions of observations labeled as positive

and negative, were considered separately in two different

experiments. First dataset consists of single histogram variable

X with 4 bins. Simple pattern was injected in this dataset: if

X1 + X3 < 0.3 then target class variable Y = 1, otherwise

Y = 0. X1, X2, X3 and X4 are the bins of histogram X .

Similarly, second dataset has two histogram variables; X1 with

four bins and X2 with five bins. A more complex pattern was

injected in the data which involve both histogram variable: if

(X1 1 +X1 3 < 0.3 and 0.3 < X2 1 +X2 3 < 0.7) then

Y = 1 else Y = 0, where Y is the target (output) variable.

For both experiments parameter settings were identical. The

termination condition for the tree building algorithm i.e.,

stop expanding the current node, is when the number of

observations in a node drops below 5 or the split does not

provide any information gain. Three values for the number of

new split points (num points in algorithm 2) to be used for

forming splitting plane, were examined: 7, 11 and 15. This

can be any value higher than number of bins but higher value

result in longer model training time. In order to cover wider

range, these 3 values were chosen. Three different cluster sizes

i.e. number of points considered to form a cluster (Nc in

algorithm 2), were examined: 10, 15 and 20. 10-fold cross-

validation was performed. The outcome of the experiment with

the first dataset is presented in table I whereas the results of the

second dataset is presented in table II. The columns of tables

respectively show the number of points used for approximating

TABLE I
SYNTHETIC DATASET: FOUR BINS

Split Points Cluster Size Tree Nodes Accuracy
7 10 8.2 99.6
7 15 11.6 99.8
7 20 11 99.7

11 10 7 99.4
11 15 9.4 99.2
11 20 8.8 99.2
15 10 5.6 99.6
15 15 8.2 99.6
15 20 8.6 99.4

Bins Treated Individually (Standard Tree Algorithm)
— Decision Tree 38.8 98.2

TABLE II
SYNTHETIC DATASET: FOUR AND FIVE BINS

Split Points Cluster Size Tree Nodes Accuracy
7 10 29.2 97.3
7 15 41.6 95.7
7 20 38.2 96.3

11 10 13.6 99.3
11 15 16.2 98.1
11 20 17 97.9
15 10 11.4 98.7
15 15 11.2 98
15 20 11 98.6

Bins Treated Individually (Standard Tree Algorithm)
— Decision Tree 50.8 95.9

optimal split, the size of the cluster considered for generating

new split point, the tree size and the accuracy, where the latter

two correspond to averages over the ten folds.

B. Semi-synthetic Data

A semi-synthetic dataset was generated from the publicly

available Iris dataset [11]. The dataset has four numeric

variables: petal length, petal width, sepal length and sepal

width. Each observation belongs to one of three classes: Iris-

versicolor, Iris-setosa and Iris-virginica. The data set contains

150 observations, 50 from each class. Each of the four

variables was used to generate a synthetic histogram variable

by including two additional variables such that they satisfy unit

sum constraint. For example, in order to transform numeric

variable petal length into histogram variable, it was first

normalized to lie between 0 and 1. Let it be X1. For each X1,

two integers in the range of 1 to 100 were uniform randomly

selected. These two integers, X2 and X3 were then scaled

down as:

X2 => X2 ∗ (1−X1)/(X2 +X3)
X3 => X3 ∗ (1−X1)/(X2 +X3)
The new dataset hence has four histogram variables, each

with three bins. 5-fold cross validation was performed. The

same termination condition for the tree growing as applied

in the previous experiment was used. Number of split points

used for searching split planes were: 5, 7 and 9. The chosen

number should be higher than number of bins in the histogram

variable. Model training time would increase as we select

higher numbers, so for simplicity only three values were

Int'l Conf. Data Mining | DMIN'15 | 143

TABLE III
SEMI-SYNTHETIC: IRIS DATASET

Split Points Cluster Size Tree Nodes Accuracy
5 10 13 91.67
5 15 12.6 92.33
5 20 13.8 89
7 10 12.2 91
7 15 10.6 89
7 20 11.4 85
9 5 11.4 91
9 10 10.6 92.33
9 15 10.6 88.33

Bins Treated Individually (Standard Tree Algorithm)
— Decision Tree 9.4 92.67

examined. Three different cluster sizes i.e. number of points

used to form a cluster, were arbitrarily chosen: 5, 10 and 15.

The results of the experiment are shown in table III.

C. Real-world Data

Each observation in operational data is a snapshot of oper-

ational profile of a truck. Histogram variables in operational

data holds information about how often the truck had operated

under a particular feature range. The histogram variable, for

example temperature, has 10 bins. Each bin measures the

number of times the truck had operated within certain ambient

temperature range. Temporal information about the truck’s

operation at various ambient temperature is transformed into

relative frequency count as histogram over time. The histogram

transformed data is extracted from the truck when it visits

workshop for maintenance. Certain patterns within the bins of

a histogram might reveal useful information about the truck’s

usage that are related to breakdown of certain components.

The objective of the experiment is to distinguish trucks with

battery failure from those without failure by using histogram

feature variables. Bins of the histograms are normalized. The

original data set had 33603 observations spread along 308

variables (counting bins as independent variables). There are

17 histogram variables of various length. The data set is very

sparse and skewed in terms of battery failure as class label.

Out of the 33603 observations, only 720 had battery problems.

For experimental purposes, a smaller data set was extracted.

Given the computational cost that would incur, it was a nec-

essary step. Out of these, only four histogram variables which

were deemed as important were selected. Only histogram

variables were selected for the experiment because the purpose

here was to compare the performance when training tree as

histogram against training by treating the bins individually.

So the influence from any other variables either numeric or

categorical was not desired. Issues related to missing values

and skewed class distribution were set aside by including

observations that had no missing values and selecting an equal

number of positive and negative cases. Finally, a data set with

300 positive and 300 negative cases was extracted for the

experiment. For confidentiality purpose, original variables are

anonymised.

TABLE IV
OPERATIONAL DATA SET

Split Points Cluster Size Tree Nodes Accuracy
13 10 82.4 59.17
13 15 68.8 59.33
13 20 77.8 57.83
15 10 73 57.17
15 15 65.8 56.17
15 20 68 58.67
17 10 67.8 61.67
17 15 64 59.83
17 20 58.2 57.33

Bins Treated Individually (Standard Tree Algorithm)
— Decision Tree 106.8 59

First histogram variable has 9 bins. Originally this variable

was a 6X6 matrix. In order to handle computational complex-

ity, adjoining 4 cells were merged resulting in 3X3 matrix.

These 9 cells were then treated as bins. Second histogram

variable also has 9 bins which was similarly transformed from

6X6 matrix. Third and fourth histogram variables have 10 bins.

10-fold cross validation was performed. The stop criteria was

set to 15 or less observations in a node or if the split did

not ensure any information gain. Three values for the number

of split point used for forming split plane were examined:13,

15 and 17. Three different sizes of cluster (i.e. number of

neighboring points used to form a cluster) were examined: 10,

15 and 20. The result of the experiment is shown in table IV

and the description of the table is same as those in table II.

Results are discussed further in Discussion section.

IV. DISCUSSION

Results in the tables I, II, III, IV show the performance

of the algorithm at various parameter settings for four data

sets. Performance of the standard decision tree approach has

been shown at the bottom of the table as a base line. As

observed from the synthetic data experiment results in table I

and table II, the proposed method is better or at least as

good as standard decision tree algorithm for all the parameter

settings examined. Size of the tree in terms of number of nodes

is significantly smaller than that of standard tree. When the

number of approximate split points (cluster centers) increases,

number of tree nodes decreases while accuracy increases as

expected. Influence of the size of the cluster is however not

clearly evident in the results.

Purpose of the experiment on semi-synthetic iris data set

was to examine the robustness of the algorithm when the

bins of histogram do not have any inherent dependencies.

The result as shown in table III suggest that the performance

of the proposed method does not suffer heavily because

of non-informative bins. Accuracy performance was almost

comparable with base line performance except in some cases

where accuracy drops by around 7%. One reason for this high

variation in performance could probably be attributed to the

small size of data set which is only 150. On the best parameter

settings, accuracy raised up to 92.33% which was very close

to base line performance of 92.67%.

144 Int'l Conf. Data Mining | DMIN'15 |

Experiment results on operational data presented in table IV

could not decide clear winner. With some parameter settings,

average accuracy of proposed method exceeded base line

performance while at other instances performance dropped

well below the base line. It should however be noted that since

the purpose of the experiment is the comparison of proposed

approach against standard tree method, poor performance in

both approach should not be a concern. This poor performance

could be attributed to the smaller size of dataset or insignifi-

cance of variables selected. Since, some of the variables were

heavily reduced in size by merging the bins together, we might

have lost the information about the patterns inherent in those

bins. Presence of such inherent dependency among bins is

where the proposed method thrives on. This probably could

be one reason why proposed method could not perform better

all the time.

Considering all four experiments as a whole, out of 36

occasions, histogram approach was better in 21 occasions

although most of the wins were from synthetic data exper-

iments. Although promising, there are some downsides to

this approach. The histogram approach has some inherent

limitations. The first limitation is due to number of bins,

the higher the number of bins the higher the computational

complexity. So, somehow, higher number of bins have to be

merged to get fewer bins which will result in information loss.

Another inherent limitation of the approach lies in the least

number of observations required at each node for making a

split decision. Since, solving the system of linear equations

lies at the heart of the model, at least as many observations

are needed as there are number of bins in order to be able

to solve such a system. One of the inherent limitation of the

proposed method is that it assumes linear separation in the data

and tries to approximate linear separation when the decision

boundary is nonlinear. This linear approximation of possibly

nonlinear pattern in histogram variables in operational data

could be another reason why the method was not always the

winner.

Probably the most prominent limitation of the approach lies

in interpretation of split condition. Unlike in standard decision

tree where nodes store information about best split variable

and split point, here each node stores the information about

the best split plane. It is usually difficult to interpret the split

plane in the context of the variable.

V. CONCLUDING REMARKS

Standard learning algorithms are designed to learn from

numeric and categorical variables. However, practitioners in

both academia and industry often have to deal with more

complex variables. Histograms in the form of frequency dis-

tributions is one of such example. To the best of our knowl-

edge, no previous learning algorithms have been designed to

generate classifiers from histogram variables. Instead, bins

of histograms are commonly handled as separate variables,

ignoring the underlying structure. In this paper, we adapted

the standard decision tree learning algorithm to learn from

histogram variables. Experimental results from both synthetic

and real-world datasets would suggest that gains in terms of

predictive performance and a reduction of the number of nodes

might be obtained by exploiting the underlying structure of

histogram variables.

Although encouraging, the proposed approach could be

refined in various ways. Some directions for improvement

include investigating techniques for efficiently handling his-

togram variables with large numbers of bins which at the

moment is addressed simply by merging some of them thereby

losing information. Comprehensive study of comparing the

performance of the proposed method against existing multi-

variate split methods can be done in future. This study has

shown one of the ways to extend the basic decision tree

learning algorithm to handle histogram data; directions for

future research include similar extensions of the numerous

other standard learning algorithms, e.g., SVMs, random forests

etc.

ACKNOWLEDGMENT

This work has been funded by Scania

CV AB and the Vinnova program for

Strategic Vehicle Research and Innovation

(FFI)-Transport Efficiency.

REFERENCES

[1] L. Billard and E. Diday, Symbolic Data Analysis: Conceptual Statistics
and Data Mining, ser. Applied Optimization. Chichester, England ;
Hoboken, NJ: John Wiley and Sons Inc., 2006.

[2] E. Diday, “Principal component analysis for categorical histogram data:
Some open directions of research,” in Classification and Multivariate
Analysis for Complex Data Structures, ser. Studies in Classification,
Data Analysis, and Knowledge Organization, B. Fichet, D. Piccolo,
R. Verde, and M. Vichi, Eds. Springer Berlin Heidelberg, 2011, pp. 3–
15. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-13312-1 1

[3] A. Irpino and R. Verde, “Linear regression for numeric symbolic
variables: an ordinary least squares approach based on wasserstein
distance,” 2012.

[4] S. Dias and P. Brito, “Distribution and Symmetric Distribution Regres-
sion Model for Histogram-Valued Variables,” ArXiv e-prints, Mar. 2013.

[5] P. Nagabhushan and R. Pradeep Kumar, “Histogram pca,” in Advances
in Neural Networks ISNN 2007, ser. Lecture Notes in Computer
Science, D. Liu, S. Fei, Z. Hou, H. Zhang, and C. Sun, Eds. Springer
Berlin Heidelberg, 2007, vol. 4492, pp. 1012–1021. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-72393-6 120

[6] A. Irpino and R. Verde, “A new wasserstein based distance for the
hierarchical clustering of histogram symbolic data,” in Data Science
and Classification, ser. Studies in Classification, Data Analysis, and
Knowledge Organization, V. Batagelj, H.-H. Bock, A. Ferligoj, and
A. iberna, Eds. Springer Berlin Heidelberg, 2006, pp. 185–192.
[Online]. Available: http://dx.doi.org/10.1007/3-540-34416-0 20

[7] J. Aitchison, The Statistical Analysis of Compositional Data. London:
Chapman and Hall, 1986.

[8] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. Monterey, CA: Wadsworth and Brooks, 1984.

[9] P. E. Utgoff and C. E. Brodley, “An incremental method for finding
multivariate splits for decision trees,” in In Proceedings of the Seventh
International Conference on Machine Learning. Morgan Kaufmann,
1990, pp. 58–65.

[10] I. Sethi and J. Yoo, “Design of multicategory multifeature split decision
trees using perceptron learning,” in Pattern Recognition, vol. 27, pp.
939–947.

[11] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

Int'l Conf. Data Mining | DMIN'15 | 145

