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Primitive Associations

Erik Ernst
University of Aarhus, Denmark

eernst@daimi.au.dk

Abstract
This position paper presents a very simple mechanism,primitive
associations, and argues that this mechanism is worth careful con-
sideration in connection with the kind of support for program cor-
rectness that grows out of mechanisms for ownership, controlled
aliasing, sharing, escape analysis, and so on.

Categories and Subject Descriptors D.3 - PROGRAMMING
LANGUAGES [D.3.3 - Language Constructs and Features]: Data
types and structures

Keywords Ownership, confinement, alias control, primitive asso-
ciations, inverse fields, path-restricted features.

1. Primitive Associations
Almost all object-oriented programming languages support a no-
tion of references. A reference provides access to a specific object,
and type systems are often mainly focused on specifying which
(kinds of) objects are reachable from a given object. However, nor-
mally only little is known about the set of references referringto
a given object—which we will designate asincoming references.
Linear types [13], ownership types [9, 4, 3, 1, 11], escape ana-
lysis [10, 2], and other kinds of mechanisms and analyses help
in establishing invariants or knowledge about these incoming ref-
erences, and this may simplify reasoning about program correct-
ness, especially because the sources of changes to objects and ob-
ject graphs are simpler. However, we believe that it is useful to
complement these techniques with a dynamic mechanism, namely
primitive associations, because it is useful, simple, flexible, and un-
derstandable.

We define primitive associations to mean bidirectional refer-
ences, i.e., a pair of references in two objects that refer to each
other, see Fig. 1. Changes to these references must be restricted by
the language semantics to enforce this invariant at all times: ifA is
an object andA.f is a field inA that is part of a primitive associ-
ation, then eitherA.f is NULL or it refers to an objectB such that
B has a fieldB.g which is the other half of that primitive asso-
ciation, andB.g refers to the objectA. Hence, the language must
support statically decidable pairing of fields, and the run-time ma-
nipulation of fields which take part in a primitive association must
occur atomically.

Given that the language semantics enforces this invariant, it is
known for any given objectA having a primitive association to
another objectB that no other objectB′ (respectivelyA′) is in
the same relation toA (resp.B). This may be interpreted as an
ownership relation—thatA ownsB, or vice versa.

However, this ownership relation differs from more traditional
ownerships by being more dynamic, because it may be changed by
assignment. Other ownership related mechanisms would specify an
owner via type declarations or type arguments and fix it at creation
time for each owned object, thus disallowing the change of owner
during the life-time of the owned object.

f
A

f
A

g

B

Figure 1. A primitive association is eitherNULL or cyclic

On the other hand, the dynamic flexibility of ownership by
primitive associations provides fewer guaranteed properties at run-
time. E.g., an inconsistency arises if the primitive association is
modified during the execution of some operation which is only
permitted for owners.

Primitive associations are closely related toparent-child attrib-
utesor inverse fieldsin JavaFX [12], because they also involve bid-
irectional references with language support for simultaneous updat-
ing. However, in this context we are interested in the ability to help
managing uniqueness relationships rather than maintaining prob-
lem domain related constraints.

Note that it is easy to build associations of different arity than 1–
1 based on primitive associations; for example, an array of lengthk

may be used as an intermediate object to model a 1–k association.

2. Derived Correctness Properties
The main idea behind ownership is that it is easier to reason about
the correctness of a program when ownership related invariants can
be used to show that other invariants are maintained. The ownership
related invariants are generally concerned with the exclusion of a
(large) class of possible incoming pointers.

Consider for instance aList data structure which uses a number
of ListCell objects to represent a linking structure and keep a
reference to each of the contained objects. Now, invariants about
the structure of eachList object, including itsListCells, is easier
to reason about if eachListCell is owned by one particularList
object, and access to list cells is thereby restricted to come from
the owner list or the list cells themselves. Conventional ownership
mechanisms are well suited for this type of purpose; they associate
each owned object (e.g., eachListCell) with an owner (aList)
at creation time, and never change this binding during the lifetime
of the owned object.

However, it is not always convenient to bind each owned object
to one particular owner for its entire life-time. For example, it
may be useful to move owned objects from one “owning context”
to another. The main benefit of using primitive associations for
ownership management is exactly this dynamic flexibility of being
able to change owner during the lifetime of the owned object.

This property, however, creates challenges for exploiting own-
ership, i.e., to derive other correctness properties, because it gets
harder to maintain a complex invariant that expresses a structural
relation in the object graph of owned and owning objects when
an assignment to a primitive association may suddenly change the
owner. However, for the simple relationship that only involves the
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two objects directly connected by a primitive association, there is a
potential for reconciling these to opposing forces.

The concept required to express this is that of apath-restricted
feature, i.e., a feature of an object that is only accessible via a
specified path. Consider the pseudo-code example in Box 1 below:

class Person {
private Wallet wlt <-> owner; // pr.ass.
int pay(int value) {

if (wlt.has(value)) {
wlt.take(value); return value;

} else {
// error handling

}
}

}
class Wallet {

private Person owner <-> wlt; // pr.ass.
private int contents;
public bool has(int value) {

return (contents>=value);
}
restricted(wlt) void take(int value) {

contents -= value;
}

} Box
1

In this example, the instances of the classesPerson andWallet
are connected by a primitive association whose ends are named
wlt andowner. In classWallet there is a methodtake which
is path-restricted bywlt. This means that an invocation oftake is
only allowed if it is on the formwlt.take(...) wherewlt is the
opposite end of a primitive association that connects aPerson and
thisWallet. The effect is that only theowner is allowed to call this
method. Note that this differs from traditional ownership in that the
person may choose to transfer the wallet to some other person.

3. Integrating Primitive Associations into gbeta
Primitive associations and the corresponding mechanism of path-
restricted features are currently being implemented in the language
gbeta [5, 8], where they complement a more traditional notion of
ownership which is expressed using family polymorphism [6] and
invisible mixins [7].

Family polymorphism includes a restricted form of dependent
types: Classes are features of objects and thus two nested classes
Outer andInner give rise to a unbounded set of distinct types at
runtime, because each instance ofOuter contains its own, distinct
class corresponding to the declaration namedInner. An invisible
mixin is a mixin which is guaranteed to have a zero effect on the
type of any class that it is added to—in other words, an invisible
mixin can only add implementation, not interface. A consequence
of this is that no code outside the mixin can refer to its declared
features. Note that the notion of invisible mixins is in fact built on
the notion of path restriction, because most of the characteristics of
an invisible mixin are specified in terms of restrictions on paths.

Putting the two together, traditional ownership can be expressed
by declaring owned classes in an invisible mixin. This is now com-
plemented with the ability for owned object structures to include
temporary ownership based on primitive associations and path re-
strictions.

It is our impression so far that this combination of life-time
ownership and temporary ownership makes it easier to express
practical program designs and still have a better basis for reasoning
about the possible run-time object structures than that which is
offered through traditional ownership or traditional unrestricted
(un-owned) objects.

4. Conclusion
This position paper presented some preliminary thoughts about the
usefulness of the very simple construct of primitive associations
(aka inverse fields), used to express a dynamic kind of ownership.
The notion of path-restricted features was created as a consequence
of this analysis, as a special case of earlier work on so-called
invisible mixins. We believe that this combination of mechanisms
provides a simple and useful complement to traditional ownership
mechanisms.
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Maintaining Invariants Through Object Coupling Mechanisms

Eric Kerfoot Steve McKeever
Oxford University Computing Laboratory

{eric.kerfoot, steve.mckeever}@comlab.ox.ac.uk

Abstract
Object invariants are critical components to the specification of
object-oriented systems, which define valid states for objects and
how they may be interrelated. A complex problem is created when
an invariant relies on objects that are externally aliased and mod-
ified, since the invariant’s class cannot ensure that modification to
these objects preserves the invariant. This paper informally intro-
duces a method of coupling objects called the Colleague Tech-
nique, which creates strong relationships between objects whose
invariants rely on one another and defines additional conditions to
ensure these invariants. The technique builds on the classical tech-
nique by providing a method of ensuring object-dependent invari-
ants are maintained by the operations of an object-oriented system.
We demonstrate our technique using the Java programming lan-
guage and the JML specification language.

1. Introduction
An object’s invariant is a predicate stating conditions for its mem-
bers which defines the valid states of the object. This predicate is
expected to be maintained by the object’s operations if their con-
tracts are met, and by clients if members are modified directly.
This leads to the expectation that well-formed conditions would
ensure this soundness property in the Design-by-Contract (DbC)
technique [14]. However sources of unsoundness are present even
with well-defined conditions, one primary cause being the situa-
tion where an invariant relies on an object for its condition that is
aliased outside the invariant’s object. The implication of this situa-
tion is that this dependee object could be modified by another in a
valid way, but which may still invalidate the invariant that depends
upon it.

Figure 1. The Indirect Invariant Effect

To illustrate the example, consider Figure 1 that illustrates the
object a whose invariant depends on object b. If b were modified
by object c this could invalidate a’s invariant without violating any
of a’s method contracts. The problem was first identified in [14]
where it is described as the Indirect Invariant Effect. Invariants that
experience the effect are dependent on instances of another object
type, which are said to be vulnerable to such an invariant.

Although the problem is simply stated, it is found in many
common design patterns and idioms in object-oriented systems
where it can be a significant source of error. In these situations the
assumption of soundness, which is that an invariant will be satisfied

if method contracts are met, no longer holds. This is a result of the
fact that objects can be modified in ways that satisfy their contracts,
and so also their invariants, but break the invariants of other objects
that depend on them.

For example, a set of iterators depend on the collection over
which they iterate for their invariant conditions, such that if the
collection were to have too many objects removed, an iterator
may refer to a position in the collection that no longer exists. The
problem also occurs in self-referential classes whose invariants rely
on instances of themselves. An example is a person class with
a spouse attribute and an invariant which states that the spouse’s
spouse must be the current this object. In this case it may occur
that one spouse is assigned a new spouse and so breaks the old
spouse’s invariant. Any additional invariant that such a class may
have would rely on the assumption of marriage being an exclusive
bidirectional relationship between two objects.

The effect is addressed in [11] which presents a solution as an
axiomatic verification methodology. The verification methodology
is stated in terms of Hoare logic and concludes with a scheme of
proof obligations for invariants and method conditions. The added
obligations are complex and cumbersome, requiring a degree of
global reasoning. This is a result of the need to globally verify that
all vulnerable objects do not at any point invalidate invariants that
depend on them.

Another solution to the problem of objects being vulnerable to
an invariant is found in confined type and object ownership mod-
els [2, 4, 5, 10], where the type system prevents objects from being
aliased outside of their creator object. Such a method may result
in runtime systems organized into hierarchical series of references
with upper level objects owning those below. An object’s invariant
may only depend on objects that are owned, which are safe from
third part modification, thus preventing the Indirect Invariant Ef-
fect. This condition on invariants and the required confined/owned
properties can be statically checked, such as in the Universe type
system [7, 15] that encodes object ownership as special reference
types.

What ownership requires is that the invariant of an object can
only rely on owned objects, which only the invariant’s object may
reference and directly modify. This ensures that an object’s invari-
ant cannot be broken when objects it depends on are modified, since
the conditions of the object’s methods ensure that any modification
is always valid.

The hierarchical nature of object organization that ownership
creates has certain limitations in how objects may be related. For
example, straight-forward ownership disallows iterators whose in-
variants depend on data structures that they do not own, recursive
data structures such as linked lists, or recursive types like the per-
son class where a person cannot own its spouse. Different own-
ership techniques address these issues, such as the visibility tech-
nique [16] that weakens the ownership requirements at the cost of
greater proof obligations, but which again add to the complexity of
verifying correctness.
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The solution [3] used in the Boogie methodology is quite similar
to the proposed solution in this paper. Using special language
constructs, objects can relate themselves to “friend” objects that
share responsibility for their friend’s invariant. This builds on the
Boogie methodology described in [17] that partially addresses the
issue with a form of ownership. However this methodology relies
on these specialized constructs, additional auxiliary variables, and
specialized assertion statements, thus is more difficult to apply in
a more general DbC approach. A more preferable approach would
define a method that can be used with existing DbC analysis and
verification approaches.

The root problem with the Indirect Invariant Effect is that in-
variants reliant on other objects create dependency relationships
that are weakly represented, and so a method of defining these
relationships more concretely would lead to a solution. Our Col-
league Technique addresses this dependency problem by provid-
ing a mechanism of coupling objects whose invariants rely on one
another, and defining additional invariant conditions which ensure
that no modification to either object invalidates the other’s invari-
ant. The disadvantage of this method is reduced software reuse
that’s a consequence of close coupling, however this is outweighed
by the ability to soundly predicate invariants on external objects.
What the technique does not provide is an encapsulation mecha-
nism, which can be provided using an ownership methodology that
prevents the internal representation of an object from being exter-
nally aliased.

Collegiality is defined as an additional technique that is used
with classical DbC methods, such that if a specification is correct
classically then applying the Colleague Technique will result in a
correct specification. This resulting specification will also use in-
variants and conditions as defined in the classical technique, and
so allows existing analysis, verification, and code generation tech-
niques to be applied in conjunction with collegiality. The technique
is described using Java [9] and JML [12] as the specification lan-
guage which it extends with a new annotation. Thus existing tools
and analysis techniques developed for JML can be used in conjunc-
tion with the technique.

This section has discussed the Indirect Invariant Effect and its
consequences. The remainder of this paper will discuss the Col-
league Technique as a solution to this problem. Firstly, the tech-
nique will be defined as an additional concept to classical DbC
constructs. Object types that are suitable as colleague types must
meet certain requirements that are discussed next. This is followed
by a description of how additional invariant conditions are formu-
lated which protect invariants from being invalidated by operations
on dependee objects. Finally the technique will be applied to the
Iterator and Person examples discussed in this section.

2. The Colleague Technique
The previous section has outlined the Indirect Invariant Effect prob-
lem and how it introduces unsoundness in the classical invariant
technique. This section will describe the Colleague Technique and
how it creates strong relationships between objects whose invari-
ants rely on one another. These relationships are used to define ad-
ditional conditions on the invariants of both objects such that mod-
ification to one will not invalidate the invariant of the other.

2.1 Definition
The relationship between objects used by the Colleague Technique
is defined by stating that each object type has an attribute that refers
to an instance of the other type, or is a set of such references. These
two attributes are declared as being each other’s colleague, and the
types they reside in as colleague types. The Colleague Technique
is thus an additional specification concept with specific semantic

requirements that solves the problem of predicating invariants on
other objects.

The Indirect Invariant Effect is caused when an invariant is al-
lowed to rely on any arbitrary object. With the Colleague Technique
an invariant may rely on an object if it is referred to by one of the
object’s colleague attributes. This restriction limits which objects
an invariant may rely on, and adds the knowledge to the specifica-
tion of a colleague type that its instances may be relied upon by
the invariants of other objects. With this knowledge the invariant
of a colleague type can be augmented with additional conditions
that prevent modifications which would invalidate their colleague’s
invariant.

Definition Two object types A and B are colleague types if A has
an attribute bb which is a single or a set of B references, and B
has an attribute aa which is a single or a set of A references, and
aa is defined as being collegial with A.bb and bb as collegial with
B.aa. The invariants of A and B may only rely on objects referred
to in these attributes, owned objects, and primitive values.

An instance of A, a, and one of B, b, are collegial if a reference
to B is stored in a.bb and a reference to a is stored in b.aa. This is
illustrated in Figure 2. Both a and b are responsible for maintaining
that the relationship holds by ensuring the cross referencing and
removing references when the relationship is established between
them or when either object is removed from the system.

Figure 2. The Collegial Solution

This concept of explicit relationships between the attributes of
two object types is similar to that used by the object-based Booster
specification language [6]. Booster is descendent from Z [18] and
the B Method [1], but is a domain-specific language that targets
database systems. The explicit relationships are used as a means
of maintaining associations between data, and through the use of
Weakest Precondition [8] methods to auto-generate conditions that
ensure the relationship.

This bidirectional binding between objects creates ad-hoc con-
texts [5] that are similar to ownership contexts, except that there is
no owner/owned relationship, but a partnership between objects. If
a collegial attribute is a reference value then that object may have
only one colleague of that type, and if it is a set then it can have
multiple colleagues.

The purpose of having this bidirectional relationship is so that
an assumption about responsibility can be made by both collegial
partners. If an object has a reference to a colleague object, then
it can be assumed that the colleague will reference it as well.
Thus an object’s specification can assume that these colleagues will
not allow any modification to themselves that breaks the invariant
conditions that depend on them.

Figure 2 illustrates how a depends on b since its invariant
includes the predicate P(bb) and bb stores a reference to b. The
specification for type A can safely define such an invariant since
the assumption exists that b’s attribute aa will alias a, and that B’s
invariant will include a condition on aa that prevents modifications
that would invalidate P. Thus the bidirectional property of the
relationship is critical to the technique, and so certain requirements
and facilities must be present to ensure that the relationship is
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created and broken correctly. These requirements are discussed in
the next section.

2.2 Requirements
The colleague relationship imposes requirements on the invariants
and methods of object types that must be met for them to be
used as colleague types. These requirements are necessary for the
technique to correctly guarantee invariants:

• A colleague object type can only have one collegial attribute
for any colleague object type. For example, an object type A
cannot define two attributes to both be collegial with attributes
of object type B, even if the attributes are different. Otherwise
an object type can be defined to be collegial with any number
of other object types.
This restriction prevents situations where a contradiction may
arise between two conjuncts of an object’s invariant. If an object
type A were allowed to have two attributes that were collegial
with two attributes of B, then instances of A and B could become
double collegial through these two means of association. It
would then be possible for invariant conditions to be placed on
the collegial attributes that would be contradictory if they were
asserted for the same object. This also eliminates the possibility
of circular dependency of invariants between two objects.

• Each invariant is responsible in maintaining its colleagues’ in-
variant, and so colleagues must be defined in a way such that
they and parts of their invariants are visible to one another. This
may require that the invariants be declared as publicly visible
and only rely on public members.
This is needed since an invariant of an object will be augmented
with added conditions that reflect the invariants of colleagues.
If the colleague objects’ invariants were not public, that is they
were not publicly visible or relied on non-public members, then
these added conditions could not be formulated or would be
required to access non-public members.

• Both invariants may only rely on objects that are colleagues of
their objects or this.

• They may also only rely on the members of these objects – but
not members of members – which do not evaluate to regular
reference types nor depend on regular reference types for their
values. This restricts how complex invariants can be, but any de-
gree of complexity can be created by classes providing appro-
priate methods that return useful information. Such methods,
for example, may calculate values that can be used in specifica-
tions that requires other objects.
The purpose of this restriction is to limit which objects are de-
pendees of an invariant. If an invariant were allowed to state a
condition dependent on regular objects, even if they were ref-
erenced by attributes of a colleague object, then this would re-
introduce the Indirect Invariant Effect. This prevents the situ-
ation where, if an invariant includes a predicate of the form
“P(this.x.y.foo())” where the value of foo is of interest, both ob-
jects x and y become dependees. In this situation x will not have
sufficient invariant conditions to prevent invalidating modifica-
tions to y, since y is accessed directly and not through a method
of x, which would be able to perform an invariant check which
would prevent invalidating modifications to y.

• If a method is used in an invariant, this requires that the
method’s return value depend only on colleague objects, prim-
itive values, or other methods of same object that are similarly
restricted. These methods must also be pure, that is they are
side-effect free.

This technique has limitations in that each colleague must be
pre-defined to be part of a collegial relationship, as opposed to own-
ership where any arbitrary object can be owned by another. Greater
coupling between objects reduces reusability, however invariants
that rely on other objects already create this coupling, which the
Colleague Technique formalizes.

Collegiality provides a method to closely couple two object
types, whose instances may be aliased in different parts of a system,
in a way that wouldn’t be permitted with ownership. From the
perspective of a software module, it allows an object that relies on
the module’s internal state to be passed over the module’s public
interface boundary to the client. This object is used to provide
some functionality of the module, but since it relies on the internal
structure it must be defined in a way that does not adversely affect
this state but also allows it to be aliased by the modules’s client
objects. The Colleague Technique aims to provide a method of
specifying such objects so that this can be achieved.

Constructing and breaking the collegial relationship is impor-
tant since the cross referencing must be maintained. If one object
was collegial with another, then it relies on that colleague object
to alias it and so prevent operations that would break its invariant.
If the relationship between two objects was malformed in that it
became unidirectional, then the assumption about invariant respon-
sibility breaks down.

What this implies is that creating and breaking the relationship
are specific operations that the code of an object type should not
be responsible for. Although the technique can be defined purely as
a specification, it is helpful to describe these operations in terms
of helper methods that define the criteria for determining when
two objects are collegial and managing the relationship between
colleagues:

• To access collegial references, an accessor is defined for each
collegial attribute that returns the reference value if the type is a
singleton or an iterator if the type is a set. This accessor is called
‘getY()’ for an attribute named Y, eg. an attribute named ‘foo’
is accessed by ‘getfoo()’.

• A colleague type must have a boolean-returning method
‘isAssociated’ for every type X that it is collegial with, which
takes a reference of type X and determines if it is an object that
is a colleague of the current object.

• Determining if an association relationship can be formed is
performed by a method called ‘isAssociable’ that accepts the
colleague candidate as an argument.

• A colleague type must have a void-returning method
‘associate’ for every type X that it is collegial with. This
method takes as the single argument a reference of type X which
it adds to the collegial attribute. The method ‘associate’
is then called on the argument object, passing this as the
argument.

• A fourth method for a collegial type called ‘disassociate’
is defined for every collegial type X which has the corollary
effect of disengaging two objects from a collegial relationship,
by assigning null to singleton types or removing the given
reference from the collegial set type.

Thus a set of requirements are defined that an object type must
meet so as to be useable as a colleague type, and a set of helper
methods are described which are essential to the operation of the
technique. These methods need not be concrete but may be abstract
methods in a specification, however if colleague relationships need
to be concrete in the implementation of the system then these
methods would need to be as well. The next section will build on
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the collegial relationship and discuss how this is used to construct
new invariant conditions that ensure invariant soundness.

2.3 Invariant Conditions
The purpose of entering two objects into a collegial relationship
is to allow one or both to predicate their invariants on the other,
such that each object’s specification has the information to ensure
the object’s methods do not violate the others invariant. This is
achieved by adding extra conditions to an object’s invariant that
ensure the properties its colleagues require of it.

These extra conditions are derived from the part of the object’s
invariant predicated on the colleague attribute, which are then ex-
pressed in terms of the colleague object itself. Taking a condition
placed on a member of a colleague attribute and replacing the name
of the attribute with this restates the condition from the perspec-
tive of the colleague object itself. This new condition, which states
the same property but from the perspective of the other colleague
object, can then be used as the needed additional condition.

Given the object types A and B from the above discussion and
their respective invariants IA and IB, the part of IA predicated on
bb is denoted by P which must be in a form where every member
access must explicitly begin with ‘this.’ (called normal form in
this context):

IA = ...P(bb)... – if bb is a singleton type
IA = ...∀ i : bb | S • P(i)... – if bb is a set type, given S
IA = ...∃ i : bb | S • P(i)... – if bb is a set type, given S

These three forms of the invariant for A relate members of
bb, either attributes or values returned from pure method calls, to
members of A or constant values. P is stated in the perspective from
A to B, and so to reverse the perspective and produce an invariant
for B, the roles of this and bb must be reversed. This takes P and
produces a mirror Pm stated in terms of aa.

If aa is a singleton attribute then there are two forms of the
mirror Pm predicate:

Pm(aa) == P[this, this.aa/this.bb, this]

– if bb is a singleton

Pm(aa) == S[this, this.aa/i, this] ⇒ P[this, this.aa/i, this]

– if bb is a set

If aa is a set attribute then the two forms are quantified over the
elements of the set:

Pm(aa) == ∀ i : this.aa • P[this, i/this.bb, this]

– if bb is a singleton

Pm(aa) == ∀ i : this.aa | S[this, i/i, this] • P[this, i/i, this]

– if bb is a set

Therefore the invariant of B has the additional requirement of
maintaining the predicate Pm(aa):

IB = ... ∧ Pm(aa)

The predicate P states relationships between the members of the
classes A and B, and Pm states the same relationships but from
the perspective of the other colleague type. This has the effect of
swapping collegial references with this wherever they occur in P
and reverses the direction of the predicate.

If, for example, P represented the expression ‘this.bb.m<10’,
then the mirror Pm would equal ‘this.m<10’, which would ensure
that the required property of m would be maintained. For a more

complex example take P to represent ‘this.bb.m==this.n()’ for
some method n, then the mirror Pm is ‘this.m==this.aa.n()’.

There is another possible original form of the invariant other
than the three given above. If bb is a singleton which may be set
to null (that is it is nullable in JML terms) then the P predicate
would be false when this occurs, thus an implication relation is
used to guard against this possibility:

IA = ...bb 6= null ⇒ P(bb)...

The mirror invariant of this form is derived by taking P and
applying the above transformation. If aa is a set type then this
Pm becomes the resulting invariant, but if it is a singleton that is
nullable then a guard implication is used in this instance as well:

IB = ...aa 6= null ⇒ Pm(aa)...

In the presence of inheritance where an object type can inherit or
implement a colleague type, it is not difficult to see that behaviour
subtyping [13] is necessary for the technique to work. If this were
not the case then an object type may inherit from a collegial type
and not be responsible for the inherited mirror invariant, thus even
if it remains internally consistent the invariants of dependent ob-
jects may be invalidated.

2.4 Results
The Colleague Technique as described is used to make explicit the
relationships created by invariant dependencies. The purpose in do-
ing so is to develop a means of preventing the Indirect Invariant
Effect from allowing invariants to become invalidated without con-
tractual violations. The additional conditions that are added to the
invariants of colleague types achieve this, and are dependent upon
the fact that only their colleague types will depend on them for their
invariants.

To understand how the technique provides this guarantee, con-
sider the conditions that the classical DbC technique places on a
method call. The precondition and invariant of an object must hold
before a method begins, and since the mirror invariant must also
be asserted here then the object is guaranteed to be in a state that
does not break the invariant of another. When a method exits, the
postcondition and invariant is asserted which again makes the valid
state guarantee. By encoding the reciprocal responsibilities that col-
legial objects have to one another as invariant conditions, the Col-
league Technique uses existing DbC methodologies to safeguard
object-dependent invariants. Thus the Colleague Technique does
not require additional proof obligations in addition to those used in
a pre-existing verification methodology.

An implementation, in Java and using JML, of the iterator prob-
lem discussed previously demonstrates how the technique prevents
an instance of unsoundness in the classical DbC approach. An addi-
tional “collegial” annotation is used to declare those attributes that
are collegial with which other object type, and with what attribute.

Figure 3 lists the code for this example. It states that the at-
tribute iterators of List is collegial with List or ListIterator. The
invariant of ListIterator that relies on the instance of List it iterators
over states that its size must not be less than what it was when the
iterator was instantiated:

this.list.size()>=this.last

To ensure that this does not happen, List must have an invariant
that ensures its size is never less than the last attribute of any
associated iterators:

(\forall ListIterator i; this.iterators.contains(i);
this.size()>=i.last)

Since the associate method constructs the relationship correctly,
this additional invariant prevents the removal of enough elements
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from an instance of List to break an associated iterator’s invari-
ant. To allow the removal of elements again from a List instance,
it would be required to disassociate collegial iterators, which oc-
curs when they are no longer needed and are removed from the
system. Thus collegiality forces coordination between iterators and
collections, which is implicitly required by the fact that iterators
are dependent on their collection’s state.

This invariant was generated using a prototype Java tool that
has been successfully used with this example and the Person ex-
ample in described below. The tool analyzes the invariants of in-
put Java classes, generates mirror invariants using the methodology
outlined in this paper, and outputs the classes again with the mirror
invariants and helper methods added. The resulting classes can be
compiled into standard Java using the Common JML Tools1, which
adds runtime assertion checks to the compiled bytecode. The re-
sultant classes have been analyzed through testing and successfully
provide runtime checks that prevent the Indirect Invariant Effect.

This tool demonstrates how the described technique can be used
in conjunction with existing DbC techniques to close the unsound-
ness gap created by object-dependent invariants. With only the ad-
ditional collegial annotation augmenting standard JML, the tool
produces resulting code that has only standard JML annotations
and standard Java code, such that other tools that analyze and trans-
form JML-annotated Java code can be subsequently used. A more
sophisticated tool may be able to identify attributes of classes that
need to be collegial without the additional collegial annotation,
thus without adding significantly new specification constructs or
methodologies that other solutions require, the Colleague Tech-
nique effectively addresses the problem of object-dependent invari-
ants and can be employed with a relatively simple code-generating
tool.

The second discussed example involved self-referential types,
such as the spouse example in Figure 4. The invariant of the class
requires that one’s spouse be married to one’s self. The method by
which associate operates, which ensures the cross-referencing
of colleague objects, would guarantee that this invariant would
always be true if the spouse parameter was collegial as the code
defines. Invariants that state conditions on members of colleagues
can also be used in this instance, but would still require additional
conditions stating the same property for the local attributes.

3. Conclusion
This paper has described the Colleague Technique, and its associ-
ated ownership technique, that is stated as a solution for the Indirect
Invariant Effect. The effect is a critical problem with the classical
DbC invariant technique since many common design patterns and
programming idioms rely on the aliasing of objects within a sys-
tem.

This technique defines a method of correctly constructing a rela-
tionship between objects whose invariants depend on one another,
and how additional conditions ensure that operations on either will
not invalidate the other’s invariant. This discussion has been done
in terms of concrete Java methods and attributes, however the tech-
nique can be defined in terms of abstract model variables entirely
in some cases and without the concrete helper methods. Either as
a concrete or abstract component of a specification, the purpose
of the technique is to make explicit the relationship between ob-
jects that are created when an invariant relies on other objects for
its conditions. What the technique does not provide is a method
of guaranteed encapsulation, which is best accomplished using a
lightweight method of ownership.

The net result of this technique is to close the unsoundness
gap created in the classical DbC technique cause by invariants

1 http://sourceforge.net/projects/jmlspecs/

class List {
private /*@ spec_public @*/

ArrayList items = new ArrayList();
private /*@ collegial ListIterator.list; @*/

Set iterators = new LinkedHashSet();

// The mirror invariant derived from ListIterator
//@ invariant (\forall ListIterator i;
//@ this.iterators.contains(i); this.size()>=i.last);

//@ requires o != null;
//@ ensures this.items.contains(o);
public void add(Object o) { this.items.add(o); }

//@ requires i>=0 && i<this.size();
//@ ensures \result == this.items.get(i);
public /*@ pure @*/ Object get(int i)

{ return this.items.get(i); }

//@ ensures: \result == this.items.length();
public /*@ pure @*/ int size()

{ return this.items.length(); }

//@ requires i >= 0 && i < this.size();
//@ ensures !this.items.contains(
//@ \old(this.items.get(i)));
public void remove(int i) { this.items.remove(i); }

public ListIterator iterator()
{ return new ListIterator(this);}

}

class ListIterator {
private /*@ nullable collegial List.iterators; @*/

List list;
private /*@ spec_public @*/ int position=0, last;

//@ invariant this.position<=this.last;

// The invariant dependent on the colleague object
//@ invariant this.list!=null ==>
//@ this.list.size()>=this.last;

//@ requires this.isAssociable(l);
//@ ensures this.isAssociated(l);
public ListIterator(List l){ this.associate(l);

this.last=l.size(); }

//@ requires this.list != null;
//@ ensures \result == this.position<this.last;
public /*@ pure @*/ boolean hasNext()

{ return position<=last; }

//@ requires this.hasNext();
//@ ensures this.position==\old(this.position)+1;
//@ ensures \result==this.list.get(\old(this.position));
public Object next(){ this.position++;

return this.list.get(this.position-1); }

protected void finalize()
{ this.disassociate(this.list); }

}

Figure 3. Iterator Collegial Example
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class Person {
private /*@ nullable collegial Person.spouse @*/

Person spouse;

//@ invariant this.spouse != null ==>
//@ this.spouse.spouse == this;
...

}

Figure 4. Marriage Example

relying on externally aliased objects. Allowing invariants to be
predicated on objects is an important component when specifying
complex layered object structures, and so a method that ensures the
soundness of the technique, i.e. if the conditions of operations are
met then the invariants will remain valid, contributes significantly
to the correctness and applicability of this formal method to real-
world complex software engineering challenges.

This paper has informally defined and discussed the Colleague
Technique by examining the problem and the proposed solution.
Future work with the technique will elaborate on how it can be
integrated with JML and be used as an abstract or concrete specifi-
cation technique. Proving the property that colleague specifications
derived from correct specifications are themselves correct, and that
it does solve the problem of soundness with object-dependent in-
variants, is also part of future research with the technique. Through
induction on the method of creating mirror invariants from origi-
nal invariants, the proof must show that the mirror invariants are
well-formed, well-typed, and do not represent new restrictions on
the system. To prove that the technique does solve the soundness
problem, it will be necessary to formally express an invariant’s de-
pendence on objects, and use this to demonstrate that the technique
correctly guards against invalidating modifications. The develop-
ment of tool support is also planned, whose objective is to analyze
and possibly prove the correctness of programs that use the tech-
nique.
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Introduction Since Hoare’s seminal paper on data abstraction [5],
the class invariant has been the foundation for verifying object-
oriented programs. Experience has shown that there are two com-
plications in scaling class invariants to real programs: (1) invariants
need to depend on multiple objects; and (2) invariants need to be
temporarily broken owing to call-backs. There are several pro-
posals in the literature, which extend class invariants to partially
address these two problems. The time seems to be right to pose the
following (deliberately provocative!) question: “Is the class invari-
ant the correct foundation for verifying object-oriented programs?”

The basic unit of a Java program is a class, but interesting pro-
grams use more than one class. They are decomposed into aggreg-
ate1 structures, containing many inter-related classes collaborat-
ing in some function of the system. The aggregate structure is the
key concept in any object-oriented program. Hence our verification
method needs to describe invariants of these aggregate structures.

The class invariant can only reason about a single object. Using
ownership based methodologies [1–4,7,8] we can extend the class
invariant to some aggregate structures, and allow an object’s in-
variant to depend on objects it owns completely. However, in more
complex examples the ownership is less clear cut. Consider two
collaborating classes: neither owns the other and each has an in-
variant depending on the state of the other. Any update to one ob-
ject will potentially invalidate the invariant of the other object. So
how can we update this co-dependent structure? Ideas such as peer
invariants [6], friends and update guards [3], and history proper-
ties [7], have been used to extend the idea of a class invariant, so
that it can depend, soundly, on other objects. But is the complexity
of these proposals a sign that the class invariant is not the correct
foundation?

Our position is to take a step back and consider a more general
foundation. Our approach uses predicates [9, 10] to simply specify
the properties of aggregate structures. A class invariant is then just
a particular (useful!) predicate.

Subject/Observer The subject/observer pattern, given in Figure 1,
exhibits many of the difficulties in reasoning with class invari-
ants. We would like to specify an invariant for theObserver that
this.sub.val = this.cache. However, this invariant does not al-
ways hold, because there is a time between whenupdate is called
on aSubject, andnotify is called on theObserver where the in-
variant is not satisfied.

Instead of trying to write a property of the individual classes, let
us consider a property of the aggregate structure. A singleSubject
object will have manyObserver objects. We expect that, if we
update theSubject object, then all theObserver objects will be
notified and their status suitably updated. The aggregate structure

1 Here we meanaggregatein its most general sense to capture additionally
the UML meanings ofassociationandcomposition.

class Subject {
List obs; int val;
Subject()
{ obs = new List(); }
void register(Observer o)
{ this.obs.add(o);

o.notify(); }
void update(int n) {

this.val = n;
foreach(Observer o:obs)

o.notify();
}
int get() { return this.val; }

}

class Observer {
Subject sub;
int cache;
Observer(Subject s) {

this.sub = s;
s.register(this);

}
void notify()
{ this.cache = s.get(); }
int val()
{ return cache; }

}

Figure 1. Source code for subject/observer pattern

can be specified with the following predicate definition:

SubObs(s, O, v)
def
= Sub(s, O, v) ∧ ∀o ∈ O.Obs(o, s, v)

Here s is the Subject, O is a set (list) ofObservers and v is
the current value of theSubject. In the definition,Sub(s, O, v)
represents aSubject objects, that hasO Observers, and current
value, v; and Obs(o, s, v) represents anObserver object, with
Subject s that had valuev last time it was notified. The ownership
properties are captured directly by using separation logic (see [9,
10] for more details).2 We give the definitions of the predicates in
Figure 2.

The SubObs predicate can be seen as the invariant of the ag-
gregate structure. Accordingly, it should hold on the entry and exit
of every public method of the aggregate (this is just a generaliza-
tion of a class invariant). So the “aggregate invariant” should hold
on the entry and exit of the two constructors, theupdate method of
theSubject, and theval method of theObserver. The other meth-
ods (register, notify andget) are internal to the aggregate structure.
We present the specifications of the methods and constructors in
Figure 2.

When verifying theSubject methods, we use the definition of
SubObs andSub predicates, and verifying theObserver methods
we can use bothSubObs andObs definitions. Hence, theSubject
is independent of theObserver, and vice-versa, but they are both
dependent on the aggregate structure to which they belong, hence
our reasoning remains modular.

We present an example verification of the constructor of the
Observer:

{SubObs(s, O, v) ∗ this.sub7→ ∗ this.cache 7→ }

2 Separation logic in a footnote.Separation logic is an extension to Hoare
logic that allows reasoning about heap data-structures. It has two new
connectives:P ∗ Q means the state can be split into two disjoint parts,
one satisfyingP and the otherQ; x.f 7→ y means the objectx has a field
f containingy; and~i∈{i1,...,in}.P (i) meansP (i1) ∗ . . . ∗ P (in).
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Predicates

SubObs(s, O, v)
def
= Sub(s, O, v) ∗~o∈OObs(o, s, v)

Sub(s, O, v)
def
= ∃l. s.val 7→v ∗ s.obs 7→l ∗ list(l, O)

Obs(o, s, v)
def
= o.cache 7→v ∗ o.sub7→s

Method Pre-condition Post-condition

s=Subject() emp SubObs(s, ∅, )
s.register(o) Sub(s, O, v) ∗Obs(o, s, ) Sub(s, o :: O, v) ∗Obs(o, s, v)
s.update(n) SubObs(s, O, v) SubObs(s, O, n)
ret=s.get() Sub(s, O, v) Sub(s, O, v) ∧ ret=v

o=Observer(s) SubObs(s, O, v) SubObs(s, o :: O, v)
o.notify() Sub(s, O, v) ∗Obs(o, s, ) Sub(s, O, v) ∗Obs(o, s, v)
ret=o.val() SubObs(s, O, v) ∧ o ∈ O SubObs(s, O, v) ∧ ret=v

whereo ∈ (o′ :: O′)
def
= o = o′ ∨ o ∈ O′ ando ∈ ∅ def

= false

Figure 2. Specification of subject/observer pattern

this.sub = s;
{SubObs(s, O, v) ∗ this.sub7→s ∗ this.cache 7→ }
{SubObs(s, O, v) ∗Obs(this, s, )}
{Sub(s, O, v) ∗ (~o∈OObs(o, s, v)) ∗Obs(this, s, )}

s.register(this);
{Sub(s, this::O, v) ∗ (~o∈OObs(o, s, v)) ∗Obs(this, s, v)}
{Sub(s, this::O, v) ∗ (~

o∈(this::O)
Obs(o, s, v))}

{SubObs(s, this::O, v)}

Interestingly, theObserver’s constructor causes problems for class
invariant based verification, because it calls another class’s method,
which in turn calls back into theObserver. This complicated call-
ing pattern is forbidden in the class invariant approach, and requires
additional machinery [1]. Simply by using predicates over aggreg-
ates we avoid such constraints.

Conclusion We have demonstrated a straightforward proof of the
subject/observer pattern. We have not invented new methodology
or ownership types. We have simply considered a property of an
aggregate structure. These properties, we claim, are the key to
verifying object-oriented programs, and should not be shoehorned
into class invariants. Class invariants have taken us a long way, but
properties of aggregate structures should now form the foundation
of verification.

Acknowledgments We thank Gavin Bierman, Sophia Drossopoulou,
and Peter O’Hearn for encouraging me to write this position paper.
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Abstract
We extend an existing points-to analysis for Java in two ways. First,
we fully support .NET which has structs and parameter passing
by reference. Second, we increase the precision for calls tonon-
analyzablemethods. A method is non-analyzable when its code
is not available either because it is abstract (an interface method
or an abstract class method), it is virtual and the callee cannot be
statically resolved, or because it is implemented in native code (as
opposed to managed bytecode). For such methods, we introduce
extensions that model potentially affected heap locations. We also
propose an annotation language that permits a modular analysis
without losing too much precision. Our annotation language allows
concise specification of points-to and read/write effects. Our analy-
sis infers points-to and read/effect information from available code
and also checks code against its annotation, when the latter is pro-
vided.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
Analysis

General Terms Object-oriented programming, static analysis,
points-to analysis, effects analysis

Keywords object-oriented, points-to analysis

1. Introduction
Object-oriented languages, as C# or Java, strongly rely on the ma-
nipulation (read/write) of dynamically allocated objects. As a con-
sequence, static analysis tools for these languages need to compute
some heap abstraction. Here, we focus our attention on a static anal-
ysis for determining the side-effects of statements and methods.

Side effect information can be used for program analysis, spec-
ification, verification and optimization. If it is known that a method
m has no side-effects, then during the analysis of a caller,m can
be handled in a purely functional way. Furthermore,m can be used
in assertions and specifications [13, 5]. Side effect-free methods
enable several optimizations such as caching the computed results
and automatic parallelization.

Analysis of side-effects in mainstream OO languages is not
simple as (i) different variables or fields may refer to the same
memory location (aliasing); (ii) the relationship between objects
can be very complex (shape); (iii) the number of objects can be
unbounded (scalability); and (iv) it can be difficult or impossible to
statically determine the control flow because of dynamic binding or
because not all the code is not available at analysis time, e.g., when
analyzing a class library or programs that use native code.

We extend an existing points-to and effect analysis presented by
Salcianu et al. [22] to infer read and write effects for code targetting
the .NET Common Language Runtime (CLR) [11]. The CLR is
the common infrastructure for languages such as C#, Visual Basic,

Managed C++, etc. Unlike Java, the CLR adds support for struct
types and parameter passing by reference via managed pointers,
i.e., garbage collector controlled pointers. For each method in the
application we compute a summary describing a read/write effects
and a points-to graph that approximates the state of the heap at the
method’s exit point.

The more important extension is the inclusion of additional sup-
port for non-analyzablecalls. We can analyze programs that have
calls to non-statically resolvable calls such as interface calls, vir-
tual calls, and native calls while being less pessimistic than Sal-
cianu’s analysis. We define a concise yet expressive specification
language to describe points-to and read/write effects for a method.
The method annotations are used (i) as summaries, to analyze code
involving calls to non-analyzable methods; (ii) to enable modular
analysis, i.e., when analyzing a methodn that invokes a method
m, we (a) use the annotationA(m) in the analysis of the body
of n and (b) we checkm against its specificationA(m); (iii) as
documentation and contracts to impose restrictions on eventual im-
plementations [18]. This allows our analysis to work even without
computing a precise call graph.

In this work we apply our analysis primarily for checking
method puritybut it can be used for any other analysis that requires
aliasing information and/or conservative read/write effect informa-
tion. Purity is informally understood to mean that a method has no
effect on the state. Formally, however, there are different levels of
purity [6]. Our analysis computes weak purity, i.e., it infers weak
purity and it checks whether a method annotated as being weakly
pure lives up to its contract. Aweakly puremethod does not mutate
any object that was allocated prior to the beginning of the method’s
execution. Because a weakly-pure method can return newly allo-
cated objects and since object equality can be observed by clients,
there may be further restrictions on weakly-pure methods in order
to use them in specifications [10].

The main contributions of the paper are:

• An interprocedural read/write effect inference technique, built
on the top of the points-to analysis, for the .NET memory model
that relaxes theclosed worldassumption.

• A new set of annotations for representing points-to and effect
information in a modular fashion. The annotations are consid-
ered valid for interprocedural analysis when the methods are
called, and verified when the implementations of the methods
are analyzed.

• An implementation integrated into the Spec# compiler [23] to
infer and verify method purity and for checking the admissibil-
ity of specifications in the Boogie methodology [5].

1.1 The Problem

Consider the following simple, but realistic example. Figure 1
contains a method written by a programmer to copy a list of inte-
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List<int> Copy(IEnumerable<int> src)
{

List<int> l = new List<int>();
foreach (int x in src)
l.Add(x);

return l;
}

Figure 1. A simple use of an iterator in C#.

List<int> Copy(IEnumerable<int> src)
{

List<int> l = new List<int>();
IEnumerator<int> iter =
src.GetEnumerator();

while (iter.MoveNext()){
int x = iter.get_Current();
l.Add(x);

}
return l;

}

Figure 2. “Desugared” version of the iterator example.

gers. In C#, theforeachis syntactic “sugar” which the compiler ex-
pands (“desugars”) into the code shown in Figure 2. (Programmers
are also able to directly write the de-sugared version.) The desug-
ared version shows that there is one method call from the interface
IEnumerable〈T 〉and two from the interfaceIEnumerator〈T 〉.
In addition, the constructor for the typeList〈T 〉 is called, as is its
Add method.

A points-to analysis produces the set of memory locations that
are read and written byCopy. That information can then be used
to determine ifCopy is (weakly) pure. It clearly mutates the list
that it creates and returns, but that list is created after entry into
the method and the original collection from which the integers are
drawn is unchanged. Thus, we desire an analysis that is precise
enough to recognize its purity.

Salcianu’s analysis would not be able to analyze the calls to the
interface methods. It would make the conservative approximation
that the parametersrc could escape to any location in memory
and that the method has a (potential) write effect on all accessible
locations, such as all static variables. This precludesCopy from
being pure and, perhaps more importantly, pollutes the analysis
of any method that calls it because those effects then become the
effects of the caller.

We have created a specification language for concisely describ-
ing the points-to graph and read/write effects of a method. The de-
sign of such a language is subject to common engineering tradeoffs:
it should be precise enough to enable the recognition of common
programming idioms while at the same time be concise enough for
programmers to use in everyday practice.

We add annotations written in the language to method signa-
tures. At call sites, we trust the annotation of the called method;
annotations are then verified when analyzing a method implemen-
tation. Annotations are inherited: they must be respected in every
subtype by overriding methods. We use the set of annotations to
model non-analyzable calls with better precision than previously
possible while still computing a conservative points-to graph and
read and write effects of the callee. The annotations describe an
approximation of the read and write effects of the method.

1.2 Paper structure

First, we review the essential ideas from Salcianu’s analysis in Sec-
tion 2 and present our extensions to deal with .NET memory model
and non-analyzable calls. Section 3 presents our annotations and
the extensions to Salcianu’s analysis needed to process the points-
to graphs they represent. Our preliminary experimental results ap-
pear in Section 4. Some related work is reviewed in Section 5 and
our conclusions are presented in Section 6.

2. Salcianu’s Analysis
Salcianu et al. [22] created an analysis for Java programs that
performs an intra-procedural analysis of each method to obtain a
method summary that models the result of the analysis at the end
of the method’s execution. We briefly review their analysis.

Their analysis relies on having a precise precomputed call graph
for the entire application. Methods are traversed in a bottom up
fashion, using already computed method summaries at each call
site. To deal with recursion, a fixpoint computation operates over
every strongly-connected component (i.e., group of mutually recur-
sive methods). When a method invokes another method, the current
state of the caller and the method summary for the callee are unified
to represent the caller’s state after the call.

The intra-procedural analysis is a forward analysis that com-
putes a points-to graph (PTG) which over-approximates the heap
accesses made by a methodm during all its possible executions.
Given a methodm and a program locationpc, a points-to graph
P

pc
m is a triple〈I,O, L〉, whereI is the set of inside edges,O the

set of outside edges andL the mapping from locals to nodes1. The
nodes of the graph represent heap objects; there are basically three
different types of nodes.Inside nodesrepresent objects created by
m, while parameter nodesrepresent the value of an object passed
as an argument tom. Load nodesare used as placeholders for un-
known objects or addresses. A load node represents elements read
from outsidem.

Relations between objects are represented using two kind of
edges:inside edges model references created inside the body of
m and outside edges model heap references read from objects
reachable from outsidem, e.g., through parameters or static fields.

When the statement at the program pointpc is a method call,
op, the analysis uses a summary of the calleePcallee—a PTG
representing the callee effect on the heap—and computes an inter-
procedural mappingµpc

m :: Node 7→ P(Node). It relates every
noden ∈ nodes(Pcallee) in the callee to a set of existing or fresh
nodes in the caller(nodes(Ppc

m )∪nodes(Pop)) and is used to bind
the callee’s nodes to the caller’s by relating formals with actual
parameters and also to try to match callee’s outside egdes (reads)
with caller’s inside egdes (writes).

For each program point withinm, the analysis also records the
locations that are written to the heap. The summary of a method
represents the abstract state at the method’s exit point in term of
its parameters. It contains all reachable nodes from the (original)
parameter nodes.

2.1 Extensions for the .NET Memory Model

We extend this analysis to support features of the .NET platform
not present in Java: parameter passing by reference and struct
types. Struct types havevaluesemantics; they encompass both the
primitive types like integers and booleans as well as user-defined
record types. To accommodate both references and structs, we add

1 The set of nodes is implicitly described by the two sets of edges and the
local variables map. Salcianu’s analysis also has one more element,E, the
escaping node set. Instead, we represent an escaping node by connecting it
to a special node that represent the global scope.
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a new level of dereference usingaddress nodes. In this model, every
variable or field is represented by an address node. In the case
of objects (or primitive types) the address node then refers to the
object itself. A struct value is represented directly by its address. To
access an object we first get a reference to an address node and then
follow that to the value. In the case of structs we directly consider
the address as the starting offset of the struct. Thus, an address
node for an object has outgoing edges labeled with the “contents-
of” symbol “*”, while an address node for a struct value has one
outgoing edge for each field of the struct: the labels are the field
names.

This distinction is used in the assignment of objects and structs.
For objects, we just copy the value pointed to by the address node,
and for structs we also copy all the values pointed to by its fields.
Figure 3 shows the representation of object and struct values and
how the assignment of struct values is done. Address nodes are
depicted as ovals, values as boxes.

In [4] we formally present the concrete and abstract semantics
of the extended model. Basically we support the statements that
operate on managed pointers. For instance the statement that loads
an addressa = &b assigns toa the address ofb. If the type ofb is
a struct typea will contain a reference to it. Thus,a can be used as
if it were an object. The pair of statements indirect load,a = *b,
and indirect store,*a = b, allows indirect access to values and
are typically used to implement parameter passing by reference. We
also keep track of read effects by registering every field reference
(load operation).

Figure 4 shows a simple method and three points-to graphs at
different control points in the method. All of the addresses in the
figure refer to objects. One node models all globally accessible
objects. The graph on the left shows the points-to graph as it exists
at the entry point of the method. The middle graph shows the effect
of executing the body of the method: the points-to graph is shown at
the exit point of the method. Finally, the right graph is the summary
points-to graph for the method. It represents the method’s behavior
from a caller’s point of view. Notice that the initial value of the
parametera has been restored since a caller would not be able to
detect that it is re-assigned within the method. The summary for the
method is a triple made up of a points-to graph that approximates
the state of the heap, a write setW, and a read setR.

2.2 Extensions for Non-analyzable Methods

Salcianu’s analysis computes a conservative approximation of the
heap accesses and write effects made by a method. A call to a non-
analyzable method causes all arguments to escape the caller and
also to cause a write effect on a global location [22].

For a more precise model of non-analyzable calls, we generate
summary nodes for non-analyzable methods. A load node (in par-
ticular, a parameter node) is a placeholder for unknown objects that
may be resolved in the caller’s context. In the case of analyzable
calls, at binding time the analysis tries to match every load node
with nodes in the caller. A match is produced when there is a path
starting from a callee parameter that unifies with a path in the caller.
That means that a read or write made on a callee’s load node cor-
responds to a read or write in the caller. As reads and writes in the
callee are represented by edges in the points-to graph, those edges
must be translated to the caller.

Non-analyzable calls may have an effect on every node reach-
able from the parameters. That means that, unlike analyzable calls,
some effects might not be translated directly to the caller points-
to graph as it may not have enough context information to do the
binding. For instance, a non-analyzable calleem2 may modify
p1.f1.f2.f3 to point to another parameterp2 and a callerm that
performs the method callm2(a1, a2) may have points-to informa-
tion only abouta1.f1. As we don’t know “a priori” the effect of

m2 it would be unsound to consider only an effect overa1.f1 in
the caller. We need some mechanism to updatea1 when more in-
formation becomes available (e.g., when bindingm with its caller).

2.2.1 Omega Nodes

We introduce a new kind of node, anω node, to model the set
of reachable nodes from that node. At binding time, instead of
mapping a load (or parameter) node with the corresponding node
in the caller,ω nodes are mapped to every node reachable from the
corresponding starting node in the caller. For instance, anω node
for a parameter in the callee will be mapped to every node reachable
from the corresponding caller argument.

Figure 5 shows an example of howω nodes are mapped to caller
nodes during the inter-procedural binding. Suppose that somehow
we know the non-analyzable method call creates a reference from
some object reachable fromp1 to some object reachable fromp2.
Since we don’t know which fields are used on the access path, we
use a new edge label,?, that represents any field. At binding time
we know that froma1 we can reachIN1 andIN2. Thus, we must
add a reference from both nodes to the nodes reachable froma2.

We want to distinguish between a node being merely reachable
from it being writable (e.g., an iterator may access a collection
for reading but not for writing). For this purpose, we introduce a
variant ofω nodes:ωC nodes. TheC stands forconfined, a concept
borrowed from the Spec# ownership system [2]. These nodes have
the same meaning asω nodes for binding a callee to a caller, but
they represent only nodes reachable from the caller through fields
it owns. Ownership is specified on the class definition: a fieldf

marked as being anowningfield in classT means that an objecto
of typeT owns the object pointed to by itsf field, o.f (if any).

To model potential read or writes we use? edges to mean that
the method may generate a reference using an unknown field for
any object reachable from the object(s) represented by the source
node to the object(s) represented by the target node. As we want a
conservative approximation of the callee’s effect, we only generally
introduce inside edges in non-analyzable methods because they
do not disappear when bound with the caller’s edges. We use
another wildcard edge label$, that includes only a subset of the
labels denoted by?. $ denotes only non-owned fields and allows
distinguishing between references to objects that can be written by
a method, from references that can only be reached for reading (see
Section 3 in particular theWriteConfined attribute). This is the
distinction that allows the use of impure methods while retaining
guarantees that some objects are not written. For the worst case
scenario we connect every parameterω node of the non-analyzable
method to other parameter nodes and to themselves using edges
labeled as? to indicate potential references created between objects
reachable from the parameters. Section 3 presents our annotation
language that helps eliminate some of these edges.

2.2.2 Interprocedural binding

To deal with the new nodes and edge labels, we adapt the inter-
procedural mappingµ. Recall thatµ is a mapping from nodes in
the callee to nodes in the callee and the caller. Thus, for everyω

noden
L
pc

ω
we compute the closure ofµ(nL

pc

ω
) by adding the set of

reachable nodes fromµ(nL
pc

ω
) to itself.

When computing the set of reachable nodes matching anωC

node we consider only paths that pass through owned fields2 and?
edges. Note that we reject paths that contain$ edges.

Finally, we convert any load nodes,n
L
pc, contained in the set

µ(nL
pc

ω
) to ω nodes. This is because these nodes could be resolved

when more context is available, at which point we still need to
apply the effect of the non-analyzable call to those nodes. For

2 We mean “owned fields” as defined in the Boogie methodology [2].
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Figure 3. Modeling objects and structs. On the leftv0 is the address ofv1, which is a value of a struct type with two fieldsf1 andf2. (v0

can be thought of as an object, e.g., if the struct is passed to a method that takes an object as a parameter thenv1 would be aboxedvalue.)
The type off1 is also a struct type with one fieldg which is of an object type. The type off2 is an object type. The center and right figures
show an assignment of two variables of struct type.

instance in Figure 5, before the binding all nodes reachable from
a1 are inside nodes. Those nodes do not change at binding time
as they were created by the caller itself and are not place holders
for unknown objects. Thus, no more context is necessary to solve
the binding betweena1 andp1. However,a2 can reach the load
nodeL4 meaning that more context might be necessary to resolve
nodes reachable froma2. That is why we convertL4 to anω node.
Full details on the modified computation for the inter-procedural
mappingµ is in [4].

We also modify the operation that models field dereference to
support the? and$ edges. It considers those edges as “wild cards”
allowing every field dereference to follow those edges.

3. Annotations
Table 1 summarizes our annotation language. The annotations pro-
vide concise information about points-to and effect information and
allows us to mitigate the effect of non-analyzable calls. Annotating
a method as pure is the same as marking each parameter as not be-
ing writable (unless it is an out parameter). A method annotated as
being write-confined is shorthand for marking every parameter as
write-confined. Obviously not all combinations of the attributes are
allowed. For example, it would be contradictory to label a method
as being both pure and as writing globals.

The full details for mapping the attributes into points-to and
write effect information are found in [4]. Basically their impact is
to a) remove? edges, b) replaceω nodes by inside nodes, and c)
avoid registering write effects over parameters or the global scope.

We explain the effect of the annotations using some of the
methods in our running example. Figure 7 presents the full list of
annotations. TheGetEnumerator method returns an object that
is modified later on inCopy. Notice that the loop would never
terminate unlessiter.MoveNext returns false at some point. So
either the loop never executes or else some state somewhere must
change so that a different value can be returned. If the state change
involves global objects, thenCopy is not pure so let us assume that
the change is to the objectiter itself. As long as that object was
allocated byGetEnumerator, changes to it would not violate
the weak purity ofCopy. We expectGetEnumerator to return
a fresh object: the iterator. At the same time, it is likely that the
returned iterator has a reference to the collection. We need a way
to distinguish the write effects inMoveNext so that we do not
conclude that it modifies the collection.

Figure 6 shows the points-to graph forGetEnumerator. It
corresponds to the following annotations.

• The return value is annotated asFresh. This generates the
inside node for the return value instead of anω node.

• The receiver (this variable) is annotated asEscapes which
means that the points-to graph must introduce edges from the

nodes reachable from outside (in this case the return value) to
the receiver. Note that we do not annotate it asCapture. This
is why the edge between the return value and the collection is
labeled as$ which means that the receiver is reachable from
outside but only for reading. ACapture annotation would
generate a? edge. There are no edges starting from theω node
pointed by&this because of the default annotation for the
receiver asWrite(false).

• The method is annotated as not accessing globals. This means
that there is no global node (and so no write or read effects on
the global state).

We believe these are reasonable constraints on the behavior of
GetEnumerator. The points-to graph forMoveNext is also
shown in Figure 6. It corresponds to these annotations:

• The method is annotated asWriteConfined, which means
that it can only mutate objects it owns. This is represented using
an ωC node for the receiver. Note how this is implemented.
The parameter node has two edges. The edge labeled as?
which leads back to the reciever means that the method can
perform any write to nodes in its ownership cone. The other
edge labeled as$ leads to a separateω node. That means that
objects reachable using not-owned fields can be read but not
modified. Thus, edges labeled as$ do not need to be considered
when computing write effects for the method.

class List<T> {
[GlobalAccess(false)]
public List<T>();
[GlobalAccess(false)]
public void Add(T t);
...

}
interface IEnumerable<T>{
[return: Fresh]
[Escapes(true)] // receiver spec
[GlobalAccess(false)]
IEnumerator<T> GetEnumerator();

}
interface IEnumerator<T> {
[WriteConfined] bool MoveNext();
T Current { [GlobalAccess(false)] [Pure] get; }
[WriteConfined] void Reset();

}

Figure 7. The methods needed for analyzingCopy along with
their annotations.
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void m(A a){
a = this;
D d = new D();
a.f = d;

}

W(m) = {〈PLN(this), f〉}
R(m) = {}
Write(m) = {this.f}
Read(m) = {}

Figure 4. An example method, three points-to graphs for the beginning, end, and summary of the method and the read and write sets for the
method. The latter is expressed both as the sets of nodes (PLN meansparameter load node) and as the access paths.

Figure 5. Effect of omega nodes in the inter-procedural mapping

Attribute Name Target Default Meaning
Fresh out Parameter False The returned value is a newly created object.
Read Parameter True The content can be transitively read.
Write Parameter False The content can be transitively mutated.
WriteConfined Parameter False The content can transitively mutate only captured ob-

jects.
Escape(bool) Parameter False Will any object reachable from the parameter be reach-

able from another object in addition to the caller’s argu-
ment

Capture(bool) Parameter False Will some caller object own the escaping-parameter’s
objects ?

GlobalRead(bool) Method True Does the method read a global?
GlobalWrite(bool) Method True Does the method write a global?
GlobalAcccess(bool) Method True Does the method read or write a global?
Pure Method False The method can not mutate any object from its prestate

except for out parameters
WriteConfined Method False The method mutates only objects owned by the param-

eters (captured).

Table 1. The set of attributes used to summarize the points-to graph and the read and write sets. The attributesFresh andEscape also are
allowed on the “return value” of the method since we model that as an extra (out) parameter. In C#, attributes on return values are specified
at the method level with an explicit target, e.g.,[return:Fresh].
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Figure 6. The evolution ofCopy’s points-to graph after callingsrc.GetEnumerator anditer.MoveNext. We use the special field
$ to indicate thatsrc is reachable fromiter but iter is able to mutate objects only using fields thatiter’s class owns. For simplicity we do
not show the evolution of the newly created objects pointed to by the listl.

4. Experimental Results
Our implementation is integrated into the Spec# compiler pipeline
and can also be run as a stand alone application. We analyze Boogie
[3], a program verification tool for the Spec# language [2]. Boo-
gie is itself written in Spec# and so already has some annotations.
In this case we use our tool to verify methods annotated as pure.
We analyzed the eight application modules using three different
approaches.Intra-procedural:We analyze each method body inde-
pendently. In the presence of method calls we use any annotations
provided by the callee.Inter-procedural (bottom up with fixpoint):
This is a whole program analysis. We compute a partial call graph
and analyze methods in a bottom up fashion in order to have the
callee precomputed before any calls to that method. To deal with
recursive calls we perform a fixpoint computation over the strongly
connected graph of mutually recursive calls.Inter-procedural (top
down with depth 3):Again, a whole program analysis with inline
simulation. For every method we analyze call chains to a maximum
length of three.

Table 2 contains the results for the three kinds of analysis.
We show only modules that contain purity annotations. The intra-
procedural analysis is only slightly less precise than the other
two analyses. Furthermore, when using annotations with intra-
procedural analysis, the precision is substantially better than a full
inter-procedural analysis without annotations. For this application
we don’t find a big difference between the two inter-procedural
analyses. This is because most of the methods are not recursive.

One interesting thing is that we found that many of the methods
declared pure in Boogie were not actually pure. Some are observa-
tionally pure, but others either record some logging information in
static fields, or else were just incorrectly annotated as being pure.

5. Related work
Our analysis is a direct extension of the points-to and effect anal-
ysis by Salcianu et al. [22]. We add support for a more complex
memory model (managed pointers and structs) and provide a dif-
ferent approach for dealing with non-analyzable methods. Instead
of assuming that every argument escapes and the method writes
the global scope, we try to bound the effect of unknown callees
using annotations. Using their analysis it is difficult to decide that
a method is pure when it calls a non-analyzable method (e.g., the
iterator example). One alternative is to generate by hand all the
information about the callee (points-to and effects) but it has to be
done for every implementation of an interface or abstract class. Our
annotation language simplifies that task and allows us to verify the
annotations when code becomes available.

Type and effect systems have been proposed by Lucassen et al.
[17] for mostly functional languages. There has been a significant
amount of work in specification and checking of effect information
relying on user annotations. Clarke and Drossopoulou use owner-

ship types [9] while Leino et al. use data groups [16]. In [14], an
effect system using annotations is proposed: it allows effects to be
specified on a field or set of fields (regions). It also has a notion of
“unshared” fields that corresponds to our ownership system. Using
a purely intra-procedural analysis, they verify methods against their
annotations. However, it seems that it doesn’t compute points-to-
information. Compared to their approach, our annotation language
is less precise, but still allows enough information about escaping
and captured parameters. JML [15] and Spec# [2] are specification
languages that allow specification of write effects. One of the aims
of our technique is to assist the Spec# compiler in the verification
and inference of the read and write effects. We use the purity analy-
sis to check whether a method can be used in specifications. Javari
[24] uses a type system to specify and enforce read-only parameters
and fields. To cope with caches in real applications, Javari allows
the programmer to declare mutable fields; such fields can be mu-
tated even when they belong to a read-only object. Our technique
computes weak purity so mutation of prestate objects are not al-
lowed in methods. To automatically deal with caching writes, it is
necessary to infer observationally pure methods [6].

Points-to information has also been used to infer side ef-
fects [21, 19, 8, 7]. Our analysis, as well as Salcianu’s analysis [22],
is able to distinguish between objects allocated by the method and
objects in the prestate. This enables us to compute weak purity
instead of only strong purity. In more recent work, Cherem and
Rugina [7] present a new inter-procedural analysis that generates
method signatures that give information about effects and escap-
ing information. It allows control of the heap depth visibility and
field branching, which permits a tradeoff between precision and
scalability. Our analysis also computes method summaries con-
taining read and write effect information that are comparable with
the signatures computed by their analysis but our technique is able
to deal with non-analyzable library methods with a concise set of
annotations that can be checked when code is available. AliasJava
[1] is an annotation language and a verification engine to describe
aliasing and escape information in Featherweight Java. Our work
also uses annotations to deal with escape, aliasing and some own-
ership information but also some minimal description about read
and write effects in order to compensate for information lacking at
non-analyzable calls. Hua et al. [20] proposed a technique to com-
pute points-to and effect information in the presence of dynamic
loading. Instead of relying on annotations, they only compute infor-
mation for elements that may not be affected by dynamic loading
and warn about the others.

6. Conclusions and Future Work
We have implemented an extension to Salcianu’s analysis [22] that
works on the complete .NET intermediate language CIL. The ex-
tensions involve several non-trivial details that enable it to deal
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Project #Meths DP Using Annotations Without Annotations
Intra % Inter 3 % IF % Intra % Inter 3 % IF %

AbsInt 348 66 66 100% 66 100% 66 100% 51 77% 51 77% 51 77%
AIFramework 15063 3514 2702 77% 2725 77% 2730 78% 1631 46% 1688 48% 1688 48%
Graph 97 20 14 70% 14 70% 14 70% 10 50% 10 50% 10 50%
Core 9628 1326 1164 88% 1224 92% 1224 92% 709 53% 729 55% 729 55%
ByteCodeTrans 5564 984 781 79% 845 86% 863 88% 255 26% 297 30% 297 30%
VCGeneration 2050 187 171 91% 171 91% 171 91% 155 83% 155 83% 155 83%
Compiler Plugin 55 12 10 83% 10 83% 10 83% 8 66% 8 66% 8 66%

Table 2. Results for Boogie showing the number of methods annotated as pure that were verified as pure by our analysis. The “DP” (declared
pure) column lists the number of methods in each module that were annotated as pure. The column labeled “Intra” shows the number of
methods verified using the intra-procedural analysis, “Inter 3” the inter-procedural top-down analysis limited to a call-chain depth of three,
and “IF” is the full bottom-up inter-procedural analysis.

with call-by-reference parameters, structs, and other features of the
.NET platform. Our model provides a simple operational semantics
for a useful part of CIL. Full details are presented in an accompa-
nying technical report [4].

We have extended the previous analysis by includingω-nodes
that model entire unknown sub-graphs. Together with our annota-
tion language, this allows treatment of otherwise non-analyzable
calls without losing too much precision.

The abstraction aspect ofω-nodes also holds the promise to
improve the scalability of the analysis by enabling points-to graphs
to be abstracted further than possible in the original analysis by
Salcianu.

We believe our annotation system strikes the proper balance be-
tween precision and conciseness. The annotations are specifications
that are useful not only for the analysis itself, but represent infor-
mation programmers need to use an API effectively. Our technique
needs to be very conservative when dealing with load nodes. We
are planning to improve it by recomputing the set of egdes (?, $, ω)
when new nodes become available. We also plan to leverage type
information to avoid aliasing between incompatible nodes.

Our annotation language appears to be general, but it was de-
signed with our purity analysis in mind. It is possible to create a
different set of annotations; our approach would work given a map-
ping from the set of annotations into points-to graphs. It is also
possible to imagine the annotations being elements of the abstract
domain themselves, instead of using a separate annotation laguage.
Besides usability concerns for real programmers, it could make the
verification of a method against its specification more difficult: our
annotation language is intentionally simple enough to make the ver-
ification easy to perform.

One problematic aspect of the system is the necessity to intro-
duce an ownership system. The concept of ownership certainly ex-
ists in real code, but the right formalization is not fully agreed upon.
There are several different ownership systems in the literature and
we believe the meaning of our annotations would work for any of
them. For now, we have connected our annotations to the Spec#
ownership system.

By relaxing the closed-world requirements so that we do not
need full programs, we hope to enable the use of our system within
real programming practice. In the future we hope to present results
from some real-world case studies.

There are other uses for a points-to and effect analysis besides
method (weak) purity. In addition to using it for checking forms
of observational purity, we have adapted the analysis for studying
method re-entrancy[12]. It is also possible to use it for inferring
and checking methodmodifies clauses.
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Abstract
Programming in an object-oriented language demands a fine bal-
ance between high degrees of expressiveness and control. At one
level, we need to permit objects to interact freely to achieve our
implementation goals. At a higher level, we need to enforce archi-
tectural constraints so that the system can be understood by new
developers and can evolve as requirements change. To resolve this
tension, numerous explorers have ventured out into the vast land-
scape of type systems expressing ownership and behavioural re-
strictions such as immutability. (Many have never returned.) This
work in progress reports on our consolidation of the resulting dis-
coveries into a single programming language. Our language,Joe3,
imposes little additional syntactic overhead, yet can encode power-
ful patterns such as fractional permissions, and the reference modes
of Flexible Alias Protection.

1. Introduction
Recent years have seen a number of proposals put forward to add
more structure to object-oriented programming languages, for ex-
ample, via ownership types [12], or to increase the amount of con-
trol over objects by limiting how they can be accessed by other
objects, via notions such as read-only or immutability. Immutabil-
ity spans the following spectrum:Class immutabilityensures that
all instances of a class are immutable, for example, Java’s String
class;object immutabilityensures that some instances of a class are
immutable, though other instances may remain mutable; andread-
only—or reference immutability—prevents modifications of an ob-
ject via certain references, without precluding the co-existence of
normal and read-only references to the same object.

Immutable objects help avoid aliasing problems and data races
in multi-threaded programs [4, 18], and also enhance program un-
derstanding, as read-only or immutable annotations are verified to
hold at compile-time [31]. According to Zibin et al. [35], immut-
ability (including read-only references) can be used for modelling,
verification, compile- and run-time optimisations, refactoring, test
input generation, regression oracle creation, invariant detection,
specification mining and program comprehension. Read-only ref-
erences have been used in proposals to strengthen object encap-
sulation and manage aliasing. Kniesel and Theisen [21] use read-
only references to allow and to manage side-effects due to aliasing.
Noble, Vitek and Potter [27] introduce anarg reference mode to al-
low aggregates to rely only on immutable parts of external objects.
Hogg’s Islands [19] and Müller and Poetzsch-Heffter’s Universes
[24] use read-references to allow temporary representation expos-
ure in a safe fashion.

1.1 Our Contributions

The programming language,Joe3, we propose in this paper of-
fers ownership and uniqueness to control the alias structure of ob-
ject graphs, and lightweight effects and a mode system to encode
various notions of immutability. It is a relatively straightforward

extension of Clarke and Wrigstad’sexternal uniquenessproposal
(Joline) [14, 32] (without inheritance), and the syntactic overhead
due to additional annotations is surprisingly small given the ex-
pressiveness of the language. Not only can we encode the three
forms of immutability mentioned above, but we can encode some-
thing akin to thearg mode from Flexible Alias Protection [27],
Fractional Permissions [7], and the context-based immutability of
Universes [24], all the while preserving the owners-as-dominators
encapsulation invariant. Furthermore, as our system is based on
ownership types, we can distinguish between outgoing aliases to
external, non-rep objects and aliases to internal objects and allow
modification of the former (but not the latter) through a read-only
reference.

Our system is closest in spirit to SafeJava [4], but we allow ac-
cess modes on all owner parameters of a class, read-only references
and an interplay between borrowing and immutable objects that can
encode fractional permissions.

1.2 Why We Could Add Read-Only To Java (Almost)

In his paper “Why We Shouldn’t Add Read-Only To Java (Yet)” [8],
John Boyland criticises existing proposals for handling read-only
references on the following points:

1. Read-only arguments can be silently captured when passed to
methods;

2. A read-only annotation cannot express whether

(a) the referencedobjectis immutable, and hence the reference
can be safely stored;

(b) a read-only reference is unique and thus immutable, as no
aliases exist which could be used to mutate the object;

(c) mutable aliases of a read-only reference can exist, imply-
ing that the referenced object should be cloned before used,
to prevent it being modified underfoot resulting inobserva-
tional exposure.1

Joe3 addresses all of these problems. First,Joe3 supports owner-
polymorphic methods, which can express that a method does not
capture one or all of its arguments. Second, we decorate owners
with modes that govern how the objects owned by that owner will
be treated in a context. Together with auxiliary constructs inherited
from Joline, the modes can express immutability both in terms of
2.a) and 2.b), and read-only which permits the existence of mutable
aliases (2.c). Moreover,Joe3 supports fractional permissions—
converting a mutable unique reference into several immutable ref-
erences for a certain context. This allows safe representation expos-
ure without the risk for observational exposure (2.c).

Joe3 allows class, object and reference immutability. Unique
references, borrowing and owner-polymorphic methods allow us to

1 Observational exposure occurs when changes to state are observed through
a read-only reference.
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simulate fractional permissions and staged, external initialisation of
immutable objects through auxiliary methods. As we base modific-
ation rights on owners (in the spirit ofJoe1’s effects system), we
achieve what we callcontext-basedimmutability, which is essen-
tially the same kind of read-only found in M̈uller and Poetzsch-
Heffter’s Universes [24].

Joe3 allows both read-only references and true immutables in
the same language. This provides the safety desired by Boyland,
but also allows coding patterns which do rely on observing changes
in an object. Apart from the fact that we do not yet consider
inheritance, which we believe to be a straightforward extension,
we conclude that we could indeed add read-only to Java, now2.

Outline Section2 introduces theJoe3 language through a set of
motivating examples—different nestings of mutable and immut-
able objects, context-based immutability, immutable objects, and
staged construction of immutables. Section3 gives a brief formal
account ofJoe3. Section4 outlines a few simple but important
extensions—immutable classes and Greenhouse and Boyland style
regions [17]—describes how they further enhance the system and
discusses how to encode the modes of Flexible Alias Protection
[27]. Section5 surveys related work not covered above. Section6
contains an outlook for the future, and Section7 concludes.

2. MeetJoe3

In this section we describeJoe3 with the help of a couple of mo-
tivating examples.Joe3 is a class-based, object-oriented program-
ming language with deep ownership, owner-polymorphic methods,
ownership transfer through external uniqueness, an effects (revoca-
tion) system and a simple mode system which decorates owners
with permissions to indicate how references with the annotated
owners can be used. Beyond the carefully designed combination of
features, the annotation of owners with modes is the main novelty
in Joe3. The modes indicate that a reference may be read or written
(+) or only read (-), or that the reference is immutable (*). Read
and immutable annotations on an owner in the class header repres-
ent a promise that the code in the class body will not change objects
owned by that owner. The key to preserving and respecting immut-
ability and read-only inJoe3 is a simple effects system, rooted
in ownership types, and inspired by Clarke and Drossopoulou’s
Joe1 [11]. Classes, and hence objects, have rights to read or modify
objects belonging to certain owners; only a minor extension to the
type system of Clarke and Wrigstad’sJoline [14, 32] is required to
ensure that these rights are not violated.

The syntax ofJoe3 (shown in Figure5) should be understand-
able to a reader with insight into ownership types and Java-like
languages. Classes are parameterised with owners related to each
other by an inside/outside nesting relation. An owner is a permis-
sion to reference the representation of another object. Class headers
have this form:

class List<data outside owner> { ... }

Each class has at least two owner parameters,this andowner,
which represent the representation of the current object and the
representation of the owner of the current object, respectively.
In the example above, theList class has an additional permis-
sion to reference objects owned bydata, which is nested out-

2 While the syntactic price of our proposal is no doubt steep when added
to Java, adding it to a language with ownership types and uniqueness, such
as Joline, is virtually for free. On a side-note, the authors believe that if
ownership types is ever to make it into mainstream languages, simple but
powerful extensions, such as external uniqueness, read-only references and
immutability will be crucial in convincing programmers of the virtues of
the added complexity.

side owner. Types are formed by instantating the owner para-
meters,this:List<owner>. An object with this type belongs
to the representation of the current object and has the right to
reference objects owned byowner. There are two nesting re-
lations between owners, inside and outside. They exist in two
forms each, one reflexive (inside/outside) and one non-reflexive
(strictly-inside/strictly-outside). Thus, going back to
our list example, a typethis:List<this> denotes a list object
beloning to the current representation, storing objects in the cur-
rent representation.

A more detailed introduction is given in Section3. Apart from
ownership types, the key ingredients inJoe3 are the following:

• (externally) unique types (writtenunique[p]:Object), a spe-
cial borrowingconstruct for temporarily treating a unique type
non-uniquely, andowner castsfor converting unique references
permanently into normal references.

• modes on owners—mutable ‘+’, read-only ‘-’, and immutable
‘*’. These appear on every owner parameter of a class and
owner polymorphic methods, though not on types.

• an effects revocation clause on methods which states which
owners will not be modified in a method. An object’s default set
of rights is derived from the modes on the owner parameters in
the class declaration. An additional example of a use ofrevoke
is found at the end of Section4.2.

Annotating owners at the level of classes (that is, for all in-
stances) rather than types (for each reference) is a trade-off. Rather
than permitting distinctions to be made using modes on a per ref-
erence basis, we admit only per class granularity. Some potential
expressiveness is lost, though the syntax of types does not need
to be extended. Nonetheless, the effects revocation clauses regain
some expressiveness that per reference modes would give. Another
virtue of using per class rather than per reference modes is that we
avoid some covariance problems found in other proposals (see re-
lated work) as what you can do with a reference depends on the
context and is not a property of the reference. Furthermore, our
proposal is statically checkable in a modular fashion. We also need
no run-time representation of the modes.

2.1 Motivating Examples

The following examples illustrate the range of constraints that can
be expressed inJoe3.

2.1.1 A Mutable List With Immutable Contents

The code in Figure1 shows parts of an implementation of a list
class. The owner parameterdata is decorated with the mode read-
only (denoted ‘-’), indicating that the list will never cause write
effects to objects owned bydata.

The owner of the list is calledowner and is implicitly declared.
The methodgetFirst() is annotated withrevoke owner, which
means that the method will not modify the object or its transitive
state. This means the same as ifowner- andthis- would have
appeared in the class head. This allows the method to be called in
objects where the list owner is read-only.

This list class can be instantiated in four different ways, depend-
ing on the access rights to the owners in the type held by the current
context:

• both the list and its data objects are immutable, which only
allows getFirst() to be invoked, and its resulting object is
immutable;

• both are mutable, which imposes no additional restrictions;
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class Link<data- strictly-outside owner> {
data:Object obj = null;
owner:Link<data> next = null;

}

class List<data- strictly-outside owner> {
this:Link<data> first = null;

void addFirst(data:Object obj) {
this:Link<data> tmp = new this:Link<data>();
tmp.obj = obj;
tmp.next = this.first;
this.first = tmp;

}

void filter(data:Object obj) {
this:Link<data> tmp = this.first;
if (tmp == null) return;
while (tmp.next != null)

if (tmp.next.obj == obj)
tmp.next = tmp.next.next;

else
tmp = tmp.next;

if (this.first != null && this.first.obj == obj)
this.first = this.first.next;

}

data:Object getFirst() revoke owner {
return this.first.obj;

}
}

Figure 1. Fragment of a list class. As thedata owner parameter is
declared read-only (via ‘-’) in the class header, no method inList
may modify an object owned bydata. Observe that the syntactic
overhead is minimal for an ownership types system.

• the list is mutable but the data objects are not, which imposes no
additional restrictions, thoughgetFirst() returns a read-only
reference; and

• the data objects are mutable, but the list not, which only allows
getFirst() to be invoked, though the resulting object is mut-
able.

The last form is interesting and relies on the fact that we can
specify, thanks to ownership types, that the data objects are not
part of the representation of the list. Most existing proposals for
read-only references (e.g., Islands [19], JAC [20, 21], ModeJava
[28, 29], Javari [31], and IGJ [35]) cannot express this constraint in
a satisfactory way, as these proposals cannot distinguish between
an object’s outside and inside.

2.1.2 Context-Based Read-Only

As shown in Figure2, different clients of the list can have different
views of the same list at the same time. The classReader does
not have permission to mutate the list, but has no restrictions on
mutating the list elements. Dually, theWriter class can mutate the
list but not its elements.

As owner modes only reflect what a class is allowed to do to
objects with a certain owner,Writer can add data objects to the
list that are read-only to itself and the list, but writable byExample
and Reader. This is a powerful and flexible idea. For example,
Example can pass the list toWriter to filter out certain objects
in the list. Writer can then consume or change the list, or copy
its contents to another list,but not modify them. Writer can then
return the list toExample, without Example losing its right to
modify the objects obtained from the returned list. This is similar

class Writer<o+ outside owner, data- strictly-outside o> {
void mutateList(o:List<data> list) {

list.addFirst(new data:Object());
}

}

class Reader<o- outside owner, data+ strictly-outside o> {
void mutateElements(o:List<data> list) {

list.elementAt(0).mutate();
}

}

class Example {
void example() {

this:List<world> list = new this:List<world>();
this:Writer<this, world> w =

new this:Writer<this, world>();
this:Reader<this, world> r =

new this:Reader<this, world>();
w.mutateList(list);
r.mutateElements(list);

}
}

Figure 2. Different objects can have different views of the same
list at the same time.r can modify the elements oflist but not
the list itself, w can modify thelist object, but not the list’s
contents, and instances ofExample can modify both the list and its
contents.

to the context-based read-only in Universes-based systems [24, 26].
In contrast, however, we do not allow representation exposure via
read-only references.

2.1.3 Borrowing Blocks and Owner-polymorphic Methods

Before moving on to the last two examples, we need to intro-
duce borrowing blocks and owner-polymorphic methods [13, 32,
10], which make it easier to program using unique references and
ownership. (The interaction between unique references, borrowing,
and owner-polymorphic methods has been studied thoroughly by
Clarke and Wrigstad [14, 32].) A borrowing block has the follow-
ing syntax:

borrow lval as α x in { s }

The borrowing operation destructively reads a unique reference
from an l-value (lval) to a non-unique, stack-local variable (x) for
the scope of the borrowing block (s). The block also introduces
a fresh block-local owner that becomes the new owner of the
borrowed value. Every type of every variable or field that stores an
alias to the borrowed value must have this owner in its type. Clearly,
this is not the case for any pre-existing field or variable. Owner-
polymorphic methods (see below) allow granting permissions to
reference the borrowed value for the duration of a method call.
This is the only way in which references to borrowed values can
be exported to outside a borrowing block. As all method calls
in the borrowing block must have returned when the block exits,
clearly no residual aliasing can exist. Thus, when the borrowing
block exits, the borrowed value can be reinstated and is once again
unique.

Due to the strong encapsulation of external uniqueness, borrow-
ing borrows an entire unique aggregate in one single hit and makes
it stack-local.

An owner-polymorphic method is simply a method which takes
owners as parameters. The methodsm1 andm2 in Client in Fig-
ure 3 are examples of such. Owner-polymorphic methods can be
seen as accepting stack-local permissions to reference (and pos-
sibly mutate) objects that it otherwise may not be allowed to refer-
ence. Owner parameters (p* andp- in the methods in Figure3) of
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class Client {
<p* inside world> void m1(p:Object obj) {

obj.mutate(); // Error
obj.toString(); // Ok
// assign to field is not possible

}

<p- inside world> void m2(p:Object obj) {
obj.mutate(); // Error
obj.toString(); // Ok

}
}

class Fractional<o+ outside owner> {
unique[this]:Object obj = new this:Object();

void example(o:Client c) {
borrow obj as p*:tmp in { // **

c.m1(tmp); // ***
c.m2(tmp); // ****

}
}

}

Figure 3. An implementation of fractional permissions using bor-
rowing and unique references.

owner-polymorphic methods are not in the scope at the class level.
Thus, method arguments with such a parameter in its type cannot
be captured within the method body (—it isborrowed[6]).

2.1.4 Immutability

The example in Figure2 shows that a read-only reference to an
object does not preclude the existence of mutable references to
the same object elsewhere in the system. This allows observational
exposure—for good and evil.

The immutability annotation ‘*’ imposes all the restrictions a
read-only type has, but it also guarantees that no aliases with write
permission exist in the system. Our simple way of creating an
immutable object is to move amutableunique reference into a
variable with immutable type, just as in SafeJava [4].

This allows us to encode fractional permissions and to do staged
construction of immutables, both discussed below.

2.1.5 Fractional Permissions

The example in Figure3 shows an implementation of Fractional
Permissions. We can useJoline’s borrowing construct totempor-
arily move a mutable unique reference into an immutable variable
(line **), freely alias the reference (while preserving read-only)
(lines*** and****), and then implicitly move the reference back
into the unique variable again and make it mutable. This is essen-
tially Boyland’s Fractional Permissions [7]. As stated above, both
the owner-polymorphic methods and the borrowing block guar-
antee not to capture the reference. A borrowed reference can be
aliased any number of times in any context to which it has been ex-
ported, without the need to keep track of “split permissions” [7] as
we know for sure that all permissions to alias the pointer are inval-
idated when the borrowing block exits. The price of this conveni-
ence is that the conversion from mutable to immutable and back
again must be done in the same place.

Interestingly,m1 andm2 are equally safe to call fromexample.
Both methods have revoked their right to cause write effects to
objects owned byp, indicated by the* and - annotations onp,
respectively. The difference between the two methods is that the
first method knows thatobj will not change under foot (making it
safe to, for example, useobj as a key in a hash table), whereas the
second method cannot make such an assumption.

class Client<p* outside owner, data+ strictly-outside p> {
void method() {

this:Factory<p, data> f = new this:Factory<p, data>();
p:List<data> immutable = f.createList();

}
}

class Factory<p* inside world, data+ strictly-outside p> {
p:List<data> createList() {

unique[p]:List<data> list = new p:List<data>();
borrow list as temp+ l in { // 2nd stage of construct.

l.add(new data:Object());
}
return list--; // unique reference returned

}
}

Figure 4. Staged construction of an immutable list

2.1.6 Initialisation of Immutable Objects

An issue with immutable objects is that even such objects need
to mutate in their construction phase. Unless caution is taken the
constructor might leak a reference tothis (by passingthis to a
method) or mutate other immutable objects of the same class. The
standard solution to this problem in related proposals is to limit
the construction phase to the constructor [31, 35, 18]. Continuing
initialisation by calling auxiliary methodsafter the constructor
returns is simply not possible.Joe3, on the other hand, permits
staged construction, as we demonstrate in Figure4. In this example
a client uses a factory to create an immutable list. The factory
creates a unique list and populates it. The list is then destructively
read and returned to the caller as an immutable.

3. A Formal Definition of Joe3

In this section, we formally present the static semantics ofJoe3,
and argue how it guarantees immutability and read-only.

3.1 Joe3’s Static Semantics

We now describeJoe3’s type system, which can be seen as a
simplification ofJoline’s [14, 32] extended with effects annotations
and modes on owners. To simplify the formal account, we omit
inheritance and constructors. Furthermore, followingJoline, we
rely on destructive reads to preserve uniqueness and require that
movement is performed using an explicit operation.

The abstract syntax ofJoe3 is shown in Figure5. For simplicity,
we assume that names of fields, method and classes are unique.
c, m, f, x are metavariables ranging over names of classes, meth-
ods, fields and local variables, respectively.q andp are names of
owners.

Types have the syntaxp c〈p〉. We sometimes writep c〈σ〉 for
some type whereσ is a map from the names of the owner paramet-
ers in the declaration of a classc to the actual owners used in the
type. In code, a type’s owner is connected to the class name with a
‘:’ to make the type one syntactic unit.

Unique types have the syntaxuniquep c〈p〉. The keyword
unique specifies that the owner of an object is really the field
or variable that contains the only (external) reference to it in the
system. The owner annotation on the unique type is called the
movement bound. Movement bounds govern the maximal outwards
movement of a unique, so as to preserve the owners-as-dominators
property. In code, movement bounds are denotedunique[p]. For
details, see Wrigstad [32].

In systems with ownership types, an owner is a permission to
reference objects with that owner. Classes, such as the canonical
list example, can be parameterised with owners to enable them to
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P ::= C (program)
C ::= class c〈α R p〉 { fd md} (class)
fd ::= t f := e; (field)
md ::= 〈α R p〉 t m(t x) revokeE { s; return e } (method)
e ::= lval | lval-- | e.m(e) | new p c〈σ〉 | null (expr.)
s ::= lval := e | t x := e | s;s | e (statement)

| borrow lval as α x in { s }
lval ::= x | e.f (l-value)
R ::= ≺∗ | �∗ | ≺+ | �+ (nesting relation)
t ::= p c〈p〉 | uniquep c〈p〉 (type)
E ::= ε | E, p (write right revocation clause)
Γ ::= ε | Γ, x : t | Γ, α R p (environment)
σ ::= α 7→ p (owner substitution)
α ::= p- | p+ | p* (owner param.)

Figure 5. Abstract syntax ofJoe3. In the code examples, owner
nesting relations (R) are written asinside (≺∗), or strict-
ly-inside (≺+), etc. for clarity.

be given permission to access external objects. For example, the
list class has an owner parameter for the (external) data objects
of the list. In Joe3 the owner parameters of a class or owner-
polymorphic method also carry information about what effects
the current context may cause onthe objects having the owner
in question. For example, ifp- (p is read-only) appears in some
contextc, this means thatc may reference objects owned byp, but
not modify them directly. We refer to the part of an owner that
controls its modification rights as themode.

In contrast with related effect systems (e.g., [17, 11]), we use
effect annotations on methods to show what isnot affected by
the method—essentiallytemporarily revokingrights to change. For
example,getFirst() in the list in Figure1 does not modify the
list object and is thus declared using arevoke clause thus:

data:Object getFirst() revoke owner { ... }

This will force the method body to type-check in an environment
whereowner (andthis) are read-only.

Notation Given σ, a map from (annotated) owner parameters
to actual owners, letσp meanσ ] {owner+ 7→ p}. For the type
this:List<owner>, σ = {owner+ 7→ this, data- 7→ owner}.
We writeσ(p c〈p〉) to meanσ(p) c〈σ(p)〉. For simplicity, we some-
times completely disregard modes and allowσ(p). On the other
hand,σ◦ denotes a mode preserving variant ofσ s.t.if q+ 7→ p ∈ σ,
thenq+ 7→ p+ in σ◦.

Let md(α) and nm(α) return the mode and owner name of
α, respectively. For example, ifα = p+, thenmd(α) = + and
nm(α) = p.

CT is a class table computed from a programP . It maps class
names to type information for fields and methods in the class
body. CT(c)(f) = t means that fieldf in classc has typet.
CT(c)(m) = ∀α R q. t → t; E means that methodm in class
c have formal owner-parameters declaredα R q, formal parameter
typest, return typet and revoked rightsE.

Predicateisunique(t) is true iff t is a unique type.owner(t)
returns the owner of a type, andowners(t) returns the owner names
used in a type or a method type. Thus,owner(p c〈p〉) = p and
owners(p c〈p〉) = {p} ∪ p.

Ec denotes the set of owners to which classc haswrite permis-
sion. For example, the list class in Figure1 hasEList = {owner},
whereas the writer class in Figure2 hasEWriter = {owner, o}. Ec

is defined thus:

Ec =


{p | p+ ∈ α} ∪ {owner} if class c〈α R 〉 { } ∈ P
⊥ otherwise

Γ ` C Good class
Γ ` fd Good field
Γ ` md Good method
Γ ` s; Γ′ Statements is wf underΓ and producesΓ′

Γ ` e : t Expressione has typet underΓ
Γ ` t Good type
Γ ` E Good write right revocation clause
Γ ` α R p Owner parameterα is R-related top in Γ
Γ ` α perm Good owner parameterα
Γ ` p Good owner
Γ ` � The environmentΓ is well-formed

Table 1. Judgments in theJoe3 formalisation.

E \ E′ denotes set difference. The judgments in the type system
are summarised in Table1.

Good Class

(CLASS)

Γ = owner+ ≺∗ world, this+ ≺+ owner, α R p, this : t

t = owner c〈nm(α)〉 Γ` owner+ ≺∗ nm(α) Γ` fd Γ` md
` class c〈α R p〉 { fd md}

A class is well-formed if all its owner parameters are outside
owner. This makes sure that a class can only be given permission
to reference external objects and is key to preserving the owners-
as-dominators property of deep ownership systems [10]. The envir-
onmentΓ is constructed from the owners in the class header, their
nesting relations and modes, plusowner+ andthis+ giving an ob-
ject the right to modify itself. Thus, class-wide read/write permis-
sions are encoded inΓ, and must be respected by field declarations
and methods.

Good Field, Good Method The functionΓ revoke E is a key
player in our system—it revokes the write rights mentioned inE,
by converting them to read rights inΓ. It also makes sure thatthis
is not writable wheneverowner is not. For example, givenE =
{p}, we havep+ /∈ dom(Γ revoke E), so if Γ revoke E ` s; Γ′, s
does not write to objects owned byp.

ε revoke E = ε

(Γ, x : t) revoke E = (Γ revoke E), x : t

(Γ, α R p) revoke E = (Γ revoke E), (α R p revoke E)

(α R p) revoke E = (α revoke E) R p

p- revoke E = p-

p+ revoke E = p-, if p ∈ E elsep+

this+ revoke E = this-, if owner ∈ E elsethis+

p* revoke E = p*

(FIELD)

Γ ` e : t
Γ ` t f := e

(METHOD)

Γ′ = Γ, α R p Γ′ ` E
(Γ′ revoke E), x : t ` s; Γ′′ Γ′′ ` e : t

Γ ` 〈α R p〉 t m(t x) revoke E { s; return e }

A field declaration is well-formed if its initialising expression has
the appropriate type. The rules for good method is a little more
complex: any additional owner parameters in the method header
are added toΓ, with modes and nesting. Furthermore, the effect
clause must be valid:i.e.,you can only revoke rights that you own.
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Expressions The expression rules pretty much follow those of
Joline extended to cater for effects.

(EXPR-LVAL )

Γ `lv lval : t
¬isunique(t)
Γ ` lval : t

(EXPR-LVAL -DREAD)

Γ `lv lval : t isunique(t)
lval ≡ e.f ⇒ Γ ` e :p c〈σ〉 ∧ Γ ` p+ perm

Γ ` lval-- : t

Destructively reading a field in an object owned by some ownerp
requires thatp+ is in the environment.

(EXPR-VAR)

x : t ∈ Γ
Γ `lv x : t

(EXPR-FIELD)

Γ ` e : p c〈σ〉 CT(c)(f) = t
this ∈ owners(t) ⇒ e ≡ this

Γ `lv e.f : σp(t)

Judgements of the formΓ `lv lval : t deal with l-values.
In Joline, owner arguments to owner-polymorphic methods

must be passed in explicitly. Here, we assume the existence of
an inference algorithm to bind the names of the owner parameters
to the actual arguments at the call site. This isσa in the rule.

(EXPR-INVOKE)

Γ ` e : p c〈σ〉 CT(c)(m) = ∀α R p. t → t; E σ′ = σp ] σa

Γ ` σ′(α R p) Γ ` σ′
◦
(α) perm Γ ` e : σ′(t) Γ ` σ′(t)

Γ ` σ′(Ec\E) this ∈ owners(CT(c)(m)) ⇒ e ≡ this
Γ ` e.m(e) : t

By the first clause of(EXPR-INVOKE), method invocations are not al-
lowed on unique types. The third clause creates a substitution from
the type of the receiver(σp) and the implicit mapping from owner
parameter to actual owner(σa). Γ ` σ′

◦
(α) perm makes sure

that owner parameters that are writable and immutable are instan-
tiated with writable or immutable owners respectively. Clauses six
and seven ensure that the argument expressions have the correct
types and that the return type is valid. Clause eight checks that the
method’s effects are valid in in the current context, and clause nine
makes sure that any method withthis in its type (return types, ar-
gument types or owners in the owner parameters declaration) can
only be invoked withthis as receiver—this is the standard static
visibility constraint of ownership types [12].

(EXPR-NULL )

Γ ` t
Γ ` null : t

(EXPR-NEW)

Γ ` p c〈p〉
Γ ` new p c〈p〉 : uniquep c〈p〉

By (EXPR-NULL ), null can have any well-formed type. By(EXPR-
NEW), object creation results in unique objects. (Without construct-
ors, it is obviously the case that the returned reference is unique—
see Wrigstad’s dissertation [32] for an explanation why adding con-
structors is not a problem.)

Good Statements
(STAT-LOCAL-ASGN)

x 6= this
x : t ∈ Γ
Γ ` e : t

Γ ` x := e; Γ

(STAT-FIELD-ASGN)

Γ ` e : p c〈σ〉 CT(c)(f) = t
Γ ` e′ : σp(t) Γ ` p+ perm
this ∈ owners(t) ⇒ e ≡ this

Γ ` e.f := e′; Γ

In contrast to local variable update, assigning to a field requires
write permission to the object containing the field.

(STAT-BORROW)

lval ≡ e.f ⇒ Γ ` e :q c′〈 〉 ∧ Γ ` q+ perm
Γ ` lval : uniquep c〈σ〉 Γ, α ≺+ p, x : nm(α) c〈σ〉 ` s; Γ

Γ ` borrow lval as α x in { s }; Γ

In our system, unique references must be borrowed before they can
be used as receivers of method calls or field accesses. The bor-
rowing operation moves the unique object from the source l-value

to a stack-local variable temporarily and introduces a fresh owner
ordered strictly inside the unique object’s movement bound. The
new owner is annotated with a read/write permission which must
be respected by the body of the borrowing block. As the owner of
the borrowed unique goes out of scope when the borrowing block
exits, all fields or variables with types that can refer to the borrowed
object become inaccessible. Thus, the borrowed value can be rein-
stated and is once again unique. As borrowing temporarily nullifies
the borrowed l-value, the same requirements as(EXPR-DREAD) ap-
plies with respect to modifying the owner of the l-value.

(STAT-SEQUENCE)

Γ ` s; Γ′ Γ′ ` s′; Γ′′

Γ ` s; s′; Γ′′

(STAT-DECL)

Γ ` e : t x 6∈ dom(Γ)
Γ ` t x := e; Γ, x : t

Statements can be chained together in the obvious fashion. Local
variable declaration and initialisation is straightforward.

Good Effects Clause

(GOOD-EFFECT)

∀p ∈ E. Γ ` p+ perm
Γ ` E

An effects clause is well-formed if it only revokes write permis-
sions in the current environment.

Good Environment
(GOOD-EMPTY)

ε ` �

(GOOD-R)

Γ ` q
p 6∈ dom(Γ) † ∈ {+, -, *}

Γ, p†R q ` �

(GOOD-VARTYPE)

Γ ` t
x 6∈ dom(Γ)
Γ, x : t ` �

The rules for good environment require that owner variables are
related to some owner already present in the environment orworld,
and that added variable bindings have types that are well-formed
under the preceding environment.

Good Permissions and Good OwnerBy (WORLD), world is a
good owner and is always writable. By(GOOD-α), a permission is
good if it is in the environment. By(GOOD-p-), a read mode of
objects owned by some ownerp is good ifp with any permission is
a good permission—write or immutable implies read.

(WORLD)

Γ ` �
Γ ` world+ perm

(GOOD-α)

Γ ` � α ∈ dom(Γ)
Γ ` α perm

(GOOD-p-)

Γ ` p† perm † ∈ {+, *}
Γ ` p- perm

(GOOD-OWNER)

Γ ` α perm
Γ ` nm(α)

Good Nesting We can easily define judgementsΓ ` p ≺∗ q and
Γ ` p ≺+ q as the reflexive transitive closure and the transitive
closure, respectively, of the relation generated from eachα R p ∈
Γ, whereR ∈ {≺∗,≺+} or R−1 ∈ {≺∗,≺+}, combined with
p ≺∗ world for all p.

Good Type

(TYPE)

q* ∈ α ⇒ σ◦(q*) = p*, for somep
class c〈α R p〉 { . . . } ∈ P

Γ ` σp(α R p) Γ ` σp◦(α) perm
Γ ` p c〈σ〉

This rule checks that the owner parameters of the type satisfy the
ordering declared in the class header, as well as checking that
all the permissions are valid in the present context. In addition—
and this is a subtle point—if an owner parameter in the class
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header was declared with the mode immutable, then the owner
that instantiates the parameter in the type must also be immutable.
Without this requirement, one could pass non-immutable objects
where immutable objects are expected.

On the other hand, we allow parameters with read to be instanti-
ated with write andvice versa. In the latter case, only methods that
do not have write effects on the owners in question may be invoked
on a receiver with the type in point.

(UNIQUE-TYPE)

Γ ` p c〈σ〉
Γ ` uniquep c〈σ〉

By (UNIQUE-TYPE), a unique type is well-formed if a non-unique
type with the movement bound as owner is well-formed.

To simplify the formal account, we chose to make loss of
uniqueness explicit using a movement operation rather than mak-
ing it implicit via subtyping and subsumption, as such a rule would
require a destructive read to be inserted. Instead, we require con-
version to be explicit, as in the following rule:

(EXPR-LOSE-UNIQUENESS)

Γ ` e : uniqueq c〈σ〉 Γ ` p ≺∗ q
Γ ` (p) e : p c〈σ〉

This “owner-cast” expression moves the contents of a unique into a
subheap of some object or block (whatever thep owner corresponds
to). This is well-formed if the expression has a unique type and if
the movement bound of the type is outside the owner of the type
cast to.

3.2 Brief Explanation of the System

In this section, we take a hands-on approach to showing how
the system works by applying it to the example in Figure 1. For
simplicity, we ignore everything that is not related to preserving
read-only.

The key rules of the system are(METHOD), (EXPR-LVAL -DREAD),
(STAT-FIELD-ASGN), (EXPR-INVOKE), and(STAT-BORROW).

In (METHOD), any write permissions revoked in the revocation
clauseE are removed fromΓ. Thus, the method body must be well-
typed under a restrictedΓ.

Destructively reading, borrowing or assigning to a field in an
object,(EXPR-LVAL -DREAD), (STAT-BORROW) and(STAT-FIELD-ASGN)
requires a write permission to the object containing the field in the
current context.

Method invocation is a little trickier. If a formal owner para-
meter requires write access, or that an object is immutable, the call-
ing context must satisfy those requirements (byΓ ` σ◦(α) perm).
Furthermore, the current context must also have write permission
to every owner in the set of owners to which the method is allowed
to write (Ec \ E).

3.2.1 Type Checking Figure1

By (CLASS), addFirst(), filter() and getFirst() must be
well-formed under an environmentΓ = owner+ ≺∗ world, this+
≺+ owner, data-�+ owner, this : owner List〈data〉 for List
to be a good class. By(METHOD), every statement in a method
must be well-formed underΓ′ equal toΓ extended by the formal
parameters of the method and possible revocation of write rights.
For addFirst(), Γ′ = Γ, obj : data Object〈〉. We now look at
the statements inaddFirst().

As we do not have constructors,(EXPR-NEW) does not care
about permissions and is trivially well-formed with respect to write
effects.

By (STAT-FIELD-ASGN), the second line ofaddFirst() requires
that the owner oftmp is writeable underΓ′, i.e., it is in dom(Γ′).
By (EXPR-FIELD), the type oftmp is this Link〈owner〉. As this+

∈ dom(Γ′), the field update is allowed. The next line follows the
same pattern: reading a field is always allowed, and we have already
established that we are allowed to assign to fields intmp.

The last line of the method updates a field inthis. By (STAT-
FIELD-ASGN), owner+ must be indom(Γ′), as the type ofthis is
owner List〈data〉, which it is.

The methodfilter() type checks in a manner similar to that
of addFirst(). However,getFirst() is different as it revokes
the right to modifyowner (and thus self). By(METHOD), the only
line in getFirst() must type check underΓ revoke E where
E = {owner}. This is equivalent toowner- ≺∗ world, this-
≺+ owner, data- �+ owner, this : owner List〈data〉—the
context has no write permissions. The field access is still allowed
as reading fields does not require any write permissions.

3.2.2 Trapping Writes in a Read-Only Context

We now show how the system would trap an unpermitted write
added to a method in theList class of Figure1. AssumeObject
was defined thus:

class Object {
this:Object state = null;
void mutate() { this.state = null; }

}

and any of the methods inList included the linethis.first.-
data.mutate();. Γ is the same as in the previous section.

The key to trapping this violation of read-only is the 8th clause
in (EXPR-INVOKE). By (EXPR-FIELD) (applied two times), the type
of this.first.data, the receiver of the mutating message, is
data Object〈〉.

EObject = {owner} (rememberEc returns the set of names of
owners to which a class has write right) andE = ε as no rights are
revoked. ConsequentlyEObject\E = EObject.

As mutate is not owner-polymorphic,σa is empty and thus
σ2 = {owner 7→ data} andσ2(EObject\E) = {data}.

Thus, by the 8th clause of(EXPR-INVOKE), Γ` data+ must hold.
By (GOOD-α), this amounts todata+ ∈ dom(Γ) which it clearly
is not as we haddata- ∈ Γ anddata- anddata+ cannot occur
simultaneously inΓ whenΓ is well-formed.

Note that assignment to public fields is not allowed unless the
receiver isthis, which is why the modification had to be done
through a method invocation.

3.3 Potentially Identical Owners with Different Modes

The list class in Figure1 requires that the owner of its data objects is
strictly outside the owner of the list itself. This allows for a clearer
separation of the objects on the heap—for example, the list cannot
contain itself.

The downside of defining the list class in this fashion is that
it becomes impossible to store representation objects in a list that
is also part of the representation. To allow that, the list class head
must not usestrictly outside:

class List< data- outside owner > { ... }

The less constraining nesting however leads to another problem:
data and owner may be instantiated with the same owners. As data
is read-only and owner is mutable, at face value, this might seem
like a problem.

We choose to allow this situation as the context where the
type appears might not care, or might have additional information
to determine that the actual owners of data and the list do not
overlap. If no such information is available, we could simply issue
a warning. Of course, it is always possible to define different lists
with different list heads for the two situations.
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For immutables, this is actually a non-problem. The only way an
immutable owner can be introduced into the system is through bor-
rowing (or regions, see Section4.2) where the immutable owner is
ordered strictly inside any other known owner. As(TYPE) requires
that write and immutable owner parameters are instantiated with
owners that are write and immutable (respectively) in the context
where the type appears, a situation wherep+ and q* could refer
to the same owner is impossible. As(TYPE) allows a read owner
parameter to be instantiated with any mode, it is possible to have
overlappingp- andq* in a context if a read owner was instanti-
ated by an immutable at some point. Since objects owned by read
owners will not be mutated, immutability holds.

3.4 Soundness ofJoe3

We have not formally proven soundness ofJoe3. Modulo omitting
inheritance, the formal description ofJoe3 is a very simple and
straightforward extension of that ofJoline [32]. As modes have
no run-time semantics, the crucial formal results ofJoline should
apply toJoe3 as well — type soundness, owners as dominators and
external uniqueness as dominating edges. Future work will extend
theJoline formalism with modes and object-based regions and do
the extra legwork to prove that the extended system is sound.

4. Extensions and Encodings
In this section we briefly discuss extensions to our system not
included in the formalism, and the encoding of the modes from
flexible alias protection.

4.1 Immutable Classes

In our system, an object always has permission to write toowner
andthis unless this permission is explicitly revoked in an effects
clause for a specific method. Consequently, creating an immutable
class requires every method to explicitly revoke its right to modify
self. To relieve the programmer of this burden and to make a class’
semantics clearer in the program text, we can introduce immutable
classes through a class modifier:

immutable class String ...

The immutable class would be checked just as a regular class,
but with the weaker permissionsowner* andthis* in Γ. Thus,
methods that have write effects onthis or owner would not type
check. As fields may not be updated, except throughthis, this
makes the object effectively immutable. To allow initialisation of
immutable classes, the constructor would be allowed to initialise
fields, similar to how final field initialisation is treated in Java.

4.2 Regions

In order to increase the precision of effects, we introduce expli-
citly declared regions, both at object-level and within method bod-
ies. For simplicity, we have excluded regions from the formal ac-
count of the system. Object-based regions are similar to the re-
gions of Greenhouse and Boyland [17] and the domains of Aldrich
and Chambers [1], but we enable an ordering between them. Our
method-scoped region construct is essentially the same asscoped
regionsin Joline [32], which is an object-oriented variant of clas-
sical regions [23, 30], adapted for use with ownership types.

Object-based regions As discussed in Section3.3, defining the
list class without the use ofstrictly outside places the burden of
determining whether data objects are modified by changes to the
list on the client of the list. This is because the list cannot distin-
guish itself from its data objects, as they (potentially) have the same
owner.

By virtue of owners-as-dominators, an object that needs to keep
rep objects in a list must include the list in the rep, or the list will

not have the necessary permissions to reference the objects. As the
list owner and data owner are the same, modifications to the list are
indistinguishable from modification to its contents.

To tackle this problem and make our system more expressive,
we extendJoe3 with a regions system. A class declaration can
contain any number of regions that each introduce a new owner
nested strictly inside an owner in the scope. Thus, a class’ rep is
divided into multiple, disjoint parts (except for nested regions), and
an object owned by one region cannot be referenced by another.
The syntax for regions isregion α { e }. Example:

class Example {
this:Object datum;
region inner+ strictly-inside this {

inner:List<this> list;
}

void method() { list.add(datum); }
}

By virtue of the owner nesting, objects inside the region can be
given permission to reference representation objects, but not vice
versa as such types would not type check (e.g.,this is not inside
inner). Thus, representation objects outside a region cannot ref-
erence objects in the region and consequently, effects on objects
outside a region cannot propagate to objects in inside the region. In
our example above, as there are no references fromdatum to the
list, changes todatum cannot change thelist.

Method-scoped regions The scoped regionsconstruct inJoline
[32] can be added toJoe3 to enable the construction of method-
scoped regions, which introduces a new owner for a temporary
scope within some method body. Scoped regions allow the creation
of stack-local objects which can be mutated regardless of what
other rights exist in the context, even whenthis is read-only or
immutable. Such objects act as local scratch space without requir-
ing that the effects propagate outwards. The effects can be ignored.

The following line illustrates a pattern that occurs several times
in the implementation of the Joline compiler:

<d- inside world> void method(d:Something arg)
revoke this {
region temp+ strictly-inside this {

temp:Gamma<d> t = new temp:Gamma<d>();
t.calculationsWithSideEffectsOnTemp(arg);

}
}

Several times in the Joline compiler, we create a temporary object
reminiscent of the type environment (Γ) to check whether certain
addtions of owner nestings would be permitted. This object is
completely temporary and its sole purpose is throwing an exception
on an attempt at adding invalid owner nestings.

4.3 Encoding Modes from Flexible Alias Protection

In work [27] that led to the invention of Ownership Types, Noble,
Vitek and Potter suggested a set of modes on references to manage
the effects of aliasing in object-oriented systems. The modes were
rep, free, var, arg andval. In this section, we indicate how these
modes are (partially) encoded in our system.

The rep mode denotes a reference to a representation object
that should not be leaked outside of the object. All ownership type
systems encoderep; in ours, it is encoded asthis c〈σ〉.

The freeexpression holds a reference that is uncaptured by any
variable in the system. This is encoded asuniquep c〈σ〉, a unique
type. Any l-value of that type in our system is (externally) free.

The var mode denotes a mutable non-rep reference and is en-
coded asp c〈σ〉, wherethis 6= p.
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The arg mode is the most interesting of the modes. It denotes
an argument3 reference with a guarantee that the underlying object
will not be (observably) changed under foot: “that is,arg expres-
sions only provide access to the immutable interface of the objects
to which they refer. There are no restrictions upon the transfer or
use ofarg expressions around a program” [27]. We supportarg
modes in that we can parameterise a type by an immutable owner
in any parameter. It is also possible for a class to declare all its
owner parameters as immutable to prevent its instances from ever
relying on a mutable argument object that could change under foot.
On the other hand, we do not support passingarg objects around
freely—the program must still respect owners-as-dominators.

The final mode,val, is like arg, but it is attached to references
with value semantics. These are similar to our immutable classes.

5. Related Work
Boyland et al.’s Capabilities for sharing [9] generalise the con-
cepts of uniqueness and immutability. The system uses capabilit-
ies, which are pointers combined with a set of rights. What really
distinguishes this proposal from other work is the exclusive rights
which allow the revocation of rights of other references. Boyland
et al.’s system can model uniqueness with the ownership capabil-
ity. However, exclusive rights make the system difficult to check
statically.

Table2 summarises several proposals and their supported fea-
tures. The systems included in the table represent the state of the
art of read-only and immutable. In addition toJoe3, our own pro-
posal, the table includes (in order) SafeJava [4], Universes [24, 16,
15, 25], Jimuva [18], Javari [31], IGJ [35], JAC [21, 20] and Mod-
eJava [28, 29]. SafeJava is probably the closest in spirit to our pro-
posal, but the lack of crucial features, such as borrowing to immut-
ables, makes it less powerful. We now discuss the different features
covered in the table.

Expressiveness As discussed in Section2.1.6, our system allows
us to perform staged construction of immutable objects. This is also
possible to do in SafeJava.

In our example in Figure3, we show how we can encode frac-
tional permissions [7]. Boyland suggests that copying rights may
lead to observational exposure and proposes that the rights instead
be split. Only the one with a complete set of rights may modify
an object. SafeJava does not support borrowing to immutables and
hence cannot model fractional permissions. It is unclear how al-
lowing borrowing to immutables in SafeJava would affect the sys-
tem, especially in the presence of inner classes which can break the
owners-as-dominators property of deep ownership types.

In order to be able to retrieve writable objects from a read-only
list, the elements in the list cannot be part of the list’s represent-
ation. Joe3, Universes, Jimuva and SafeJava can express this in
a straightforward fashion, by virtue of ownership types. However,
only our system, because of owner nesting information, can have
two non-sibling lists sharing mutable data elements. Javari and IGJ
have taken a more ad hoc course introducing mutable fields. It is
possible in those systems to circumvent read-only if an object stores
a reference to itself (or an object that does so) in a mutable field.

Flexible Alias Protection Modes The five alias modes proposed
by Noble et al [27] were discussed in Section4.3, where we also
describe how these can be (partially) encoded in our system. Here
we only describe how the modes have been interpreted for the
purpose of the table (Table2). The rep mode denotes a reference
belonging to the representation of an object and should not be
present in the interface. A defensive interpretation ofarg is that all
systems that have object or class immutability partially supportarg,

3 An object external to another object.
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Expressiveness
Staged constr. of immutables

√ √
× × × × × ×

Fractional permissions
√

× × × × × × ×
Non rep fields

√ √1 √1 √1 ×2 ×2 × ×

Flexible Alias Protection Modes

arg
√3 ×4 × ×4 ×4 ×4 ×4 ×

rep
√ √ √ √

× × × ×
free

√ √ √9 × × × × ×
val 5 × × × × × × × ×
var

√ √ √ √ √ √ √ √

Immutability

Class immutability
√

× ×
√ √ √

×6 ×6

Object immutability
√ √

×
√

×
√

× ×
Read-only references

√
×

√
×

√ √ √ √

Context-based immutability
√

×
√

× ×7 ×7 ×7 ×

Confinement and Alias Control
Ownership types

√ √ √ √
× × × ×

Owner-polymorphic methods
√ √ √ √

× × × ×
Owners-as-modifiers × ×8 √

× × × × ×
Unique references

√ √ √
× × × × ×

Table 2. Brief overview of related work.1) not as powerful as there
is no owner nesting; two non sibling lists cannot sharemutable
data elements;2) mutable fields can be used to store a reference
to this and break read-only;3) see Section4.3; 4) no modes
on owners, and hence no immutable parts of objects;5) none
of the systems deal with value semantics for complex objects;
6) if all methods of a class are read-only the class is effectively
immutable;7) limited notion of contexts viathis-mutability; 8)
allows breaking of owners-as-dominators with inner classes and
it is unclear how this interplays with immutables;9) support is
forthcoming [25].

but only our system can have parts of an object being immutable.
Thefreealiasing mode, interpreted as being equal to uniqueness, is
supported by our system and SafeJava. None of the systems handle
value semantics for complex objects and thus not theval mode
(even though Javari include Java’s primitive types in their system).
Thevar aliasing mode expresses non-rep references which may be
aliased and changed freely as long as they do not interfere with the
other modes, for example, in assignments.

Immutability Immutability takes on three forms inclass immut-
ability, where no instance of a specific class can be mutable,object
immutability, where no reference to a specific object can be mut-
able andread-onlyor reference immutability, where there may be
both mutable and read-only aliases to a specific object.

Universes and our system provide what we call context-based
immutability. In these two systems it is possible to create a writable
list with writable elements and pass it to some other object to
whom the elements are read-only. This other object may add new
elements to the list which will be writable by the original creator
of the list. The other systems in our table do not support this as
they cannot allowe.g.,a list of writeables to be subsumed into a
list of read-only references. In these systems, this practice could
lead to standard covariance problems—adding a supertype to a list
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containing a subtype. Javari, IGJ and ModeJava all have a notion
of this-mutable fields which inherit the mode of the accessing
reference. This counts for some notion of context, albeit an ad
hoc and inflexible one. In ModeJava a read-only list cannot return
writable elements. In Javari and IGJ, this is only possible if the
elements are stored in mutable fields, which causes other problems
as discussed above.

Confinement and Alias Control Joe3, SafeJava, Universes and
Jimuva all support ownership types. This is what givesJoe3 and
Universes its context-based immutability. SafeJava and Jimuva,
despite having ownership types, do not have context-based immut-
ability due to their lack of read-only references. Universes is the
only system supporting the owners-as-mutators property, meaning
that representation exposure is allowed for read-only references.

Other approaches to confinement and alias control include Con-
fined Types [3, 34], which constrain access to objects to from
within their package. Bierhoff and Aldrich recently proposed a
modular protocol checking approach [2] based on typestates. They
partly implement Boyland’s fractional permissions [7] in their ac-
cess permissions.

Object-Oriented Regions and Effects systemsLeino [22], Green-
house and Boyland [17] and (to some degree) Aldrich and Cham-
bers [1] take a similar approach to dividing objects into regions,
and using method annotations to specify which parts of an object
may be modified by a specific method. Adding effects to owner-
ship, a la Clarke and Drossopoulou’sJoe1 [11], gives a stronger
notion of encapsulation and enables more accurate description of
effects. The addition of scoped regions to our system (c.f.,Section
4.2), combines both of these approaches.

Effect systems were first studied by Lucassen and Gifford [23]
and Talpin and Jouvelot [30].

6. Future Work
6.1 Safe Representation Exposure

Müller and Poetzsch-Heffter’s Universe system [24] allows repres-
entation exposure in a safe way (Boyland might disagree)—an ob-
ject’s representation can be exposed outside the object, but only via
read-only references.

Extending our system to allow rep exposure for non-mutables
will probably require an additional type that may only appear in
contexts where its owner is read-only or immutable, but allows any
valid owner in scope to be used as the owner of the type. This is a
direction for future work.

6.2 Inheritance

Extending our system with inheritance is one of the next directions
this research will take. We believe this to be a straightforward ex-
tension. Ownership, uniqueness and owner-polymorphic methods
are already shown to work in the presence of inheritance [32], sub-
typing and downcasts [5, 33].

In the simplest way, for ourJoe3-specific extensions, an over-
riding method must revoke (at least) the same rights as the method
it overrides, and argument and parameter types must be invariant
and modes on owners must be preserved in subclasses.

7. Concluding Remarks
We have proposedJoe3, an extension ofJoe1 andJoline with ac-
cess modes on owners that can encode class, object and reference
immutability, fractional permissions and context-based ownership
with surprisingly little syntactical overhead. Future work will see
a complete formalisation of the system, extended with inheritance
and regions, including a dynamic semantics, and appropriate im-
mutability invariants and soundness proofs.
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Abstract
Ownership Generic Java (OGJ) is a language with ownership types
as an extension to Java. In this position paper we outline the state
of OGJ. We hope that the other aliasing and ownership researchers
would benefit from the discussion around how to add ownership
into a modern generic and annotation-capable typed object-oriented
language like Java.

1. Introduction
With the lively state of ownership research [1, 3, 4, 8] a question
comes up: “What stops us from adding ownership to Java today?”
This position paper claims that there is nothing substantial which
stops us from starting to use ownership today. The only problem is
how it can be presented to the programming community to promote
its usefulness.

OGJ [7] is a language with deep, reference-based ownership
support. Over the recent months we have been working on resolv-
ing the remaining issues which arise when ownership and Java meet
in an actual language implementation. Section 2 outlines these by
dealing with statics, exceptions [5], arrays, equals and clone meth-
ods, and wildcards. The problem of arrays is a consequence of Java
language design. The other problems are deeper issues which face
many ownership systems, and we discuss them in the context of
OGJ in this paper. Section 3 wonders what else we need to do be-
fore we could propose an ownership extension to Java (ultimately
as a JSR).

The solutions described in this paper are in no way designed to
be definitive, rather we pose a question to the community as to what
could be the best alternatives to solving these issues.

2. Ownership Meets Java
2.1 Statics
Because static members cannot be owned by any instances or
instance-associated ownership types it means that the possible own-
ers are limited to World, Package, and Class. We propose that
public static members be implicitly owned by World, that package-
private static members be implicitly owned by Package and that
protected and private static members be implicitly owned by Class.

Each of these approaches is, superficially, fairly straightforward,
however, in the case of inheritance complexities can arise. This is
because a public or protected static member of some class C which
is owned by <Class> is not visible to any subclass of C, according
to the original definition of OGJ.

We propose to modify the visibility rules in OGJ to take into
account the inheritance hierarchy, in exactly the same way as
the object typing rules do. For example, if D extends C, then
C.foo<Class> would be visible and could be referred to by any
instance of type D.

class Super <SuperOwner extends World > {
public static Integer pub = 1; // assumes World
static Integer pac = 2; // assumes Package
protected static Integer pro = 3; // assumes Class
private static Integer pri = 4; // assumes Class

// Cannot use the instance type parameters or This
// static String<SuperOwner> s = "illegal!";

}

class Sub<SubOwner extends World >
extends Super <SubOwner > {

public static String <Class >
weird1 = "legal , but strange!";

private static String <World >
weird2 = "legal , but strange!";

void DoFoo() {
// Legal, because we made Class visible
// to subclasses
Sub.pro = 99;

}
}

Figure 1. Static members and ownership.

Additionally, the presence of owner generic methods in OGJ
allows for static methods to have additional owners supplied via
generic parameters.

Figure 1 shows an example of statics in OGJ. The static fields
gain an implicit owner based on their visibility. An explicit owner
can be used as long as it doesn’t contradict the name visibility of
the static field.

2.2 Exceptions
Incorporating exceptions into an ownership type system raises two
main problems: (1) the ownership of the exception itself, (2) and the
possibility of leaking references. Ownership and exceptions were
also addressed by Werner Dietl and Peter Müller [5].

An object throwing an exception could specify either that its
owner was a global type like World, or that it was owned by one of
the ownership types which were in scope. Specifying World would
mean that non-World objects could not be assigned as fields to the
reference. Similarly, using one of the other visible ownership types
would mean that exceptions could not propagate very far. Thus
exceptions would be either greatly weakened or method calls would
be unduly restricted by static type checking. This would mean that
many design idioms could not be expressed.

For OGJ we have chosen to introduce a special owner Exception
(that is a subtype of World) to resolve this problem. All exceptions
are owned by Exception. Exception is just like World, in that any
object can refer to or create an object of type Exception. Using
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class FooException <EOwner extends Exception >
extends Throwable {

public Foo<EOwner > causeOfException;

public FooException(
Foo <EOwner > causeOfException) {

this.causeOfException = causeOfException;
}

}

class A<Owner extends World >() {
private Foo<This > f;

public void SomeMethod() {
throw new FooException <Exception >(f);

}
}

class B<Owner extends World > {
public static Foo<World > globalF;
private Foo<This > myF;

public void <AnotherOwner extends World >
DoSomething(A<AnotherOwner > a) {

Foo <This > localF;
try {

a.SomeMethod();
} catch(FooException <Exception > e) {

e.causeOfException.fix();

// These lines cause compile-time errors:
// B.globalF = e.causeOfException;
// this.myF = e.causeOfException;
// localF = e.causeOfException;

}
}

}

Figure 2. Exception handling and ownership.

a subtype of World marks off the relevant subset of global objects
and allows them to be treated slightly differently.

In particular, we adopt the following conditions for Exception.
Firstly, an object owned by Exception can only be created as part
of a throw statement. Secondly we allow the ownership typing
rules to be briefly broken during the exception throwing, so long
as all other typing rules are not. This means that any object can
be passed as a parameter to and used in the constructor of an
Exception. In this situation the language implementation will only
emit a warning saying that ownership will have been temporarily
and locally broken.

The key advantages of this approach are as follows. Firstly,
borrowing or uniqueness[6, 2] do not need to be introduced into
OGJ just so that exceptions can be used. This minimises the
learning curve for users of the language. Secondly, some excep-
tions in the API already expose references. An example of this is
omg.org.CORBA.portable.ApplicationException. Rewriting
exceptions like this to work in an ownership environment could also
mean that the underlying architecture would need to be redesigned.
Our approach maximises legacy interoperability and minimises
code conversion costs.

Figure 2 shows an example of exception handling in OGJ. Inside
method SomeMethod we can pass a field f owned by This to a
publicly owned exception only because we are doing as part of the
throw statement. Inside the catch block, the exception’s fields can

class Foo<Owner > {}

class MyArrays <Owner extends World > {
// What the specification claims is allowed:
public Foo<Owner >[] myOtherArray = new Foo <?>[20];

// What javac actually allows, they are equivalent:
public Foo<Owner >[] myArray = new Foo[20];

}

Figure 3. Java arrays and ownership.

be referenced and modified via method calls, however copying the
exception fields to variable not local to the catch block will generate
a compile-time error.

2.3 Arrays
In general, arrays are not a problem for ownership, however, some
design decisions do need to be made. Although much of the discus-
sion in this subsection is concerned with the details of implement-
ing owned arrays with type erasure in Java, it generalises nicely to
typed languages with generics.

We propose that arrays not have an owner [9]. Their one owner
parameter refers to both the objects in the array and to the array
itself. Although it is possible to give arrays their own owner, and
while arrays have some minimal functionality added to them in
Java there is very little that can be done with an array that does not
directly involve its elements. This is not the case with collections.
In our experience the added complexity of giving each array its own
owner distinct from its elements’ was not justified by the changes
that would be required in Java. In the very rare cases of separate
owner being useful, the use of a collection (e.g., ArrayList with
appropriate owners) was more appropriate.

We consider compatibility with old Java virtual machines to be
crucial. This means that, just like generics, ownership-checked pro-
grams must run on pre-ownership and pre-generic virtual machines.
At the point of array creation, due to the restrictions imposed by
Java’s type erasure, there are really only two options: (1) allow
ownership (but not generics) to be specified in the allocation state-
ment and the type of the reference, or (2) only allow ownership in
the type of the reference. Currently, if an approach like the second
were used the language implementation would raise an “unchecked
warning”. We would recommend not raising a warning in the case
of ownership types. This is because OGJ guarantees that the refer-
ences will be properly type-checked.

These approaches work because of the way in which the Java
type checks its programs. Aside from checking the type of the
allocation statement at the time of construction against the type of
the reference, Java otherwise type checks references against each
other, not against the type of the underlying object. Because all
references to array objects will include owner information as part
of their type, ownership remains sound with arrays.

This means that if we can just get past the hurdle of object cre-
ation, owned arrays will be handled automatically by Java’s type
checking rules, just as existing generic arrays are handled. Even
though these parameters will be erased by the language implemen-
tation, they are always type checked first.

Figure 3 shows an example of arrays in OGJ. These approaches
work because although the object itself is unowned the only refer-
ence to the object is through its reference, which is properly type
checked and which is forbidden by OGJ from having its owner cast
away. In addition, the implementation still does the type substitu-
tion into the class.
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class A<EO1 extends World , EO2 extends World ,
Owner extends World > {

Foo<EO1, This > f1;

boolean <O> equals(OObject <O> o) {
if (o == this) return true;
if (!(o instanceof List))

return false; // compare to raw type

A<OtherEO1 , OtherEO2 , O> oA =
(A<OtherEO1 , OtherEO2 , O>) o;

if(!this.f1.equals(oA.f1)) return false;
else return true;

}
}

Figure 4. Object comparison and ownership.

2.4 Equals
Equals and clone methods in OGJ suffer from the problem of not
being able to have the same signature (and thus be overridden in the
subclasses) due to a varying set of owners required by the method to
perform equals or clone operation on various objects having access
to many owners [8].

Since each object only has one “main” owner and the rest are
simply those additional “outside” owners that it has access to,
existential owners [8] shows why it is safe to sometimes lose track
of the non-main owners and then gain them back by downcasting
and introducing existential ownership types distinct from any other
ownership types which are visible.

For example, this allows us to implement an equals method
in OGJ as shown in Figure 4. Notice that downcasting introduces
new owner type variables (e.g. OtherEO1 and OtherEO2) following
the existential ownership proposal [8]. The downcast uses owner O
(coming via the method parameter o) which is not necessarily the
same as the owner of the class A (Owner).

In Figure 4 class A has additional owners EO1 and EO2 in ad-
dition to the main owner Owner. Its equals method is a generic
method that accepts the owner parameter O of the object being
compared to (which maybe This for the other object). The equals
method thus has access to two (potentially unrelated and private)
objects in the object graph only for the duration of the method it-
self. Note that the equals method has the same signature for every
class even though there may be multiple owners involved.

2.5 Clone
Figure 5 illustrates cloning in OGJ. For cloning, a method call to
the assignee (which may have a new owner if one would like to
change ownership of the clone) is required as shown in Figure 5.
We call this assisted cloning. A C++-like copy constructor could be
used in place of the special assistant method assignClone. For the
sake of exposition we have omitted null and self-reference checks.
The code as written would fail because of this but it illustrates the
assistant method approach.

2.6 Wildcard bounds in OGJ
In this section we will discuss how wildcards and bounded wild-
cards are taken into account in OGJ. The Java type system makes
this relatively easy.

An unbounded ? can only be used as a wildcard in limited
situations. This is because it is entirely anonymous. Although at
compilation the static types of actual instances will be substituted
in place of this wildcard and can be checked it cannot be referred

class A<Owner extends World > {
A<This > f; int i;

<NewOwner > OObject <NewOwner > clone() {
A<NewOwner > temp = new A<NewOwner >();
temp.i = this.i;
temp.f.<This >assignClone(this.f);
return temp;

}

<NewOwner > void assignClone(A<NewOwner > a) {
this = (A<Owner >) a.<Owner >clone();

}
}

Figure 5. Object cloning and ownership, other version

to or used by the code. For example, a class specified with ? as
its owner could not use that owner in any of its method or field
definitions.

Named bounded wildcards (e.g. Owner super Package) sim-
ply act as statically checkable restrictions on owner types which are
valid for that method parameter, class or generic method. Note that
an anonymous bounded wildcard (e.g. ? extends Package) also
faces the same restrictions as an unbounded anonymous wildcard
and cannot be referred to in the code.

Because only World, Package, Class and This are ownership
types known to exist, only a few bounds can be specified for a
class which is not an inner class. For example, usefully. a class
could have its owner specified as Owner extends Package or
Owner super Package. In the first case it would mean that no
instance of the class could be accessible outside the Package. In the
latter it would mean that all instances of this class must be either
Package-visible or World-visible. In both cases the valid owners
are restricted to one of the globally defined types. This provides
region-like capabilities.

In addition, because Thisl is a subtype of the owner of the
object l, inner classes can be bound to have owners which are sub
or super types of their enclosing classes owners. In relationships
between unnested classes which are siblings in the class hierarchy
it is impossible to express bounds like “the owner of Foo must be
a subtype of the owner of Bar”. This is because the owner variable
of Bar is only visible to Foo if Bar is a supertype of Foo or if Foo
is an inner class of Bar.

3. What Next?
In this position paper we presented our design choices for five cor-
ner cases in ownership language design: static ownership matching
static visibility, global Exception owners for exceptions, owner-
ship of array being the same as that of array’s elements, existential
owners for equals, and assisted clone implementation. We also dis-
cussed bounds on ownership types.

For ownership to be successful a large number of issues still
remain to be resolved in a consistend and agreed upon manner in
collaboration with other aliasing language researchers. These in-
clude formalising interaction between owned and unowned code,
the choice between effective and reference-based ownership, us-
ing implicit or explicit owner parameters, adding additional fea-
tures such as immutability or external uniqueness, developing a col-
lection of language implementations, and writing fully ownership-
aware collections and libraries.

An agreed upon compromise and implementation support
would attract more users to the ownership-enabled languages and
help resolve any issues stopping the ownership research proposal
becoming a JSR reality.
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Abstract
This position paper summarizes recent developments related to the
Universe type system and suggests directions for future work.

1. Universe Type System
The Universe type system is an ownership type system that enforces
the owner-as-modifier discipline. In this section, we summarize re-
cent developments and suggest future work to improve the express-
iveness and formal foundation.

1.1 Expressiveness

The Gang-of-Four design patterns are common design idioms for
object-oriented programs. In [16], we compare how Ownership
Types, Ownership Domains, and Universe Types handle these pat-
terns. Based on this experience, we extended the Universe type sys-
tem to support generics and ownership transfer.

Recent Developments.Generic Universe Types [4] extend Uni-
verse Types to generic types. Like Universe Types, Generic Uni-
verse Types enforce the owner-as-modifier discipline which does
not restrict aliasing, but requires modifications of an object to be
initiated by its owner.

Universe Types with Transfer [15] is an extension of Universe
Types that supports ownership transfer. UTT combines ownership
type checking with a modular static analysis to control references
to transferable objects. UTT is very flexible because it permits
temporary aliases, even across certain method calls. Nevertheless,
it guarantees statically that a cluster of objects is externally-unique
when it is transferred and, thus, that ownership transfer is type
safe. UTT provides the same encapsulation as Universe Types and
requires only negligible annotation overhead.

Future Work. Generic Universe Types reduce the number of ne-
cessary ownership casts in a program. Currently, we investigate
Path-dependent Universe Types [18] to express additional relation-
ships between objects and thereby further reduce the number of
ownership casts.

Universe Types provide a very limited support for static fields
and methods. The main problem is that global data enables a form
of re-entrant method calls that is otherwise prevented by the type
system. This form of re-entrancy causes problems for the verifica-
tion of object invariants. We will formally integrate the Universe
Type System with the Boogie methodology for the verification
of object invariants [11], which can handle arbitrary forms of re-
entrancy.

For the verification of object invariants, one has to control ali-
asing between fields of one object that are declared in different
classes [13, 11]. We are currently extending Universe Types to en-
force an ownership structure where each object has a context for
each superclass of its dynamic type. This will allow us to enforce
that the contexts for different superclasses are disjoint.

Another line of work to support program verification is to build
an effects system on top of Universe Types. This effects system will
be similar to Clarke and Drossopoulou’s work [2], but has to handle
any references, which makes read effects more complex. We plan
to use the effects system to check side effects of methods and to
support reasoning about pure methods.

1.2 Formal Foundation

Recent Developments.We proved in the theorem prover Isabelle
that the Universe type system is sound and that the owner-as-
modifier discipline is enforced [9]. We also wrote a detailed type
safety proof on paper for Generic Universe Types [3]. A similar,
but less comprehensive proof is available for Universe Types with
Transfer [14].

Future Work. We aim at extending our Isabelle formalization of
Universe Types to Generic Universe Types.

2. Type Inference
One strength of the Universe type system is the low annotation
overhead; it is further reduced by appropriate defaults. However,
the resulting ownership structure is flat and annotating existing
software remains a considerable effort. We work on inferring deep
ownership structures using static and dynamic techniques.

2.1 Static Universe Type Inference

Recent Developments.We generate constraints from the Java
AST of a program and use a pseudo-boolean solver to find possible
ownership modifiers [8, 17, 7]. The weighting function of the solver
is used to find a deep ownership structure.

We allow partially annotated programs as input. The program-
mer can simply annotate some fields and method signatures and can
then use the static inference to propagate the ownership modifiers
and to achieve complete code coverage.

Future Work. Currently, the inference tools work with Universe
Types. We will investigate how to incorporate the inference of
Generic Universe Types and Universe Types with Transfer.

Another form of static inference is to infer the types of local
variables from field and parameter types. We are pursuing this line
of work in the context of Universe Type with Transfer. Here, in-
ference for local variables is particularly interesting because locals
can change their type from program point to program point as ob-
jects get transferred. We are currently implementing our ideas in
the JML compiler.

2.2 Runtime Universe Type Inference

Recent Developments.We analyze the execution of standard Java
programs and infer Universe modifiers from the execution traces
[5, 12, 1, 7]. The advantage of runtime Universe type inference
is that the deepest possible ownership structure is deduced. Good
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code coverage is needed for runtime inference. We allow the user to
combine multiple program traces as input to the inference in order
to achieve good coverage.

Static and runtime Universe type inference can be combined to
get a deep ownership structure and ensure sound results. The result
of the runtime inference is used as weight for the static inference.
The static inference achieves perfect code coverage and can still
change ownership modifiers if that improves the overall structure.

Future Work. A major topic for future work is to apply our
inference to real applications. This will provide valuable insights in
the expressiveness of Universe Types, the power of our inference
tools, and especially to ownership structures that can be found in
large systems. We expect especially the last result to be important
for the ownership community as a whole.

3. Tool Support
3.1 Compiler and Runtime Support

Recent Developments.The type checker for Universe Types is
implemented in the JML tool suite [10] since 2004. The JML
compiler also produces the code needed for the runtime check
of ownership downcasts. It also stores the ownership modifiers in
the bytecode, which allows to typecheck programs without having
the Java source code. We will commit the extensions for Generic
Universe Types soon. The type checker for Universe Types is also
implemented in recent version of ESC/Java2.

To make the interaction with the command-line tools easier for
programmers we developed a set of Eclipse [6] plug-ins. The JML
checker and runtime assertion checking (RAC) compiler can be in-
voked from within Eclipse and we created comfortable configura-
tion dialogs. Error messages are parsed and displayed in a separ-
ate window and code with RAC can be executed from Eclipse. We
also provide code templates that make entering ownership modifi-
ers easy. See Fig. 1 for a screen shot.

Future Work. We are finishing the implementation of the Uni-
verse Types with Transfer type checker and runtime support. This
extension of the JML compiler also supports inference for local
variables. We work on integrating Universe Types with Transfer
and Generic Universe Types.

3.2 Inference Tools

Recent Developments.Executing the command-line inference
tools requires some knowledge to configure the programs correctly.
We provide Eclipse plug-ins that allow the configuration through
dialogs and that make management of temporary results easy.

The results of static inference are displayed in a comfortable
tree view, see left pane in Fig. 2. The user can change ownership
modifiers directly in this pane and see what effects a modification
has—without parsing the source code again.

For the runtime inference, we provide a visualization of the
ownership structure, see right panels in Fig. 2. The programmer can
step through the program execution and observe how the ownership
structure is built up.

Both inference tools create their results in a special annotation
XML format that describes what ownership modifiers need to be
added to a program source. We provide a customized editor for this
XML format and the annotations can be automatically inserted into
the Java source code.

Future Work. We are working on optimizing the inference tools
to handle large programs and will then evaluate the tracing over-
head and inference time. The visualizer for the inference tools is an
interesting playground for visualizing ownership structures.
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Figure 1. Eclipse Integration of JML tools: JML compiler error message in the middle and JML RAC runtime error at bottom.

Figure 2. Inference mode. Static inference results on the left. Visualization of runtime inference in the center.
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Abstract
External iterators pose problems for alias control mechanisms: they
have access to collection interals and yet are not accessible from
the collection; they may be used in contexts that are unaware of the
collection. And yet iterators can benefit from alias control because
iterators may fail “unexpectedly” when their collections are mod-
ified. We explain a novel aliasing annotation “from” that indicates
when a collection intends to delegate its access to internals to a new
object and how it can be given semantics using a fractional permis-
sion system. We sketch how a static analysis using permissions can
statically detect possible concurrent modification exceptions.

1. Introduction
Iterators in JavaTMand related languages are objects that give se-
quential access to collections, while being external to the collec-
tion. In particular, multiple iterators can operate on a collection at
the same time, and the collection is not directly involved in the
operation of iterators. Iterators are an improvement over previous
related concepts, such as cursors, precisely because of this inde-
pendence. Typically a collection only had one cursor, and moving
the cursor had an effect on the collection. Multiple cursors are pos-
sible but hard to manage. Noble [18] has surveyed a wide variety
of iterator architectures; we focus here on “external iterators.”

An iterator is originally created by the collection, but after
creation, it may be used in contexts in which the collection is
neither visible nor in scope. The very independence that makes
iterators so powerful also makes programs that use them more
complex because of the interactions, notably aliasing, between the
collection and the iterators. In particular, an iterator typically has
pointers into the internals of the collection representation, and may
even perform changes on this representation.

Figure 1 gives two interface declarations for the kinds of itera-
tors that will be discussed in this paper. In Java, these interfaces are
conflated by making remove an optional operation. In this work, to
make it easier to reason about iterators and to make the distinction
visible in the type system, we use separate interfaces. C++ simi-
larly makes a type-level distinction between iterators that can be
used to modify a collection and those that cannot. Other kinds of
iterators (such as ListIterators that can change an element in a
collection) could be defined. We will use the term mutating iterator
to refer to generally to any iterator that can modify the underlying
collection.

Additionally, we have annotated the iterator methods with
“method effects” indicating what state the methods are intended
or permitted to access. We will assume that all methods are so an-
notated. In this case, the methods are declared as accessing only
the state of the iterator and not reading or writing any other state.
The fact that we can mask away the effects on the collection is
non-trivial and is one of the main discussion topics of this paper.

interface Iterator {

reads(this.All)

boolean hasNext();

writes(this.All)

Object next();

}

interface RIterator

extends Iterator {

writes(this.All)

void remove();

}

Figure 1. Two classes of iterators.

class App {

this List list = new List();

...

writes(All) void run() {

Iterator it = list.iterator();

... What if we mutate list?
if (Util.member(null,it)) { ... }

}

}

Figure 2. Using an iterator.

Normally, we will follow standard OO convention and abbreviate
this.All as All , since All is a (model) instance field.

Figure 2 shows an example of using iterators. It uses classes
List and Util defined in the following section. The example in-
cludes some omitted code that may or may not mutate the collec-
tion. A collection may be changed directly using a method such
as clear or add, as well as indirectly through a mutating iterator.
When this happens, all iterators currently active on the collection
(excepting only the iterator through which the mutation took place,
if any) are potentially invalid: they may be referring to internals that
have been discarded or are otherwise reorganized. For instance, if a
linked list is cleared, then existing iterators may refer to nodes that
are (otherwise) garbage, and indeed in a language such as C++,
the node may have already been returned to the memory allocation
system. If a new entry is added to a hash table, an existing itera-
tor may find its node pointer has been rehashed to a new location
and continuing the iteration may result in repeating some elements
previously encountered, and omitting others. In C++, the program-
mer is warned by the documentation that existing iterators may be
“invalid” after a mutation.

It is possible to implement iterators so that they are robust in
the face of change, albeit with some additional complexity. In Java,
rather than following this route or letting a potentially confusing sit-
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uation emerge, a fail fast semantics is used: an iterator will (almost)
always detect when a mutation outside of its control has happened,
and throw a ConcurrentModificationException (CME) if it is
used afterwards. Typically this is implemented by version stamp-
ing the iterator and collection, but the implementation details are
not the focus here. Instead we are interested in how static alias con-
trol mechanisms can (1) describe external iterators, (2) explain the
effects of using a (mutating) iterator, (3) explain why and when
concurrent modification exceptions are thrown, and (4) statically
prevent these exceptions from occurring.

In the following section, we look at a linked list class with
iterators annotated to express the design intent of the aliasing. Then
in Sects. 3 and 4, we look at previously described alias control
systems and evaluate them by these four criteria. In Section 5, we
describe how the design intent of the example can be expressed
using our “fractional permission” system.

2. Example
Figure 3 defines a simple linked list class with two kinds of itera-
tors. The code is annotated (italic words) with “design intent”
showing how aliases are intended to be controlled. Except for from
(explained below), these annotations have appeared in one form or
another in previous work. The example also uses class parameters
(inside < >) to pass objects that may be used in annotations on
fields of the class. For simplicity, we don’t make use of generic
classes (as in Java 5), although it has been shown that one can
fruitfully use both class parameters for ownership and for generic
classes [19].

Every field, parameter or return value is annotated by an aliasing
annotation: shared (owned by the global context), name (owned
by name), readonly- name (read-only state owned by name),
from(...) (explained below). Another possibility is unique ,
not used here. The default is borrowed , which can be applied
only to parameters (including method receivers), which means the
method can only access state from the parameter (receiver) if the
state is present in the method effect. A method effect is of the form
reads(...) or writes(...) and permits the method access the
mutable state named; write access includes read access. Here All
means all state of this object, or any object owned by it (transi-
tively). Constructors are implicitly permitted to write any part of
the constructed object’s state.

For example, the add method of class List is annotated
writes(All) which permits it to read or write any field of the
list object (or its nodes, which it owns). Here it simply updates the
head field. The parameter is shared which means there is no alias
control intended here.

Next consider the iterator() method. Its effect reads(All)
permits it to read any field or node of the list. The return value is
annotated from(All) which means that the iterator is “unique”
(unaliased with anything else) but that it gets (some of) its state
from the method effect on All . The idea is that the collection
temporarily yields its own state to the iterator, an independent (even
unique) object. Indeed, the iterator becomes the owner of the (read-
only) state of this list, as can be seen by the annotation on the
parameter list of class ListIter.

We will continue with Figure 3, but first glance at Figure 4
which shows how code can use the iterator without reference to
the collection. Methods member and removeAll both take iterators
and are annotated that they modify the iterator (writes(it.All) )
and nothing else.

Back at Figure 3, looking at class ListIter, one sees that
field cur points to a node owned by list. The method next() is
allowed to access the cur.next field because through its read-
only ownership of the list, the iterator has read-only access to the
internals.

class ListNode<owner> {

owner ListNode<owner> next;

shared Object datum;

ListNode(shared Object d, owner Node n)

{ datum = d; next = n; }

}

class List {

this ListNode<this> head;

List() { head = null; }

writes(All) void add(shared Object datum)

{ head = new ListNode<this>(datum,head); }

writes(All) void clear() { head = null; }

reads(All) from(All) Iterator iterator()

{ return new ListIter<this>(head); }

writes(All) from(All) RIterator riterator()

{ return new ListRemoveIter<this>(this); }

}

class ListIter<readonly-this list>

implements Iterator {

list ListNode cur;

Iterator(list ListNode head) { cur = head; }

reads(All) boolean hasNext()

{ return cur!=null; }

writes(All) shared Object next()

{ if (cur == null) return null;

Object temp = cur.datum;

cur = cur.next;

return temp; }

}

class ListRemoveIter<this list>

extends ListIter<list> implements RIterator {

this List list; // MUST == class parameter list

list ListNode prev, last;

RIterator(this List list) // MUST == class param. list

{ super(list.head); this.list = list; }

writes(All) shared Object next()

{ prev = last; last = cur;

return super.next(); }

writes(All) void remove()

{ if (prev == null) list.head = cur;

else prev.next = cur;

last = prev; }

}

Figure 3. Listed list with iterators annotated with design intent.
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class Util {

writes(it.All)

static boolean member(Object x, Iterator it)

{ while (it.hasNext())

{ if (it.next() == x) return true; }

return false; }

writes(it.All)

static void removeAll(Object x, RIterator it)

{ while (it.hasNext())

{ if (it.next() == x) it.remove(); } }

}

Figure 4. Independence of iterators.

class Iterator2 implements Iterator {

this Iterator it1, it2;

Iterator2(this Iterator it1,

this Iterator it2) { ... }

reads(All) boolean hasNext()

{ return it1.hasNext()||it2.hasNext();}

writes(All) shared Object next()

{ return it1.hasNext() ?

it1.next() : it2.next(); }

}

Figure 5. Constructing iterators using iterators.

The remove iterator ListRemoveIter extends the ListIter
class with three more fields. The first field shares the same name
as the class parameter and must indeed be the same (identical)
pointer. The new fields are implicitly included in All and thus
the overriding of next() is permitted to access the prev and
next fields. More importantly ListRemoveIter requires that it be
made (temporary) owner of the collection (for both read and write
access). The remove() method uses this ownership to perform
modifications to the list under the effect writes(All) .

What about the problems with concurrent modification? In Fig-
ure 2, the run() method gets an iterator and after some time uses
it to check for nulls in the list. If there is an intervening modifi-
cation, the call to member would “fail fast” with Java iterators. In
this case, the design intent indicates that the iterator it has (tem-
porarily) taken over read-only ownership of the list; if we permit
a write of the list to happen, we are indeed permitting a write to
occur concurrently with a read, a classic error.

According to the annotation, therefore, the list may not be
mutated until the iterator is no longer in use. Dually, write access is
permitted only at the cost of disallowing any later use of the iterator.
With a mutating iterator, even read access is prohibited until when
the mutating iterator is done, or dually, the mutating iterator may
not be used once any (even read) access is performed.

One reason to permit the iterator to be used separately from the
collection is to support existing code patterns. Examining the open-
source Eclipse project for uses of iterators, we have found some
cases of interest. One example (greatly simplified here) concerns
building an iterator that is constructed from other iterators (see Fig-
ure 5). The compound iterator indirectly takes over the (temporary,
read-only) ownership of the collections’ internals (there may be
more than one collection involved). Again this means that effects

class OtherCollection {

this LinkNode<this> head;

...

reads(All) from(All) Iterator iterator()

{ return new List(head).iterator(); }

}

Figure 6. Delegating iterator creation.

on the element iterators are mapped into effects on the compound
iterator.

Figure 6 shows another pattern, whereby a class does not imple-
ment its own iterators and instead creates an instance of a collection
and gets an iterator for it. (Here we assume a new constructor for
List that takes a read-only list of nodes.) In the code we saw with
this pattern, the delegation involved creating a List around an ex-
isting array.

In this section, we have showed several ways in which iterators
are defined and used. Undoubtedly, the annotations and explana-
tions here reflect our own biases (and we indeed show how they
are realized in our “fractional permission” system), but the code
itself is conventional. In the following sections, we survey previ-
ously described alias control systems and the extent to which they
can describe what is going on in the code.

3. Ownership-based Alias Control
Ownership is a recognized alias control technique. With ownership,
each object has another object as its owner. The root of the owner-
ship hierarchy is often called “world.” Clarke and others propose a
owners-as-dominator model: any reference to an object must pass
that object’s owner [10, 11]. This encapsulation property prevents
any access to an object from objects outside its owner, but rules
out external iterators: If the iterator is totally outside of the rep-
resentation of the collection object (Figure 7(a)), then the iterator
is not able to access the internals. On the other hand, putting the
iterator as part of the representation enables the references to the
internals, but disables the references from outside of the collection
(Figure 7(b)).

Since the iterator is a common idiom in OO programs, alterna-
tive models have been proposed. Clarke and Drossopoulou [9] per-
mit iterator-like objects that violate owners-as-dominators to exist
in stack variables but not to be stored in fields. Because they only
have dynamic extent (rather than indefinite extent), these dynamic
aliases are deemed less dangerous than “static aliases.” However,
the typing of these dynamic aliases requires that the collections be
in scope. Therefore, the dynamic aliases solution cannot handle the
iterator usages in Figs. 4, 5 and 6

A related relaxation of owners-as-dominators was formalized
by Boyapati and others [4]. Here objects of inner classes are per-
mitted to access the internals of the outer object, even though the
inner class object is not necessarily owned by its outer object. An
iterator implementation is declared as an inner class implementing
a global interface. Again, the aliasing between the object and its
inner class objects is deemed less hazardous since it is restricted to
a single compilation unit. Originally, Boyapati permitted iterators
to be passed outside of the scope of collections (as in Fig. 4), but in
this case, the effects were imprecise: they operated on the “world.”
This extension proved unamenable to ownership-based checking of
synchronization, and was dropped in subsequent work [3, page 36].

Ownership domains permit an owner to make some owned
objects public while protecting others from external access [1]. The
objects owned by an owner are partitioned into several “domains.”
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Figure 7. Owners-as-dominators (relaxed in (c)).

For instance, a collection object may own two domains: one for its
internal representations and one for iterators. The latter domain can
be public (see (c) in Figure 7). The iterator object can be referred to
by outsiders (since it resides in a public domain), and it is able
to access internal representations of the collection object (since
its domain has the same owner as the representation domain). To
precisely describe the states the iterator needs to access, Smith [20]
proposes that the effects of an iterator be expressed as accessing
state in its “sibling” domains, all other domains belonging to the
same owner. This only works if the iterator is owned by the same
object as the collection. Again there are problems with trying to use
the iterator outside of the context of its collection’s owner because
then the sibling would be unknown.

Another alternate model is the “owners-as-modifier” model
which distinguish between read-write and read-only references
[13]. Read-write reference must pass through objects’ owners,
while read-only references may be created arbitrarly. The Universe
type system distinguish three kinds of reference: peer references
between objects in the same context; rep references from an ob-
ject to any directly owned objects; readonly (or any) references
between objects in arbitrary contexts. The last kind of references
can not be used to modify objects. External iterators can be im-
plemented in this model (see Figure 8), since any iterator object
may use the readonly reference (represented as dashed line) to the
internal representation of collections. Modifying iterators need to
delegate mutations to the collection, which in turn must rely on
runtime support to downcast the any reference to a rep reference.

……

List

ListNode ListNode

Iterator

Figure 8. Owners-as-modifiers.

There are two difficulties, however. One is that object invari-
ants cannot be guaranteed for objects referred to with “any” refer-
ences. Thus a non-mutating iterator cannot rely on invariants of the
collection (or its internals) to hold. Indeed, because of concurrent
modifications, it is the case that a non-mutating iterator may fail
unexpectedly. Furthermore, a mutating iterator must be a “peer” of

the collection and thus cannot be used outside the context of the
owner of the collection.

4. Handling Iterator Validity
Recently, a number of researchers tackled the problem of iterator
validity, that is avoiding CME in Java-like languages. In particular,
participants considered avoiding interference between calls that
directly modify the collection and interleaved uses of one or more
iterators to read that collection.

One solution, proposed by Weide [21] is to modify the seman-
tics of the language such that the iterator copies out the contents
of the collection upon its creation, and copies them back when it
is finished. Changes made to the collection while the iterator is in
use may be overwritten when the iterator is ended, using an ex-
plicit function in the collection. This behavior may be specified and
checked using the standard tools of full program verification. These
changes would affect neither asymptotic efficiency of iterator usage
nor expressiveness when interference does occur; however, they are
a significant departure from current usage.

The C# patterns for iterator usage and implementation are syn-
tactically different from those of Java; in particular, enumerator
functions can define iterators using yield return statements.
Even so, the underlying problems of interference are generally the
same: changes to the collection conflict with use of an iterator. Ja-
cobs, Piessens, and Schulte [15] suggest defining reads clauses for
enumerator methods that would declare some owned state as im-
mutable while the enumerator-controlled loop is in effect, roughly
correlating with the lifetime of the iterator in Java. This tracks well
with C# enumerators’ reading but not altering their collections; mu-
tating iterators are not supported. Iterator objects can only be used
directly to control loops, and may not be used independently of the
collection. Every object is given special fields representing both
overall writability and number of current readers. The reads clause
is translated as modifications of and conditions on these fields,
which may then be checked using the Boogie static verifier or using
dynamic checks if necessary.

One may instead use fields to directly model the standard
“timestamp” approach. Every collection is given an integer field
which is incremented whenever the collection is modified; every
iterator has an integer field with the value of the collection’s times-
tamp at the time of the iterator’s creation. David Cok [12] has
instrumented this approach to iterators using model fields in JML.
As these timestamps are only implemented in model fields, there is
no concrete state underlying them. Rather than throw an exception
when the collection’s integer exceeds that its iterator, requirements
on the relative values of the integers are included in the formal
specification of the iterator. This specification can then be checked
using ESC/Java2. In practice, the ESC/Java2 checker appears to
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detect both legal and illegal uses by static inference; however, the
correctness of this specification apparently cannot be proven.

Instead of specifying the values of a special fields as a signal
of whether the collection has been or can be modified, one may
directly encode modifications of the collection in an abstract predi-
cate representing the collection as a whole. Krishnaswami [16] has
done this using separation logic, whose predicates are comparable
to permissions. Both the collection and the iterator get a high-level
predicate that includes an abstract representation of the state of the
collection. Most methods of the collection both require and return
the predicate of the collection; methods that write the collection
return it with a different abstract state. Creating a new iterator con-
sumes the predicate for (permission to) the collection and produces
that of the iterator. At any time, however, the predicate for the col-
lection may be carved out of the predicate for its iterator, providing
both the collection predicate and a “magic wand” implication that
can consume the collection’s predicate to recover the iterator. This
implication essentially represents the non-collection portions of the
iterator’s state. The former may be used to call any of the collec-
tion’s methods, including creating another iterator. Thus one may
simultaneously have the predicate for the collection and any num-
ber of implications allowing one to exchange the collection predi-
cate for some iterator. This must be done to use the iterator, after
which the collection can be carved out once more. However, call-
ing a method that modifies the collection returns a predicate with
a different abstract state, which cannot be used to recover any of
the current iterators–they are useless. Because this formalization
lacks fractions [5, 8], even non-mutating iterators interfere with
each other.

Bierhoff [2] describes another linear-based system using frac-
tions and (linear) typestates. Typestates can represent sole, write,
or read access to a program variable. Both the collection and the it-
erator have permissions defined for them; these also detail state
changes in the objects themselves. For example, the hasNext
method is needed to establish that the iterator’s next is available
as a prerequisite to calling next. The absence of this typestate
precludes calling the method.

The iterator method returns a linear implication which con-
sumes the permission for the collection, and produces only per-
mission for the iterator. While the collection’s permission is un-
available, methods that change it cannot be called. The finalize
method of the iterator returns the reverse linear implication, con-
suming the iterator permission and producing that of the collec-
tion. The iterator class is parametrized by the collection to permit
finalize to return permission to the collection. The iterator per-
mission may be fractional, for a read-only iterator, or unique for a
modifying iterator. The linear & is cleverly used to delay deciding
whether an iterator is read-only or fractional. If the iterator permis-
sion is fractional, collection methods that only require fractional
state may be called.

5. Explaining Iterators Using Permissions
The key issue with the design intent of the iterators is that access
to the collection must be reduced to read-only (for non-mutating
iterators) or completely prevented (for mutating iterators) while
the iterator is active. In other words, the alias control system must
be flow-sensitive. While some ownership type systems are mov-
ing to include flow-based analysis (see ownership transfer in Uni-
verses [17]), this is a significant increase in complexity.

On the other hand, systems based on linear logic (such as Bier-
hoff’s permission system or separation logic), lead to complex
management of state. Linearity is powerful but is difficult to man-
age. Fänhdrich and Deline [14] recognized this problem and de-
signed a relation called “adoption” which permitted non-linearity

to co-exist with linearity. We have since shown that adoption can
model object ownership [6].

Our permission system combines the simplicity of ownership—
allowing the iterator interface to hide the fact that it has access to
the collection internals—with the power of linearity—expressing
the constraint that the collection is encumbered by the iterator. In
this section, we describe our permissions system and how it can
account for the annotated design intent in the examples. Permis-
sions are used to give a semantics to annotations, and then a flow-
sensitive type system can be used to check that the code does indeed
follow the design intent prescribed by the annotations.

5.1 Permissions overview
A permission is a token that permits access to mutable state. Each
field in a Java program is associated with exactly one field per-
mission. This permission can be split into fractions: in order to
write a field one needs the whole field permission, but read ac-
cess is permitted with only a non-zero fraction. Permissions can-
not be copied—only transferred. As a result, although two read ac-
cesses can be carried out “at the same time” in different parts of the
program, if one or both of the accesses is a write, the permission
system will flag an error. This is the basic intuition of fractional
permissions.

In order to support information hiding and “non-linear” access
to state, we add the concept of permission nesting (a generalization
of adoption); in which an arbitrary permission (often composite) is
“nested” in a field permission. As a result, one who has access to
the field (and knowledge of the nesting relationship) can get at the
nested permissions, by “carving” them out of the field permission.

Nesting is used for two main
purposes. On the left, we are
using nesting to model “data
groups.” The square represents
permission to access a field
with a pointer value. The oval
shows the (model) field “All.”
The digram demonstrates that
the permission to access the
field is nested in “All.”

On the right, we are using nest-
ing to express ownership as well
as data groups. We now see that
the field (small square near the
top) points to a node whose en-
tire state is nested in the first ob-
ject’s “All” mode field. This ob-
ject has two fields (think of them
as a data field and a next field), the
second of which points to another
owned node. The second node has
a “null” next pointer.

Carving temporarily removes the permissions from the field
permission; the field permission now has a “hole” in it. This sit-
uation is represented by a kind of “linear implication” Ψ −+ Ψ′,
where Ψ is the nested permission and Ψ′ is the nester field permis-
sion.

(o.f → r) −+ o.All o.f → r

41



The permission Ψ −+ Ψ′ can be read as referring to all the state
implied by Ψ′ except that part of which is implied by Ψ. In our
permission system, “−+” (read “scepter”) functions very similarly
to “−? ” in separation logic (or “−◦ ” in linear logic). The peculiar
distinction of “−+” is that it requires that the consequent (right-
hand side) include the antecedent (left-hand side).

Carving is used to get any nested state. Thus to read the next
field of the first node, we first carve out the node and then carve the
field out:

The inversion of “carving” is “replacing.” Replacing is simply
linear modus ponens: it takes Ψ −+ Ψ′ and Ψ and puts them
together to retrieve the consequent Ψ′. In standard linear fashion,
the process consumes both of the inputs (the antecedent and the
implication).

Our permission logic also includes composition (represented
by a comma), conditionals (to handle possibly null pointers) and
existentials.

5.2 Annotation semantics
In current work [7], we describe the semantics of annotations pre-
cisely in terms of permissions. Here, we content ourselves with in-
formal explanation:

data groups State encapsulation (such as All referring to all the
state of an object) is handled by unit-typed fields that nest the
state that belongs to it.

ownership Ownership is represented by nesting x.All of the
owned object x in a field (ownership domain) of the owner.
Multiple ownership domains [1] can be modelled. Every own-
ership domain is nested in this.All .

readonly ownership Read-only ownership is represented by nest-
ing an unspecified fraction of the state of the owned object in
the owner’s domain.

borrowed Borrowed references are references that are transmitted
without permissions; in order to access state through a “bor-
rowed” parameter (or receiver), a method uses effects:

effects Method effects are represented by permissions that are
passed to the method and which are returned afterwards.

unique A unique reference is always associated with permission
to access the object it refers to (if any). For instance, a unique
return value will be returned along with the necessary permis-
sions.

from As with unique , a from return value has permissions to
access it returned by the method, but unlike unique , these
permissions encumber the effect named, the permissions for the
effect are returned in linear implication:

(r.All) −+ (effect, v)

where v is an unspecified permission. In other words, the per-
missions represented by the effect are unusable until the state
pointed to by the return value is no longer needed. At this time,

iterator :
∀zt · (zt.All →
∃rv · r.All, (r.All −+ zt.All, v))

Figure 9. The permission type of the iterator() method.

the linear implication can be applied, releasing the effect and
some unknown “residual” permission (v) that can be discarded.
In our examples, the v is the iterator permission itself bereft of
permission to access the collection.

Annotations are translated into permissions using a simple sub-
stitution (not described here). An example is given in Fig. 9 and is
explained below.

5.3 Controlling access
If one has permission to access an object’s state, the carve oper-
ation gives access to the state nested in that object (other objects
owned by it). Allowing this situation in general would break en-
capsulation; indeed it would permit clients to mutate list internals,
resulting in complete chaos. The difficulty this situation presents
cannot be solved simply by permissions because one still wishes to
permit the client to call methods that use the permission to access
internals. Instead, protection of internals is solved in the traditional
way with visibility: carving is only permitted to access visible state.

The iterator examples show the list iterators accessing internals
of the list, including its list nodes. In order to allow iterators to
do these operations, we use Java’s nested classes. The ListIter
and ListRemoveIter classes are made (private) nested classes of
List and thus given access to the list internals. The ListNode class
serves as a structure and can make its fields public.

5.4 Explaining Iterators
In the iterator() method of class List, the read-only permission
to access the list is passed to the new ListIter object so that it can
nest this permission in its ownership domain. The permission for
the effect is not returned to the caller as normal; a linear implication
Iter −+ (reads(All) , v) is returned instead. The read permission
in the consequent cannot be used, as a read permission or to reform
a write permission for the list, until the iterator is no longer in use,
However, as fractions permit splitting a permission into an arbitrary
number of read permissions, other read-only operations may be
performed on the list. Figure 9 gives the full permission type of
the method (after annotations are translated). The variables t and
r refer to the receiver (this) and return value respectively. The
variable z refers to the non-zero fraction of access required and v
refers to the unspecified permission to be discarded when the linear
implication is applied. The riterator() method is similar except
that it requires, and so makes inaccessible, full (write) permission
to the list.

The type in Fig. 9 does not disclose that the iterator uses owner-
ship, or indeed anything in how the iterator is implemented. Indeed
the permission implication r.All −+ (zt.All, v) is implemented in-
ternally by an empty permission since the return value’s state r.All
includes the entire list read permission on the right-hand side of the
implication. But the client does not need to know this; should not
know this fact. The information hiding is essential to ensure that the
list permission is inaccessible until the implication is applied to the
iterator permission, consuming it and releasing the list permission.

In the iterator implementation, as the iterator is temporarily
the owner of the list, it may be used without explicit mention
of the list. In the implementation of the next method, we can
access cur.next by first carving the (read-only) permission list
from the iterator’s “All” permission (provided by the caller per
the method effect), and then getting access to the node by carving
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its permission from the list, and finally to get access to the field
by carving its permission from the node’s “All” permission. This
permission is existential (the next pointer is not determined by the
node) and must be unpacked. At this point, we have a series of
permission implications plus one field permission:

zl.All −+ t.All, zc.All −+ zl.All,

(∃p · z(c.next→ p, . . .)) −+ zc.All zc.next→ n

Here t is the value of this, l for list, c for cur and n for its next
field. When we are done, the entire set of permissions can be packed
back up into t.All and returned to the caller. The caller need not be
aware of the existence of the list at all.

For example, the Util methods work by borrowing iterators: its
caller provides the permissions that are then returned. It is impos-
sible to also provide permission to access the collection in a con-
flicting way—writing the collection is precluded by the presence of
a read permission in the consequent of the linear implication–and
thus call-back problems are prevented.

Remove iterators avoid throwing a CME because they nest the
full write permission for the list preventing alteration of the list
state until the remove iterator is no longer used. And, because
creating iterators requires at least some part of the list’s state, no
other iterator can be created while the remove iterator is in use.
Neither can a remove iterator be created if another iterator is in use.
This is more strict than Java requires, but does ensure the absence
of CMEs.

Regular iterators are also prevented from throwing a CME. In
Fig 2, after the application requests for the iterator it to be created,
the collection is encumbered. A linear implication for recovering
the access to the list is made available. This linear implication can
be applied at any time (in the static flow-analysis of the method).
However, once it is applied, permission to access the iterator is
irrevocably consumed. Thus, once the permission type checker is
“forced” to apply the implication to permit a collection mutation,
the iterator is no longer usable and later uses of the iterator will not
type check.

The class to concatenate two iterators (see Fig. 5) requires own-
ership of the iterators, so that effects on them can be attributed to
the compound iterator. This can be granted (the iterator was es-
sentially “unique” before) at the price that the respective collec-
tions are still encumbered. In order to unencumber the collections,
it necessary to retrieve the permissions for the iterators now nested
in compound iterator; this can be done when the compound iterator
is being discarded.

Delegation of iterator creation (see Fig. 6) uses an iterator on a
newly constructed collection. The “from ” annotation is not actu-
ally needed since the linked nodes are copied; it merely expresses
the design intent that the collection should not be changed while
the iterator is active.

5.5 Analysis
Our current work [7] gives a type system based on permissions. It
is flow-sensitive, keeping track of the current permissions at each
point in the program. When an field access is processed or a method
is called, it checks whether the operation can be permitted. Nest-
ing, carving and replacing operations are carried out implicitly as
needed, perhaps several levels deep as the example for cur.next
showed. The type system described is non-algorithmic, but we have
a (more complex) algorithmic type system that is implemented for
Java. Currently the implementation does not support “from” anno-
tations; however, adding support for them appears straightforward.

5.6 Comparisons
Compared to approached based solely on ownership, our system is
able to detect when an iterator is invalidated.

Compared to approaches based on program verification, our
permissions system is not as powerful. It is based on logic that
is similar to power to decidable logics. It remains to be shown
that our permission type system (not given here) is decidable.
By abstracting out just the access to mutable state, permissions
represent a more high-level view of the program than any system
that uses model fields (say) to represent version stamps.

Compared to approaches based on linear logic, our system is
simpler because it uses information hiding (ownership). Both Bier-
hoff’s and Krishnaswami’s approaches have explicit mention of
the collection state in the iterator state. Thus it appears that these
systems could not support iterator patterns that use the iterator in
places where the collection is unknown. Indeed while we require
both aliasing annotations and effects annotations, the effect anno-
tations on iterators are very simple. On the other hand, Bierhoff’s
system tracks type state too: a positive return from hasNext() en-
sures that next() can be called safely.

5.7 Other Applications
The “from” annotation is a general solution to the problem of how
to grant temporary access to internals. Consider a buffered stream.
Internally it has an unbuffered stream. Sometimes a client may
wish to perform actions on the unbuffered stream and then resume
using the buffered stream. One technique is for the client to be
given access to the underlying stream and “hope” that the client
will remember to flush the buffered stream before any unbuffered
access. A less error-prone approach is to use an enforced “from”
annotation:

class BufferedOutputStream

implements OutputStream {

...

writes(All)

from(All) OutputStream getUnderlying() {

flush();

return underlying;

}

}

Here the underlying stream encumbers the buffered output
stream. If the client wishes to use the buffered stream again, it
must give up access (permission) to the underlying stream. Thus
we see that “from” is a general solution for a class of problems.

6. Conclusion
We have informally described the concept of permissions which
combines an ownership-like system (nesting) with linear types, and
is flow sensitive. Permissions can be used to express the design
intent on our examples; it can be enforced that a collection cannot
be modified while non-mutating iterators are active. The system is
flexible enough to permit several interesting iterator usage patterns
with minor annotation overhead. The “from” annotation can also
be used more generally whenever a class wishes to grant temporary
access to internal data structures.
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Abstract
Typed intermediate languages and typed assembly languages for
optimizing compilers require types to describe stack-allocated data.
Previous type systems for stack data were either undecidable or
did not treat arguments passed by reference. This paper presents a
simple, sound, decidable type system expressive enough to support
the Micro-CLI source language, including by-reference arguments.
This type system safely expresses operations on aliased stack loca-
tions by using singleton pointers and a small subset of linear logic.

1. Introduction
Java and C# are safe, high-level languages. The safety of Java
and C# protects one program from another: safe applets cannot
crash a browser, safe servlets cannot crash a server, and so on.
The high level of abstraction makes programming easier, but makes
compilation more challenging. Java and C# require sophisticated
optimizing compilation to achieve performance competitive with
programs written directly in C or assembly language.

Unfortunately, a large, complex compiler is likely to have bugs,
and these bugs may cause the compiler to produce unsafe assembly
language code. Proof-carrying code (PCC) [14] and typed assembly
language (TAL) [13] solve this problem by verifying the safety of
the assembly language code generated by the compiler, thus remov-
ing the compiler from the trusted computing base. Because the be-
havior of an assembly language program is undecidable in general,
PCC and TAL require machine-checkable evidence to verify a pro-
gram’s safety. A type-preserving compiler generates this evidence
by transforming a well-typed source program into a well-typed as-
sembly language program, preserving the well-typedness of the
program during each compilation phase in between the source and
assembly language levels [13]. To do this, the compiler must define
type systems for each intermediate language in the compilation.
Java bytecode [11] and CIL [4] are well-known typed intermediate
languages, but these still contain many high-level abstractions, such
as single instructions for invoking virtual methods and platform-
independent storage slots for local data. Below the Java bytecode
and CIL levels, these abstractions break down into smaller pieces.
A virtual method invocation turns into a method table lookup, in-
structions for pushing arguments onto a stack, a call instruction,
plus prologue and epilogue code in the called method. Local data
storage slots turn into machine-specific registers and stack slots.
These lower-level concepts need lower-level types.

This paper describes SST (Simple StackTypes), a type system
that is appropriate for type-checking stack operations in the lowest
levels of a type-preserving compiler, including the final typed as-
sembly language generated by the compiler. Previous type systems
for stacks were either undecidable without explicit proof annota-
tions [2, 9] or could not represent arguments passed and returned
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by reference [12]. By contrast, SST has a simple decision proced-
ure, making it easy to use in an intermediate language. It expresses
by-reference arguments, even when multiple references point to the
same aliased location. It is provably type-safe, via standard pre-
servation and progress lemmas. Finally, SST is simple and elegant
enough to be a trustworthy component of a typed assembly lan-
guage.

To represent stacks in the presence of aliasing, SST builds on
ideas from stack-based TAL [12], alias types [18], and linear lo-
gic [6, 19]. Section 2 discusses these systems and related systems in
more detail. Sections 3 and 4 introduce SST’s types and instructions
formally. Section 5 describes a translation from the Micro-CLI [9]
source language to SST, demonstrating SST’s expressiveness. Sec-
tion 6 concludes.

2. Background and Related Work
Stack-based TAL (STAL) was the first TAL to support stacks. Its
central idea, shared by SST, was astack type, which specifies the
known types of values on the stack at any point in a TAL program.
For example, the STAL stack type “int:: int :: ρ” specifies that two
integers live at the top of the stack, but all types deeper in the stack
are unknown, specified only by the stack type variableρ. Code
blocks in STAL may be polymorphic over stack type variables.

In addition to the concatenation operator “:: ”, STAL con-
tains a compound stack type that can express some pointers into
the middle of the stack. Unfortunately, STAL cannot express the
possibly aliased pointers that C# compilers use to implement by-
reference arguments. Consider the three C# methods below. The
swap method takes two integer references and swaps the integers.
Thef method instantiates argumentsx andy with pointers to local
variablesa andb, while g instantiatesx andy with pointers toc:

void f() {
int a = 10, b = 20;
swap(ref a, ref b); }

void g() {
int c = 30;
swap(ref c, ref c); }

void swap(ref int x, ref int y) {
int t = x;
x = y;
y = t; }

STAL cannot give a useful type to theswap method: even with
compound types, STAL stack types must list the types of stack
slots in precisely the order that they appear in memory. The STAL
type for swap must reserve one particular stack slot forx and
another fory, making it impossible for a caller to instantiatex
and y with aliased pointers (asg does), with heap pointers (as
is allowed by C#), or with two stack pointers in the opposite
order. Regarding these limitations, Morrisettet al. say that, “it
appears that this limitation could be removed by introducing a
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ς ⇒ ς s-imp-eq
ς ⇒ ς ′

` : τ :: ς ⇒ ` : τ :: ς ′
s-imp-concat ` : σ ⇒ ` : σ′

` : (σ ∧ {`t : τ})⇒ ` : (σ′ ∧ {`t : τ})
s-imp-alias

ς1 ⇒ ς2 ς2 ⇒ ς3
ς1 ⇒ ς3

s-imp-trans ` : (τ :: ς)⇒ ` : (τ :: ς ∧ {` : τ})
s-imp-add-alias

` : (σ ∧ {`t : τ})⇒ ` : σ
s-imp-drop-alias

` : (τ1 :: `q : (σ ∧ {`2 : τ2}))⇒ ` : ((τ1 :: `q : σ) ∧ {`2 : τ2})
s-imp-expand-alias

ς ⇒ ` : (σ ∧ {`1 : τ1}) ς ⇒ ` : (σ ∧ {`2 : τ2})
ς ⇒ ` : (σ ∧ {`1 : τ1} ∧ {`2 : τ2})

s-imp-merge-alias

Figure 1. Logical Stack Implication Rules

limited form of intersection type, but we have not yet explored
the ramifications of this enhancement.” (In fact, one subsequent
TAL [2] did add intersection types, but did not explore its use
for stacks. Furthermore, this type system was undecidable [2].)
SST uses a form of intersection type, rather than using STAL’s
compound types.

A key advantage of stack allocation is the ease of stack deal-
location: a program simply pops data from the top of the stack to
deallocate the data. In general, popping may leave dangling point-
ers to popped data. STAL deals with this safely but awkwardly, ap-
plying a special validation rule before each use of any potentially
dangling pointer. SST follows a more direct and flexible approach
introduced by alias types [18] (although alias types handled heaps
objects, not stack data). Alias types split a pointer type into two
parts: the locatioǹ of the data, and the type of the data at loca-
tion `. The pointer to the data has a singleton type Ptr(`), which
indicates that the pointer points exactly to the location`, but delib-
erately does not specify the type of the data at location`. Instead,
a separatecapability specifies the current type at`. For example,
the capability{` 7→ int} specifies that̀ currently holds an integer.
Because of the separation between singleton pointer types and cap-
abilities, the capabilities can evolve, independently of the pointer
types, to track updates and deallocation.

To ensure that no two capabilities specify contradictory inform-
ation about a single location, alias types impose a linearity discip-
line on the program’s treatment of capabilities, prohibiting arbitrary
duplication of the information contained in a capability. In partic-
ular, the capability{` 7→ int} is not equivalent to the capability
{` 7→ int, ` 7→ int}. However, alias types (and the similar cap-
ability calculus [3]) use non-standard operators and rules for con-
trolling linearity. Following recent advice [20, 7, 5], SST uses op-
erators and rules directly inspired by standard linear logic [6, 19]
and separation logic [17, 8]. Linear logic and separation logic share
a core of basic operators. Two are of particular interest for stacks:
multiplicative conjunction “⊗” (written as “∗” in separation logic)
and additive conjunction “&” (written as “∧” in separation logic).
For example, to have “coffee⊗ tea” is to have both coffee and tea.
To have “coffee&tea” is to have a choice between coffee and tea,
but not both. Ahmed and Walker observe that additive conjunction
“allows us to specify different ‘views’ of the stack” [1] (though [1]
did not explore applications of this observation); we take this obser-
vation as a starting point for representing by-reference arguments.

Jia, Spalding, Walker and Glew [9] used linear logic as the basis
for a typed low-level language of stacks and heaps (we refer to
this low-level language as “JSWG”). In contrast to STAL, JSWG
expressed by-reference arguments. To demonstrate this, the au-
thors also introduced the high-level “Micro-CLI” source language
(modeled on the CLI intermediate format targeted by C# com-
pilers [4]) and provided a translation from Micro-CLI programs
to JSWG programs. In contrast to SST’s decidable logic, JSWG’s

linear logic (which includes the standard linear operators⊗, &,
⊕,(, and!) is undecidable [10], making SST more practical than
JSWG’s system for a compiler intermediate language. Furthermore,
JSWG expresses pointers using a heavyweight notion of “frozen”
capabilities (with version numbers and “tag trees” for pointers into
the stack) while SST relies solely on singleton pointer types and
a minimal linear logic. Despite its smaller set of features, SST is
still powerful enough to express Micro-CLI; Section 5 describes a
translation of Micro-CLI programs to SST programs.

3. Simple Stack Types
Consider the STAL stack type int:: int :: ρ from the Section 2.
In alias type notation, each integer on the stack would have a
capability {` 7→ int}. In linear logic notation, the⊗ operator
would glue capabilities together to form a complete stack capabil-
ity: {`2 7→ int}⊗{`1 7→ int}⊗ρ, wherè 2 and`1 are the locations
of each of the two integers on the stack. SST takes this notation as
a starting point, but makes two modifications. First, to simplify the
type checking algorithm, SST replaces the commutative, associat-
ive⊗ operator with the non-commutative, non-associative:: oper-
ator, resulting in a stack capability{`2 7→ int} :: {`1 7→ int} :: ρ.
Second, rather than showing one location per stack slot, SST’s
notation puts stack slots in between locations, writing`2 : int ::
`1 : int :: `0 : ρ to indicate that one integer falls between locations
`2 and `1, and the other falls between locations`1 and `0. Note
that this adds the extra location`0 to the example — for instance,
the stack pointer might have type Ptr(`2), pointing to the top of the
stack, while the frame pointer might have type Ptr(`0), pointing to
the bottom of the frame.

The following grammar generates labeled stack typesς and
unlabeled stack typesσ (whereτ indicates a single-word type, such
as int):

labeled stack type ς ::= ` : σ
unlabeled stack type σ ::= ρ | Empty | τ :: ς | σ ∧ {` : τ}

The unlabeled stack type variablesρ, empty stack Empty, and stack
concatenation operator:: give SST the same expressiveness as the
core of STAL, but little else. The real power of SST comes from the
∧ operator, indicating aliasing. The stack typeσ ∧ {` : τ} implies
three things. First,σ holds. Second, the locatioǹresides either in
the heap or in the part of the stack described byσ. Third,` currently
contains a word of typeτ . Figure 1 shows the rules governing stack
types; “ς ⇒ ς ′” means that ifς holds, thenς ′ also holds. Some
rules (s-imp-concat, s-imp-alias, s-imp-eq, s-imp-trans) are basic
structural rules. The s-imp-add-alias and s-imp-merge-alias rules
allow a program to add one or more aliases to a stack type. The
s-imp-drop-alias rule lets a program drop unneeded aliases. The s-
imp-expand-alias rule expands the scope of an alias, as described
in more detail below.
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As an example, consider theswap function from Section 2.
Suppose that the compiler pushes arguments toswap onto the stack
from right-to-left, and stores the return address in a register. Upon
entry toswap, the stack will hold the argumentsx andy, each of
which is a pointer to some location insideρ:

`2 : Ptr(`x) :: `1 : Ptr(`y) :: `0 : (ρ ∧ {`x : int} ∧ {`y : int})
Note that locations̀x and`y may appear anywhere inρ, in any or-
der. In fact,̀ x and`y may be the same location. For example, sup-
pose that just before callingswap, the stack has typè0 : int :: ς.
Figure 1’s s-imp-add-alias and s-imp-merge-alias rules prove:

`0 : int :: ς
⇒ `0 : ((int :: ς) ∧ {`0 : int} ∧ {`0 : int})

Using this, the program can chooseρ = (int :: ς), choosè x =
`y = `0, push two pointers tò0 onto the stack, and callswap.

Figure 1’s rules also allow reordering of aliases. For example,
the s-imp-drop-alias, s-imp-alias, and s-imp-merge-alias rules
prove:

`0 : (ρ ∧ {`y : int} ∧ {`x : int})
⇒ `0 : (ρ ∧ {`x : int} ∧ {`y : int})

Section 2 mentioned the danger of pointers left dangling after
the program pops a word from the stack. The syntaxσ ∧ {` : τ}
expresses a clear scope in which` remains safe to use:` definitely
contains typeτ as long asσ remains unmodified. If the program
pops a word fromσ, for example, then the alias{` : τ}must be dis-
carded (see section 4.1 for details). The rules governing this scope
are simple: s-imp-expand-alias expands the scope of an alias, but
there is no rule to contract the scope. Expansion is safe, and allows
a caller to pass a reference on to another method. Theh method
shown below expands the scope ofc before callingswap. Contrac-
tion, on the other hand, could leave unsafe dangling pointers, as
shown by the illegal and unsafe C# methodillegalMethod:

void h(ref int c) { swap(ref c, ref c); }
ref int illegalMethod() { int c; return ref c; }

Relation to linear logic. Just as :: is a limited version of the
linear logic⊗ operator, the∧ operator is a limited version of the
linear logic& operator. More specifically, the notationσ ∧ {` : τ}
corresponds to the linear logic formulaσ&({` 7→ τ} ⊗ >), where
> is the linear logic notation to indicate any resource. Intuitively,
knowingσ&({` 7→ τ} ⊗ >) means that you can choose to look at
the stack in one of two ways: either consider the stack to have type
σ, or consider the stack to have type{` 7→ τ} ⊗>. The latter case
tells you that the stack holds typeτ at location`, plus some other
data represented by>.

The s-imp-expand-alias rule and lack of a contraction rule also
correspond to linear logic, whereA ⊗ (B&(C ⊗ >)) implies
(A ⊗ B)&(C ⊗ >), but (A ⊗ B)&(C ⊗ >) does not imply
A ⊗ (B&(C ⊗ >)); linear logic can expand, but not contract,
the scope of “&(C ⊗>)”. Unlike JSWG [9]’s scoping via version
numbers and tag trees, SST’s scoping follows naturally from linear
logic rules.

Decidability. Deciding whether one linear logic formula im-
plies another is undecidable in general [10], but is decidable for
formulas consisting only of atoms, the⊗ operator, and the& oper-
ator [10]. Since SST’s :: and∧ operators are limited versions of
linear logic’s⊗ and& operators, it is not surprising that SST’s lo-
gic is also decidable. The companion technical report [15] presents
a simple and efficient (near linear-time) algorithm to decideς ⇒ ς ′,
based on a syntax-directed reformulation of Figure 1’s rules. The
existence of such a decision algorithm is the key to the decidability
of type checking in SST (stated formally in Section 4).

Locations. A location ` may be a location variable “η”, the
location of the bottom of the stack “base”, the next location towards

the top of the stack “next(`)”, or a heap location “p” (assuming an
infinite supply of locationsp for heap allocation):

location ` ::= η | base| next(`) | p
For example, the STAL type int:: int :: ρ may be written in SST
as “next2(η) : int :: next(η) : int :: η : ρ”, where next2(η) is an
abbreviation for next(next(η)). For convenience, we frequently use
the following abbreviation:

(τn . . . τ1)@(` : σ) = nextn(`) : τn :: . . . :: next1(`) : τ1 :: ` : σ

With this, the STAL type int :: int :: ρ may be written in as
(int; int)@(η : ρ).

4. Formalization
Types.SST supports integer type “int”, nonsense type “Nonsense”
for uninitialized stack slots, heap pointer type “HeapPtr(τ)” for
pointers to heap values of typeτ , singleton type “Ptr(`)”, and code
type “∀[∆](Γ, ς)” for code blocks.

type τ ::= int | Nonsense| HeapPtr(τ)
| Ptr(`) | ∀[∆](Γ, ς)

Type∀[∆](Γ, ς) describes preconditions for code blocks. The loc-
ation environment∆ is a sequence of location variables and stack
type variables. The register fileΓ is a partial function from registers
to types.Γ andς describe the initial register and stack state for the
blocks. They may refer to the variables in∆.

Values and Operands.A stack locationd is either “base” or
the next stack location “next(d)”.

A word-sized valuew may be an integer “i”, the “nonsense”
value for uninitialized stack slots, a heap location “p”, a stack
location “d”, or instantiated values “w[`]” and “w[σ]” where w
points to code blocks polymorphic over location variables and stack
type variables. Contents of registers and stack slots are word-sized.
As in STAL [12], word-sized values are separated from operands
to prevent registers from containing registers.

stack loc d ::= base| next(d)
word value w ::= i | nonsense| p | d | w[`] | w[σ]

operand o ::= r | w | o[`] | o[σ]

An operando may be a register “r”, a word-sized value “w”,
or instantiated operands “o[`]” and “o[σ]”. A special register sp is
used for the stack pointer.

Instructions. Most instructions are standard. Values on the heap
or stack are accessed through explicit load and store instructions.

instr ins ::= movr, o | addr, o | subr, o | laddr, i
| loadr1, [r2 + i] | store[r1 + i], r2

| jumpif0 r, o | heapallocr = 〈o〉
| (η, r) = unpack(o)

SST uses “ladd” instructions for stack location arithmetic. The
first operand points to a stack location. The second operand is a
constant integer (positive or negative). A “ladd” instruction moves
the stack pointer along the stack according to the integer value.
The standard add and subtract instructions deal with only integer
arithmetic.

The heap allocation instruction “heapallocr = 〈o〉” allocates
a word on the heap with initial valueo and assigns the new heap
location tor.

The unpack instruction “(η, r) = unpack(o)” coerces a heap
pointero to a heap location. It introduces a fresh location variable
η for o and assignsη to r.

4.1 Type Checking Instructions

The type checker maintains a few environments. The location en-
vironment∆ and the register fileΓ were explained previously. The
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heap environmentΨ is a partial function from heap locations to
heap pointer types. Stack-related rules are shown here. Appendix B
contains all rules.

Operand Typing Rules.The judgment∆;Ψ; Γ ` o : τ means
that operando has typeτ under the environments. Note that a heap
location can be typed in two ways: the type in the heap environment
(o-p-H) or a singleton type (o-p). A stack location has a singleton
type (o-d).

If an operando has a polymorphic type∀[∆](Γ, ς), o[`] and
o[σ] instantiate the first variable in∆ with ` andσ respectively. The
judgments∆ ` ` and∆ ` σ mean that̀ andσ are well-formed
under∆ respectively.

∆;Ψ; Γ ` r : Γ(r)
o-reg

∆;Ψ; Γ ` i : int
o-int

∆;Ψ; Γ ` nonsense: Nonsense
o-ns

∆;Ψ; Γ ` d : Ptr(d)
o-d

∆;Ψ; Γ ` p : Ψ(p)
o-p-H

∆;Ψ; Γ ` p : Ptr(p)
o-p

∆;Ψ; Γ ` o : ∀[η, ∆′](Γ′, ς) ∆ ` `

∆;Ψ; Γ ` o[`] : ∀[∆′](Γ′[`/η], ς[`/η])
o-inst-l

∆;Ψ; Γ ` o : ∀[ρ, ∆′](Γ′, ς) ∆ ` σ

∆;Ψ; Γ ` o[σ] : ∀[∆′](Γ′[σ/ρ], ς[σ/ρ])
o-inst-Q

The judgment̀ (Γ, ς){r ← τ}(Γ′, ς ′) means that assigning
a value of typeτ to registerr results in new environmentsΓ′ and
ς ′. Only Γ is changed ifr is not sp. Otherwise the stack grows or
shrinks according to the new value of sp.

r 6= sp Γ′ = Γ[r 7→ τ ]

` (Γ, ς){r ← τ}(Γ′, ς)
a-not-esp

` Resize(`, ς) = ς ′ Γ′ = Γ[sp 7→ Ptr(`)]

` (Γ, ς){sp← Ptr(`)}(Γ′, ς ′)
a-esp

Stack Rules.Resize. When the stack grows or shrinks, SST
uses the judgment̀ Resize(`, ς) = ς ′ to get the new stack type.
The judgment means that resizing stackς to location` results in
stackς ′. The location` will be the top ofς ′. The stack shrinks
if ` is insideς (s-shrink) and grows if̀ is beyond the top ofς (s-
grow). The stack drops all aliases beyond` when shrinking to avoid
dangling pointers.

ς ⇒→
τ @(` : σ)

` Resize(`, ς) = ` : σ
s-shrink

ς ′ = (Nonsensen; . . . ; Nonsense1)@(` : σ)

` Resize(nextn(`), ` : σ) = ς ′
s-grow

Location Lookup.The judgmentς ` ` + i = `′ means that in
stackς goingi slots from locatioǹ leads to locatioǹ′. A positive
i means going toward the stack top and negative means toward
the stack bottom. The notionn represents natural numbers. (The
requirementς ⇒→

τ @(` : σ) ensures that̀ is a stack location, not
a heap location.)

ς ⇒→
τ @(` : σ)

ς ` ` + n = nextn(`)
s-offset-next

ς ⇒→
τ @(` : σ)

ς ` nextn(`) + (−n) = `
s-offset-prev

Type Lookup.The judgmentς ` ` : τ means that the locatioǹ
in stackς has typeτ . The locatioǹ can be either an alias inς, or
be on the spine ofς (the stack type obtained by dropping all aliases
from ς).

ς ⇒ `′ : (σ ∧ {` : τ})
ς ` ` : τ

s-lookup

Stack Update.The judgmentς ` ` ← τ  ς ′ means that
updating the locatioǹ in stackς with type τ results in stackς ′.
Weak updates do not change the stack type (s-update-weak). Strong
updates change the type of` and drop all aliases beyond` because
they may refer to the old type of` (s-update-strong).

ς ` ` : τ

ς ` `← τ  ς
s-update-weak

ς ⇒→
τ @(` : τ :: ς ′)

ς ` `← τ ′  
→
τ @(` : τ ′ :: ς ′)

s-update-strong

Instruction Typing Rules. Figure 2 lists instruction typing
rules.∆;Ψ ` (Γ; ς){ins}(Γ′; ς ′) means that checking instruction
“ins” changes the environmentsΓ and ς to new environmentsΓ′

andς ′.
The location arithmetic instruction “laddr, i” requires thatr

point to a locatioǹ and i be a multiple of 4. The stack grows
toward lower addresses. Ifi is negative, the result location is further
outward from`.

Loads and stores can operate on heap locations (i-load-p and
i-store-p), stack locations on the spine (i-load-concat and i-store-
concat), and aliases (i-load-aliased and i-store-aliased). SST sup-
ports weak updates on heap locations and aliases, and both strong
and weak updates on stack locations on the spine.

The rule for heap allocation assigns a heap pointer type to
the register that holds the pointer, instead of a singleton type,
because the new heap location is statically unknown. The heap
environment does not change after heap allocation because the rest
of the program does not refer to the new heap location by name.

When control transfers, the type checker matches the current
environments with those of the target. The location environment of
the target should have been fully instantiated.Γ⇒ Γ′ requires that
Γ′ be a subset ofΓ.

4.2 Blocks and Programs

A heap valuev is either a code block “block” or a heap word “〈w〉”.
A code block “∀[∆](Γ, ς) b” describes the precondition∀[∆](Γ, ς)
and its bodyb. The block body is a sequence of instructions that
ends with a jump instruction. Only variables in∆ can appear free
in Γ, ς, and the block body.

A program consists of a heapH, a register bankR, a stacks,
and a block body as the entry point.H is a partial function from
heap locations to heap values.R is a partial function from registers
to word-sized values. The stacks records values on the spine. It is
either the empty stack “empty” or a concatenation of a word-sized
value with a stack “w :: s”.

heap value v ::= block | 〈w〉
block block ::= ∀[∆](Γ, ς) b

block body b ::= ins; b | jumpo
heap H ::= p1 7→ v1, . . . , pn 7→ vn

reg bank R ::= r1 7→ w1, . . . , rn 7→ wn

stack value s ::= empty | w :: s
program P ::= (H, R, s, b)

A programP = (H, R, s, b) is well-formed (illustrated by the
judgment̀ P ) if H matches a heap environmentΨ, R matches a
register fileΓ, s matches a stack typeς, andb is well-formed under
Ψ, Γ, andς. The notion “•” means empty environments.
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∆;Ψ; Γ ` o : τ ` (Γ, ς){r ← τ}(Γ′, ς ′)
∆;Ψ ` (Γ; ς){movr, o}(Γ′; ς ′)

i-mov

Γ(r) = Ptr(`) ς ` ` + i = `′

` (Γ, ς){r ← Ptr(`′)}(Γ′, ς ′)
∆;Ψ ` (Γ; ς){laddr,−4 ∗ i}(Γ′; ς ′) i-ladd

∆;Ψ; Γ ` o : int r 6= sp Γ(r) = int

∆;Ψ ` (Γ; ς){addr, o}(Γ; ς)
i-add

∆;Ψ; Γ ` o : int r 6= sp Γ(r) = int

∆;Ψ ` (Γ; ς){subr, o}(Γ; ς)
i-sub

Γ(r2) = HeapPtr(τ)
` (Γ, ς){r1 ← τ}(Γ′, ς ′)

∆;Ψ ` (Γ; ς){loadr1, [r2 + 0]}(Γ′; ς ′)
i-load-p

Γ(r2) = τ
Γ(r1) = HeapPtr(τ)

∆;Ψ ` (Γ; ς){store[r1 + 0], r2}(Γ; ς)
i-store-p

Γ(r2) = Ptr(`) ς ` ` + i = `′

ς ` `′ : τ ` (Γ, ς){r1 ← τ}(Γ′, ς ′)
∆;Ψ ` (Γ; ς){loadr1, [r2 + (−4 ∗ i)]}(Γ′; ς ′) i-load-concat

Γ(r1) = Ptr(`) Γ(r2) = τ
ς ` ` + i = `′ ς ` `′ ← τ  ς ′

∆;Ψ ` (Γ; ς){store[r1 + (−4 ∗ i)], r2}(Γ; ς ′)
i-store-concat

Γ(r2) = Ptr(`) ς ` ` : τ
` (Γ, ς){r1 ← τ}(Γ′, ς ′)

∆;Ψ ` (Γ; ς){loadr1, [r2 + 0]}(Γ′; ς ′) i-load-aliased

Γ(r1) = Ptr(`)
ς ` ` : τ Γ(r2) = τ

∆;Ψ ` (Γ; ς){store[r1 + 0], r2}(Γ; ς)
i-store-alised

∆;Ψ; Γ ` o : τ
` (Γ, ς){r ← HeapPtr(τ)}(Γ′, ς ′)

∆;Ψ ` (Γ; ς){heapallocr = 〈o〉}(Γ′; ς ′)
i-heapalloc

Γ(r) = int ∆;Ψ; Γ ` o : ∀[ ](Γ′, ς ′)
Γ⇒ Γ′ ς ⇒ ς ′

∆;Ψ ` (Γ; ς){jumpif0 r, o}(Γ; ς)
i-jump0

Figure 2. Instruction Typing Rules

` H : Ψ •; Ψ ` s : ς •; Ψ ` R : Γ •; Ψ; Γ; ς ` b

` (H, R, s, b)
m-tp

A heapH matches a heap environmentΨ if they have the same
domain and each heap value inH has the corresponding type in
Ψ (h-tp). Matching a register bank with a register file is defined
similarly (g-tp).

Ψ = {. . . , p 7→ τ, . . .} H = {. . . , p 7→ v, . . .}
. . . •; Ψ ` v : τ . . .

` H : Ψ
h-tp

Γ = {. . . , r 7→ τ, . . .} R = {. . . , r 7→ w, . . .}
. . . ∆;Ψ; • ` w : τ . . .

∆;Ψ ` R : Γ
g-tp

A stack values matches a stack typeς if all the locations on the
spine have the corresponding type inς (s-base and s-concat) and
ς contains only aliased locations to heap pointers (s-alias) and to
stack locations on the spine (s-imp).

∆;Ψ ` empty: (base: Empty)
s-base

∆;Ψ ` s : (` : ς) ∆;Ψ; • ` w : τ

∆;Ψ ` w :: s : (next(`) : τ :: ` : σ)
s-concat

∆;Ψ, {p 7→ HeapPtr(τ)} ` s : (` : σ)

∆;Ψ, {p 7→ HeapPtr(τ)} ` s : (` : (σ ∧ {p : τ})) s-alias

∆;Ψ ` s : ς ς ⇒ ς ′

∆;Ψ ` s : ς ′
s-imp

To type check a block body, the checker checks the instructions
in order (b-ins) until it reaches the jump instruction (b-jump).

The unpack instruction “(η, r) = unpack(o)” requireso have a
heap pointer type (b-unpack). The rule introduces a fresh location

variableη to ∆, assignsr a singleton type Ptr(η), and updates the
stack type to containη.

∆;Ψ ` (Γ; ς){ins}(Γ′; ς ′)
∆;Ψ; Γ′; ς ′ ` b

∆;Ψ; Γ; ς ` ins; b
b-ins

∆;Ψ; Γ ` o : ∀[ ](Γ′, ς ′)
Γ⇒ Γ′ ς ⇒ ς ′

∆;Ψ; Γ; ς ` jumpo
b-jump

∆;Ψ; Γ ` o : HeapPtr(τ) r 6= sp η 6∈ ∆
(∆; η);Ψ; Γ[r 7→ Ptr(η)]; ` : (σ ∧ {η : τ}) ` b

∆;Ψ; Γ; ` : σ ` (η, r) = unpack(o)
b-unpack

A block is well-formed if under the heap environment and the
specified precondition, the block body type-checks.

∆;Ψ; Γ; ς ` b

Ψ ` ∀[∆](Γ, ς) b
block-tp

The judgmentP → P ′ means that programP evaluates to
programP ′. Evaluation rules are listed in Appendix B.3.

We proved soundness and decidability of SST. The proofs can
be found online [16].

THEOREM 1 (Preservation).If ` P andP → P ′, then` P ′.

THEOREM 2 (Progress).If ` P , then∃P ′ such thatP → P ′.

THEOREM 3 (Decidability).Given Ψ and block, there is an al-
gorithm to decide whether “Ψ ` block” holds.

5. Source Language and Translation
As mentioned in Section 2, we translate JSWG’s Micro-CLI [9]
to SST. Micro-CLI supports both heap and stack allocation. A
managed pointer can point to either a heap-allocated or a stack-
allocated value. Managed pointers have the same constraints as

49



those in CLI, such as they cannot be stored in objects nor returned
from functions.

The syntax of Micro-CLI is restated here.

qualifiers q ::= S | H
types τ ::= int | τ ∗q

values v ::= n | x

program p ::= fds rb

function decls fds ::= · | fd fds
function decl fd ::= τ f(τ1 x1, . . . , τn xn) rb

return block rb ::= {lds; ss; returnv}

local decls lds ::= · | ld; lds
local decl ld ::= τ x = v | τ x = newq v

statement list ss ::= · | s; ss
statement s ::= if v thenss elsess | x = v

| x = v1 + v2 | x = v1 − v2

| x = f(v1, . . . , vn)
| x = !v | v1 := v2

Micro-CLI supports only the integer type and pointer types.
Each pointer type is qualified by “S” (stack pointer) or “H” (heap
pointer). Heap pointer types are subtypes of stack pointer types
with the same referent types, that is,τ ∗H is a subtype ofτ ∗S .

A Micro-CLI program consists of a sequence of function de-
clarations and a return block. A function declaration specifies the
return type, the function name, the parameters, and the body (a re-
turn block). A return block contains a sequence of local variable
declarations and a sequence of statements. A local variable declar-
ation declares the type and the initial value of a local variable that
can be used in subsequent declarations and statements.

The detailed translation from Micro-CLI to SST is described
in the companion technical report. Because SST deals with ali-
asing differently from JSWG, the two translations differ in rules
around managed pointers which introduce aliasing. For example,
if a source function has a parameter with type “pointer-to-pointer-
to-int”, the translation to SST creates two aliases for the pointers
while the translation to JSWG uses existential types to abstract the
locations and version numbers to relate the scopes. The precon-
dition of the function in SST would have a stack type “next(η) :
Ptr(η1) :: η : (ρ∧{η1 : Ptr(η2)}∧{η2 : int})” where the function
is polymorphic overη1 andη2.

We use the following example to show the result of translation.
The “swap” function in Section 2 is rewritten into Micro-CLI
syntax as follows:

int swap(int ∗S x, int ∗S y){
int t = 0;
int t′ = 0;
t = !x;
t′ = !y;
x := t′;
y := t;
return0;

}

Micro-CLI does not allow such syntax as “x := !y”. A new
variable “t′” holds the value of “!y” and is then assigned tox. Local
variables can be initialized only by values. The local variablest
and t′ are initialized to 0 first and then assigned “!x” and “!y”
respectively. Micro-CLI does not allow functions with no return
values. The “swap” function simply returns an integer value.

The function is translated to the following SST function:

∀[ηx, ηy, η0, ρ](Γ, ς)
movrfp, sp
movr1, 0 ; r1 = 0;
ladd sp,−4
store[sp+ 0], r1 ; pushr1 (for t′)
movr1, 0 ; r1 = 0;
ladd sp,−4
store[sp+ 0], r1 ; pushr1 (for t)
loadr1, [rfp + 0] ; r1 = x
loadr1, [r1 + 0] ; r1 = [r1]
store[rfp + (−8)], r1 ; t = r1 (t =!x)
loadr1, [rfp + 4] ; r1 = y
loadr1, [r1 + 0] ; r1 = [r1]
store[rfp + (−4)], r1 ; t′ = r1 (t′ =!y)
loadr1, [rfp + 0] ; r1 = x
loadr2, [rfp + (−4)] ; r2 = t′

store[r1 + 0], r2 ; [r1] = r2 (x := t′)
loadr1, [rfp + 4] ; r1 = y
loadr2, [rfp + (−8)] ; r2 = t
store[r1 + 0], r2 ; [r1] = r2 (y := t)
ladd sp, 16 ; popt, t′, x, y
movr1, 0 ; r1 = 0
ladd sp,−4
store[sp+ 0], r1 ; pushr1

jumprra ; jumprra

whereΓ = sp 7→ Ptr(next2(η0)),
rra 7→ ∀[ ](sp 7→ Ptr(next(η0)), next(η0) : int :: η0 : ρ)

andς = next2(η0) : Ptr(ηx) :: next(η0) : Ptr(ηy) ::
η0 : (ρ ∧ {ηx : int} ∧ {ηy : int})

The translation is straightforward. Many optimizations can be
applied to improve the SST code, which is beyond the scope of this
paper. The translation reserves register sp for the stack pointer,rfp

for the frame pointer, andrra for the return address. Two temporary
registersr1 and r2 are used to hold intermediate values during
the translation of a Micro-CLI instruction. Parameters and return
values are passed through the stack. Local variables are allocated
on the stack.

The SST function is polymorphic over four variables:ηx, ηy,
η0, andρ. The first two represent the values ofx andy. The third
represents the location of the rest of the stack (abstracted by the
stack type variableρ). The parametersx andy are on the stack upon
entry to the function. Section 3 explained the initial stack state. The
parameters and the local variables are accessed through the frame
pointer:t, t′, x, andy have addressesrfp − 8, rfp − 4, rfp, and
rfp + 4 respectively.

At the beginning of the function, the frame pointerrfp is as-
signed sp and the initial values fort and t′ are pushed onto the
stack. At the end, the local variables and the parameters are popped
from the stack, the return value is pushed onto the stack, and the
control transfers to the return address, which is kept in registerrra.

We proved the type-preservation theorem of the translation:

THEOREM 4 (Type-preserving Translation).Well-typed Micro-CLI
programs translate to well-typed SST programs.

6. Conclusions
With a simple stack typeς, SST safely supports many low-level
idioms: stack pointers, frame pointers, by-value arguments, and by-
reference arguments, where by-reference arguments may point to
both stack data and heap data.

This paper presented one particular type system built around
the stack typeς, but many variations are possible. For example, we
treated the stack pointer register as a special register to safely ac-
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comodate kernel-mode code in the presence of interrupts, but some
other settings could treat the stack pointer as an ordinary register.
For GC safety, we allowed pointer arithmetic on stack pointers but
disallowed pointer arithmetic on heap pointers. For simplicity, we
assumed infinite stack space to grow in, but a type checker based
on SST could also verify stack overflow checks (perhaps in co-
operation with virtual-memory-based overflow checks). Also for
simplicity, our heap consisted of one-word objects, but this extends
naturally to objects with multiple fields. Finally, to ensure simple,
efficient type checking, we used a small, restricted linear logic, but
we could trade efficiency for expressiveness by varying the linear
logic, without abandoning the basic SST approach.
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A. SST Syntax

location ` ::= η | base| next(`) | p
labeled stack type ς ::= ` : σ

unlabeled stack type σ ::= ρ | Empty | τ :: ς
| σ ∧ {` : τ}

type τ ::= int | Nonsense| Ptr(`)
| HeapPtr(τ) | ∀[∆](Γ, ς)

stack loc d ::= base| next(d)
word value w ::= i | nonsense| p | d

| w[`] | w[σ]
operand o ::= r | w | o[`] | o[σ]

instr ins ::= movr, o | addr, o
| subr, o | laddr, i
| loadr1, [r2 + i]
| store[r1 + i], r2

| jumpif0 r, o
| heapallocr = 〈o〉
| (η, r) = unpack(o)

heap value v ::= block | 〈w〉
block block ::= ∀[∆](Γ, ς) b

block body b ::= ins; b | jumpo
loc env ∆ ::= • | η;∆ | ρ;∆

heap H ::= p1 7→ v1, . . . , pn 7→ vn

heap env Ψ ::= p1 7→ τ1, . . . , pn 7→ τn

reg bank R ::= r1 7→ w1, . . . , rn 7→ wn

reg file Γ ::= r1 7→ τ1, . . . , rn 7→ τn

stack value s ::= empty | w :: s
program P ::= (H, R, s, b)

We use the following abbreviation:

(τn . . . τ1)@(` : σ) = nextn(`) : τn :: . . . :: next1(`) : τ1 :: ` : σ

B. SST Semantics
B.1 Well-formedness

∆ ` `

{. . . , η, . . .} ` η
wf-l-var

∆ ` base
wf-l-base

∆ ` `
∆ ` next(`)

wf-l-next
∆ ` p

wf-l-p

∆ ` ς

∆ ` `
∆ ` ` : Empty

wf-S-empty
∆ ` ` ρ ∈ ∆

∆ ` ` : ρ
wf-S-P

∆ ` ` ∆ ` τ ∆ ` `q : σ
∀ `′q, τ

′, σ′ : τ = τ ′ if `q : σ ⇒ `′q : (σ′ ∧ {` : τ ′})
∆ ` `q : (σ ∧ {` : τ}) wf-S-alias

∆ ` ` ∆ ` τ ∆ ` ς
∀ `′q, `

′, τ ′, σ′ : ` 6= `′ if ς ⇒ `′q : (σ′ ∧ {`′ : τ ′})
∆ ` ` : (τ :: ς)

wf-S-concat
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∆ ` τ

∆ ` int
wf-t-int

∆ ` Nonsense
wf-t-ns

∆ ` τ
∆ ` HeapPtr(τ)

wf-t-hp ∆ ` `
∆ ` Ptr(`)

wf-t-single

∆, ∆′ ` Γ′ ∆, ∆′ ` ς ′ ∆ ∩∆′ = {}
∆ ` ∀[∆′](Γ′, ς ′)

wf-t-code

∆ ` Γ

. . . ∆ ` τ . . .
∆ ` {. . . , r 7→ τ, . . .} wf-G

B.2 Static Semantics

∆;Ψ; Γ ` o : τ

∆;Ψ; Γ ` r : Γ(r)
o-reg

∆;Ψ; Γ ` i : int
o-int

∆;Ψ; Γ ` nonsense: Nonsense
o-ns

∆;Ψ; Γ ` p : Ψ(p)
o-p-H

∆;Ψ; Γ ` p : Ptr(p)
o-p

∆;Ψ; Γ ` d : Ptr(d)
o-d

∆;Ψ; Γ ` o : ∀[η, ∆′](Γ′, ς) ∆ ` `

∆;Ψ; Γ ` o[`] : ∀[∆′](Γ′[`/η], ς[`/η])
o-inst-l

∆;Ψ; Γ ` o : ∀[ρ, ∆′](Γ′, ς) ∆ ` σ

∆;Ψ; Γ ` o[σ] : ∀[∆′](Γ′[σ/ρ], ς[σ/ρ])
o-inst-Q

` (Γ, ς){r ← τ}(Γ′, ς ′)

r 6= sp Γ′ = Γ[r 7→ τ ]

` (Γ, ς){r ← τ}(Γ′, ς)
a-not-esp

` Resize(`, ς) = ς ′ Γ′ = Γ[sp 7→ Ptr(`)]

` (Γ, ς){sp← Ptr(`)}(Γ′, ς ′)
a-esp

` Resize(`, ς) = ς ′

ς ⇒→
τ @(` : σ)

` Resize(`, ς) = ` : σ
s-shrink

ς ′ = (Nonsensen; . . . ; Nonsense1)@(` : σ)

` Resize(nextn(`), ` : σ) = ς ′
s-grow

ς ` ` + i = `′

ς ⇒→
τ @(` : σ)

ς ` ` + n = nextn(`)
s-offset-next

ς ⇒→
τ @(` : σ)

ς ` nextn(`) + (−n) = `
s-offset-prev

ς ` ` : τ

ς ⇒ `′ : (σ ∧ {` : τ})
ς ` ` : τ

s-lookup

ς ` `← τ  ς ′

ς ` ` : τ

ς ` `← τ  ς
s-update-weak

ς ⇒→
τ @(` : τ :: ς ′)

ς ` `← τ ′  
→
τ @(` : τ ′ :: ς ′)

s-update-strong

Γ⇒ Γ′

Γ′ ⊆ Γ

Γ⇒ Γ′
G-imp

∆;Ψ ` (Γ; ς){ins}(Γ′; ς ′)

∆;Ψ; Γ ` o : τ ` (Γ, ς){r ← τ}(Γ′, ς ′)
∆;Ψ ` (Γ; ς){movr, o}(Γ′; ς ′)

i-mov

Γ(r) = Ptr(`) ς ` ` + i = `′

` (Γ, ς){r ← Ptr(`′)}(Γ′, ς ′)
∆;Ψ ` (Γ; ς){laddr,−4 ∗ i}(Γ′; ς ′) i-ladd

∆;Ψ; Γ ` o : int r 6= sp Γ(r) = int

∆;Ψ ` (Γ; ς){addr, o}(Γ; ς)
i-add

∆;Ψ; Γ ` o : int r 6= sp Γ(r) = int

∆;Ψ ` (Γ; ς){subr, o}(Γ; ς)
i-sub

Γ(r2) = HeapPtr(τ) ` (Γ, ς){r1 ← τ}(Γ′, ς ′)
∆;Ψ ` (Γ; ς){loadr1, [r2 + 0]}(Γ′; ς ′)

i-load-p

Γ(r2) = τ Γ(r1) = HeapPtr(τ)

∆;Ψ ` (Γ; ς){store[r1 + 0], r2}(Γ; ς)
i-store-p

Γ(r2) = Ptr(`) ς ` ` + i = `′

ς ` `′ : τ ` (Γ, ς){r1 ← τ}(Γ′, ς ′)
∆;Ψ ` (Γ; ς){loadr1, [r2 + (−4 ∗ i)]}(Γ′; ς ′) i-load-concat

Γ(r1) = Ptr(`) Γ(r2) = τ
ς ` ` + i = `′ ς ` `′ ← τ  ς ′

∆;Ψ ` (Γ; ς){store[r1 + (−4 ∗ i)], r2}(Γ; ς ′)
i-store-concat

Γ(r2) = Ptr(`) ς ` ` : τ
` (Γ, ς){r1 ← τ}(Γ′, ς ′)

∆;Ψ ` (Γ; ς){loadr1, [r2 + 0]}(Γ′; ς ′) i-load-aliased

Γ(r1) = Ptr(`) ς ` ` : τ Γ(r2) = τ

∆;Ψ ` (Γ; ς){store[r1 + 0], r2}(Γ; ς)
i-store-aliased

∆;Ψ; Γ ` o : τ
` (Γ, ς){r ← HeapPtr(τ)}(Γ′, ς ′)

∆;Ψ ` (Γ; ς){heapallocr = 〈o〉}(Γ′; ς ′)
i-heapalloc

Γ(r) = int ∆;Ψ; Γ ` o : ∀[ ](Γ′, ς ′)
Γ⇒ Γ′ ς ⇒ ς ′

∆;Ψ ` (Γ; ς){jumpif0 r, o}(Γ; ς)
i-jump0

` P

` H : Ψ •; Ψ ` s : ς •; Ψ ` R : Γ •; Ψ; Γ; ς ` b

` (H, R, s, b)
m-tp
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ς ⇒ ς ′

ς ⇒ ς ′

` : τ :: ς ⇒ ` : τ :: ς ′
s-imp-concat ` : σ ⇒ ` : σ′

` : (σ ∧ {`t : τ})⇒ ` : (σ′ ∧ {`t : τ})
s-imp-alias

ς ⇒ ς s-imp-eq ` : (τ :: ς)⇒ ` : (τ :: ς ∧ {` : τ})
s-imp-add-alias

ς1 ⇒ ς2 ς2 ⇒ ς3
ς1 ⇒ ς3

s-imp-trans ` : (σ ∧ {`t : τ})⇒ ` : σ
s-imp-drop-alias

` : (τ1 :: `q : (σ ∧ {`2 : τ2}))⇒ ` : ((τ1 :: `q : σ) ∧ {`2 : τ2})
s-imp-expand-alias

ς ⇒ ` : (σ ∧ {`1 : τ1}) ς ⇒ ` : (σ ∧ {`2 : τ2})
ς ⇒ ` : (σ ∧ {`1 : τ1} ∧ {`2 : τ2})

s-imp-merge-alias

Figure 3. Stack Implication Rules

` H : Ψ

Ψ = {. . . , p 7→ τ, . . .} H = {. . . , p 7→ v, . . .}
. . . •; Ψ ` v : τ . . .

` H : Ψ
h-tp

∆;Ψ ` R : Γ

Γ = {. . . , r 7→ τ, . . .} R = {. . . , r 7→ w, . . .}
. . . ∆;Ψ; • ` w : τ . . .

∆;Ψ ` R : Γ
g-tp

∆;Ψ ` s : ς

∆;Ψ ` empty: (base: Empty)
s-base

∆;Ψ ` s : (` : σ) ∆; Ψ; • ` w : τ

∆;Ψ ` w :: s : (next(`) : τ :: ` : σ)
s-concat

∆;Ψ, {p 7→ HeapPtr(τ)} ` s : (` : σ)

∆;Ψ, {p 7→ HeapPtr(τ)} ` s : (` : (σ ∧ {p : τ})) s-alias

∆;Ψ ` s : ς ς ⇒ ς ′

∆;Ψ ` s : ς ′
s-imp

∆;Ψ; Γ; ς ` b

∆;Ψ ` (Γ; ς){ins}(Γ′; ς ′) ∆;Ψ; Γ′; ς ′ ` b

∆;Ψ; Γ; ς ` ins; b
b-ins

∆;Ψ; Γ ` o : ∀[ ](Γ′, ς ′) Γ⇒ Γ′ ς ⇒ ς ′

∆;Ψ; Γ; ς ` jumpo
b-jump

∆;Ψ; Γ ` o : HeapPtr(τ) r 6= sp η 6∈ ∆
(∆; η);Ψ; Γ[r 7→ Ptr(η)]; ` : (σ ∧ {η : τ}) ` b

∆;Ψ; Γ; ` : σ ` (η, r) = unpack(o)
b-unpack

Ψ ` block

∆;Ψ; Γ; ς ` b

Ψ ` ∀[∆](Γ, ς) b
block-tp

∆;Ψ ` v : τ

Ψ ` ∀[∆′](Γ′, ς ′) b ∆ ` ∀[∆′](Γ′, ς ′)

∆;Ψ ` ∀[∆′](Γ′, ς ′) b : ∀[∆′](Γ′, ς ′)
v-code

∆;Ψ; • ` w : τ

∆;Ψ ` 〈w〉 : HeapPtr(τ)
v-hp

B.3 Dynamic Semantics

d + i = d′

d + 0 = d
d + (n + 1) = next(d) + n
base+ (−(n + 1)) = base
next(d) + (−(n + 1)) = d + (−n)

size(s) = d

size(empty) = base
size(w :: s) = next(size(s))

resize(d, s) = s′

resize(size(s), s) = s
resize(size(s) + (n + 1), s) = nonsense:: resize(size(s) + n, s)
resize(size(s) + (−(n + 1)), w :: s) = resize(size(s) + (−n), s)

s(d) = w

(w :: s)(size(w :: s)) = w
s-lookup-top

s(d) = w

(w′ :: s)(d) = w
s-lookup

s′ = s[d← w]

d = size(w :: s)

w′ :: s = (w :: s)[d← w′]
s-assign-top

s′ = s[d← w]

w′ :: s′ = (w′ :: s)[d← w]
s-assign
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R ` o 7→ w

R ` r 7→ R(r)
eo-r

R ` w 7→ w
eo-w R ` o 7→ w

R ` o[`] 7→ w[`]
eo-inst-l

R ` o 7→ w
R ` o[σ] 7→ w[σ]

eo-inst-Q

(R, s){r ← w}(R′, s′)

r 6= sp R′ = R[r 7→ w]

(R, s){r ← w}(R′, s)
u-not-esp

R′ = R[sp 7→ d]

(R, s){sp← d}(R′, resize(d, s))
u-esp

P → P ′

R ` o 7→ w (R, s){r ← w}(R′, s′)

(H, R, s, (movr, o; b))→ (H, R′, s′, b)
e-mov

R ` r 7→ d (R, s){r ← d + i}(R′, s′)

(H, R, s, (laddr,−4 ∗ i; b))→ (H, R′, s′, b)
e-ladd

R ` r 7→ i1 R ` o 7→ i2 (R, s){r ← i1 + i2}(R′, s′)

(H, R, s, (addr, o; b))→ (H, R′, s′, b)
e-add

R ` r 7→ i1 R ` o 7→ i2 (R, s){r ← i1 − i2}(R′, s′)

(H, R, s, (subr, o; b))→ (H, R′, s′, b)
e-sub

R ` r2 7→ p H(p) = 〈w〉 (R, s){r1 ← w}(R′, s′)

(H, R, s, (loadr1, [r2 + 0]; b))→ (H, R′, s′, b)
e-load-p

R ` r2 7→ d s(d + i) = w (R, s){r1 ← w}(R′, s′)

(H, R, s, (loadr1, [r2 + (−4 ∗ i)]; b))→ (H, R′, s′, b)
e-load-d

R ` r1 7→ p H(p) = 〈w〉 R ` r2 7→ w′

(H, R, s, (store[r1 + 0], r2; b))→ (H[p← 〈w′〉], R, s, b)
e-store-p

R ` r1 7→ d R ` r2 7→ w s′ = s[d + i← w]

(H, R, s, (store[r1 + (−4 ∗ i)], r2; b))→ (H, R, s′, b)
e-store-d

R ` o 7→ w p 6∈ domain(H) H ′ = H, p 7→ 〈w〉 (R, s){r ← p}(R′, s′)

(H, R, s, (heapallocr = 〈o〉; b))→ (H ′, R′, s′, b)
e-heapalloc

R ` r 7→ i i 6= 0

(H, R, s, (jumpif0 r, o; b))→ (H, R, s, b)
e-jump0-false

R ` r 7→ 0 R ` o 7→ p[subst] H(p) = ∀[∆](Γ, ς) b2

(H, R, s, (jumpif0 r, o; b1))→ (H, R, s, b2[subst/∆])
e-jump0-true

R ` o 7→ p (R, s){r ← p}(R′, s′)

(H, R, s, ((η, r) = unpack(o); b))→ (H, R′, s′, b[p/η])
e-unpack

R ` o 7→ p[subst] H(p) = ∀[∆](Γ, ς) b

(H, R, s, jumpo)→ (H, R, s, b[subst/∆])
e-jump

Figure 4. Instruction Evaluation Rules
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Abstract
Aliasing is quite powerful, but difficult to control. Often clients
need exclusive access to objects for some concerns, and sometimes
we see no other way than to ensure this by controlling aliasing. In-
stead, we propose to restrict what clients can do when accessing ob-
jects. To invoke methods in an object clients need tokens issued by
this object. Static type checking enforces the tokens to be available
and ensures exclusive access for specific concerns without avoiding
aliasing. We show by examples how this concept works and discuss
several possibilities to improve its flexibility.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Object-Oriented Programming, Aliasing

Keywords Types, Tokens

1. Motivation and Overview
Aliasing is like a beast causing troubles. It shows up where we do
not expect it and perverts our statements. It is slippery and escapes
when we think we have caught it.

Aliasing is also like a pet. Object-oriented programmers love
it. It opens doors to objects that seem far far away. Science fiction
authors would be surprised if they knew how easy we walk from
one object to another at a completely different part of the world.

The beast and the pet are actually the same animal. Aliasing
gives programming languages much expressive power, so much
that we easily lose control. Programming systems become weaker
whenever we cage or tame the beast. We must be careful not to
destroy flexibility: Although it is possible to develop nearly every
kind of system without the undesirable properties of aliasing (for
example, in a referentially transparent functional language) we
have to do so with considerably less flexibility in structuring the
code. Such flexibility is essential in object-oriented programming
to achieve good factorization.

In this paper we discuss an approach to annotate object refer-
ences with constraints on how to access referenced objects. This
approach fully supports aliasing; there is no cage for it as in many
other approaches [2, 3, 12, 15, 39]. However, we limit what the
beast can do by ensuring that constraints on references are pre-
served when introducing new aliases. For example, if we want a
specific method in an object to be invokable at most once, then
we annotate the only reference existing on object creation with a
corresponding constraint. After introducing further references to
the object we still have this property: There is only one reference
through which the message can be sent although we usually do not
know where to find this reference. We need not restrict aliasing by
itself; we just limit effects of aliasing.

We express what can be done through an object reference by a
set of tokens (or just names) associated with the reference. Method
specifications give semantics to tokens: A method can require spe-
cific tokens to be associated with the reference through which it

is invoked; these tokens are removed from the reference on invoc-
ation, and further tokens (specified by the method) can be added
on return. We express constraints by tokens because they are easily
understood by both programmers and tools like compilers.

This approach was introduced as part of a type system ex-
pressing synchronization to ensure linearity at the presence of ali-
asing [29]. Applications of this technique are usually related to syn-
chronization and coordination. In the above example of a single in-
vocation, all clients of an object must be coordinated such that at
most one of them invokes the specific method. Such kinds of co-
ordination are inevitably connected with constraints on single ref-
erences (as opposed to the whole referenced object) at the presence
of aliasing.

The goal of this paper is to survey how this approach works
and show by examples what can be done with it and where its
limits are. Thereby, the focus is on limiting effects of aliasing,
not synchronization and coordination. In Section 2 we give the
basics of our token-based approach, and in Section 3 we show
how to distribute tokens within a system. In Section 4 we briefly
describe static type checking. In the remaining sections we use
various concepts to add flexibility – dependences between tokens
in Section 5, relationships between values and tokens in Section 6,
type parameters in Section 7, and a dynamic concept in Section 8
– before we discuss related work in Section 9 and give concluding
remarks in Section 10.

2. Tokens to Ensure Limited Access
We show how to specify constraints by examples in a Java-like
pseudo-language. The first example gives a simplified interface of
a window, where method invocations depend on tokens (in square
brackets – tokens removed on invocation to the left and those added
on return to the right of arrows):

interface Window {
[init -> shown,ready] void initialize (...);
[ready -> ready] void update (...);
[shown -> icon] void iconify ();
[icon -> shown] void uniconify ();
[shown,ready ->] void close ();
int getCreationTime ();

}

In our pseudo-language, brackets denote token sets associated
with types and methods, they do not denote arrays. Let us as-
sume that new windows are of typeWindow[init], this is, we
have a reference to an instance ofWindow associated with a token
init. Through this reference we can invoke onlyinitialize and
getCreationTime. All other methods require tokens (as specified
to the left of->) not available in the reference; they are not in-
vokable. When we invokeinitialize the type of the reference
changes first toWindow[] (or equivalently justWindow) and on
return toWindow[shown,ready]. Further methods become invok-
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able, butinitialize cannot be invoked again. We can distribute
references to the window all over the system (see Section 3 how
to do that in a type-save way). The type checker prevents tokens
from being duplicated thereby. Maybe, we get a reference of type
Window[ready] in a client feeding the window with new data,
a reference of typeWindow[shown] in a window control panel,
and any number of references of typeWindow through which only
getCreationTime can be invoked. However, we cannot get two
references to the same window, both of typeWindow[ready], be-
cause there exists always at most one tokenready. In the control
panel we can invokeiconify anduniconify only in alternation:
Invoking iconify changes the type associated with the window
reference toWindow[icon], and invokinguniconify again to
Window[shown]. The methodclose becomes invokable only if
we rearrange the system such that all available tokens (ready and
shown) occur again in the type of a single reference. After invoking
close all tokens are gone, and onlygetCreationTime remains
invokable.

The example shows how we can easily specify nontrivial con-
straints on method invocations and how clients are forced to sat-
isfy them. This technique is expressive: We can specify all prefix-
closed trace sets [30]. Clients that hold tokens have got partial con-
trol over the corresponding object: The client holdingready is the
only one being able to invokeupdate, and the client holdingicon
or shown completely controls whether the window is iconified. Cli-
ents cannot influence each other in this respect. Moreover, a client
who holds any token of a window can preventclose ever to be
invoked. This kind of “separation of concerns” works without any
knowledge about aliases in the system. We need not know which
client has control over a concern. This client can even change dy-
namically.

To ensure limited access we usually want to have at most one
token of each name per object. Separation would be weaker if
we had several tokensready and possibly several clients invok-
ing update in the same window object. As proposed in [29] this
approach supports several tokens of the same name in order to ex-
press limited resources (that are not necessarily limited to one; for
example, buffer sizes) for the purpose of synchronization. For the
purpose of aliasing control we need no limited resources of this
kind. In this paper we implicitly assume tokens to occur at most
once per object (this is, in the types of all references to the same
object).

Explicit result types of constructors play an important role in
specifying initial object states:

class MyWindow implements Window {
MyWindow[init] () {};
...

}

An invocation ofnew MyWindow() returns a new instance with a
single tokeninit. Based on this information we can compute the
maximum of tokens for this object available in the whole system
(see Section 4). SinceMyWindow does not add tokens to those
inherited fromWindow, there can always be at most aninit, or a
ready and either ashown or anicon in the types of all references
to an instance ofMyWindow.

3. How to Distribute Tokens
In the next example we show how to handle tokens in types of
parameters and variables:

class Test {
void play (Window[ready -> ready] w) {

w.update(...);
w.update(...);

}
void blink (Window[icon -> shown] w) {

w.uniconify();
w.iconify();
w.uniconify();

}
Window[ready] win;
[unique -> unique]
Window[ready] swap (Window[ready ->] w) {

Window[ready] old = win;
win = w;
return old;

}
[unique -> unique] void condUpdate() {

if (win != null) { win.update(...); }
}
Test[unique] () { win = null; }

}

Let y be a variable of typeWindow[ready,icon] andx one of
type Test[unique]. We can invokex.play(y) sincey has the
tokenready as required in the formal parameter type to the left
of ->. On invocation the type ofy changes toWindow[icon]
(this is, ready is removed) and on return fromplay again to
Window[ready,icon] (this is, the token to the right of-> in the
formal parameter type is added). In the body ofplay the parameter
w has a tokenready on invocation as well as on return; we can
invokeupdate as often as we want to do so.

Invocations ofblink change argument types: On return from
x.blink(y) variabley will be of type Window[ready,shown].
In the body ofblink we must invokeuniconify at least once to
ensurew to have the appropriate token on return. We can invoke
x.play(y) and x.blink(y) in any ordering and even concur-
rently because the token sets required fromy (as well as the empty
token sets required fromx) do not overlap.

Parameter passing does not produce or consume tokens. Tokens
just move from the argument type to the parameter type on invoca-
tion and vice versa on return.

Whenever we introduce an alias (in this case by binding a formal
parameter to an argument) we performtype splitting:The tokens
specified in the argument type are split into two groups. Tokens
specified in the formal parameter type (to the left of the arrow)
move to the formal parameter while all other tokens remain in the
argument’s type. After return the formal parameter is no longer in
use. We combine the previously split types again; thereby tokens
(specified to the right of the arrow) move from the formal parameter
to the argument.

Assignment resembles parameter passing on method invoca-
tion: When assigning a reference to a variable where the variable
type specifies tokens, these tokens are removed from the reference;
this is, the tokens move from the assigned value to the variable. In
the body ofswap the tokenready moves from the parameterw to
the instance variablewin. Since the token finally belongs towin, it
cannot move back to the argumenty on return fromx.swap(y).

Types specifying tokens in square brackets frequently change.
For example,w in the body ofblink is of typeWindow[icon] be-
fore invokinguniconify and of typeWindow[shown] afterwards.
There is no difficulty for a type checker and usually also for a hu-
man reader to determine what is the current type of a local variable
at some position in the program. However, such type changes cause
troubles on instance variables: There can be independent accesses
of the same variable through concurrent threads as well as through
aliases. If one of the clients accessing the variable causes tokens to
be removed from the variable, others do not know about this change
and can assume the tokens still to be available; there can be an un-
expected and undesired duplication of tokens. To avoid such prob-
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lems we require tokens of instance variables to be visible only if we
can exclude simultaneous accesses through concurrent threads and
aliases. In our example we get uniqueness by requiring the token
unique onx when executingx.swap(y) andx.condUpdate().1

Static type checking ensures such variable accesses to be actually
unique (see Section 4). Furthermore, such variables must not be ac-
cessed from outside (except though getter and setter methods). Of
course, on return from methods all such variables must hold their
declared tokens.

As in all Java-like languagesnull is an appropriate instance of
each reference type. Since no method is invokable throughnull,
we can assume this special value to be associated with any token.
Tokens do not compromise the use ofnull.

If we have two references of the typesWindow[ready] and
Window[shown], then it is in general not possible to invokeclose
through any of them. However, the following method allows us to
combine the token sets:

Window[ready,shown] comb (Window[ready ->] x,
Window[shown ->] y) {

if (x == y) { return x; }
else { return null; }

}

The method is correct because in this casex andy are known to be
aliases with the common typeWindow[ready,shown]. Whenever
we know two variables (or parameters) to refer to the same object
(after comparing identity) we assume all tokens belonging to any of
the two variables to belong to both of them. The essential part is just
the conditional statement with an identity comparison as condition;
the rest of this example just gives us a setting where this statement
may be useful.

Our approach supports subtyping considering tokens. We give
just a raw idea of it (see [29, 30, 33] for more complete de-
scriptions): Subtypes specify all (relevant) tokens specified by
supertypes. Hence,MyWindow[ready,shown] is a subtype of
Window[ready], but is not related toWindow[icon] by subtyp-
ing. Methods declared in subtypes have to the left of-> at most
and to the right at least those tokens that occur to the left or right
of the arrow in the corresponding method declaration in the super-
type. Irrelevant tokens (these are tokens no method depends upon)
need not be considered. As a consequence we can invoke at least
each sequence of methods through a reference to an instance of a
subtype that we can invoke through a reference to an instance of a
corresponding supertype. Supertypes are more restrictive than (or
equal to) subtypes.

4. Static Type Checking
Static type checking in our approach is rather simple and can be
performed at a class by class basis (separate compilation). Pro-
grammers give all information the checker needs by specifying
tokens in types and together with methods. The type checker must
ensure all specified types and tokens to be consistent (which is
much simpler than inferring information about aliasing or syn-
chronization from a program). It can do so by a single walk through
the code of a class. In detail, the checker has to ensure the following
properties:

1. At any time there cannot be several tokens of the same name
for the same object.To ensure this property we apply a simple
fixed-point algorithm to compute for each class an upper bound
of token sets that can become available: Initially we have the

1 Declaringswap and condUpdate as synchronized is not sufficient be-
cause there is still the possibility of a simultaneous access through aliasing.
Requiring a unique token is a stronger condition. It ensures the absence of
any other client also invoking one of these methods.

sets of tokens specified in constructors (one set per constructor).
We construct further token sets by updating each token set
according to each method where the token set contains all
tokens occurring to the left of-> in the method; tokens to
the left of the arrow are removed and tokens to the right are
added. The algorithm terminates if no new token sets can be
constructed this way. Type checking fails if a token set contains
the same token twice. Usually the fixed point is reached quickly
because there are only few different tokens in a class. Since
new tokens can be introduced only by method invocations (as
ensured by the properties mentioned below) this fixed-point
construction is sufficient to ensure that two tokens of the same
name can never exist for any object.

2. Methods are invoked only through references associated with
all needed tokens.Initially we assume types of variables to carry
tokens as in the variable declarations, and types of parameters
as to the left of arrows in parameter declarations. While walk-
ing through the code according to the control flow we ensure
for each method invocation that the type of the reference the
method is invoked through which contains all tokens occurring
to the left of-> in the declaration of this method. Furthermore,
we update the type of the reference by removing all tokens oc-
curring to the left and adding all tokens occurring to the right
of the arrow in the method declaration. Whenever the control
flow is split (for example, in a conditional statement) we per-
form these checks for each path separately. At joins of several
paths we remove all tokens that do not occur in all correspond-
ing types constructed independently in the paths to be joined.

3. Tokens are not duplicated when introducing aliases.While
walking through the code according to the control flow we
ensure for each method invocation that types of arguments have
all tokens occurring to the left of the arrow in the corresponding
formal parameter type. These types are updated by removing all
tokens occurring to the left and adding all tokens occurring to
the right of the arrow in the formal parameter type. For each
assignment of a value to a variable we ensure that the value has
all tokens specified in the type of the variable and remove these
tokens from the value’s type. At the end of the control flow of
each method and constructor we ensure that

• each parameter has all tokens that occur to the right of the
arrow in the parameter declaration,

• and each instance variable has at least all tokens that occur
in the variable declaration.

4. Always at most one method can make use of tokens associated
with an instance variable.Such variables are not directly ac-
cessible from outside the object they belong to which. To en-
sure the absence of simultaneous accesses to each such vari-
able within an object we use the set of methods accessing the
variable and the upper bound of token sets constructed while
checking property 1: If there is no token set in the upper bound
that contains all tokens occurring to the left of the arrows of any
pair of methods in the method set, then these methods cannot
be invoked simultaneously and the variable access is unique.

For example, in classTest (in the previous section) onlyswap
and condUpdate accesses the instance variablewin. Both
methods haveunique to the left of the arrow. Each of the
four possible method pairs has two tokensunique to the left of
the arrows. The upper bound constructed fromTest contains
only a single token set with a single tokenunique. Since no
token set in the upper bound contains two tokensunique, sev-
eral concurrent or overlapping invocations are impossible. In
this case (and in many similar cases) we do not need the upper
bound to show this property because we know that no token set

57



in the upper bound contains the same token twice. Sometimes
the use of upper bounds increases accuracy. For example, in
MyWindow the methodsiconify anduniconify cannot be in-
voked simultaneously because no token set in the upper bound
contains bothshown andicon.

The type system is strong and sound in the sense that methods
can be invoked only when objects are in appropriate states as spe-
cified by tokens. Essential parts of a corresponding proof can be
found in [29, 30]. To get this result we need not restrict aliasing,
and we need no knowledge of aliases (except of local information
about statements possibly introducing new aliases to ensure prop-
erty 3). This is an important difference to many seemingly similar
approaches like the Fugue protocol checker [10].

There is a (still incomplete) implementation of the type checker
for a simple language similar to the language we use in this paper.
From early experiences with this checker we see that the type
system is quite good in detecting errors where programmers get
tokens wrong. Wrong tokens in method declarations usually show
up as diverging upper bounds (as constructed to ensure property 1)
or cause methods not to be invocable. Wrong tokens in types cause
methods not to be invocable or references not to be usable as
method arguments. The type checker complains about such errors.

Concerning type safety it does not matter if tokens are lost or
hidden in the type of unused references. In such cases, clients just
do not make use of services offered by objects. To enforce clients
to make use of services we can extend the type checker as proposed
in [34] at the cost of flexibility.

5. Dependent Tokens
In this and the following sections we discuss a number of ap-
proaches to improve the expressiveness and flexibility of our tech-
nique. An important step in this direction is to make use of known
relationships between tokens that belong to different objects.

In the following example we show a possibility to specify tokens
belonging to an instance variable in dependence of tokens of the
object that contains the variable [33]:

class IconButtons {
Window[icon for down][shown for up] window;
[down -> up] void pressUp() {

window.uniconify();
}
[up -> down] void pressDown() {

window.iconify();
}
IconButtons[up] (Window[shown] w) {

window = w;
}

}

We think of IconButtons as a wrapper for the part ofWindow
dealing with icons. The variablewindow has one tokenicon for
each tokendown known to occur in the corresponding instance
of IconButtons and one tokenshown for eachup in the in-
stance. In general, we regard a set of tokens to the left offor as
available it there exists the set of tokens to the right offor. In
the body ofpressUp we know down to be available at method
invocation andup on return because of[down -> up]. Hence,
we assumewindow to have a tokenicon on invocation, and we
must ensure thatwindow has a tokenshown on return. An invoc-
ation of uniconify changes the token appropriately. Because of
[up -> down] specified forpressDown we assumewindow to
have ashown on invocation of this method, and we have to en-
sure the variable to have anicon on return. On object creation we

must initializewindow with a reference having ashown because
the new instance ofIconButtons is associated with anup.

Checking for-clauses in instance variable specifications is
straightforward because type safety follows from the construction
of this language concept. There is only a small difference to type
checking as proposed in Section 4: To ensure property 3 we have to
compute the tokens carried by variables from token specifications
in methods instead of having them declared directly.

Using classIconButtons we control both buttons in a single
class. Distributing a concern (like controlling the state of iconifica-
tion) over several classes is a much more difficult topic that occurs
in practice. In the next example we show an alternative solution to
IconButtons based on separate classes for each button:

class ButtonA {
Window[shown for activeA] window;
ButtonB[passiveB for activeA] button;
[passiveA -> activeA] void activate() {...}
[activeA -> passiveA] void press() {

window.iconify();
button.activate();

}
[initA -> activeA]
void init (Window[shown for activeA ->] w,

ButtonB[passiveB for activeA->] b) {
window = w;
button = b;

}
ButtonA[initA] () {}

}

class ButtonB {
Window[icon for activeB] window;
ButtonA[passiveA for activeB] button;
[passiveB -> activeB] void activate() {...}
[activeB -> passiveB] void press() {

window.uniconify();
button.activate();

}
[initB -> passiveB]
void init (Window[icon for activeB ->] w,

ButtonA[passiveA for activeB->] b) {
window = w;
button = b;

}
ButtonB[initB] () {}

}

The variablewindow carries a tokenshown in ButtonA (andicon
in ButtonB) when the button in active. Otherwise we do not know
any token ofwindow. After pressing the active button we activate
the other button, and the pressed button becomes passive. These
classes work essentially in the same way asIconButtons once
the objects have been initialized. On invocation ofactivate the
variableswindow in the two objects implicitly exchange the only
available token. The initialization is the tricky part: We have to tell
the two objects that they can safely assume to have the only token
shown or icon of window when they are active. InButtonA the
parameter typeWindow[shown for activeA ->] specifies that
w refers to a window carryingshown only while the button is active
(and has no tokens on return frominit); this parameter is assigned
to window of essentially the same type. To initialize the objects we
may use the following piece of code:

w = new MyWindow();
a = new ButtonA();
b = newButtonB();
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a.initialize(w,b);
b.initialize(w,a);

The variablew occurs in both invocations ofinitialize and gives
away its only token to both objects depending on the states of
the objects as specified by thefor clause in the formal parameter
type. To ensure this initialization to be correct we have to show the
following properties:

• The two objects never have the tokensactiveA andactiveB at
the same time. Because of two different objects this property is
not obvious. Using least bounds of token sets constructed for
both classes as in Section 4 we can show this property: No
token set constructed fromButtonA contains bothactiveA
and passiveA, and no token set constructed fromButtonB
containsactiveB andpassiveB. Sincebutton in ButtonA
carriespassiveB if there is a tokenactiveA, there cannot exist
a tokenactiveB at the same time, and analogously forbutton
in ButtonB. Hence,activeA andactiveB cannot exist at the
same time.

• When the other object becomes active, there exists the token on
window needed by the other object. This means,window must
carry a tokenicon (or shown) at the end of each method where
activeA (or activeB) occurs to the left of the arrow and does
not also occur to the right.

Because these checks are ad hoc and compromise separate compila-
tion, it is an open question whetherfor clauses in formal parameter
types shall be supported or not.

6. Values as Tokens and Tokens as Values
Dependent tokens are safe and (withoutfor clauses in parameter
types) easy to handle where they are appropriate. However, in many
situations we need more freedom. Especially, we want to relate the
availability of tokens to values in variables. In the next example we
show how to establish such relationships:

class SwapButton {
int state;
Window[icon if state < 0]

[shown if state > 0] window;
[unique -> unique] void press() {

if (state < 0) {
window.uniconify();
state = 1;

}
else if (state > 0) {

window.iconify();
state = -1;

}
}
SwapButton[unique] (Window[shown] w) {

window = w;
state = w == null ? 0 : 1;

}
}

The variablewindow is associated with a tokenicon if state
holds an integer value below zero, and withshown if the value is
larger than zero. There is no token for zero. Before we can make
use of these tokens we have to ensure corresponding conditions
(considering the value ofstate) to be satisfied. After changing
tokens associated withwindow we must updatestate.

This approach to relate tokens with values raises a large number
of problems:

• Tokens are allowed to depend only on side-effect-free condi-
tions that read only instance variables of the object. Such vari-

ables likestate must not be written from outside, and there
must not exist aliases of them. Otherwise it would be impossible
to keep results of evaluating the conditions synchronized with
the available tokens. In the programming language Ada we have
similar requirements on conditions inwhen clauses belonging
to protected types (Ada’s notion for monitors) [16].

• The compiler must be able to determine whether conditions
specified in square brackets correspond to other occurrences
of the same conditions in conditional statements. Usually the
compiler can determine only structural equivalence. The use of
named conditions (based on name equivalence) can be helpful
in this respect. For example, we define a parameterless boolean
function that implements the condition and invoke this function
instead of using the condition directly. This way it is easy to
determine equivalence of conditions.

• On return from a method that changes tokens of variables or
assigns new values to variables likestate we have to ensure
tokens and variable values to correspond to each other. We can
do so by checking the conditions. In general, we can perform
these checks only at run time and thereby lose static type safety.
To avoid this problem we restrict values assigned to variables
like state (where conditions depend upon) to be constant. In
this case we can perform the checks at compilation time and
keep static type safety. This restriction reduces the expressive-
ness, but tokens depending on values are still quite expressive.

Each of these problems can be solved (although the first and
the last one are serious) and dependence of tokens on values does
not compromise static type checking. However, since we need
rather heavy machinery, we may prefer to use another approach
that allows us to express more directly what we want to have:

class SwapButton2 {
Window[?] window;
[unique -> unique] void press() {

if ([icon]window) {
window.uniconify(); }

else if ([shown]window) {
window.iconify(); }

}
SwapButton2[unique] (Window[shown] w) {

window = w;
}

}

The question mark in the declaration ofwindow states that we do
not know statically which tokens will be associated with the vari-
able. The tokens associated withwindow are stored in an impli-
cit variable. An expression of the form[...]window returns true
if this implicit variable contains all tokens specified in the square
brackets. In the body ofpress we dynamically check ifwindow is
associated withicon or shown and make use of the found token.
On return from the method (as well as from the constructor) the
tokens ofwindow are automatically stored in the implicit variable.

Up to now we regarded tokens to be a purely static language
concept. The approach taken inSwapButton2 handles tokens dy-
namically. Nonetheless we can ensure static type safety without any
difficulty because types are split and updated in the same way as in
the purely static concept. By storing tokens in implicit variables
(not directly modifiable by the programmer) we avoid the diffi-
culties we have to address in the approach taken inSwapButton.

The implicit variable inSwapButton2 corresponds essentially
to state in SwapButton. These two classes differ mainly in the
syntax. In the approach ofSwapButton we can use state informa-
tion also for purposes not related to tokens, while the approach of
SwapButton2 requires less program code and is simpler to check.
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Using tokens as values as well as letting tokens depend on values
adds much flexibility to the whole language concept.

7. Type Parameters
Tokens encoded into types and changes of types cause a difficulty
together with homogeneous genericity as in Java: Each use of a
type parameter refers to the same type while we often want to refer
to types with different token sets, and we have to consider tokens
to avoid unexpected token duplication. We need some notation to
express tokens for type parameters. In the next example we show
our first approach where we use essentially the same notation as for
types:

class IconList<W extends Window> {
[i -> i] void add (String s, W[icon] w) {...}
[i -> s] void uniconifyAll () {...}
[s -> s] W[shown] delete (String s) {...}
[s -> s] W get (String s) {...}
IconList[i] () {}

}

An instance ofIconList<MyWindow> can be used as expected:
We can add objects of typeMyWindow[icon], cause all added win-
dows to become uniconified, and delete uniconified windows and
thereby get back instances ofMyWindow[shown]. An invocation
of get cannot return any token because the returned instance of
MyWindow remains in the list where the token still is needed. The
compiler would complain if we tried to return the token and at the
same time keep it in the list.

However, for types likeIconList<MyWindow[ready]> this
approach is inappropriate. The type parameterW must not carry
tokens becauseget cannot return any reference associated with
tokens as explained above. Otherwise we would implicitly duplic-
ate tokens and destroy type safety.

If we need type parameters carrying tokens, we must declare the
parameters with a question mark to make our intention clear:

class IconList<W[?] extends Window> {...}

In this variant the compiler complains about possible token duplic-
ation inget.

In Java we have no access to types substituting type parameters
at run time. Therefore, it is most natural to keep also tokens in these
types invisible. In languages with run-time support of genericity
(like C#) we regard tokens associated with type parameters as
being stored in an implicit variable. Then, we can use the boolean
expression[ready]W to dynamically determine if each instance
of W is associated with a tokenready in a similar way as we did
in SwapButton2. As a special case we can use[]W to ensure in
methods likeget no token to be associated withW.

8. Dynamic Tokens
A simple and seemingly still powerful approach to further increase
flexibility introduces a dynamic pool of tokens into each object. We
differentiate between static tokens (used so far) and dynamic tokens
stored in dynamic pools. Dynamic tokens required on invocation
(this is, dynamic tokens to the left of-> in brackets associated
with methods) are taken from the dynamic pools of the objects
the methods belongs to (not from references to them). On return
dynamic tokens are added to the pools, not to references. If a
required dynamic token is not available on invocation, then the
invocation is delayed until the token becomes available. The main
purpose of dynamic tokens is synchronization [31, 33].

In this paper we prefix dynamic tokens with$ to distinguish
them syntactically from static tokens. By replacingunique in our
SwapButton example with a dynamic token we get:

[$unique -> $unique] void press () {...}
SwapButton[$unique] (Window[shown] w) {...}

Each client can invokepress without needing a token. Several
simultaneous invocations will be synchronized and executed in any
sequential ordering. In this respect the use of dynamic tokens re-
sembles that of “synchronized” in Java. However, we consider re-
cursive invocations2 of press as erroneous while recursive syn-
chronized methods are supported. Unfortunately, there is no easy
way to statically determine indirect recursive invocations especially
together with separate compilation. We can detect erroneous re-
cursive invocations practically only at run time as deadlocks.

Dynamic tokens are not as useful in controlling aliasing as they
seem to be at a first glance. A client does not get unique access
for some concern for a sequence of invocations – just for a single
invocation. In simple cases (like ensuring unique access to a vari-
able carrying tokens) dynamic tokens give us more flexibility at the
cost of lost static safety and lost control over effects of aliasing. As
we can see from dynamic tokens there is a fundamental difference
between conventional synchronization and limiting the effects of
aliasing although these concepts are related. Synchronization is a
much weaker concept.

9. Related Work
The work presented in this paper is closely related to process types
[27, 29, 30], a type concept where we express synchronization in
types of active objects and in types of references to active objects.
Process types were developed as abstractions over expressions in
object-oriented process calculi like Actors [1] and build the formal
basis of the present work. Static type checking ensures that only ac-
ceptable messages can be sent and thereby enforces required syn-
chronization. Process types allow us to specify nearly arbitrary con-
straints on the acceptability of messages: We can specify all prefix-
closed trace sets, type equivalence is based on trace-set equival-
ence, and subtyping on trace-set inclusion [28]. A notation based
on tokens helps us to keep static type checking as well as decid-
ing type equivalence and subtyping simple [29, 30]. The process
type concept considers types to be partial behavior specifications
[19, 20] especially useful in specifying the behavior of software
components [4, 18, 25].

Recent work regards process types as a synchronization concept
in Java-like object-oriented programming languages [31, 32, 33].
This work adds a further dynamic level of synchronization while
keeping the completely static level of (required) synchronization.
To control aliasing we need mainly the static level.

There are several approaches similar to process types. Some
approaches ensure subtypes to show the same deadlock behavior
as supertypes, but do not enforce message acceptability [24, 25].
Other approaches consider dynamic changes of message accept-
ability, but do not guarantee message acceptability in all cases
[8, 9, 35]. Few approaches ensure all sent messages to be accept-
able [17, 23]. There is essentially the same idea behind the well-
known work on linear types [17] based on theπ-calculus [21] and
process types based on an Actor-like model. However, since there
is no natural notion of message acceptability in theπ-calculus as
in the Actor model, static checking of linear types has to prevent
deadlocks and (therefore) is much more restrictive than checking
of process types that can ensure message acceptability without pre-
venting deadlocks.

The Fugue protocol checker [10, 11] uses a different approach
to specify client-server protocols: Rules for using interfaces are re-
corded as declarative specifications. These rules can limit the or-

2 In general, this restriction applies to invocations of all methods that require
the same dynamic tokens, not just recursive invocations of the same method.
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der in which methods are called as well as specify pre- and post-
conditions. Tokens in this protocol checker represent typestates.
Other than in our approach, they can be used only for unique refer-
ences. Since there is no concept resembling type splitting (as in
our approach), the Fugue protocol checker cannot statically en-
sure all methods to be invoked in specified orders at the presence
of aliasing. In these cases the checker introduces pre- and post-
conditions to be executed at run time. Hence, our approach can
statically ensure type safety in many cases where the Fugue pro-
tocol checker can perform only dynamic checks. There is a number
of further similar approaches to express (abstract) object states in
types and check protocol compatibility [6, 7, 36, 37, 38].

Several programming languages [5, 13, 26] were developed
based on the Join calculus [14]. For example, in Polyphonic C# [5]
we combine methods likeput andget in a buffer to a chord to be ex-
ecuted as a single unit. Clients can see how methods in a chord are
synchronized. Since only one method in a chord is executed syn-
chronously and all other methods are asynchronous, only specific
forms of synchronization are supported. Communication in Poly-
phonic C# and similar languages resembles that of the rendezvous
concept while (dynamic versions of) process types extend monit-
ors. There is no way to constrain method invocation sequences as
with process types, and there is no obvious way to use chords in
controlling aliasing.

Synchronization with tokens has a long tradition: Petri Nets
have been explored for nearly half of a century as a basis of syn-
chronization [22]. In general, expressing object states by abstract
tokens often has clear (both practical and theoretical) advantages
over expressing them more concretely by values in instance vari-
ables: Tokens are much easier tractable than concrete states espe-
cially when used in types. Many proposals use tokens to express
abstract object states [6, 10, 37].

The major contribution of this paper is to explore process types
from the perspective of aliasing control. Different from earlier work
on process types we assume each token to occur at most once in
a system. As a consequence we get clear separation of concerns,
better error detection from static type checking, and more flexibility
in specifying tokens associated with instance variables. Dependent
tokens distributed over several classes as well as values used as
tokens and tokens depending on values have not been considered
so far in the context of process types.

10. Conclusions
The basic approach to limit effects of aliasing is simple: Objects
issue tokens, and clients need tokens to interact with objects. A cli-
ent holding a token gets exclusive access to the object that issued
the token for the concern associated with the token because there
exist only one token for this concern in the whole system. Static
type checking ensures that methods can be invoked only in spe-
cified sequences by clients holding the required tokens. We apply a
number of techniques to manage tokens in more or less complicated
situations to increase the flexibility of this approach. For example,
with dependent tokens we safely specify tokens to be available if
other tokens are available, and with specific boolean expressions
we get dynamic access to (otherwise static) tokens. We also detec-
ted some cases where this concept causes difficulties or reaches its
limits: Access to instance variables carrying tokens must be exclus-
ive, dependent tokens distributed over several objects are difficult to
handle, and dynamic tokens (which are quite useful for synchron-
ization) do not help much for our purpose. Nonetheless, we already
have a number of techniques to avoid most cases of undesirable
effects of aliasing while we need not restrict aliasing by itself.
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Abstract
This paper describes a library for concurrency used in a 10-
developer videogame project. The developers were inexperienced,
yet there were no problems with data races in the multi-threaded
application. We credit this to the explicit representation of own-
ership in the design of the library. Correct library usage implies
aliasing boundaries which bear a strong resemblance to the owners-
as-dominators property enforced by ownership types. We explore
other situations where analogous aliasing boundaries exist and dis-
cuss a family of related libraries that could benefit from a design
explicitly representing ownership. The ownership relations in the
library currently have no support from the type system. We exam-
ine approaches to embed static checking of the aliasing boundaries
in our implementation language, C++.

Categories and Subject DescriptorsD.1.3 [Software]: Program-
ming Techniques—Concurrent Programming; D.3.3 [Software]:
Language Constructs and Features—Control structures

General Terms Design

Keywords Ownership types, C++, Data Races, Concurrency

1. Introduction
In research on type systems for object-oriented languages, an im-
portant property of interest is local reasoning. The challenge lies in
the fact that an object’s state is comprised not only of its immedi-
ate data members, but also the transitive closure of all the states of
the objects on which it depends [1]. To provide a “deeper” form of
encapsulation than directly supported by current languages, own-
ership types [2, 3] allow a class to identify its dependencies on
other objects and then prevent outsiders from acquiring references
to those dependencies. With these limitations on aliasing, it is pos-
sible to reason about the correctness of a class by looking only at
the code for that class and its dependencies.

However, local reasoning for the programmer is not the only
benefit from using aliasing boundaries. Researchers have demon-
strated that higher-level program guarantees can be made by build-
ing on ownership type systems [4–8]. This paper presents an ad-
ditional example where aliasing boundaries in a program can be
beneficial: a library for concurrency developed and successfully
used in a large student videogame project. We show that the ali-
asing boundaries required for correct library usage strongly re-
semble the owners-as-dominators property enforced on an object
graph by ownership types [2]. Based on this, the paper presents a
method by which code using the library could be checked using
ownership types.

Based on the positive experience with the concurrency library,
this paper considers a family of related libraries that could benefit
from a similar approach. Together, these libraries can be seen as
the decomposition of the separation facilities built into a traditional
process, so that each individual separation facility may be applied
at the sub-process level.

In sum, this paper is an experience report and a position pa-
per that (1) describes a set of library abstractions and program-
ming conventions that restrict aliasing in order to guarantee the ab-
sence of data-races; (2) identifies the correspondence of the aliasing
boundaries required by the library with those expressed with own-
ership types; (3) describes the type system extensions necessary to
move from a documented usage rule to statically ensuring that ali-
asing boundaries are respected; (4) outlines an economical imple-
mentation approach to embed those extensions into standard C++,
by inspecting the program’s AST with an extended type checker;
and (5) identifies the aliasing boundaries discussed as a general pat-
tern for a related class of libraries, justifying the effort to develop
the checking mechanisms.

This paper is organized as follows. Section 2 describes the
concurrency library and Section 3 how ownership types can be used
to check its correct use. Section 5 discusses the C++ embedding,
and the other libraries that could benefit from the same technique.
Section 6 mentions related work. Section 7 concludes and discusses
future plans.

2. The Library
This section describes a simple concurrency library that was de-
veloped for a videogame project written in C++. The game is called
“...and then the World was Consumed by Monsters” and can be
downloaded from the development team’s website [9]. The project,
organized by the Texas Aggie Game Developers, included 10 un-
dergraduate student developers over a period of 6 months with no
other experienced oversight. Thus, simplicity and understandability
were key to the success of the project.

In the videogame development community, amateurs are often
strongly discouraged from using concurrency by the more experi-
enced because of the difficult class of bugs it can introduce. How-
ever, several game constraints made it necessary to offload com-
putation and blocking API calls to other threads. First, as with
most interactive videogames, there is an underlying rendering loop
which repaints the screen. To maintain a visually smooth anima-
tion, each frame should take less than 30 ms. Second, the game
allows the user to control a character that roams around a virtual
world. The representation of the virtual world can be much larger
than what fits in memory. This requires the world to be cut into
smaller chunks which contain all the geometry, collision data, and
creatures for a small area of the world. As the user moves into new
areas, chunks get loaded and dropped, which requires I/O oper-
ations to load the memory, OS, and graphics resources for those
chunks. Since some of these operations do not provide an asyn-
chronous option and can have a high latency, most videogames
either try to perform them all at once before the game starts or
batch the operations and stall the user at chosen points when ex-
ecuting the batch. Such stalls did not fit nicely into the gameplay,
so a separate thread was needed to handle concurrent world load-
ing.
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Figure 1. Travelling object with a tether, demonstrating the three
states 1–3 of the Job object.

The same mechanism used for loading was later expanded to
simplify AI programming. Here, the problem is a possibly expens-
ive algorithm to find a path between two points. While the al-
gorithm could be extended to moderate its execution time, a simpler
approach is sending requests for computation to another thread with
a lower priority. Thus, for slower machines where rendering takes
a greater percentage of the time, enemies will simply take longer
to decide where to go instead of hurting the framerate. An obvious
additional benefit is the ability to utilize multiple hardware threads.

To avoid requiring the rest of the program to deal with shared
mutable data and locking, the model for concurrency was based on
the communicating sequential processes (CSP) metaphor (where
CSP processes are just threads and the shared address space is not
explicitly used). When extended to object-oriented programming,
all objects are understood to belong to a single thread and mes-
sages between threads take the form of objects that can dynamic-
ally change membership. Objects that are allowed to change mem-
bership are calledtravelling objectsand all others are calledlocal
objects.

A common need in the project was for a travelling object to
create a reference to a local object, travel to a different thread
to do some work, and then return to the original thread to use
the reference. The synchronization implied by travelling prevents
such behavior from being a data race. However, the situation is
complicated by the fact that the local object may be destroyed
while the travelling object is away. In a single-threaded scenario,
a weak pointerlibrary primitive comparable, e.g., to Boost weak
pointer [10], is used when the pointee is allowed to be destroyed
while another objects points to it. Although, the weak pointer
implementation could have been extended to be made thread-safe,
at the expense of synchronization overhead for all operations, this
is more powerful than is necessary: a weak pointer maintains the
liveness of the local object while the travelling object is in other
threads. All a travelling object needs is to discover, when it returns,
if the pointee has been destroyed in the interim.

To address the need for a simplified cross-thread weak pointer,
the thread library provides a new, thread-aware smart pointer called
a tether. Taking advantage of a tether’s restricted semantics, the
library is able to use the synchronization points already in place for
transferring travelling objects between threads to keep the tethers
coherent when they change threads.

Figure 1 demonstrates a typical usage scenario for a tether. In
the figure: labels 1-3 show three steps in execution, the solid ar-
rows represent normal references, and the dashed arrows represent
tethers. In this scenario, aMonster local object needs a path in or-
der to attack the player. Since the path finding algorithm should not

be run in the rendering thread, theMonster creates aJob object (1)
and ships it off to do the work in another thread. Before leaving, the
Job creates a tether to theMonster. Next, theJob arrives (2) and is
given a temporary local reference to theData object which it can
use to do the path finding computation. While in a different thread
than theMonster, the tether held by theJob cannot be dereferenced.
After Job finishes and returns to the original thread (3), it uses the
tether to check whether the tetheredMonster is still alive, and if so,
theJob hands over the computation results.

Although more general usage of travelling objects could be
supported using these library metaphors, the functionality required
by the project only needed threads to act like assembly lines which
processed jobs FIFO in the manner just described. Accordingly,
AssemblyLine is the library primitive for creating such threads:

template <class GenericHost>
class AssemblyLine {

GenericHost ∗host;
public:

...
void send(typename GenericHost::Guest ∗);
void receive returning();

};

SinceAssemblyLine does not know what to do with travelling
objects, it is parametrized by aGenericHost. The host’s responsib-
ility is to receive incoming travelling objects and to provide them
access to the necessary local data structures. Additionally, the type
of travelling objects is determined by theGuest associated type of
GenericHost. After starting a new OS thread in its constructor, an
AssemblyLine will create an instance ofGenericHost, which will be
the first client object local to the new thread. To allow returning
travelling objects to reenter the thread, the main thread synchron-
izes withAssemblyLine by callingreceive returning().

To give a better idea of the library’s use, we now walk through
some skeleton code using the library in the path finding scenario.
At the top-level of the application, aGame is created which, in turn,
creates anAssemblyLine:

class Game {
AssemblyLine<Host> ai thread;
...

public:
void run() {

while (!quit) {
...
ai thread.receive returning();

}
}

};
int main() {

Game g;
g.run();

}

Whenai thread is destroyed byGame, job processing will be
stopped, all pending jobs will be deleted, and the OS thread will
be released.Host parametrizesAssemblyLine and holds the path
finding data that is needed byJobs:

class Host {
Data data;

public:
typedef Job Guest;
void arrived(Job &guest) {

guest.do work(data);
}

};

When a travelling object is sent from the main thread and gets
pulled off the queue byAssemblyLine’s thread, it is handed over
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to Host by callingarrived(). Whenarrived() returns,AssemblyLine
will send the travelling object back to the main thread. In addition
to being compatible withHost::Guest, a travelling object’s class
must inherit from theTravellerBase library base class:

class Job : public TravellerBase {
Tether<Monster> tether;
...

public:
Job(Monster &m, ...) : tether(create tether(m)) { ... }
void do work(Data &);
void welcome back() {

if (tether)
tether−>found path(...);

}
};

Travelling objects can choose to have any number of tethers
to local objects using theTether template class, parametrized
by the type of the pointee.Tether follows the C++ smart pointer
idiom and guards access to the pointee throughoperator−>(). For
AssemblyLine andTether to cooperate in keeping the tether coher-
ent when it changes threads, construction ofTether is abstracted
by the create tether() protected member function inherited from
TravellerBase. When a travelling object is accepted back into the
main thread,welcome back() is called.Job can then safely use its
Tether after testing that theMonster object it was pointing to has
not been destroyed.

Finally, usingJob in Monster is fairly simple:

class Monster {
AssemblyLine<Host> &ai thread;
...

public:
...
void think() {

if (... I want to attack ...)
ai thread.send(new Job(∗this, ...));

}
void found path(...);

};

The project did not needJob objects after they returned to the
main thread, so theAssemblyLine takes the liberty of deleting them.
Altogether, the end-to-end order of function calls corresponding
to Figure 1 is:Monster::think(), Job::Job(), AssemblyLine::send(),
Host::arrived(), Job::do work(), AssemblyLine::receive returning(),
Job::welcome back(), Monster::found path(), Job::˜Job().

Although message-based schemes are often viewed as more
complex than shared-memory schemes when used for low level
parallel programming, as used in the videogame project for simple
task-level parallelism, we found the message-passing approach to
be a clear mental model of concurrent execution for the program-
mer compared to shared memory with locking. Programming with
this model, we did not experience data races. This could be attrib-
uted to the smaller scale of the student project, or the fear of con-
currency imbued in the team by horror stories, but we believe the
library design was an important part.

3. Checking Usage
The library described in Section 2 helps programmers by providing
a simple mental model and set of tools for programming concur-
rency. This section describes how the type system could be enlisted
to help as well. What is described is a correspondence between
ownership typing judgements and aliasing restrictions in the con-
currency library. The code shown is what the ownership type sys-
tem needs to see, not what needs to be written in the actual C++
code. A lightweight embedding in C++ is discussed in Section 4.
The syntax used to express the ownership typing concepts is based

on Joline [11] and Ownership Generic Java (OGJ) [3]. In some
places, features of C++ will be mixed in where they are needed
by the library.

Another point to clarify is the meaning ofownership. Owner-
ship types are traditionally presented in the context of a language
with garbage collection and so the main issue is accessibility. How-
ever, in the context of C++, ownership can also refer to the respons-
ibility of an object to manage the lifetime of the resources it owns.
This paper limits its discussion of ownership to issues of accessib-
ility; static guarantees involving object lifetimes are not addressed.

This section first discusses the basics of ownership types and
then describes how they can be used by each piece of the library.

3.1 Background

Ownership types can be used to statically limit what references
are allowed between objects. Considering objects and their refer-
ences as a graph, ownership types allow the user to draw boundaries
around parts of the graph, limiting incoming references. What fol-
lows is a brief explanation of how this is accomplished. Although it
sounds like extra runtime state and checking is being added, none
of it is needed after type checking; the runtime behavior of the pro-
gram is not modified.

First, every object is given a uniqueownership context. An own-
ership context can be thought of as a value of an opaque type. The
only purpose of an ownership context is to be part of the type of an
object. An object’s class is augmented to take, as a generic para-
meter, the ownership context of some other object, which becomes
its owner. Because ownership contexts are values, this creates a
relation between objects, not types. Additionally, there is an om-
nipresent, disembodiedworld ownership context which is not as-
sociated with any object. Because an owner has to be constructed
before the objects it owns, ownership is acyclic. Furthermore, all
objects have exactly one owner, so the ownership relation forms a
tree rooted atworld.

For an object to hold or use a reference to another object, static
type checking demands that the reference have a type. Ownership
types limit aliasing by controlling what types can be constructed:
if a type cannot be named, the reference cannot be held. Because
ownership contexts have been embedded in types, controlling ali-
asing reduces to controlling what objects have access to what own-
ership contexts.

Ownership contexts are accessible in a few ways. As the base
case: every object can access its own ownership context using the
overloadedthis keyword; theworld ownership context can be ac-
cessed usingworld keyword; and an object can access its owner’s
ownership context using theowner keyword. Next, ownership types
allow an arbitrary number of extra ownership contexts to be passed
to an object, as type parameters, with the restriction that all para-
meters are ancestors of theowner in the ownership tree.

The following code snippet shows an example of these concepts
in the syntax of the Joline language [11]:

class Bar {}
class Foo<P1 outside owner> {

this:Bar owned by me;
owner:Bar owned by my owner;
owner:Foo<P1> same type as me;
this:Foo<owner> can access my siblings;

}

Because every class must take an owner parameter, Joline makes
the owner parameter implicit. Other ownership parameters are de-
clared between angle brackets, like type parameters. Ownership
parameters are bounded to beoutsideother parameters (meaning
an ancestor in the ownership tree), withowner as the most general
bound. When supplying the actual parameters to a class, the owner
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Figure 2. Examples of aliases allowed and not allowed by ownership types

is also distinguished from the other parameters by placing it before
the type, separated by a colon.

Figure 2 illustrates the effect of ownership typing on the object
graph. Diagram 1 shows the use of onlythis, owner, andworld.
Nodes represent objects and are labelled with the object’s class.
Arrows represent references between objects and are labeled with
the type of the reference. Thus, the arrow labeledthis:C indicates
that the object of classC is owned by the object of classA.

The second diagram shows how additional ownership paramet-
ers can allow objects to access the ownership contexts of owners
higher up in the ownership tree. For example,E can referenceD
becauseE has access to the ownership context ofD’s owner,B.
The identifier in parenthesis is the name of the formal parameter.

The third diagram shows references that are not allowed based
on the ownership tree. Looking at the pattern of what references
are and are not allowed, we can see one-way boundaries emerge
on the object graph (drawn by the dotted lines). Visualizing these
boundaries can help in understanding ownership types. A more
formal statement is that ownership types guarantee theowners-as-
dominatorsproperty on the object graph: an owner is a dominator
on the path fromworld to all objects it transitively owns [2].

This forms the core of ownership types. On top of this, there
are three additional extensions that need to be discussed. The first
is the ability to parametrize a class by another class. OGJ allows
type parameters and ownership parameters to be mixed compactly
as follows:

class Box<Node extends Object<NodeO>> {
Node held in box;

}

In this code,NodeO is the owner ofNode and can be used to
instantiate new classes. However, a subtle result of OGJ’s treat-
ment of ownership parameters and Java’s type erasure semantics
for generics is thatNode represents a class that has already been
instantiated with an owner. This means it is an error to try to give it
a new type because:

class Outside<Inside extends Object<O>> {
this:Inside mine; // wrong

}

really means (swapping the formal parameterInside with the actual
parameterSomeType):

class Outside<Inside extends Object<O>> {
this:O:SomeType mine; // wrong: two owners

}

and supplying two owners is obviously wrong. What is needed is to
pass an uninstantiated class that can be instantiated with arbitrary
ownership parameters. This would be analogous to the “template
template parameter” mechanisms in C++ and will be denoted in the
parameter list by using theclass keyword:

class Outside<class Inside> {
this:Inside mine; // OK: Inside not already instantiated

}

Uninstantiated class parameters will be used extensively by the
library types in the next section.

Another extension, which is also part of OGJ ismanifest owner-
ship. This allows a class to hard-code its owner by inheriting from
a class instantiated with an owner:

class Foo extends world:Object { ... }

Written this way,Foo cannot be given an owner and will be the
sibling of allFoos in the ownership tree.

The last extension is owner polymorphic methods, which are
part of Joline. This feature is one of several extensions which offer
“principled violations of the ownership type system” (e.g., as de-
scribed in [12]). Generally, such extensions are included to support
common constructs such as iterators [13]. An owner polymorphic
method lets the caller give the callee access to an ownership context
for the duration of the call:

class Person {
<You inside world> void lend(You:Gold yours) {

You:Gold local ref = yours;
// mine = yours; (error)

}
this:Gold mine;
// You:Gold stolen; (error)

}

This example shows howYou is only available for the duration
of the call, so references to theYou:Gold cannot live past the
call. This gives the concurrency library a tool to allowtemporary
aliasing between two objects dynamically determined to be in the
same thread without the possibility that a reference will escape.
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The height of the ownership tree described in this section is at
most three. This might suggest a lighter-weight type system, like
Universes [14], to achieve the same static guarantees. However, (1)
the extensions used are based on an ownership type system, and (2)
using this library in combination with similar libraries, as described
in Section 5, involves nesting, which creates more complicated
ownership trees requiring the full owners-as-dominators guarantee.

3.2 Typing

This section describes how the concurrency library can use own-
ership types as a tool to prevent data races, analogous to how a
library can useconst or accessibility modifiers to prevent clients
from modifying returned references or accessing implementation
details. The facility that ownership types add is statically enforced
aliasing boundaries. By creating aliasing boundaries around threads
and travelling objects, the concurrency library can guarantee to the
library user:if you can hold a reference to an object, it is safe to
access it.

The first step is to disallow client usage ofworld, which would
allow allows client code to make and reference objects that are not
local to any thread. The library types that are roots of the various
ownership subtrees can then use the manifest ownership feature
described in Section 3.1 to allow creation by library users without
mentioningworld. We can now revisit the parts of the ownership
library that were introduced in Section 2. First, we consider the
modifiedAssemblyLine:

class AssemblyLine<class GenericHost> extends world:Object {
this:GenericHost host;

public:
void send(Traveller<GenericHost::Guest>);
void receive returning();

}

AssemblyLine takes an uninstantiatedGenericHost parameter
and instantiates it withthis. Without theworld ownership context
available, all objects created byhost will necessarily be owned
by theAssemblyLine. To guarantee that only travelling objects get
moved between threads,send() only accepts theTraveller wrapper
type, which is shown next:

class Traveller<class TravObjT> extends world:Object {
this:TravObjT obj;

public:
<O inside world> Traveller(O:TravObjT::InitArgs a) {

obj = new<O> this:TravObjT(this, a);
}
<O inside world, class LocObjT>
this:Tether<LocObjT> create tether(O:LocObjT);

}

Traveller uses the same technique asAssemblyLine for owning
a generic object. However,TravObjT cannot be default constructed
like GenericHost, so Traveller takes in generic initialization data
to pass toTravObjT’s constructor. Sincecreate tether() returns a
Tether owned bythis, only travelling objects can create tethers. To
prevent direct construction,Tether has a private constructor:

class Tether<class PtrT> {
// private constructor, only available to friend Traveller
PtrT ptr;

public:
bool alive();
void request access(owner:TetherUser<PtrT> p) {

if (... same thread ...)
p.access granted(ptr);

else
... error

}
}

interface TetherUser<class PtrT> {
<O inside world> void access granted(O:PtrT);

}

Tether’s main job is to guard access to the pointee. To do
this, Tether requires that its users implement theTetherUser in-
terface. Similar to the double virtual dispatch in the Visitor pat-
tern, access granted() gets called byTether in response to call-
ing request access(). This approach does three things forTether:
first, it lets Tether dynamically guard access to the reference;
second, the owner polymorphic methodaccess granted() allows
Tether to prevent the given reference or any copies from outliving
access granted(); and third,Tether knows the duration of the ref-
erence’s visibility and can thus prevent the travelling object from
getting sent to another thread somewhere in the call stack.

As shown in theTether pseudo-code, the library implementa-
tion ignores ownership types internally:Tether stores a plain ref-
erence to the object and callsaccess granted() without any owner-
ship context. This is similar in spirit to how, for example, a C++
std::vector presents a typed container interface to its users, but
internally works withmalloc()s, void∗s, andmemcpy()s. As with
world, this exemption should only exist for classes that are part of
the library.

Lastly, client objects in the main thread need an owner. Without
world and starting in the non-membermain() function, however,
there is no way to create objects. Following the same pattern as
AssemblyLine andTraveller, MainThread allows the client to gen-
erically embed an object which will be owned by theMainThread
object:

class MainThread<class ClientMain> extends world:Object {
this:ClientMain host = new this:ClientMain;

public:
int main() { return host.main(); }

}

With the library types covered, we can now consider what
ownership types are needed for the user’s code. TheHost needs
to modify its arrived() member function which gets called by
AssemblyLine to reflect that it can only reference the arrived travel-
ling object temporarily:

class Host {
owner:Data data;

public:
typedef Job Guest;

<O inside world> void arrived(O:Job guest) {
guest.do work<owner>(data);

}
}

The data member is a local object, so it is owned by the
AssemblyLine. To pass a reference to theJob, Host needs to pass
owner as well. As the travelling object,Job requires the most modi-
fications:

class JobArgs {
...
owner:Monster m;

}

class Job implements TetherUser<Monster> {
owner:Tether<Monster> tether;

public:
typedef JobArgs InitArgs;

<O inside world> Job(Traveller t, O:JobArgs j) {
tether = t.create tether<O,Monster>(j.m);

}
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<O inside world> void do work(O:Data d);

void welcome back() {
tether.request access(this);

}
<O inside world> void access granted(O:Monster m) {

m.found path(...);
}

}

First, to support initialization in the genericTraveller, Job has to
specify what data it needs with theJobArgs class andInitArgs asso-
ciated type.Job also receives its owningTraveller as a constructor
parameter, which it uses to create a tether. Inwelcome back(),
Job calls request access(), passing itself to be the receiver of the
access granted() call. Instead of creating aJob directly, Monster
now makes aTraveller:

class Monster {
AssemblyLine<Host> ai thread;

public:
void think() {

if (... I want to attack ...)
ai thread.send

(new Traveller<Job>(new owner:JobArgs(this)));
}
void found path(...);

}

Having theJob embedded in theTraveller preventsMonster from
holding any references to the travelling object when it leaves.

In summary, the library requires all user objects to be owned by
a library object. User objects that share the same owner are static-
ally guaranteed to be in the same thread. Additionally, objects that
are temporarily in the same thread can be allowed to reference each
other in a controlled manner using owner polymorphic methods. A
key part of this approach is that ownership types are not modified
to include concepts of thread, local, travelling, and tethers. Rather,
these concepts are in the library, which then uses ownership types
as a tool for library design.

4. Embedding Ownership
Section 3 demonstrates how the primitives provided by the concur-
rency library of Section 2 could be checked if everything is written
in an idealized language with ownership types. What is needed is
a translation to this checkable form from Standard C++. We do not
have such a translation implemented, however we outline what we
believe is a promising approach to a minimal embedding in the lan-
guage.

The first problem to address is how to attach ownership to
references. In the simplest case, no annotation is needed at all.
First, references to the library types that use manifest ownership
(AssemblyLine, Traveller, andMainThread) do not need any own-
ership parameters. Next, when an owner is needed,owner may be
used as a default. Defaulting has already been applied to Owner-
ship Generic Java [15] to allow Generic Java programs to compile
unmodified. For users of the concurrency library, code that does not
deal with travelling objects will only refer to objects owned by the
same thread. Thus, depending on how much code deals with con-
currency, havingowner be the default can eliminate much of the
need for annotations.

When the default does not work, the programmer needs to
make an annotation. There are many ways a programmer could
make explicit the intent that a pointer or reference should represent
ownership. The goal is to allow programmers and tools to verify
that the ownership rules are obeyed. The most primitive approach
is to use a special class of names for variables such as:

Foo ∗this owned a;
Foo ∗owner owned b;

where portions of identifiers are used as cues. Another approach
is annotations in smart comments, which is the approach used by
Universes [14]:

/∗∗ this: ∗/Foo ∗a;
/∗∗ owner: ∗/Foo ∗b;

However, the least intrusive interface to an analysis tool is a trivial
template wrapper, such as:

this owned ptr<Foo> a;
owner owned ptr<Foo> b;

The templates are defined as any other template, using the
standard syntax of C++. The type checker, however, can recognize
the templates as an explicit ownership annotation. In addition to
providing a solid handle for an analysis tool to work on, the wrap-
pers can naturally introduce or remove operations on the wrapped
type. The reason for using a technique that does not require lan-
guage changes is that we eventually want to handle a large class
of annotations and do not want to define our own set of dialects
with their own compiler infrastructure. This is the SELL (Semantic-
ally Enhance Library Language) approach which we support with
a simple tools infrastructure called “The Pivot” [16].

Considering in particular annotations needed for the concur-
rency library, the primary case is when using an owner polymorphic
method:

class Job {
<O inside world> void do work(O:Data data) {

// use data reference
}

}

To annotatedata we can write the following:

class Job {
void do work(caller owned ptr<Data> data) {

// use data smart pointer
}

};

Here, the presence of thecaller owned ptr template wrapper indic-
ates to the translation to both declare an owner polymorphic para-
meter and bind it todata.

Aside from annotating references with ownership, some of
the constructs of the library had to be changed to accommodate
ownership types. In particular: global variables and non-member
functions need to be wrapped into a global object owned by
a MainThread; Tethers are “dereferenced” indirectly through a
double dispatch instead of using the more natural arrow oper-
ator; and inheriting fromTravellerBase is changed to embedding
in Traveller. For these special cases, a translation from C++ should
be able to make simple patterned substitutions. For example, con-
sider the following:

A ∗global = new A;
void foo(A ∗a) {}
int main() { foo(global); }

For type checking purposes, these globals can be collected into a
singleProcess class that gets embedded inMainThread:

class Process {
A ∗global = new A;
void foo(A ∗a) {}

public:

int main() { foo(global); }
};
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int main() {
MainThread<Process> mt;
return mt.main();

}

With the defaultowner applied, the code can type check. A
more involved example is converting uses of the arrow operator in
Tether to double dispatch. Here, the translation involves hoisting
the member function call, the arguments, and the return value into
an automatically generatedTetherUser. For example:

class Job {
Tether<Monster> tether;

public:
void welcome back() {

if (tether)
tether−>found path(...);

}
};

can be automatically translated into:

class AutoUser : public TetherUser<Monster> {
...

public:
AutoUser(...);
void access granted(caller owned<Monster> m) {

m.found path(...);
}

};
class Job {

Tether<Monster> tether;
public:

void welcome back() {
if (tether)

tether.request access(AutoVisitor(...));
}

};

With these and related transformations, the syntactic burden
over normal use of the library can be reduced while internally
generating the fully ownership-annotated source for checking.

5. Discussion
The presentation so far has been concerned with describing our
experience with a single library on a single project. This section
branches out to consider a wider range of features and applications
of this kernel experience.

5.1 Variations on Tethers

The Tether construct presented in this paper was motivated by
the specific needs of a project, but other variations on the same
approach make sense for different situations. The essential ideas
are: (1) regardless of aliasing boundaries, objects need to be able
to point to objects in other threads, and (2) these pointers can
have different operations in place of the standard “dereference”.
We present two further examples here.

An opposite approach to callingAssemblyLine::send() is for a
local object to use aTether to “pull” a travelling object into the
same thread. The pull operation waits until the target object is not
in use in its current thread and transfers it to the caller’s thread.

class Worker {
PullTether<RenderPipeline> rpipe;
void render data(...) {

// prepare data for rendering
// expensive computation...
PulledObject<RenderPipeline> po = rpipe.pull();
po−>render(...);

}
};

We can see that these semantics are analogous to that of a
traditional lock which protects the object getting pulled. However,
without any additional work on the part of the user, the runtime
system can make optimizations over plain locks. First, by keeping
track of the tethers to an object, the runtime can tell which threads
can possibly request a lock at the same time. With this knowledge,
the runtime can use cheaper locks when, for example, it knows that
all contending threads are assigned to the same physical processor.
Conversely, in a non-uniform memory architecture, the runtime
system could look at the tethers that exist between objects and place
threads which have many tethers between them “closer” together,
with respect to the machine topology.

Another variation is to treat a tether as a homing device for the
object to which it points. Instead of pulling a distant object close,
tether could be augmented to provide a “take me to this object”
operation which allows a travelling object to go to the thread that
owns the pointee:

class UpdateCourier {
Update update;

public:
void update data(HomingTether<Data> d) {

d.go to thread(∗this);
}
void arrived at thread(Data &d) {

d.apply(update);
}

};

In this example, a control thread updates data structure that are local
to different processing threads by sending courier objects to the
threads with the update. Courier objects are givenHomingTethers
to indicate which data set needs to receive the update. Finally,
arrived at thread() is called byHomingTether when the transfer
is complete.

5.2 Variations on Libraries

In this section we identify the design and typing of the concur-
rency library as an instance of a more general pattern of library
design. The pattern is defined by: (1) providing library primitives
whose semantics imply aliasing boundaries, and (2) providing the
user of the library semantically-modified pointers to refer across
these boundaries. We now consider two other examples, how their
primitives imply aliasing boundaries, and how users can refer to
objects across these boundaries.

5.2.1 Memory Protection

Fine grained memory protection has been used for security, fault
isolation, and efficient IPC since early capability-based architec-
tures [17] and continues to be researched. Recent work includes
Mondriaan Memory Protection (MMP) which has been applied to
the Linux kernel [18]. The idea is to associateprotection domains
with allocated memory regions and threads. Threads are then pre-
vented from accessing memory outside their current protection do-
main. This approach helps find errors that might have gone undetec-
ted and catches errant program behavior closer to the source.

A straightforward API for a memory protection library would
provide functions for: allocating and deallocating opaque protec-
tion domain handles; adding and removing memory regions to and
from domains; and changing the domain of the currently executing
thread. These API calls could be abstracted by an object-oriented
library in the same manner that the concurrency library in Section 2
abstracted low level locking and thread operations. The aliasing
boundaries in this case would align with protection domains and
a library pointer type would be provided to point to objects in other
protection domains. The library could then either offer travelling
mechanisms similar to the concurrency library or simply provide
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a dereference operation. In addition to allowing a flat partitioning
of memory, systems like MMP allow a region of memory to be in
more than one protection domain. This lets the user create a nesting
structure of permissions which directly corresponds to the owners-
as-dominators property enforced by ownership types.

5.2.2 Resource Accounting

A good operating system will release all resources requested by a
process when the process exits. This requires the system to record
which resources have been allocated by the process. Thus, a simple
way to do “garbage collection”, not only for memory but all OS
resources, is to fork child processes to handle work items and then
exit, automatically freeing the resources used to process the work
item. This approach has several performance disadvantages and
consequently developers usually need to use multiple threads and
careful resource management instead.

The utility of a process, with respect to resource management,
is that it provides a single collection point for resources. To achieve
the same effect at a finer granularity, we can introduce “resource
domains”. Each resource domain owns a set of objects and keeps
track of all allocation requests made by objects it owns. One chal-
lenge for the library is to keep track of the current resource domain
as execution passes between objects owned by different resource
domains. By aligning aliasing boundaries with resource domains,
the library user would be required to use a library mechanism when
pointing to objects in other resource domains. By controlling access
to objects in other resource domains, the library can keep track of
changes:

class EnemyAI : ResourceDomainVisitor<EnemyGraphics> {
CrossDomainPtr<EnemyGraphics> ptr;

public:
void think() {

if (... decide to hold a fireball ...)
ptr.access resource domain(∗this);

}
void in resource domain(EnemyGraphics &g) {

// allocate Fireball in graphics resource domain
g.shoot(new Fireball);

}
};

In this example, the AI component of an enemy creates a
Fireball for the graphics component to show. The two objects are
in different resource domains, so theEnemyAI needs to use the
library-supplied pointer typeCrossDomainPtr. To access the ob-
ject, the same double virtual dispatch technique used byTether in
Section 3 is used. This allows the library to change domains for the
duration ofin resource domain() so thatFireball is allocated in the
graphics resource domain.

Hierarchical resource management is normally done in C++ us-
ing constructors and destructors following the Resource Acquisi-
tion Is Initialization idiom [19]. On the opposite end of the resource
management spectrum, garbage collection tries to hide when re-
sources are released and does not associate an owner. The approach
presented in this section is therefore somewhere in between: re-
sources have owners and deterministic bounds on their allocation,
but these bounds are more like catch-alls than proper manual re-
source management. Thus, allocation domains can be seen as a
fine-grained way to handle leaks or a way to recover resources
when an error has left a portion of the system in an undefined state.

5.2.3 Summary

In the examples above, the library provides primitives that organ-
ize objects in the program hierarchically. To fully utilize this lib-
rary design, however, several libraries need to be able to coexist in
the same ownership tree in the same program. For example, con-

sider a modern web browser. Concurrency boundaries can be asso-
ciated with different browsing windows, security boundaries with
the scripting interpreters, memory protection boundaries with less-
than-stable modules, and resource accounting boundaries where
leaks are difficult to avoid. This implies a heterogeneous nesting
of boundaries which we have not considered thus far. For the same
reason it is necessary to cross homogeneous boundaries, it will be
necessary to compose each library’s semantically-modified point-
ers to cross multiple heterogeneous boundaries. This ventures far
from the experience and example focused on by this paper but we
feel it points to an exciting use of ownership types as a tool for
future library design.

6. Related Work
Since the widespread recognition of the problems of aliasing in
object-oriented programming, and the need for local reasoning,
more than a decade ago [1], many type systems have emerged to
address the problems. The approaches vary from completely out-
lawing aliasing using variants of linear types [20,21], to cutting the
object graph into fully encapsulated partitions [22,23], to enforcing
an owners-as-dominators property on the object graph using own-
ership types [2], to even more flexible and/or less intrusive type
systems with less guarantees [24–26]. Of these approaches, owner-
ship types have emerged as a promising compromise and many dif-
ferent aspects of the type system have been researched [3, 27, 28].
Boyapatiet al. have used and extended ownership types to guar-
antee the absence of data races and deadlocks [4], statically safe
region-based memory management [5], and safe lazy upgrades to
persistent object stores [6].

The work most similar to ours is SafeJava [4], which also uses
ownership types. More recent work to statically ensure the ab-
sence of data-races has been done by Jacobset al. using auto-
matically verified annotations in the Spec# compiler [29, 30]. The
main difference between our approach and these two is the basis
for concurrency: in our model, nothing is shared and objects travel
between threads; in the other two, there are shared objects which
are owned byworld and synchronized with locks. SafeJava does
allow unique types to be passed between threads via a synchron-
ized global shared variable, but this places aliasing constraints on
the unique object which would not allow constructs like tethers.
Another difference is how the data-race freedom guarantees are
made. These approaches use concurrency constructs built into the
language and build concurrency guarantees into the type system.
In the approach we outline, the library both provides the concur-
rency primitives and uses a generic ownership type system to make
guarantees about use of the library.

7. Conclusion and Future Work
In this paper we presented a simple library for concurrency, suc-
cessfully used in a large student project, and demonstrated how
ownership types could be used to statically check that client code
respect the aliasing boundaries imposed by the library. To provide
flexible support for objects travelling between threads while carry-
ing aliases to thread local objects, we combine owner polymorphic
methods with dynamic checks performed by the library to guaran-
tee the absence of data races. Finally, we present an approach to
embed the necessary ownership annotations in C++ and to use an
extended type checker to enforce the rules on top of the language.

We also found the strategy used to support the concurrency lib-
rary was also found to apply to a family of related libraries includ-
ing memory protection and resource accounting. One direction for
future work is to examine existing programs that exhibit task-level
parallelism, like the videogame example in this paper. By looking at
more and larger programs, we can further develop both the concur-
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rency model and typing approach introduced here to address more
usage scenarios.
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Abstract
The Universe type system is an ownership type system for object-
oriented languages that enforces the owner-as-modifier discipline.
One strength of the Universe type system is its low annotation over-
head. Still, annotating existing software is a considerable effort.

In this paper, we describe how we can analyze the execution of
programs and infer ownership modifiers from the execution. These
modifiers help to understand the organization of a system and can
also be re-inserted into the original source code. This allows a
programmer to enforce the maintenance of a specific ownership
structure. We implemented runtime Universe type inference as a
C program that traces the JVM execution, a Java application that
infers the Universe annotations, and a set of Eclipse plug-ins that
integrates the interaction with the other tools.

1. Introduction
The Universe type system [13] is an ownership type system for
object-oriented languages that enforces the owner-as-modifier dis-
cipline. The type checker and runtime support for Universe Types
are implemented in the JML tool suite [21].

At runtime, the owner of an object is either another object in
the store or the special root object. Objects that share the same
owner are grouped into a context; objects that have the root object
as owner are in the root context. Ownership builds a tree rooted at
the root object.

The owner-as-modifier discipline ensures that the owner of an
object controls all modifications of an owned object, that is, only
references to objects in the same context and to owned objects
can be used for modifications. This discipline enables the modular
verification of invariants [27].

Statically, the Universe type system uses three different owner-
ship modifiers to build this ownership structure. The modifier peer
expresses that the current object this is in the same context as the
referenced object, the modifier rep expresses that the current ob-
ject is the owner of the referenced object, and the modifier any does
not give any static information about the relationship of the two ob-
jects. References with an any modifier convey less information as
references with a peer or rep modifier with the same class and are
therefore supertypes of the two more specific types.

The owner-as-modifier discipline is enforced by forbidding field
updates and non-pure method calls through any references. An
any reference can still be used for field accesses and to call pure
methods. The method modifier pure is used to mark methods that
leave objects in the pre-state of a method call unchanged.

A distinguishing characteristic of the Universe type system is
its low annotation overhead compared to other ownership type sys-
tems. The annotation effort is further reduced by default modi-
fiers. Reference types by default have the peer ownership modifier;
only exceptions and immutable types default to any. These defaults
make the conversion from Java to Universe Types simple, as all

programs that do not directly modify caught exceptions continue
to compile. However, these defaults only provide a flat ownership
structure.

Standard techniques for static type inference [10] are not ap-
plicable. First, we do not have to check the existence of a correct
typing. Such a typing trivially exists by making all ownership mod-
ifiers peer, that is, by having a flat ownership structure. Second,
there is no notion of a best or most precise Universe typing. Usu-
ally, there are many possible typings, and it depends on the intent
of the programmer which one to prefer.

In this paper, we describe how ownership modifiers for deep
ownership structures can be found by runtime inference, that is,
by observing the execution of a program. This approach does not
require that the source code of the program is available. By using
the dominator algorithm we ensure that the result is the deepest
possible ownership structure that conforms to the Universe type
rules. A deep ownership structure maximizes encapsulation and
facilitates program verification. Nevertheless, it might not be what
the programmer intended. The solution of our program therefore
still needs to be reviewed by the programmer to ensure that it
corresponds to the intended design.

Runtime inference depends on good code coverage to produce
meaningful results. To achieve better coverage we use multiple
program traces to infer the ownership modifiers. We also combine
the results of runtime inference with our static inference tools
[29, 16] to ensure that the final solution gives valid Universe Types
for the complete program.

1.1 Related Work
Wren’s work on inferring ownership [32] provided a theoretical
basis for our work. It developed the idea of the Extended Object
Graph and how to use the dominator as a first approximation of
ownership. It builds on ownership types [8, 3, 7, 9] which uses
parametric ownership and enforces the owner-as-dominator prop-
erty. The number of ownership parameters for parametric type sys-
tems is not fixed and is usually determined by the programmer, as is
the number of type parameters for a class. Trying to automatically
infer a good number of ownership parameters makes their system
complex. No implementation is provided.

Daikon [14] is a tool to detect likely program invariants from
program traces. Invariants are only enforced at the beginning and
end of methods and therefore also snapshots are only taken at these
spots. From these snapshots we cannot infer which references were
used for reading and which were used for writing. Therefore we
could not directly use Daikon, but our tool has a similar architec-
ture. In the future we hope to apply optimizations from Daikon to
our tool.

SafeJava [7] provides intra-procedural type inference and de-
fault types to reduce the annotation overhead. Agarwal and Stoller
[1] describe a run-time technique that infers even more annotations.
AliasJava [4] uses a constraint system to infer alias annotations.
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Another static analysis for ownership types resulted in a large num-
ber of ownership parameters [19]. In contrast, by using runtime in-
formation we achieve a deep ownership structure and the simplicity
of Universe Types makes the mapping to static annotations possi-
ble.

Rayside et al. [30] present a dynamic analysis that infers owner-
ship and sharing, but does not map the result back to an ownership
type system. Mitchell [26] analyzes the runtime structure of Java
programs and characterizes them by their ownership patterns. The
tool can work with heaps with 29 million objects and creates suc-
cinct graphs. The tool does not distinguish between read and write
references and the results are not mapped to an ownership type sys-
tem.

Work on the dynamic inference of abstract types [18] uses the
flow of values in a program execution to infer abstract types. Yan et
al. [33] use state machines to map implementation events to archi-
tecture events and thereby deduce architectures. Both approaches
do not seem to be applicable to infer ownership information.

1.2 Running Example
We use the classes in Fig. 1 to illustrate how the algorithm works.
This is a very simple and artificial example to illustrate all aspects
of the algorithm. The main class is Demo; the Java entry-point main
creates an instance of class Demo and calls method testA on that
instance. The argument is a boolean that depends on the number
of command line arguments. Method testA creates an A instance.
Class A stores the boolean flag and creates an instance of class B.
Class B creates a C instance and a java.lang.Object instance.
Finally, class C stores a reference to the A object it receives and
depending on the value of the mod field calls the off method on the
A instance. The execution of the main method in class Demo results
in the objects depicted in Fig. 2.

Outline. Sec. 2 describes the algorithm to infer ownership mod-
ifiers from runtime information, Sec. 3 gives implementation de-
tails, and Sec. 4 describes the Eclipse plug-ins. Finally, Sec. 5 dis-
cusses future work and concludes.

2. Runtime Universe Type Inference
The inference of Universe Types from program executions is per-
formed in the following five steps:

1. Build the representation of the object store

2. Build the dominator tree

3. Resolve conflicts with the Universe type system

4. Harmonize different instantiations of a class

5. Output Universe Types

We describe these steps in the following subsections. We discuss
static methods at the end of this section.

2.1 Build the Representation of the Object Store
From a program execution we get a sequence of modifications of
the object store. Instead of looking at only single snapshots of
the store (as in [26]), we build a cumulative representation of the
object store. This so-called Extended Object Graph (EOG) [32]
represents all objects that ever existed in the store, all references
between these objects that were ever observed, and, in particular,
which objects modified which other objects. The information about
modifications is particularly important since Universe Types do not
restrict references in general (unlike other ownership type systems),
but the modification of objects.

For each object in the EOG, we record information about its
fields as well as the parameters and results of its methods. We use

public class Demo {
public static void main( String[] args) {

new Demo().testA(args.length > 0);
}

public void testA(boolean b) {
new A(b);

}
}

class A {
boolean mod;
B b;

A(boolean m) {
mod = m;
b = new B(this);

}

void off() {
mod = false;

}
}

class B {
C c;
Object o;

B(A a) {
c = new C(a);
o = new Object();

}
}

class C {
A a;

C(A na) {
a = na;
if( a.mod ) {

a.off();
}

}
}

Figure 1: Running example to illustrate our inference algorithm.

this information to infer ownership modifiers for these variables.
Local variables are treated in a subsequent step as we describe in
Sec. 2.5.

We distinguish between two types of references in the EOG:
write references and naming references. Write references are used
to update a field or call a non-pure method on an object; these ref-
erences mainly determine the ownership structure of an applica-
tion. In addition we store references that were only used for read-
ing fields and calling pure methods. These naming references are
needed to map the resulting EOG back to the source code.

For example, a call x.foo(y) introduces two edges in the EOG.
A write references from the current receiver object this to x rep-
resents that this modifies x by calling the non-pure method foo.
This reference will later influence the ownership relation between
this and x. A naming reference from x to y represents that a
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Figure 2: The store at the end of method main in class Demo.
Objects are depicted by rectangles and are labeled with an identifier
and the class name. References are depicted by arrows.

method of x takes y as parameter. This naming reference is labeled
with the name of the formal parameter and will later be used to
infer the ownership modifier of the parameter.

To determine whether a method call constitutes a modification,
we need purity information. We require that the purity of methods
is provided as input to our tool. There are algorithms [31] to infer
method purity and we also implemented a tool [17] to help with
this task.

In our running example (Fig. 1), class A contains the statement
b = new B(this). On the bytecode level, this corresponds to two
steps, first the creation of a new object and then the update of the
field b of the current object. For an object creation, we insert a
write edge from the current receiver object to the newly created
object. In Fig. 2, this corresponds to the edge from object 2 to
object 3. This write edge ensures that the ownership modifier for
the object creation is either peer or rep, which is a requirement
of the Universe type system. For a field update, we store a write
reference from the current object to the receiver of the field update
and a naming reference from the receiver of the field update to the
object on the right-hand side. The naming reference is labeled with
the field name. All naming references for a field can later be used
to infer the correct ownership modifier for that field.

Arrays in the Universe type system use two ownership modi-
fiers, one for the relation between this and the array object, and
one for the relation between the array object and the objects stored
in the array. For arrays, we added a special kind of naming refer-
ence that stores the relationship between the array object and the
objects that are stored in the array. These references can then be
used to determine the second ownership modifier.

2.2 Build the Dominator Tree
Universe Types require that all modifications of an object are initi-
ated by its owner. For the EOG, this means that all chains of write
references from the root object to an object x must go through x’s
owner. Therefore, we can identify suitable candidates for the owner
of x by computing the dominators of x. The concept of dominators
is well-known in the compiler field [2], and efficient algorithms
have been developed [22].

Universe Types do not restrict references that are merely used
for reading. Therefore, the naming references in the EOG do not
carry information that helps us to determine ownership relations
between objects. Consequently, we ignore them when we build

the dominator graph. They are later used to find the correct static
ownership modifiers.

The result of finding the dominators for the graph from Fig. 2
is shown in Fig. 3a. Domination is depicted by rounded rectangles.
A direct dominator sits atop the rounded rectangle that groups the
objects it dominates. It is a candidate for becoming the owner of
this group of objects.

2.3 Resolve Conflicts with the Universe Type System
Domination is a good approximation of ownership, but it cannot
be directly used to infer Universe Types. The Universe type system
only allows write references within a context and from an owner
to an owned object. On the other hand, a dominator graph can have
references from an object to an object in an enclosing context. Such
write references are not permitted in the Universe type system. If
such references are found in the EOG, the involved objects are
raised to a common level until no more conflicts are present.

This problem is illustrated by the code in Fig. 1. If we observe
an execution of the constructor of class C when a.mod is false
then the off method is not called on the a reference. In this case,
the reference from object 4 to object 2 is used in a read-only
manner, that is, the EOG contains a naming reference between
object 4 and object 2. Under this assumption, the dominator graph
in Fig. 3a is a valid ownership structure in Universe Types. The
reference between object 4 and object 2 is stored in field a of class
C. This field will be annotated with an any ownership modifier.

However, if a.mod is true, the non-pure method off is called
on a. This results in a write reference from object 4 to object 2. In
this case, the dominator graph does not represent a valid ownership
structure because there is a write reference to an object in an
enclosing context. This write reference can neither be typed with
a rep nor with a peer modifier and is, therefore, not admissible in
Universe Types. To solve this problem, we flatten the ownership
structure to make the write reference from object 4 to object 2
admissible. This is done by raising the origin of the write reference
(object 4) to the context that contains the destination of the write
reference (object 2). This makes the two objects peers, and the
write reference between them is admissible as it can be typed with
modifier peer.

However, raising object 4, creates a conflict for the write refer-
ence from object 3 to object 4 since now object 4 is neither owned
by nor a peer of object 3. Therefore, we apply the same solution
again; this time, object 3 is raised to be in the same context as ob-
ject 4. The resulting dominator graph is depicted in Fig. 3b. In this
graph, all write references are from a direct dominator to an object
it dominates or between objects with the same direct dominator.
Therefore, this graph represents a valid ownership structure that
can be expressed in Universe Types.

Our example shows that conflict resolution has to be applied
repeatedly because resolving one conflict can cause others. Never-
theless, conflict resolution can be implemented efficiently without
visiting the same write reference twice. To achieve that, we use a
list of conflicting write references and process the list in a top-down
way, that is, objects higher-up in the dominator graph are processed
first. Moreover, we resolve conflicts that cross a large number of
context boundaries before conflicts that cross fewer contexts. For
details see [24].

2.4 Harmonize Different Instantiations of a Class
After conflict resolution, the EOG is consistent with the owner-as-
modifier discipline. However, it might not be possible to statically
type the EOG because different instances of a class might be in
different ownership relations. To enforce uniformity of all instances
of a class, we traverse all instances of each class and compare the
ownership properties of each variable (field or parameter). This step
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(a) Dominator Tree (b) After conflict resolution

Figure 3: Contexts are depicted by rounded rectangles. Owner objects sit atop the context of objects they own.

has to take into account both write and naming references in the
EOG.

If for any given variable the ownership relations are the same
(for instance, they all point to peer objects), the variable can be
typed statically. If they differ, we apply a resolution that is similar
to the conflict resolution described in the previous subsection. If
at least one instance of a variable is the origin of a peer reference
and the other instances of this variable are rep references, we raise
the targets of the rep references to make them peers and type the
variable with modifier peer. If at least one instance of a variable is
the origin of a reference that is neither a peer nor a rep reference,
the variable is typed with modifier any. In this case, downcasts are
needed at the point where this variable is used for field updates and
calls to non-pure methods.

For example, imagine that method testA in class Demo is once
called with false and once with true as the argument. Then we
have two instances of class A, once with a deep ownership structure
as in Fig. 3a and once with a flat structure as in Fig. 3b. The annota-
tion for field b in class A is once rep and once peer. The algorithm
then decides to use peer as annotation for field b and raises the
non-conforming instance to a higher level. Because we raise an ob-
ject together with all peers that reference it or are referenced by it,
this step cannot create new conflicts in the ownership graph.

2.5 Output Universe Types
After the first four steps of the algorithm, we have determined
ownership modifiers for field declarations, method parameters and
results, and allocation expressions. The last step is to output these
ownership modifiers and insert them into the source code, if it is
available.

Local variables are not inferred from the EOG because that
would require monitoring every assignment of a local variable,
which would slow down the inference. As an implementation prob-
lem, Java JVMTI does not support monitoring of local variable as-
signments, and we deemed a solution using bytecode instrumenta-
tion too heavy-weight.

Inferring ownership modifiers for locals is very similar to Java’s
bytecode verification [23]. Both infer the types of local variables
based on the types of fields and method signatures. Like bytecode
verification, we symbolically execute the bytecode of a method
body to obtain the ownership modifiers of local variables. This step

might introduce downcasts when any references are used to modify
objects. These casts are not guaranteed to succeed at runtime.
Therefore, they should be reviewed by the programmer.

Fig. 4 shows the result of our inference for the example source
code from Fig. 1. The ownership modifiers are inferred after pro-
cessing program executions with and without command-line argu-
ments. This source code complies to the Universe type system. By
inserting the ownership modifiers into the source code, we ensure
that future revisions of this code will maintain the ownership struc-
ture.

2.6 Static Methods
In Universe Types, static methods are either executed in the context
in which the caller is executed or in the context owned by this. In
the former case, the target type of the call to the static method has
a peer modifier; in the latter case, it has a rep modifier. any is not
permitted.

When we monitor the execution of a program, no object exists
that corresponds to the target of the static call. In the EOG, we
create an artificial target object as the receiver of a static method
call. The relationship between the current object and the artificial
object determines the ownership modifier for the static call. To
enforce that the target of a static call does not have the anymodifier,
we always treat static method calls as non-pure. This creates a write
reference in the graph and ensures that a peer or rep modifier is
inferred.

Our treatment of static methods is illustrated by the example in
Fig. 5. Consider the call x.foo(y). The execution of foo affects
three objects in the EOG: the receiver x, the parameter y, and an
artificial target object for the call to process, say z. We add a write
edge from x to z because x calls the static method. We also add
a write reference from z to y because process calls a non-pure
method on y. Since Universe Types do not allow rep modifiers
in static methods, the latter write reference forces the parameter p
of process to have a peer modifier. The modifier of the target
type of the call to process is determined by the relation between
the current receiver x and parameter y. Since process expects a
peer parameter, y and the artificial target object z must have the
same owner. Therefore, if x owns y, then x also owns z, and the
annotated call will be rep S.process(q). If x and y are peers,
the call will be peer S.process(q). In all other cases, step 2 of
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public class Demo {
public static void main(any any String[] args) {

new peer Demo().testA(args.length > 0);
}

public void testA(boolean b) {
new rep A(b);

}
}

class A {
boolean mod;
peer B b;

A(boolean m) {
mod = m;
b = new peer B(this);

}

void off() {
mod = false;

}
}

class B {
peer C c;
rep Object o;

B(A a) {
c = new peer C(a);
o = new rep Object();

}
}

class C {
peer A a;

C(peer A na) {
a = na;
if( a.mod ) {

a.off();
}

}
}

Figure 4: Running example with inferred ownership modifiers.

the inference will automatically adapt the relation between x and y
and, thereby, the relation between x and z.

3. Implementation
Fig. 6 shows the architecture of the implementation. The tool is
split into two parts: Sec. 3.1 describes the tracing agent, which
monitors the execution of Java programs. Sec. 3.2 describes the
inference tool, which determines the ownership modifiers.

3.1 Tracing Agent
We monitor a Java Virtual Machine (JVM) execution with a Java
Virtual Machine Tooling Interface (JVMTI) agent written in C.
JVMTI is the low-level interface provided by the Java Platform
Debugger Architecture (JPDA) [20].

class S {
static T process(T p) {

p.nonpureOperation();
return p;

}

T foo(T q) {
return S.process(q);

}
}

Figure 5: Example for static methods.

The agent receives events from the virtual machine and pro-
duces a trace file that documents the execution of the program. The
trace file is in a simple XML format. Storing the execution of a
program in a trace file gives the following advantages: (1) Multiple
trace files can be generated to achieve good code coverage. In our
example, one should trace the execution of class Demo once without
any command-line arguments and once with an argument. (2) In-
teractive or long-running programs need to be traced only once for
each desired code path. This trace file can then be reused later with-
out requiring human interaction or recomputing results.

On the other hand, storing the trace files on disc and then parsing
them again in the next phase sometimes leads to a performance
overhead. In the beginning of this project, we investigated the Java
Debug Interface (JDI) as high-level alternative to the low-level
JVMTI. The JDI versions up to Java 5 did not provide enough
information to allow our Universe inference, especially the value
returned by a method was not accessible. In Java 6 the JDI API was
enhanced and we investigate adding JDI support as an alternative
source of program traces.

JVMTI does not provide the necessary events for array compo-
nent updates. Therefore we used instrumentation of the Java byte-
code to create artificial events for array updates.

3.2 Inference Tool
The main inference tool is an independent Java 5 application that
performs the steps outlined in Sec. 2. It reads (multiple) trace files
generated by the tracing agent and builds one Extended Object
Graph from the available information. Then the dominators are de-
termined, conflicts are resolved, multiple instances are harmonized,
and the output is written to an XML file. The different steps of the
algorithm are implemented as visitors that manipulate the EOG.

The application is configured by a simple XML file that deter-
mines what input and output files to use and which visitors and
observers to use. This extensible architecture allows us to support
a command line interface and the Eclipse plug-ins described in
Sec. 4, and will also allow us to add JDI as an alternative input.

The output of our inference tool is an annotation XML file that
contains the ownership modifiers for the encountered types. For this
annotation XML file, we defined an XML schema that can provide
ownership modifiers for the different types. If the source code of
the traced program is available then the annotations can be inserted
into the source code using a separate annotation tool we developed.
Producing the output in XML will allow us to support several
annotation tools, for instance, for the existing Universe syntax and
for JSR 308-style annotations.

To build the correct EOG, we need to know which methods are
pure. We use a separate annotation XML file as additional input to
the inference tool to provide this purity information. This XML
file has the same schema as the output file, which allows us to
use the annotation editor, visualizer, and insertion tool to create
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Figure 6: Architecture of the runtime inference tools. White boxes depict components of the inference tool. Boxes in light gray depict files
and data structures that are part of the inference tool, and boxes in dark gray depict external components and files.

the input. To ease the creation of this purity information, we also
implemented a purity inference tool [31, 17].

The XML file in Fig. 7 shows the result of applying the infer-
ence algorithm (without inference of local variables) to our running
example (see Fig. 4 for the annotated source code). The Java struc-
ture is modeled in the XML structure, and the modifier attribute is
used to provide the ownership modifier for the corresponding type
or the purity for a method.

4. Eclipse Integration
To ease the usage of the command-line tools, we created a set of
Eclipse 3.2 [15] plug-ins that integrate the runtime inference into
the standard Java development environment.

4.1 Tracing
Eclipse allows one to execute Java programs directly from the IDE
using “Run As” configurations. The programmer can use these con-
figurations to set, for example, command-line arguments and the
JVM to use. We added a new “Run As” configuration that allows
one to trace program executions. The only additional information
the user has to provide is the name of the trace file. The plug-in
takes care of configuring the Java tracing agent correctly.

We provide the complete configuration information on a sepa-
rate tab. This information can be copied into a script and allows the
user to configure the tracing agent within Eclipse, but then use the
command-line tool directly.

4.2 Inference
Once the program was traced, the Universe Types can be inferred
with a separate plug-in. Similarly to the “Run As” dialog, we
provide the possibility to manage different configurations. The
main configuration tab (shown in Fig. 8) allows one to easily
configure the trace files, purity information, and output file that
should be used. Again, we provide a tab that allows one to use the
configuration from the command line.

<?xml version="1.0" encoding="UTF-8"?>
<ann:annotations
xmlns:ann="http://sct.inf.ethz.ch/annotations">
<ann:head>
<target>java</target>
<style>types</style>

</ann:head>
<ann:class name="A">
<ann:field modifier="rep" type="B" name="b"/>

</ann:class>
<ann:class name="B">
<ann:field modifier="rep" type="C" name="c"/>
<ann:field modifier="rep" type="java.lang.Object"

name="o"/>
<ann:method name="B" signature="A" modifier="">
<ann:parameter index="0" modifier="any" type="A"

name="param0"/>
</ann:method>

</ann:class>
<ann:class name="C">
<ann:field modifier="any" type="A" name="a"/>
<ann:method name="C" signature="A" modifier="">
<ann:parameter index="0" modifier="any" type="A"

name="param0"/>
</ann:method>

</ann:class>
<ann:class name="Demo"/>

</ann:annotations>

Figure 7: XML output of the inference tool.

4.3 Annotation Management
The result of the runtime inference is an XML file that contains the
inferred ownership modifiers. This XML file can be either edited
with the standard XML editor or with a special annotation editor.
The annotation editor (shown in Fig. 9) allows one to edit the
ownership information, for instance, by providing drop-down lists
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Figure 8: Screen shot of the configuration dialog for the type inference. The user can set the tool options, for instance, which trace files to
use and what output file to generate.

of possible ownership modifiers. If the source code of the program
is available, we can automatically insert the ownership modifiers
from the XML file into the source.

4.4 Visualizer
The flexible observer architecture that we chose for the inference
tool allowed us to add a graphical visualizer to the inferer. This
visualizer (shown in Fig. 10) uses the Eclipse Graphical Editing
Framework (GEF) to display the extended object graph while it
is built up and modified during the execution. This gives a clear
understanding of how the program executes and how the inference
algorithm works.

The visualizer adds a new toolbar to Eclipse. Here the user can
set the zoom level, use automatic or manual layout of the graph,
“play” the evolution of the inference algorithm, take a single step
of the algorithm, or pause the animation. It further provides buttons
that help in the manual layout of the graph. The automatic layout
of the graph nodes is used by default. It automatically positions the
nodes and routes the edges to have a nice diagram. It uses a simplex
algorithm that tries to minimize the crossings of edges [16]. The
manual layout can be used to manipulate the graph by hand.

The objects in the graph can be shown with and without the
fields and methods that the corresponding class has. The display
of this additional information follows the UML standard for object
diagrams.

5. Conclusion and Future Work
This paper presented the current status of our work on runtime Uni-
verse type inference. We successfully used the tools in small case
studies such as linked list and tree implementations. In these exam-
ples, the overhead of tracing the execution and the calculation of
the ownership modifiers was reasonable. Even for small examples,
the support for multiple trace files was very useful to increase the
code coverage and, thus, the quality of the inferred ownership.

As future work, we plan to carry out non-trivial case studies.
Inferring ownership for major applications will not only allow us
to further evaluate and optimize our tools, but also provide insights
into the structure of real applications. We expect this information
to be valuable for further research on ownership in general.

Currently, our inference tool only works for non-generic Java.
We recently developed Generic Universe Types [12, 11] and we
will investigate whether runtime inference can be extended to
generics. The problem is that genericity in Java 5 is implemented
by erasure, that is, the type arguments are not visible to the virtual
machine. It will also be interesting to study runtime inference in
the presence of ownership transfer [28].

We plan to add JDI support to directly trace program executions
without creating trace files. The inference visualizer is under active
development and we have many ideas to make the interaction
more convenient and to improve scalability to large object graphs.
Examples include hierarchical folding of sub-trees, searching for
instances of a particular class, and visual enhancements.
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Figure 9: Screen shot of the annotation editor. The editor gives a tree view of the ownership information contained in an annotation XML
file. Editing is simplified by drop-down lists of possible values.

Finally, we are integrating the runtime inference with our static
inference tools [16]. This allows us to propagate and check the par-
tial information that is inferred from program traces and ensures
that the resulting annotations comply with the Universe type sys-
tem.

Acknowledgments
This work builds on the Master’s and semester theses of students
at ETH Zurich: Frank Lyner [24] developed the first version of
the command-line tool, Marco Bär [5] improved and extended the
command-line tools, Marco Meyer [25] created the first annotation
tool and visualizer, Paolo Bazzi [6] created the Eclipse plug-ins
for runtime inference, David Graf [17] implemented the purity-
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Abstract
A developer often needs to understand both the code structure
and the execution structure of an object-oriented program. Class
diagrams extracted from source are often sufficient to understand
the code structure. However, existing static or dynamic analyses
that produce raw graphs of objects and relations between them, do
not convey design intent or readily scale to large programs.

Imposing an ownership hierarchy on a program’s execution
structure through ownership domain annotations provides an intu-
itive and appealing mechanism to obtain, at compile-time, a visual-
ization of a system’s execution structure. The visualization conveys
design intent, is hierarchical, and thus is more scalable than existing
approaches that produce raw object graphs.

We first describe the construction of the visualization and then
evaluate it on two real Java programs of 15,000 lines of code each
that have been previously annotated. In both cases, the automati-
cally generated visualization fit on one page, and gave us insights
into the execution structure that would be otherwise hard to obtain
by looking at the code, at existing class diagrams, or at unreadable
visualizations produced by existing compile-time approaches.

1. Introduction
When modifying an object-oriented program, both the code struc-
ture (static hierarchies of classes) and the execution structure (dy-
namic networks of communicating objects) must be understood.
“For a developer unfamiliar with the system to obtain this under-
standing is a non-trivial task. Little work has been done on mini-
mizing this learning curve” [38].

In many cases, developers cannot rely that external design doc-
umentation is up-to-date. Many tools can automatically generate
class diagrams from program source [21]. However, a class dia-
gram shows the code structure and does not explain the execution
structure of the system. In object-oriented design patterns, much
of the functionality is determined by what instances point to what
other instances. For instance, in the Observer design pattern [15, p.
293], understanding “what” gets notified during a change notifica-
tion is crucial for the function of the system, but “what” does not
usually mean a class, “what” means a particular instance. Further-
more, a class diagram often shows several classes depending on a
single container class such asjava.util.ArrayList. However,
different instantiations of such a class often correspond to different
elements in the design, hence the need for an instance-based view
to complementa class diagram.

A running object-oriented program can be represented as anob-
ject graph: nodes correspond to objects and edges correspond to
relations between objects. Existing dynamic analyses can describe
the runtime object graph of a system for a particular set of inputs
and exercised use cases [12, 33]. Obtaining at compile time a finite
and conservative abstraction of all possible runtime object graphs
is more challenging because of aliasing, precision and scalability

issues. Static analyses [29, 40] that approximate the runtime ob-
ject graph often produce large non-hierarchical graphs that do not
convey design intent and do not scale to large programs (See visu-
alizations [2] for examples).

Many type systems enforceownershipat compile time, i.e.,
make one object part of another object’s representation [8, 7, 3, 11].
In the ownership domains type system [3], each object contains
one or more public or privateownership domains— conceptual
groups of objects — and each object is in exactly one domain.
As with most other ownership type systems, adding ownership
domain annotations to a program’s source code can control aliasing
and enforceinstance encapsulationwhich is stronger than module
visibility mechanisms. Moreover, ownership domains can express
and enforce a tiered runtime architecture by representing a tier as
an ownership domain. Adomain linkcan abstract permissions of
when objects can communicate [1].

Our contribution in this paper is to leverage ownership domain
annotations to obtain at compile-time a sound visualization of the
execution structure of a program with ownership domain annota-
tions, the Ownership Object Graph. The visualization is hierarchi-
cal, conveys design intent and compares favorably with existing
compile-time visualizations of two previously annotated Java pro-
grams, each consisting of 15,000 lines of code.

Currently, annotations are added mostly manually, however,
active work in the area of semi-automated annotation inference
[4, 9, 24, 25] promises to lower the annotation overhead. The vi-
sualization reflects the annotations, and the quality of the visual-
ization reflects the quality of the annotations. The design intent is
expressed by choosing the ownership domains and their structure,
then adding annotations to the program — currently manually.

The ideas and techniques of ownership are fundamental for ob-
taining such a compile time visualization. First, ownership domains
provide a coarse-grained ownership structure of an application with
a granularity larger than an object or a class [37]. Second, own-
ership organizes a flat object graph into an ownership tree, and
hierarchy is needed to achieve scalability and attain both high-
level understanding and detail. Third, different ownership domains
and different places in the hierarchy provide precision about inter-
domain aliasing and conservatively describe all aliasing that could
take place at runtime. Since two objects in two different domains
cannot be aliased, the analysis can distinguish between instances
that would be merged in a class diagram, allowing better under-
standing of the runtime structure of the system. Fourth, ownership
domain names are specified by a developer and therefore can con-
vey more design intent than the aliasing information obtained using
a static analysis that does not rely on annotations [34].

We first define the Ownership Object Graph (Section 2) and de-
scribe the algorithm to construct it at compile time (Section 3). We
then present concrete and in-depth examples of the visualization of
two real annotated 15,000-line object-oriented programs (Section
4). Finally, we survey related work in Section 5 and conclude.
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2. The Ownership Object Graph
This section discusses the challenges in visualizing an annotated
program and describes the different intermediate representations
we used to obtain the visualization.

A running object-oriented program can be represented as arun-
time object graph: nodes correspond toruntime objectsand edges
correspond to relations between runtime objects such as creation,
usage and reference [32]. The aim is to statically approximate all of
the runtime object graphs that may be generated in any run of the
program. The goals of the visualization are as follows:
• Scalability: to support high-level understanding, the visualiza-

tion groups runtime objects into relatively few top-level “ab-
stract” elements, each represented by a canonical object;

• Hierarchy: to provide detailed understanding, the visualization
supports the ability to show the substructure of an abstract
element. Thus the visualization can be viewed as a hierarchical
tree of objects;

• Design Intent: the visualization groups runtime objects into
clusters that are meaningful abstractions — e.g., that an object
is in a tier — and documents design-level constraints using
domain links — e.g., that two tiers may communicate. The user
provides the design intent regarding object encapsulation and
communication using ownership domain annotations [1];

• Soundness:to ensure that the visualization is a faithful rep-
resentation of the runtime object graph, it must besound. In
particular, all objects and relations present at runtime should be
represented. Furthermore, if two variables may alias at runtime,
they should appear in the graph as a single “abstract” element.
The analysis builds two intermediate representations, anab-

stract graph, which is converted into avisual graph, which is then
displayed as the Ownership Object Graph.

2.1 Abstract Graph

The abstract graphis built from ownership domain annotations
in the source code (Figure 1). The syntax for declaring and using
ownership domains follows that used for Java generics [3].

For each type in the program, the abstract graph shows the own-
ership domains declared in it, and shows field and variable declara-
tions asabstract objectsdeclared insideabstract domains. The ab-
stract graph provides scalability through ownership hierarchy and
captures design intent as described above, but is not adequate for
visualization for several reasons (See Figure 2).

First, the abstract graph is not really hierarchical in the sense
of an object having children; rather, an object has a type and the
type has domains and the domains have object children. Second,
it does not include all objects: a domain contains abstract objects
only for the locally declared fields, but if that domain is passed as
a domain parameter to another object, and that object declares its
fields in that domain, those non-local fields will not be represented.
Third, it does not show all aliasing: different field declarations —
and therefore different abstract objects, could be aliased and thus
must be shown as one. To realize the properties above, the abstract
graph is converted into avisual graph.

2.2 Visual Graph

The visual graph is an intermediate representation which instanti-
ates the types in the abstract graph and shows only objects and do-
mains: eachvisual objectcontainsvisual domainsand eachvisual
domaincontainsvisual objects. Thus, in the visual graph, one can
view the children of an object without going through its declared
type. Furthermore, to support the visualization goals listed earlier,
the construction of the visual graph takes into accountobject merg-
ing, object pullingandtype abstraction.

We visualize ownership domains as follows: a dashed border
white-filled rectangle represents an actual ownership domain. A

c l a s s Branch< CUSTOMERS> /∗ Formal domain parameter∗ / {
pub l i c domain TELLERS, VAULTS ;
l i n k TELLERS −> VAULTS ;

CUSTOMERS Customer c1 ;
TELLERS T e l l e r t 1 ;
TELLERS T e l l e r t 2 ;
VAULTS Vau l t v1 ;
VAULTS Vau l t v2 ;

}
c l a s s Bank {

domain owned; /∗ Pr i v a t e d e f a u l t domain ∗ /

/∗ Bind Branch<CUSTOMERS> f o rma l t o ‘ owned ’ a c t u a l ∗ /
owned Branch<owned> b1 ;

}

Summary of syntax for ownership domains annotations [3]:
d T o: declare objecto of typeT in domaind;
[public] domain a: declare private [or public] domain;
class C<d>: declare formal domain parameterd on classC;
C<actual> cObj: provide actual for formal domain parameter;
link b -> d: give domainb permission to access domaind;

Figure 1. Ownership domains illustrated with a simplified Bank
system [3].Branch declares two domains,TELLERS for Teller
objects andVAULTS for Vault objects.Branch also declares a
domain link from theTELLERS domain to theVAULTS domain
to allow Teller objects to accessVault objects.Branch also
takes aCUSTOMERS formal domain parameter to holdCustomer
objects.Bank references aBranch object in fieldb1, binding the
CUSTOMERS formal domain ofBranch to theBank’s own private
domainowned.

solid border grey-filled rectangle with a bold label represents an
object. A dashed edge represents a link permission between two
ownership domains. A solid edge represents a creation, usage, or
reference relation between two objects. An object labeled “obj : T”
indicates an object of typeT as in UML object diagrams.

Object Merging. In the visual graph, a canonical visual object
is created to represent all the abstract objects of a given type in a
given source-level domain declaration. Two abstract objects in the
same domain in the abstract graph, if related by inheritance, could
indeed refer to the same runtime object, and thus are merged for
soundness. In general, this object may summarize multiple runtime
objects. For the annotated code in Figure 1, the visual graph in
Figure 3 merges into one visual object (labelled witht1: Teller)

 owned

 CUSTOMERS  TELLERS  VAULTS

b1:
Branch

Branch

Bank

c1:
Customer

t1:
Teller

t2:
Teller

v1:
Vault

v2:
Vault

Figure 2. The abstract graph for the Bank system. A black-filled
box represents a type, with white-filled domains declared inside it
and grey objects declared inside each domain.

82

_bank__bank_bank_owned_b1_b1_TELLERS_t1_t1
_bank__bank_bank_owned_b1_b1
_bank__bank_bank
_bank__bank_bank_owned_b1_b1_CUSTOMERS_c1_c1
_bank__bank_bank_owned_b1_b1_TELLERS_t1_t1
_bank__bank_bank_owned_b1_b1_TELLERS_t1_t1
_bank__bank_bank_owned_b1_b1_VAULTS_v1_v1
_bank__bank_bank_owned_b1_b1_VAULTS_v1_v1


 

 owned

 CUSTOMERS  TELLERS  VAULTS

c1:
Customer

t1:
Teller

v1:
Vault

b1:
Branch

bank:
Bank

Figure 3. The visual graph for aBranch objectwithout pulling:
objectst1 andt2 are merged in domainTELLERS, and similarly,
objectsv1 andv2 in domainVAULTS. Objectc1 is shown in the
formal domain parameterCUSTOMERS (dotted border).

 

 owned

 TELLERS  VAULTS

t1:
Teller

v1:
VaultTELLERS --> VAULTS

b1:
Branch

c1*:
Customer

bank:
Bank

Figure 4. Objectc1* waspulled from the formal domain param-
eterCUSTOMERS in Figure 3 into the actual domainBank.owned
to which it is bound. The dashed edge represents a domain link
betweenTELLERS andVAULTS.

the abstract objectst1 andt2 declared in domainTELLERS since
they have the same declared type.

Merging objects of the same declared type that are in the same
domain may be imprecise. For instance, twoVector objects in
the same domain would get merged even if they are never aliased.
Our analysis remains more precise than a class diagram which also
summarizes objects by type, because the type system guarantees
that two objects that are in two different domains can never be
aliased. In some cases, adding generic types where applicable, e.g.,
for generic containers, can minimize excessive merging.

A developer can also prevent merging by placing two objects
that should never get merged in separate domains, e.g., by defining
two domainsCASHVAULT and GOLDVAULT to storev1 and v2 in
Figure 1 instead of using a single domainVAULTS.

Object Pulling. The abstract graph may display an object only
in the domain where the domain is declared as a formal param-
eter. But in the visual graph, each runtime object that is actually
in a domain must appear where that domain is declared. To en-
sure this property of visual graphs, an abstract object declared in-
side a formal domain ispulled into each domain that the formal
domain is transitively bound to. Figure 3 shows objectc1 in the
formal domain parameterCUSTOMERS (dotted border). In Figure 4,
objectc1 — marked with∗ — was pulled from the formal domain
CUSTOMERS in Branch to the actual domainowned in Bank (the
former is bound to the latter using the annotationBranch<owned>
on fieldb1 in Figure 1).

Type Abstraction. For soundness, it may be necessary to merge
abstract objects of different but compatible declared types. For ex-
ample, consider the classes from the Java Abstract Window Toolkit
(AWT) library in Figure 5. A variable of typeWindow and a dif-
ferent variable of typeFrame in the same domain may alias each
other, the corresponding abstract objects must therefore be merged
for soundness.

In addition, it may be useful to do further heuristic merging to
improve abstraction and reduce clutter in the graph. For example, if
abstract objects of typeButton, Panel andFrame were declared
in the same domain, it may make sense to merge them into a sin-
gle visual object of typeComponent or Accessible. On the other
hand, merging can be taken too far: merging all the abstract objects
in a domain into a single visual object of typejava.lang.Object
would result in a trivial and uninteresting visual graph. Thus, we
heuristically merge abstract objects whenever they share one or
more non-trivialleast upper bound types. The resulting visual ob-
ject is marked as having an intersection type that includes all the
least upper bounds. In the example above, the least upper bound
would be the intersection of the set{Component, Accessible}.

The definition of “trivial” is user-configurable; typically types
such asObject andSerializable are trivial, and so abstract ob-
jects which share these as a supertype are not merged according to
this heuristic. Again, a developer controls this heuristic by adding
or removing types from the list of trivial types.

Instantiation-Based View.Merging abstract objects based on
non-trivial least-upper-bound types can sometimes lead to un-
wanted merging. For instance, in the JHotDraw case study dis-
cussed in Section 4.2, both interfacesCommand and Tool are in
the sameController domain and both extend the same inter-
faceViewChangeListener. As a result, the abstract objects for
Command and Tool get merged into the same visual object un-
less interfaceViewChangeListener is added to the list of trivial
types. However, this would not work since several variables have
ViewChangeListener as their declared type.

The key insight however is that there are no object allocations
of the interfaceViewChangeListener since an interface cannot be
instantiated directly. As an alternative to merging abstract objects,
it is possible to achieve soundness by scanning object allocations
instead of field and variable declarations, and then only adding
visual objects for types that are actually instantiated and not the
ones that are just declared. This technique is similar to how Rapid
Type Analysis (RTA) [5] determines the receiver of a method call
during the construction of a call graph.

In the example above, if the analysis encounters an object allo-
cation of aTool object but never that of aViewChangeListener
object, the analysis would only create a visual object forTool, and
similarly for Command, thus achieving the desired effect of keeping
Command andTool distinct. This solution can also prevent merg-
ing all the abstract objects in a domain into a single visual object of

java::awt::Button

java::awt::Panel

java::awt::Component

java::awt::Window

«interface»
javax::accessibility::Accessible

java::awt::Frame

java::awt::Container

Figure 5. Type hierarchy excerpts from AWT.
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typejava.lang.Object. If the analysis does not encounter an al-
location expression of the formnew Object() in the code, it never
creates a visual object for thejava.lang.Object abstract type.

A class hierarchy analysis could determine that a variable of
type ViewChangeListener could alias a variable of type — of
course, an alias analysis could do better. A newly allocated object
can be considered un-aliased orunique [3]. A standard flow anal-
ysis can track the flow of an object from its point of creation to the
point at which it is first assigned to an ownership domain.

Design Intent Types.Since the visualization is instance-based,
labelling instances is important for conveying design intent. A
visual object can merge one or more abstract objects, and each
abstract object has an abstract type corresponding to a declared
type in the program. A visual object is labelled “obj: T” as in
UML object diagrams – whereobj is an optional instance name
andT is an optional type name. An abstract object maintains the
field name or variable name in the program.obj is selected from
one of the abstract objects merged into a visual object.T is a list of
least upper bound types as discussed above. The user can optionally
specify a list of informativedesign intenttypes. Adesign intent type
is the preferred abstract type used to label a visual object. A trivial
type is not used in the label unless it occurs as a declared type in
the program. Design intent types do not affect the soundness of the
Ownership Object Graph and are just for labelling.

2.3 Ownership Object Graph

A visual object can contain itself so the visual graph must represent
a potentially unbounded runtime object graph with a finite graph.
For example, consider a classC which declares a domaind and a
field of typeC in domaind:

c l a s s C {
domain d; /∗ Dec la re domain d ∗ /
d C f ;

}

Since there is a unique canonical object for each type in each
domain, the object representingC in domaind must also represent
the child object of typeC in domaind of the parent; it is therefore its
own parent in this representation. A finite representation is essential
to ensure that the analysis terminates, but we want to show the user
a hierarchical view where no object is its own parent. We therefore
compute the Ownership Object Graph as a finite, depth-limited,
unrolling of the visual graph. In the example above, we would show
oneC object within another down to a finite depth.

To summarize, an Ownership Object Graph is a graph with two
types of nodes, objects and domains. The nodes form a hierarchy
where each object node has a unique parent domain and each do-
main node has a unique parent object. The root of the graph is a
top-level domain. In addition, the Ownership Object Graph has the
object merging, object pulling and type abstraction properties. Fi-
nally, there are two kinds of edges: edges between objects corre-
spond to object creation, usage and reference relations, and edges
between domains correspond to domain links. Compared to ear-
lier definitions of object graphs [32], the Ownership Object Graph
explicitly represents clusters of nodes, i.e., domains, and edges be-
tween these clusters, i.e., domain links.

2.4 Soundness

For the Ownership Object Graph to be most useful, it should be
a soundapproximation of the true runtime object graph for any
possible run of the program. In this section, we only present an
operational definition of the soundness of the Ownership Object
Graph and leave a proof of soundness for future work.

Intuitively, soundness means that every object, domain, and
edge in the runtime object graph is represented in the Ownership
Object Graph. However, the Ownership Object Graph may be an

approximation of the true runtime object graph, as it may represent
multiple runtime objects with a single visual object, and similarly
for domains and edges. The following invariants relate the Owner-
ship Object Graph to the runtime object graph:
• Unique Representatives:Each object in the runtime object

graph is represented by exactly one object in the visual graph.
Similarly, each domain in the runtime object graph — as de-
fined in the dynamic semantics of ownership domains [3, p. 15],
is represented by exactly one domain in the visual graph;

• Edge Soundness:If there is a field reference from objecto1

to objecto2 in the runtime object graph, then there is a field
reference edge between visual objectsθ1 andθ2 in the visual
graph, corresponding too1 ando2 — similarly for domain links
and edges;

• Ownership Soundness:If object o is in domaind in the run-
time object graph, then objectθ (corresponding too) is in do-
main δ (corresponding to domaind) in the visual graph. Sim-
ilarly, if o declares domaind in the abstract graph, thenθ de-
clares domainδ in the visual graph.
The Ownership Object Graph inherits other properties that are

guaranteed by the soundness of the underlying ownership system
— for example, that every object is assigned an owning domain
which is consistent with all program annotations and does not
change over time. These invariants are correct up to the following
assumptions:
• All Sources Available: The program’s whole source code is

available, and the program operates by creating some main
object and calling a method on it (this justifies the Ownership
Object Graph’s focus on a single root object, although multiple
root objects could in principle be shown). The class of that main
object is the type of the root of the Ownership Object Graph;

• No Reflective Code:Reflection and dynamic code loading may
violate the above invariants by introducing unknown objects
and edges, and possibly violating the guarantees of the under-
lying ownership system;

• Flow Analysis: Objects marked asshared andunique are not
currently shown in the Ownership Object Graph. Objects that
areshared would be trivial to add but would add many unin-
teresting edges to the Ownership Object Graph. Objects that are
unique would require a flow analysis to be handled properly
(See Section 3.5). Usage edges (e.g., method invocations, field
accesses) could be generated for a system with only ownership,
but a flow analysis is required for usage edges to be sound in
the presence oflent objects.
Despite the assumptions about the whole program source being

available and restrictions on reflection and dynamic loading, our
system is stillrelatively soundin the presence of these features.
In particular, as long as the reflective operations are annotated
correctly and consistently with ownership information, then any
object referred to by some field in the source code that is available
will show up in the Ownership Object Graph, as specified above.

For edge soundness, all field references in external library code
must be annotated. Since it is often not possible to annotate all
such code, “virtual” [26] or “ghost” [13] fields may be declared as
annotations in external files. Avirtual field holds information that
is closely related to the meaning of an object, but need not be kept
directly in the object in a particular implementation [26]. These
annotations do not affect the execution of the system at runtime but
are treated as an object’s actual fields by the analysis.

3. Analysis
At a high-level, the analysis works as follows: (1) Obtain an ab-
stract graph from ownership domain annotations; (2) Collapse the
inheritance hierarchy by copying fields into subclasses; (3) Instan-
tiate abstractly the types in the abstract graph into objects in the
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visual graph, merging objects in the same domain by compatible
types (two types are compatible if they have a non-trivial least up-
per bound); (4) Pull objects in the visual graph from formal do-
mains to actual domains, again merging as necessary; (5) Add de-
tails to the visual graph, such as field references, domain links, etc.;
and (6) Extract the display Ownership Object Graph as a depth-
limited projection of the visual graph.

3.1 Data Representations

The analysis first creates from the program text anAbstractGraph

and then converts it into aVisualGraph. The data type declarations
of the AbstractGraph andVisualGraph are in Figure 6, and will
be referred to by the metavariables shown in parentheses. To help
keep the representations distinct, we use English letters (o, d, . . .)
for elements of theAbstractGraph, and Greek letters (θ, δ, . . .) for
elements of theVisualGraph.

TheAbstractGraph consists of theAbstractTypes in the pro-
gram, theAbstractDomains declared in each type, and theAb-

stractObjects declared in each domain. AnAbstractType also
lists AbstractEdges andAbstractLinks. TheVisualGraph instan-
tiates the types in theAbstractGraph and showsVisualObjects
andVisualDomains: eachVisualObject containsVisualDomains
and eachVisualDomain containsVisualObjects. TheVisualGraph

also hasVisualEdges andVisualLinks.
The identifiers used for the elements in theAbstractGraph and

VisualGraph do not correspond to the declared names of domains
or objects (e.g., field or variable names) since these cannot be as-
sumed to be globally unique, and do not take into account bind-
ing and scope. An implementation would typically have additional
fields to hold the user-friendly display name. In addition, anAb-

stractType maintains its underlyingTypeBinding to determine its
sub-typing relationship with respect to otherAbstractTypes.

The analysis maintains a one-to-one mapping between aVisual-

Domain δ and its correspondingAbstractDomain d to avoid extra
copying. However, aVisualObject typically merges severalAb-

stractObjects as discussed earlier.

3.2 Extract an AbstractGraph from Annotated Code

An AbstractGraph is obtained from the annotated program text
using a visitor on the Abstract Syntax Tree of the annotated pro-
gram. Most steps in Figure 7 are straightforward and are not shown
in great detail. During the construction of theAbstractGraph, pri-
vate ownership domains are given aprotectedsemantics1. The de-
fault domainowned is considered to be declared at the first point
of use and inherited thereafter. Ifowned were to be declared in
java.lang.Object, all the objects declared in theowned domain
would be in the same inherited domain and would get unnecessar-
ily merged if they have the same declared type. Singletonshared,
lent andunique AbstractDomains are created.

To simplify the treatment of inheritance when creating theVi-

sualGraph, theAbstractGraph is post-processed by collapsing the
type hierarchy, i.e., pushing field references declared in theAb-

stractType corresponding to a given typet into eachAbstractType

of the sub-types oft.
While the algorithm described in Figure 7 is presented in terms

of the ownership domains type system, it can be easily applied
to other ownership type systems that do not have the concept
of multiple ownership domains per object and assume a single
domain or “context” per object [8]. In those cases, we consider that
each class implicitly declares a single ownership domainowned
and proceed according to the algorithm. The other details of the
transformation and visualization are unchanged.

1 Domains declared in a class are inherited by its subclasses [3,Aux-
Domains rule(Fig.14)], but are called somewhat confusinglyprivate.

• AbstractGraph (g)
Root : AbstractObject /* the root */
Types: List<AbstractType>

• AbstractType (t)
TypeBinding: TypeBinding/* Java type */
Domains: List<AbstractDomain>

Links: List<AbstractLink>

Edges: List<AbstractEdge>
• AbstractDomain (d)

DomainType: public | private | parameter
Objects: List<AbstractObject>
DeclaringType: AbstractType

• AbstractObject (o)
Type: AbstractType /* declared type */
Domain: AbstractDomain /* my owner */
Bindings: List<Binding>

Visualized: boolean/* bookkeeping */
• Binding (b)

Formal: AbstractDomain
Actual: AbstractDomain

• AbstractEdge (e)
From: AbstractType /* edge source */
To: AbstractObject /* edge target */
EdgeType: creation | usage | reference

• AbstractLink (s)
From: AbstractDomain /* link source */
To: AbstractDomain /* link target */

• VisualGraph (γ)
Root: VisualObject
Objects: List<VisualObject>
Edges: List<VisualEdge>
Links: List<VisualLink>

• VisualObject (θ)
Domains: List<VisualDomain>

Merged: List<AbstractObject> /* abstract objects
merged into ‘this’ */
Pulled: List<VisualObject> /* visual objects ‘this’
was pulled into */
IsPulled: boolean/* bookkeeping */
Parent: VisualDomain /* my owner */

• VisualDomain (δ)
Objects: List<VisualObject> /* objects in this
domain */
Parents: List<VisualObject> /* objects this domain
is part of */
AbstractDomain: AbstractDomain /* map */

• VisualEdge (η)
From: VisualObject /* edge source */
To: VisualObject /* edge destination */
EdgeType: creation | usage | reference

• VisualLink (σ)
From: VisualDomain /* link source */
To: VisualDomain /* link destination */

Figure 6. Data types used byAbstractGraph andVisualGraph.
Some fields are for bookkeeping only.

3.3 Convert an AbstractGraph to a VisualGraph

Constructing theVisualGraph from anAbstractGraph takes into
account the properties described earlier. The pseudo-code for the
algorithm is presented in Figures 8, 9 and 10. The notation

for (T anObject : setOfObjects) . . .

is similar to the Java 1.5 “enhancedfor-loop” for iterating over
collections and arrays. An overbar represents a sequence.

The transformation takes as input theAbstractGraph g whose
root is the top-levelAbstractObject oroot, andAbstractDomain

droot is the domain fororoot. The top-level procedure VISUAL-
IZEGRAPH (Figure 8) first creates a top-levelVisualDomain δroot

and then visualizes theAbstractObject oroot.
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1. For each type declarationC in the program
(a) CreateAbstractType t and add it tog.Types
(b) For each formal domain parameter inC

i. Create correspondingAbstractDomain d

ii. Add d to t.Domains
(c) For each declared ownership domain

i. Create correspondingAbstractDomain d

ii. Add d to t.Domains
(d) For each domain link betweend1 andd2 in C

i. CreateAbstractLink between theAbstractDomain of d1

and theAbstractDomain of d2

ii. Add AbstractLink to t.Links
(e) For each declarationd C

′
<a> o in C

i. If C
′ has noAbstractType, createt′ for C

′

ii. If AbstractType t of TypeC has noAbstractDomain d,
created and addd to t.Domains

iii. CreateAbstractObject o and add tod.Objects
iv. Create bindingsb from formalsf of AbstractType t

′ to
actualsa of t and add too.Bindings

v. If declaration is a field declaration
A. CreateAbstractEdge e of type reference from Ab-

stractType t to AbstractObject o

B. Add e to t.Edges
2. Collapse inheritance hierarchy

(a) Copy any public domains defined on an interface to the classes
implementing the interface

(b) Push field references from each super-class into its sub-classes

Figure 7. Obtaining theAbstractGraph.

The conversion involves two mutually recursive functions, VI-
SUALIZEOBJECT to convert anAbstractObject into aVisualOb-

ject and VISUALIZEDOMAIN to convert anAbstractDomain into
aVisualDomain. EachAbstractDomain declared in theAbstract-

Type of anAbstractObject is visualized in turn.
Before aVisualObject θ is created for anAbstractObject o of

typet inside aVisualDomain δ, the analysis calls FINDOBJECT to
look for an existingVisualObject in δ with whicho can be merged,
i.e., if δ has aθ of type t

′ wheret and t
′ havenon-trivial least

upper boundsusing procedure GETLEASTUPPERBOUNDS. If such
an object does not exist, a newVisualObject is created. Ifθ exists,
then it is used ando is added to the list ofAbstractObjects that
are merged byθ. Each call to FINDOBJECT takes into account the
AbstractTypes of all theAbstractObjects that are merged into a
VisualObject.

Procedure ARENONTRIVIAL TYPES excludes from the com-
puted types any type mentioned in the list of trivial types. By de-
fault, the list includesjava.lang.Object, java.io.Serializable
and other user-selected types. However, a trivial type is allowed to
be part of the least upper bounds, if theAbstractObject is declared
of that type.

Once VisualObjects andVisualDomains have been created,
procedure PULL OBJECTS uses a worklist to pull existingVisu-

alObjects: eachVisualObject is pulled from a formal to an ac-
tual domain, potentially creating a newVisualObject if it cannot be
merged with an existing one. If a newAbstractObject is merged
into an existingVisualObject, theVisualObject is added back to
the worklist. NewVisualObjects are also added to the worklist so
they get pulled in turn. The analysis tracks theVisualObjects that
a givenVisualObject is pulled into.

Finally, the top-level procedure VISUALIZEGRAPH calls VISU-
ALIZE FIELDREFS to add field references to theVisualGraph and
V ISUALIZEDOMAIN L INKS to add the domain links.

When adding the field references associated with aVisualOb-

ject θ, ADDFIELDREFS(Figure 10) takes into account all the field
references declared in theAbstractType of eachAbstractObject

merged into aVisualObject. ADDFIELDREFSalso adds field refer-
ences to all the pulledVisualObjects that are tracked by the book-
keeping fields.

The algorithm given in Figure 8 is sound for systems that use
single inheritance and have no declared variables of a trivial type.
In systems that do not meet these restrictions, the algorithm may
produce multiple visual objects to represent the same runtime ob-
ject. In this case, two possible approaches can be used to restore
soundness. The first approach is the instantiation-based view de-
scribed in Section 2 above, whereby visual objects are created for
each object that is instantiated rather than for each field or variable
declaration in the program.

In the second approach, the procedure FINDOBJECTin Figure 8
is modified to identify allVisualObjects that could be merged with
the targetTypeBindings. If there is more than one suchVisualOb-

ject, the analysis unifies theVisualObjects and the resultingVisu-

alObject has the union of theVisualDomains, mergedAbstractO-

bjects, etc. The analysis then unifies recursively all theVisualOb-

jects that a unifiedVisualObject was pulled into. The FINDOB-
JECTprocedure then returns the unifiedVisualObject.

3.4 Convert the VisualGraph into the Ownership Object
Graph

The ownership object graph that is displayed is a depth-restricted
projection of the visual graph, starting from a root object. The
visualization currently uses the nested boxes discussed earlier but
the algorithm is not tied to a specific graphical notation.

This step is depends on the visualization package used. In our
prototype implementation, we use GraphViz [16]. Each dark grey
box for each object and white-filled node for each domain must
have a unique identifier — otherwise, nodes with the same identifer
get unified. Since there is oneVisualDomain corresponding to
an AbstractDomain, and anAbstractDomain is shared across
all the AbstractObject instances of a givenAbstractType, each
occurrence of aVisualDomain that appears in aVisualObject must
be assigned a new identifier.

Because the Ownership Object Graph is a depth-limited projec-
tion, it may omit objects deeply nested in the ownership hierarchy.
These objects are conceptually summarized by their containing ob-
ject, and the visualization remains sound with this summarization.
However, those objects may have field references to objects that are
present in the projection; for soundness, the corresponding edges
should be shown. In our approach, these field reference edges can
be represented by summary fields in the leaf objects of the graph.

These summary fields are identified as follows. For each leaf
object θleaf in the Ownership Object Graph, for each transitive
child objectθchild of θleaf , in anextended depth-limited projection
of the VisualGraph, we consider all actual field references from
VisualObject θchild to VisualObject θtarget, whereθtarget is not
a child of θleaf . Each such edge is represented by a summary
edge fromθleaf to θparent, whereθparent is the nearest parent
of θtarget that is visible in the Ownership Object Graph. This
algorithm will find summary fields for all fields present at runtime
as long as theextended depth-limited projectionprojects below the
leaves of the graph until a cycle in theVisualGraph is reached —
i.e., for each path downward from a leaf, the sameVisualObject is
reached a second time. This projection must still be depth-limited,
as in general theVisualGraph may have an infinite depth due to
reference cycles.

3.5 Limitations and Future Work

In future work, we plan on improving the precision of the analysis,
proving the soundness of the Ownership Object Graph, and evalu-
ating the scalability of the approach on large systems.

Precision. Merging objects of the same type that are in the
same domain can lead to unwanted merging in some cases. Adding
generic types improves the precision of the analysis, but for addi-
tional precision, an alias analysis may be needed [29].
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Global: Map<AbstractDomain ,VisualDomain > map

Global:AbstractGraph g (input)
Global:VisualGraph γ (output)

V ISUALIZEGRAPH()

δroot = newVisualDomain ()
δroot.AbstractDomain= droot

γ = newVisualGraph ()
γ.Root= V ISUALIZEOBJECT(δroot, oroot)
PULL OBJECTS()
V ISUALIZEFIELDREFS()
V ISUALIZEDOMAIN L INKS()

V ISUALIZEOBJECT(VisualDomain δ, AbstractObject o)

t = GETTYPEBINDINGS(o.Type)
θ = FINDOBJECT(δ, t)
if ( θ == NULL )

then θ = newVisualObject ()
δ.Objects.add(θ )
θ.Parent= δ

γ.Objects.add(θ )
θ.Merged.add(o )
o.Visualized= TRUE

for ( di : t.Domains)
do δi = V ISUALIZEDOMAIN (θ, di)

δi.Parents.add(θ )
θ.Domains.add(δi )

return θ

V ISUALIZEDOMAIN (AbstractDomain d)

δ = map.get(d)
if ( δ == NULL )

then δ = newVisualDomain ()
map.put(d,δ)
δ.AbstractDomain= d

for ( oi : d.Objects)
do if ( oi.Visualized)

then continue
V ISUALIZEOBJECT(δ, oi)

return δ

FINDOBJECT(VisualDomain δ, List<TypeBinding> t)

for ( θi : δ.Objects)
do tm = GETMERGEDTYPES(θi)

` = GETLEASTUPPERBOUNDS(tm, t)
if ( ARENONTRIVIAL TYPES(`, t) )

then return θi

return NULL

GETTYPEBINDINGS(AbstractType t)

� Obtain list of transitive supertypes

GETLEASTUPPERBOUNDS(List `, List t)

� Compute least-upper-bounds if they exist

ARENONTRIVIAL TYPES(List `, List t)

� Exclude from` trivial types such asjava.lang.Object
� or in the user-specified list of trivial types
� EXCEPT if it is one of the declared types int
return TRUE if remaining list of types non-empty

GETMERGEDTYPES(VisualObject θ)

List l = newList()
for ( oi : θ.Merged)

do l.add(oi.Type)
return l

Figure 8. Pseudo-code for creatingVisualGraph.

PULL OBJECTS()

Stackworklist = newStack()
for ( θ : γ.Objects)

do worklist.push(θ)
while ( !worklist.isEmpty() )

do VisualObject θ = worklist.pop()
PULL OBJECT(θ, worklist)

PULL OBJECT(VisualObject θ, Stackworklist)

� List.add first checks if element exists to avoid duplicates
� and returnsTRUE if element is added,FALSE otherwise.
� b1| = b2 is shorthand forb1 = b1 OR b2

δf = θ.Parent
df = δf .AbtractDomain
for ( da : GETACTUALS(df ) )

do if ( da == df )
then continue

δa = map.get(da)
tm = GETMERGEDTYPES(θ)
θp = FINDOBJECT(δa, tm)
changed = FALSE

if ( θp == NULL )
then θp = newVisualObject ()

γ.Objects.add(θp )
θp.Parent= δa

θp.IsPulled= TRUE

δa.Objects.add(θp )
changed = TRUE

θ.Pulled.add(θp )
for ( o : θ.Merged)

do changed | = θp.Merged.add(o )
� Add domains from merged object
for ( δi : θ.Domains)

do changed | = θp.Domains.add(δi )
δi.Parents.add(θp )

� If anything changed, add back toworklist

� so that merged objects get pulled too...
if ( changed )

then worklist.push(θp )

GETACTUALS(AbstractDomain df )

List l = newList()
δf = map.get(df )
for ( θi : δf .Parents) � Pull “up” only

do for ( oi : θi.Merged)
do for ( bi : o.Bindings)

do if ( bi.Formal== df )
then l.add(bi.Actual)

return l

Figure 9. Pseudo-code for creatingVisualGraph (continued).

An object markedunique is not shown until it is assigned to a
specific domain. Thus, an inter-procedural flow analysis is needed
to track an object from its creation (at which point it isunique)
until its assignment to a specific domain. In the current tool, this
flow analysis is not implemented, so aunique object returned from
a factory method must be annotated with the domain in which it
should be displayed. In addition, the flow analysis can determine
what domain alent object is really in. A precise handling of
the lent annotation is needed to add to the Ownership Object
Graph usage edges corresponding to method invocations and field
accesses since many method parameters are annotated withlent.
Those edges are currently missing.

Scalability. Finally, we lack empirical evidence of the scala-
bility of the approach to large systems. In the absence of semi-
or fully-automated annotation inference (a separate research prob-
lem), the main difficulty would be adding the ownership domain
annotations to legacy code.
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V ISUALIZEFIELDREFS()

for ( θ : γ.Objects)
do ADDFIELDREFS( θ )

ADDFIELDREFS(VisualObject θsrc)

for ( o : θsrc.Merged)
do for ( e : o.Type.Edges)

do for ( da : GETBINDINGS(o, e.To.Domain) )
do δa = map.get(da)

θdst = GETMERGED(δa, e.To )
if ( θdst != NULL )

then ADDFIELDREFS(θsrc, θdst)

ADDFIELDREFS(VisualObject θsrc, VisualObject θdst)

η = newVisualEdge ()
η.From= θsrc

η.To= θdst

if ( γ.Edges.add(η ) )
then for ( θsrcp

: θsrc.Pulled)
do for ( θdstp

: θdst.Pulled)
do ADDFIELDREFS(θsrcp

, θdstp
)

GETBINDINGS(AbstractObject o, AbstractDomain d)

List l = newList()
for ( b : o.Bindings)

do if ( b.Formal== d )
then l.add(b.Actual)

return l

GETMERGED(VisualDomain δ, AbstractObject o)

for ( θi : δ.Objects)
do for ( om : θi.Merged)

do if ( om == o )
then return θi

return NULL

V ISUALIZEDOMAIN L INKS()

for ( t : g.Types)
do for ( s : t.Links)

do VisualLink σ = newVisualLink ()
σ.From= map.get(s.From )
σ.To= map.get(s.To )
γ.Links.add(σ )

Figure 10. Pseudo-code for creatingVisualGraph (continued).

4. Evaluation
To evaluate our approach, we built tools and conducted two case
studies on real object-oriented implementations.

4.1 Ownership Object Graph Tool

The tool obtains the Ownership Object Graph of an annotated
program, represents it as a GraphViz clustered graph [16] and offers
the following features:
• Top-Level Objects: the displayed Ownership Object Graph is a

depth-limited projection of the visual graph — the depth is user-
selectable but cannot be too large. The user can interactively
select an object as the root of the graph to view its substructure;

• Trivial Types: the tool allows the user to specify an optional
list of trivial types;

• Design Intent Types: the tool allows the user to specify an
optional list of design intent types for labelling objects;

• Object Labels: objects can be labelled with an optional field
name or variable name and an optional type name. The type
used in the label consists of a least-upper-bound type or a design
intent type as discussed earlier;

• Elide Private Domains: the tool allows the user to elide all the
private domains at once and show only the public domains in
the visible Ownership Object Graph;

• User Elision: the tool can elide temporarily uninteresting ele-
ments. When the sub-structure of an object is elided, the symbol
(+) is appended to its label;

• Traceability: the tool can show for a given visual object, the
list of abstract objects and their abstract types merged into it, to
help the user fine-tune the list of trivial types;

• Navigation: the tool supports zooming, searching byAbstrac-

tObject or AbsractType name, etc.

4.2 Case Study: JHotDraw

The subject system for the first case study is JHotDraw [20].
Version 5.3 has around 200 classes and around 15,000 lines of
Java. The core types in JHotDraw were organized according to the
Model-View-Controller pattern as follows:
• Model: consists ofDrawing, Figure, etc. ADrawing is com-

posed ofFigures which know their containingDrawing. A
Figure has a list ofHandles to allow user interactions;

• View: consists ofDrawingEditor, DrawingView, etc.;
• Controller: includesHandle, Tool andCommand. A Tool is

used by aDrawingView to manipulate aDrawing. A Command
encapsulates an action to be executed.
Annotation Process.JHotDraw was annotated without making

any structural refactoring such as extracting interfaces, etc. Since
JHotDraw Version 5.3 did not use generic types and to improve
the precision of the analysis, we used Eclipse refactorings [14] to
infer the most specific generic types of containers such asVector
— and prevent objects of typeVector<Handle> and those of type
Vector<Figure> from getting merged. The annotation process is
described in detail elsewhere [1].

Ownership Object Graph. We made use of the visualization
during the annotation process: for instance, visualizing the anno-
tations encouraged us to make more use of theowned annotation
sinceowned pushes objects down in the ownership hierarchy and
avoids cluttering the top-level domains.

The list of trivial types includes interfaces implemented by
many classes, e.g.,Storable, Animatable, constant interfaces,
e.g., SwingConstants2, as well as interfaces implementing the
Observer design pattern, e.g.,ViewChangeListener. Both Tool
and Command implementViewChangeListener and are in the
Controller domain, so they may get merged otherwise3.

Evaluation. Existing compile-time analyses [40, 19] cannot
produce, for a program the size of JHotDraw, a readable flat object
graph that fits on one page (See other visualizations [2]). The
top-level Ownership Object Graph obtained from the annotated
program using our approach is shown in Figure 11 and clearly
illustrates the Model-View-Controller design.

Each gray box corresponds to a “canonical object” that repre-
sents many instances at runtime and is labeled with one or more
“design intent” type from the coreframework package (variable
names were not particularly informative and are not shown).

In the visualization, theController domain clearly shows
Command, Handle and Tool instances. The self-edge onTool
is explained by the fact that anUndoableTool wraps aTool
and similarly, anUndoableCommand wraps aCommand. TheView
domain shows instances ofDrawingEditor (the application itself)
andDrawingView. TheModel domain shows instances ofFigure:

2 Inheriting from a constant interface to access the constants without qual-
ifying them is a bad coding practice, the Constant Interfaceantipattern[6,
Item #17] and Java 1.5 supportsstatic importsto avoid it.
3 The tool currently scans field and variable declarations and not object
allocations as discussed in Section 2.
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aFigure has one or moreConnectors that define how to locate a
“connection point”.

Understanding whyDrawing did not appear in theModel tier
led us to discover thatStandardDrawing, the base class imple-
menting theDrawing interface, extendsCompositeFigure, thus a
Drawing is-aFigure4. Although this is not a design problemper se,
it is inconsistent with the design intent in the coreframework pack-
age: there, interfaceDrawing does not extend interfaceFigure.
This finding was unexpected in a framework as carefully designed
and as widely studied as JHotDraw. Although a class diagram could
reveal that aStandardDrawing is aFigure, the Ownership Ob-
ject Graph quickly pinpoints that.

The top-level domains have only 28 objects even though JHot-
Draw has 200 around types and presumably each type is instanti-
ated at least once. This illustrates how the properties of the Owner-
ship Object Graph provide more abstraction and more design intent
than a visualization of the raw object graph [19, 40].

In fact, designers often employ similar techniques in a design-
oriented class diagram, i.e., one not retrieved from an implementa-
tion using a tool: a)merge interface and abstract implementation
class— although important for code reuse, such a code factoring is
often unimportant from a design standpoint; and b)subsume a set
of similar classes under a smaller set of representative classes—
showing many similar subclasses that vary only in minor aspects on
a class diagram often leads to needless clutter [36, pp. 139–140]. It
seems the JHotDraw designers used similar techniques to present
the JHotDraw design in their tutorials [36].

In the Ownership Object Graph, all runtime figure objects ref-
erenced in the program by theFigure interface, its abstract imple-
mentation classAbstractFigure, or any of its concrete subclasses
DecoratorFigure, ConnectionFigure, etc., appear as a single
Figure object in theModel domain.

The distinction between public and private domains within each
object enables eliding all the private domains at once to show only
the top-levelModel, View and Controller domains in object
Main. To illustrate the hierarchy however, objects were selected in-
dividually and their internals were elided — those have the symbol
(+) appended to their labels.DrawingEditor shows its internals:
its privateowned domain has anIconkit object among others, and
IconKit has its own substructure, but the latter is elided.

Currently, the visualization does not show multiplicities: at run-
time, there is oneDrawingEditor (the application itself), one
IconKit, but one or moreDrawingView objects.

4.3 Case Study: HillClimber

By many accounts, JHotDraw is considered the brainchild of ex-
perts in object-oriented design and programming. In comparison,
the subject system for this case study, HillClimber, is another
15,000 line application that was mainly developed and maintained
by undergraduates.

In HillClimber, the applicationwindowuses acanvasto display
nodesandedgesof a graph in order to demonstrate algorithms for
constraint satisfaction problems provided by theengine.

Annotation Process.HillClimber was organized into adata
ownership domain to store thegraph, a ui domain to hold the
user interface elements, and alogic domain to hold the engine,
search objects, and associated objects. Unlike JHotDraw, adding
annotations to HillClimber involved refactoring to decouple the
code. Again, to increase the precision of the analysis, we refac-
tored the code to use generics, mostly automatically using Eclipse.
However, Eclipse cannot infer the generic type of a variable of type
Vector storing arrays ofNode objects: such code was manually

4 According to the Release Notes for JHotDraw Version 5.1, this change was
made to support inserting aDrawing as aFigure inside anotherDrawing.

refactored to useVector<Vector<Node>>. The annotation pro-
cess is described in detail elsewhere [1].

Evaluation. The Ownership Object Graph in Figure 12 shows
clearly the core HillClimber top-level objects,window, canvas,
engine andgraph. Similarly, theSearch object in thelogicTier
domain merges many instances of sub-classes of classSearch such
asMCHSearch, RandSearch, etc.

The Graph base class declares anodes:Vector<Node> field
and its subclassHillGraph refers to that same object. Generic
types improved the precision of the analysis and prevented the
merging of edges:Vector<Edge> and nodes:Vector<Node>.
Thegraph:Graph object merges bothGraph andHillGraph and
shows objectsnodes andedges in its owned domain.

Since a domain is introduced where it is declared and then
is inherited according to theprotected semantics,HillGraph
and Graph share the sameowned domain. However, when two
“unrelated” objects, e.g., aButton object and aPanel object get
merged (since they have a non-trivial least upper bound) and each
has its declaredowned domain, it is possible to have multiple
domains of the same name in a given visual object — in that case,
a domain name is fully qualified with the type name where it was
declared in the abstract graph.

The visualization highlights the need to potentially make object
edgesIn, the incident edges on a node, encapsulated inside object
node:Entity. This would require changing the annotations and
the code as necessary to abide by the rules of the type system. This
in turn would push the object down the ownership tree and remove
it from the top-level domain.

Themediator:ICanvasMediator object was introduced dur-
ing a refactoring to decouple the code [1] and mediate between the
graph and thecanvas. Finally, the object labeledwindow:Frame
merges several user interface objects representing dialogs, etc., thus
illustrating the type abstraction property.

5. Related Work
Program Visualization. There is a large body of software visual-
ization research where the emphasis is on novel kinds of visualiza-
tion using colors, shapes, 3D, etc. Our contribution in this paper is
not the visualizationper se— we’re using the simple but effective
GraphViz package — it is in having developer-specified ownership
annotations drive a sound compile-time visualization of the pro-
gram’s execution structure.

Many dynamic analyses visualize the execution structure but
ignore ownership: they instrument the running program, filter the
program traces based on various query criteria and then visualize
the summarized information in novel ways, often with a granularity
not larger than an object or a class [23, 37, 35, 17, 39, 30, 10]. On
the other hand, such analyses handle programs for which source
code is not available, do not require source code annotations or
changes to the source code to add the annotations and allow more
fine-grained user interaction in producing the visualization.

Ownership Annotation Inference.Annotation inference is an
active area of research using both static [4, 9, 24, 25] and dynamic
[41] analyses. However, a fully automated inference cannot create
multiple public domains in one object and meaningful domain pa-
rameters to represent the design intent, such as the separateModel,
View, andController in the JHotDraw case study. Existing in-
ference algorithms produce for each class a long list of domain pa-
rameters, often place each field in a separate domain, or annotate
many objects withshared or lent [4].

Dynamic Object Graph Analyses.Dynamic analyses can infer
the ownership structure of a running program based on its heap
structure. Although these techniques have the advantage of not
requiring abundant source code annotations, they can only infer the
equivalent ofowned, shared, lent andunique annotations. This
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Figure 11. Top-level Ownership Object Graph for JHotDraw. This graph was laid out automatically by GraphViz without user intervention.
The edges correspond to field references.
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Figure 12. Ownership Object Graph for HillClimber, laid out automatically by GraphVizdot without user intervention.

assumes a strict owner-as-dominator hierarchy which is not flexible
enough to represent design patterns such as the Composite pattern.

Rayside et al. [33] characterize sharing and ownership and
produce a matrix display of the ownership structure. Similarly,
Mitchell [27] uses lightweight ownership inference to examine a
single heap snapshot rather the entire program execution, and scales
the approach to large programs through extensive graph transfor-
mation and summarization. Flanagan and Freund [12] proposed
a dynamic analysis to reconstruct each intermediate heap from a
log of object allocations and field writes, then apply a sequence
of abstraction-based operations to each heap, and combine the re-
sults into a single object model that conservatively approximates all
observed heaps from the programs execution. Their tool, AARD-
VARK , has the notion of ownership and containment and uses sim-
ple heuristics to choose the most appropriate generalization. Noble
et al. [18, 28] and Potanin et al. [31] also process heap snapshots
and show both matrix and graph visualizations of ownership trees,
indicating an object’s “aliasing shadow” and “interior”.

There are several problems with dynamic analyses: first, run-
time heap information does not convey design intent. Second, a dy-
namic analysis may not be repeatable, i.e., changing the inputs or
executing different use cases might produce different results. Com-
pared to dynamic ownership analyses — which are descriptive and

show the ownership structure in a single run of a program, the Own-
ership Object Graph obtained at compile time is prescriptive and
shows ownership relations that will be invariant over all program
runs. Third, a dynamic analysis cannot be used on an incomplete
program still under development or to analyze a framework sepa-
rately from a specific instantiation. Finally, some dynamic analyses
carry a significant runtime overhead — a 10X-50X slowdown in
one case [12], which must be incurred each time the analysis is
run, whereas the main cost of adding annotations is incurred once.

Static Object Graph Analyses.Several static analyses produce
various object graphs, but they do not use ownership and do not
convey design intent. PANGEA [40] produces a flat object graph.
WOMBLE [19] uses syntactic heuristics and hard-coded heuristics
for container classes to obtain an object model including multiplici-
ties, but its analysis does not attempt to be sound and the flat object
graph it produces does not scale to large programs: in particular,
the WOMBLE visualization of the 15,000-line JHotDraw does not
fit on one readable page [2] nor does it convey the Model-View-
Controller design.

AJAX [29] uses an alias analysis to build a refined object model
as a conservative compile-time approximation of the heap graph
reachable from a given set of root objects, and simplifies it through
a series of transformations. However, AJAX does not use ownership
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and produces flat object graphs. Although AJAX has been evaluated
on a system with as many as 36,000 lines of code, the object graphs
it produces are manually post-processed to become readable, and
its heavyweight analysis does not scale to much larger programs.

Lam and Rinard [22] proposed a type system for describing
and enforcing design: developer-specified annotations guide the
abstraction by merging objects withtokensand merging methods
with subsystems, and are used to produce a flat object graph, that
was evaluated on a 1,700-line program. However, the tokens and
subsystems are statically fixed (unlike domains, all instances of a
class use the same tokens declared in the class), so they do not
model runtime hierarchy, do not describe data sharing as precisely
as ownership domains, and do not handle inheritance. In contrast,
our approach does not require additional annotations just to obtain
a visualization: ownership annotations are useful in their own right,
as demonstrated by the extensive research into ownership types
[8, 7, 4, 3, 11]. Finally, our approach handles inheritance.

Rayside et al. had proposed earlier a static object graph analysis
based on Bacon and Sweeney’s Rapid Type Analysis (RTA) [5]
but indicated that it produced unacceptable over-approximations
for most non-trivial programs [34].

6. Conclusion
Ownership domain annotations with meaningful domain names add
hierarchy to a flat object graph, precision about inter-domain alias-
ing, convey design intent, and enable an instance-based hierarchical
visualization of the execution structure of a system, to complement
views of the code structure provided by existing approaches.

Evaluating the approach on two previously annotated Java pro-
grams consisting of 15,000 lines of code each produced in both
cases a visualization that fits on one page and conveys the complex
design intent better than existing compile-time approaches that do
not rely on ownership annotations.
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Abstract
The Ownership Domains type system has had publicly available
tool support for a few years. However, the previous implementation
used non-backwards compatible language extensions to Java and
ran on a research infrastructure, which made it difficult to conduct
substantial case studies on interesting systems.

We first present a re-implementation of ownership domains us-
ing Java 1.5 annotations and the Eclipse infrastructure. We then use
the improved tool to annotate two real 15,000-line Java programs
while using refactoring tool support, generics and external libraries.

Ownership domains, as most other ownership type systems,
provide useful encapsulation properties. We illustrate using actual
examples from the subject systems how ownership domains also
express and enforce design intent regarding object encapsulation
and communication and help identify tight coupling. Finally, we
mention some expressiveness gaps that we encountered.

1. Introduction
Researchers have proposed many ownership type systems, e.g.,
[15, 10, 3, 17, 41], but have not reported significant experience with
most of them on real code. Only a few systems, notably Ownership
Domains [6, 3], Universes [17] and Generic Ownership [41], have
released tool support [46, 20, 40], and even fewer systems have
been evaluated in substantial case studies [6, 25, 2, 38].

The previous implementation of ownership domains [3] used
non-backwards compatible extensions of Java [46]. As a result,
none of the rich tool support for Java programs was available to
programs with ownership domain annotations1.

In a previous case study [2], we identified that adding owner-
ship domain annotations to existing code often highlights refactor-
ing opportunities. For instance, a lengthy domain parameter list is
often an indication of tightly coupled code that could benefit from
refactoring — such as extracting an interface and programming to
that interface. It is unrealistic to assume that it is possible to refactor
all such code prior to annotating it. In our experience, having ac-
cess to refactoring tool support during the annotation process was
invaluable. Using language extensions also makes it harder to par-
tially and incrementally annotate existing code and thus conduct
case studies on interesting systems. Finally, the previous tool used a
modified research infrastructure [8] that is no longer actively main-
tained and does not support Java generics — as of this writing.

To address these adoptability challenges, we re-implemented
the Ownership Domains type system using the annotation facility
in Java 1.5 [27], so that Java programs with ownership annotations
remain legal Java 1.5 programs. We also implemented the tool as
a plugin to the Eclipse open source development environment that
has become popular with researchers and practitioners [24, 37].

1 The Universes tools built on the Java Modeling Language (JML) infras-
tructure support both language extensions and stylized comments [20].

We believe this improved tool support promotes the adoptability
of the ownership domains technique by Java developers as follows.
First, all the Eclipse tool support such as syntax highlighting, refac-
toring, etc., remains available to annotated programs. Second, using
annotations makes it easier to support in a non-breaking way ad-
ditional annotations such as external uniqueness [14] orreadonly
[17]. Third, using annotations gives the ability to incrementally and
partially specify annotations on large code bases. Fourth, using an-
notations will make it possible to study the evolution of programs
with ownership annotations, an area that has not received much
attention — since no one will maintain a program with limited
tool support. Finally, annotating existing code is difficult and time-
consuming and tools are being developed to add annotations semi-
automatically [6, 16]. One of the benefits of using annotations over
language extensions is that an inference algorithm cannot break an
existing program by inserting potentially incorrect annotations.

We made the following design choices for the annotation sys-
tem. First, we worked within the limits of Java 1.5 annotations
[27], even though annotations may be more verbose than an ele-
gantly designed language. Moreover, Java 1.5 annotations impose
several restrictions, e.g., no annotations on generic type arguments.
Other researchers have tried to eliminate some of these restrictions
by proposing revisions of the language [19], but until such propos-
als are officially adopted, their prototype implementations are not
Eclipse compatible, an important factor for adoptability. Second, to
work around the Java 1.5 limitation of allowing annotations only
on declarations, we consistently declare additional temporary vari-
ables and add annotations to them. This has worked well for new
expressions, cast expressions (both implicit and explicit) and ar-
guments for method and constructors. Third, checking ownership
domain annotations only generates informational messages, i.e., no
errors or warnings, and does not stop a developer from running
the program. Fourth, we hard-code a minimal number of implicit
defaults and provide a separate tool to supply explicit reasonable
defaults to reduce the annotation burden. In the future, this tool can
be replaced with a smarter annotation inference tool. Finally, the
annotations are non-executable and do not affect the program’s be-
havior2; unlike the earlier implementation, the current system does
not include runtime checks. As a result, the annotation-based sys-
tem is unsound at casts — but could be made sound using bytecode
rewriting to add necessary dynamic checks.

The rest of the paper is organized as follows: we review owner-
ship domains in Section 2, describe the annotation language in Sec-
tion 3 and the salient tool features in Section 4. We discuss two case
studies in Section 5 and show how ownership domains express and
enforce design intent related to object communication and encap-
sulation. We discuss some expressiveness gaps that we encountered
in Section 6 and conclude with related work in Section 7.

2 Annotations may increase the memory footprint and slow down class
loading as a result, but no empirical data has been reported to date.
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2. Review of Ownership Domains
Ownership domainsare conceptual groups of objects with explicit
domain names and explicit policies that govern references between
them. Each object belongs to a single ownership domain, and a top-
level domain is assumed.

Public and Private Domains.Each object can declare one or
more public or private domains to hold its internal objects, thus
supporting hierarchy. A public domain is accessed using a syntax
similar to field access. Domain declarations are added to a class,
but for each instance of that class, fresh instances of these domains
are created for that object, i.e.,obj1.DomainA andobj2.DomainA
are distinct ifobj1 andobj2 are instances of the same classT and
do not alias each other.

Explicit Domain Links. Each object can declare a policy de-
scribing the permitted aliasing among objects in its public domains,
and between its private domains and public domains. Ownership
domains support two kinds of policy specifications: a) a link from
one domain to another allows objects in the first domain to access
objects in the second domain; and b) permission to access an object
implies permission to access its public domains. In addition to ex-
plicit domain links, the following implicit policy specifications are
included: a) an object has permission to access other objects in the
same domain; and b) an object has permission to access objects in
any domain that it declares. Any reference not explicitly permitted
by these rules is prohibited, and link permissions are not transitive.

Ownership Domain Parameters.Two objects can access ob-
jects in the same domain, as long as implicit or explicit permissions
allow that access, by declaring a formal domain parameter on one
object, and binding that formal domain parameter to another do-
main. Method domain parameters are also supported and are often
needed for static methods.

Alias Types. In addition, the following special annotations are
defined for increased expressiveness [3]:
• unique: indicates an object to which there is only one refer-

ence such as a newly created object. Unique objects can be
passed linearly from one object to another, by destroying the
old reference to the object when the new reference is created;

• lent: one ownership domain can temporarily lend an object to
another ownership domain, with the constraint that the second
ownership domain will not create any persistent references to
that object: e.g., a method formal parameter is often annotated
with lent to indicate that it is a temporary alias;

• shared: indicates that an object may be aliased globally.
shared references may not alias non-sharedreferences.
Unlike owner-as-dominatortype systems [15], public domains

in the ownership domains type system can express constructs such
as iterators [3] (See Figure 1) or an instance of the Compos-
ite design pattern [22, p. 163] that does not encapsulate its sub-
components and gives clients the ability to add components to any
composite of the hierarchy and not only to the root composite [30].
Developers can still express owner-as-dominator in ownership do-
mains by: a) never declaring a public domain; and b) never linking
a domain parameter to an internal domain [3].

3. Annotation Design
In this section, we describe the concrete annotation syntax. For
maximum flexibility and to work around some of the limitations of
Java 1.5 annotations, all annotation values are strings. Annotations
that are plural take values that are arrays of strings.

The annotations are illustrated using snippets from a canonical
Sequence abstract data type, a common benchmark for ownership
type systems. Within theSequence, theiters ownership domain
is used to holdIterator objects that clients use to traverse the
Sequence, and the defaultprivate owned ownership domain is

used to hold theCons cells in the linked list that is used to represent
theSequence. The full example is shown in Figure 1.

@Domains: declare public or private domains on a type.
• Format: identifier

• Applies to: type (class or interface).
• Examples: the following declares a privateowned domain

(owned is private by naming convention), and a public domain
iters to store theIterator objects of theSequence.

@Domains({"owned" ,"iters"})
c l a s s Sequence<T> {
. . .
}

@DomainParams:declare ordered domain parameters on a type
or method domain parameters on a method.

• Format: identifier

• Applies to: type or method.
• Examples:Sequence declares a domain parameterTowner to

hold its elements.

@DomainParams({"Towner"})
c l a s s Sequence<T> {
. . .
}

@DomainInherits: pass parameters to superclass or implemented
interfaces.

• Format: typename < parameter, . . . >

• Applies to: type (class or interface).
• Examples: theIterator interface is also parameterized by

the Towner domain parameter. ClassSeqIterator inherits
domain parameterTowner from interfaceIterator, and adds
thelist parameter to access theCons cells.

@DomainParams({"list" , "Towner"})
@DomainInher i ts({"Iterator <Towner>"})
c l a s s S e q I t e r a t o r<T> implements I t e r a t o r<T> {
. . .
}

@DomainLinks: declare domain links.
• Format: fromDomainId -> toDomainId

• Applies to: type (class or interface).
• Examples: theSequence givesIterator objects in theiters

domain permission to access objects in theowned domain,
including theCons cells.

@DomainLinks( { . . . , "iters -> owned" , . . .} )
c l a s s Sequence<T> {
. . .
}

@DomainAssumes:declare domain link assumptions.
• Format: fromDomainId -> toDomainIds

• Applies to: type (class or interface).
• Examples: the Sequence assumes that theowner of the
Sequence has access to theTowner domain containing the
sequence elements.

@DomainAssumes( "owner -> Towner" ) /∗ de f a u l t ∗ /
c l a s s Sequence<T> {
. . .
}

@Domain: declare the domain, actual parameters and actual array
parameters.

• Format: annotation<domParams,...>[arrayParams,...]
annotation: indicate a domain name (e.g.,owned), one of
the special alias types (e.g.,unique), or a public domain of
an object using a field access syntax (e.g.,seq.iters);
<domParams,...>: specify actual domain parameters by
order of formal domain parameters, at object creation and
access sites;
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[arrayParams,...]: in ownership domains, arrays have
two ownership modifiers, one for the array object itself and
one for the objects stored in the array. For variables of array
type, this argument specifies the actual array parameters by
order of array dimension (for multi-dimensional arrays).
Applies to: local variable declaration, field declaration,
method formal parameter and method return value.
Examples:the following declares aunique Iterator ob-
ject and binds thelist domain parameter onSeqIterator
to owned domain onSequence, and theTowner domain
parameter onSeqIterator to the parameter by the same
name onSequence.

@Domain( "unique<owned,Towner>" )
Se q I t e r a t o r<T> i t = new S e q I t e r a t o r<T>(head ) ;

Examples:alent array ofshared Strings:

@Domain( "lent[shared]" ) S t r i n g a r g s [ ] ;

@DomainReceiver: declare the domain of the receiver of a con-
structor or a method.

• Format: identifier

• Applies to: constructor or method.
• Examples:

@DomainReceiver( "state" )
vo id run ( ) { . . . }

4. Tool Design and Implementation
Ownership domain annotations are typechecked using two visitors
on the Eclipse Abstract Syntax Tree (AST).

4.1 Ownership Domains Typechecking

A first-pass visitor performs the following:
• Identify Problematic Patterns: these will need to be replaced

with equivalent constructs, e.g., by declaring a local variable
and adding the appropriate annotations to it;3

• Read Annotations from AST: the Java 1.5 annotations added
to a program are part of the AST. The visitor locates the an-
notations nodes in the AST and parses their contents using a
JavaCC [26] parser. The visitor also locates special block com-
ments on method invocation expressions as described later. In
addition, the visitor infers default annotations for some AST
nodes that cannot be annotated, e.g., it implicitly defaults the
NullLiteral AST node tounique. The visitor maps each
AST node to an annotation structure in preparation for the sec-
ond pass visitor which will typecheck the annotations;

• Propagate Local Annotations: the visitor propagates the ex-
plicit annotations from the AST nodes (for types, variables,
and methods) to all the expression nodes in the AST, includ-
ing translating formals to actuals.
A second-pass visitor checks the annotations on each expression

based on the static semantics of Ownership Domains. Checking the
assignment rule requires a value flow analysis. A Live Variables
Analysis (LVA) from a lightweight data flow analysis framework
[5] — that also uses the Eclipse AST, is invoked intra-procedurally
at each method boundary using a separate visitor. The LVA analysis
verifies that aunique pointer only has one non-lentread.

4.2 Additional Features

The tool offers the following additional features:

3 Using the Eclipse built-in refactoring (“Extract Local Variable”), this
operation can be performed with very little effort.

@Domains({"owned" ,"iters"})
@DomainParams({"Towner"})
@DomainAssumes( "owner -> Towner" )
@DomainLinks({"owned->Towner" , "iters->Towner" ,

"iters->owned"})
c l a s s Sequence<T> {

@Domain( "owned<Towner>" ) Cons<T> head ;
vo id add (@Domain( "Towner" )T o ) {

@Domain( "owned<Towner>" )
Cons<T> cons = new Cons<T>(o , head ) ;
head = cons ;

}
@Domain( "iters<Towner>" ) I t e r a t o r<T> g e t I t e r ( ) {

@Domain( "iters<owned, Towner>" )
Se q I t e r a t o r<T> i t = new S e q I t e r a t o r<T>(head ) ;
re turn i t ;

}
}

@DomainParams({"Towner"})
@DomainAssumes( "owner -> Towner" )
c l a s s Cons<T> {
@Domain( "Towner" ) T ob j ;
@Domain( "owner<Towner>" ) Cons<T> nex t ;

Cons (@Domain( "Towner" )T obj ,
@Domain( "owner<Towner>" ) Cons<T> nex t ) {

t h i s . ob j = ob j ;
t h i s . nex t = nex t ;

}
}

@DomainParams({"Towner"})
i n t e r f a c e I t e r a t o r<T> {

@Domain( "Towner" )T nex t ( ) ;
boolean hasNext ( ) ;

}

@DomainParams({"list" , "Towner"})
@DomainAssumes({"list -> Towner"})
@DomainInher i ts({"Iterator <Towner>"})
c l a s s S e q I t e r a t o r<T> implements I t e r a t o r<T> {

@Domain( "list<Towner>" ) Cons<T> cu r r e n t ;
. . .
S e q I t e r a t o r (@Domain( "list<Towner>" ) Cons<T> head ) {

c u r r e n t = head ;
}
pub l i c @Domain( "Towner" ) T nex t ( ) {

@Domain( "Towner" )T ob j2 = c u r r e n t . ob j ;
cu r r e n t = c u r r e n t . nex t ;
re turn ob j2 ;

}
}

@Domains({"owned" ,"state"})
c l a s s S e q u e n c e C l i e n t{

f i n a l @Domain( "owned<state>" )
Sequence<I n t e g e r> seq = new Sequence<I n t e g e r> ( ) ;

vo id run ( ) {
@Domain( "state" ) I n t e g e r i n t 5 = new I n t e g e r ( 5 ) ;
seq . add ( i n t 5 ) ;
@Domain( "seq.iters<state>" )
I t e r a t o r<I n t e g e r> i t = t h i s . seq . g e t I t e r ( ) ;
whi le ( i t . hasNext ( ) ) {

@Domain( "state" ) I n t e g e r cu r = i t . nex t ( ) ;
. . .

}
}
. . .

}

Figure 1. A Sequence Abstract Data Type with ownership do-
main annotations.
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@DomainParams({"state"})
c l a s s S t u d e n t {
. . .
}
@DomainParams({"state"})
c l a s s Data . . . {

f i n a l @Domain( "state<state<state>>" )
Sequence<Studen t> vS tuden t ;

@Domain( "state<state>" ) S t u d e n t
ge t S t u d e n t R e c o r d (@Domain( "shared" ) S t r i n g sSID ) {

@Domain( "vStudent.iters<state<state>>" )
I t e r a t o r<Studen t> i = vS tuden t . g e t I t e r ( ) ;
whi le ( i . hasNext ( ) ) {

@Domain( "state<state>" )
St u d e n t o b j S t u d e n t = i . nex t ( ) ;
. . .
}

. . .
}

}

Figure 2. Adding annotations to generic code.

External Libraries. There are two approaches to support
adding annotations to the standard Java libraries and other third-
party libraries, one that involves annotating the library and point-
ing the tool to the annotated library and one that involves placing
the annotations in external files. The earlier tool used the former
approach [46], but we adopted the latter approach this time since it
does not require changing library or third-party code — which may
not be available and when it is, tends to evolve separately. Other
annotation based systems adopted the same strategy [42]. The tool
supports associating ownership domain annotations with any Java
bytecode.class file using an external XML file, following the
same annotation constructs described in Section 3.

Generics.Our annotation system currently treat generic types
as orthogonal to ownership domain parameters, so generic type pa-
rameters and arguments are added separately from ownership do-
main annotations — except that nested actual domains may need
to be provided where applicable. Proponents of Generic Owner-
ship [41] argue that this leads to awkward syntax, which may be
true. However, in our case studies annotating two 15,000-line Java
programs including using generic types, we did not observe this to
be a serious problem. Figure 2 illustrates the interaction between
generics and ownership domains: theStudent class is parameter-
ized by thestate domain parameter. TheData class maintains a
Sequence of Student objects and is also parameterized bystate.

Method Domain Parameters.Java 1.5 annotations cannot be
added at method invocation expressions. So we used block com-
ments to specify the actual domains for a parameterized method
(See Figure 3 for an example). Unfortunately, even proposals to
improve the Java 1.5 annotation facilities [19] do not yet address
adding annotations to such expressions.

Defaulting Tool. To reduce the annotation burden, we imple-
mented a separate tool to add default annotations such as marking
private fields asowned, method parameters aslent, andStrings
asshared. However, an annotation added by the defaulting tool
(e.g.,owned) may need to be modified manually to supply actual
domains for domain parameters (e.g.,owned<owned>).

Annotation ‘owner’. We also added the specialowner anno-
tation, similar topeer in Universes [17]. Usingowner can often
eliminate a domain parameter: e.g., in Figure 1,Cons.owner is
Sequence, SeqIterator.owner is Sequence.

4.3 Tool Limitations and Future Work

Java 1.5 annotations suffer from the following limitations: (1) A
declaration cannot have multiple annotations of the same annota-
tion type; (2) Annotation types cannot have members of the their

c l a s s Sequence<T> {
. . .

@DomainParams( "TTowner" ) /∗ Method domain parameter∗ /
@Domain( "shared" ) /∗ Domain f o r r e t u r n v a l u e ∗ /
s t a t i c <TT> S t r i n g

t o S t r i n g (@Domain( "lent<TTowner>" ) Sequence<TT> seq ) {
. . .

}
vo id dump ( ) {

@Domain( "owned<shared>" )
Sequence<S t r i n g> seq = . . . ;

@Domain( "shared" )
/∗ Prov ide <a c t u a l s . . .> u s i n g b l o c k comment∗ /
S t r i n g s t r = Sequence . t o S t r i n g/∗<s t a t e>∗ / ( seq ) ;

}
}

Figure 3. Declaring and binding method domain parameters.

whi le ( o b j C o u r s e F i l e . ready ( ) ){
t h i s . vCourse . add (new Course ( c o u r s e F i l e . r eadL ine ( ) ) ) ;

}
/∗ ABOVE MUST BE REWRITTEN AS . . . .∗ /
whi le ( o b j C o u r s e F i l e . ready ( ) ){
@Domain( "shared" ) S t r i n g l i n e = c o u r s e F i l e . r eadL ine ( ) ;
@Domain( "state<state>" ) Course c r s =new Course ( l i n e ) ;
t h i s . vCourse . add ( c r s ) ;

}

Figure 4. Re-writing a new expression using local variables.

own type; (3) It is only legal to use single-member annotations for
annotation types with multiple members, as long as one member
is namedvalue, and all other members have default values. Oth-
erwise, the more verbose syntax is required, e.g.,@Name(first =
"Joe", last = "Hacker"); (4) Annotation types cannot extend
any entity (class, interface or annotation); and (5) Annotations are
allowed on type, field, variable and method declarations and not
allowed on type parameters or method invocations.

The fist restriction prevented us from using the@Domain an-
notation to specify both the annotation on the receiver and on the
return type of a method. The second restriction prevented us from
having shorthand constant annotations for the special alias types,
e.g.,@owned instead of@Domain("owned"): such constants can-
not be used inside other annotations as in@Domain(annotation
= @owned, parameters = {@owned}).

To avoid having multiple ways of indicating the same mean-
ing, we use strings for all the annotations and require annotations
of the form @Domain("owned<owned>"). Although developers
may be more likely to introduce spelling mistakes in string annota-
tions, the typechecker will catch these problems early enough. The
third restriction, i.e., the lack of positional arguments, required the
use of the verbose syntax@Domains(publicDomains = {"d1",
"d2"}, privateDomains = {"pda", "pdb"}).

The final restriction and the current lack of annotation inference
require converting some expressions to more verbose constructs by
declaring local variables and annotating them. The most common
such expressions were new expressions (See Figure 4) and cast
expressions (See Figure 5).

We plan to address some of the following limitations:
• Infer method domains: just as actual type arguments do not

have to be passed to a generic method in Java, it may be
possible to infer, in most cases, the actuals for method domain
parameters based on the types of the actual arguments;

• Allow suppressing messages:since reflective code cannot be
annotated successfully using ownership domains [6];
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A r r a y L i s t vCourse = s t u d e n t . g e t R e g i s t e r e d C o u r s e s ( ) ;
f o r ( i n t i =0 ; i<vCourse . s i z e ( ) ; i ++){

i f ( ( ( Course ) vCourse . g e t ( i ) ) . c o n f l i c t s ( c o u r s e ) ){
. . .

}
}
/∗ ABOVE MUST BE REWRITTEN AS . . .∗ /
@Domain( "lent<state>" )
A r r a y L i s t vCourse = s t u d e n t . g e t R e g i s t e r e d C o u r s e s ( ) ;
f o r ( i n t i =0 ; i<vCourse . s i z e ( ) ; i ++){

@Domain( "lent<state>" )
Course c r s = ( Course ) vCourse . g e t ( i ) ;
i f ( c r s . c o n f l i c t s ( c o u r s e ) ){

. . .
}

}

Figure 5. Re-writing a cast expression using local variables.

• Display annotations more elegantly:an Eclipse plug-in by
Eisenberg and Kiczales [18] can beautify Java 1.5 annotations
for interactive editing while the analysis uses the same AST.

5. Ownership Domains Case Studies
The annotation-based system is mostly complete — the domain
link checks are still being implemented as of this writing. We used
the tools to add and check ownership domain annotations on two
real Java programs with around 15,000 lines of code each.

JHotDraw. The subject system for the first case study is JHot-
Draw [23]. Version 5.3 has around 200 classes and 15,000 lines of
Java. JHotDraw is rich with design patterns [22], uses both com-
position and inheritance heavily and has evolved through several
versions. We first used the defaulting tool then manually modified
the annotations as needed. Adding annotations was iterative. For
instance, over several iterations, we made more use of theowned
annotation. JHotDraw was annotated without making any structural
refactoring such as extracting interfaces, etc. Some code changes
were needed however to use our annotation system, e.g., extract
a local variable from a new expression and add an annotation on
the local variable, convert an anonymous class to a nested class to
add domain parameters to it, etc. JHotDraw Version 5.3 did not use
generic types, so we used Eclipse refactorings [21] to infer generic
types of containers.

HillClimber. By many accounts, JHotDraw is considered the
brainchild of experts in object-oriented design and programming.
In comparison, the subject system for this case study, HillClimber,
is another 15,000 line application that was mainly developed
and maintained by undergraduates [2]. In previous work, we re-
engineered the original Java program to an ArchJava [4] imple-
mentation with ownership domain annotations, but using language
extensions instead of Java 1.5 annotations [2]. The re-engineering
case study also produced a version that refactored the original code
by making most class fields asprivate [2]. For this case study, we
started from the refactored Java code and added ownership domain
annotations to it.

Unlike JHotDraw, adding annotations to HillClimber involved
refactoring to decouple the code as discussed below. We also refac-
tored the code to use generics, mostly automatically using Eclipse.
However, Eclipse cannot infer the generic type of a variable of type
Vector storing arrays ofNode objects. Such code was manually
refactored to useVector<Vector<Node>>.

Compared to the earlier case study with language extensions
[2], the annotation-based system allowed using Eclipse refactoring
tools to extract interfaces and infer generic types while adding the
ownership domain annotations. Comparing the number of hours
would not be meaningful since the annotation-based system was
still under development while the case study was under way, and

that would not account for the learning effect of annotating the
same program twice. Anecdotally, we were more productive with
the annotation-based system than with the earlier tool using lan-
guage extensions. The overall process changed around 40% of the
lines of code in HillClimber. The 40% code changes included boil-
erplateimports to use our Java 1.5 annotations, and code changes
to support adding annotations to some expressions. To more accu-
rately gauge the manual annotation overhead, an AST-visitor was
used to count the instances where the current annotation is the same
as the one generated by the defaulting tool: over 40% of the annota-
tions were exactly the same as the default ones for HillClimber; that
number was around 30% for JHotDraw. There are 60 type errors re-
maining in JHotDraw and 42 errors remaining in HillClimber.

In this following discussion, we illustrate using actual examples
from JHotDraw and HillClimber, how ownership domains can ex-
press and enforce design intent related to object encapsulation and
communication, using code snippets from the subject systems. The
code was slightly edited for presentation by removing trivial modi-
fiers. Some code is highlighted using underlining.

5.1 Ownership domains enforce instance encapsulation

All ownership type systems can express and enforce instance en-
capsulation which is stronger than the module visibility mechanism
of making a fieldprivate. In ownership domains, placing a field
in the privateowned domain means that the object can be reached
only by going through its owner; as a result, no aliases to that object
can leak to the outside. ConsiderCompositeFigure in JHotDraw:

@Domains({"owned"})
@DomainParams({"M" } ) . . .
a b s t r a c t c l a s s Compos i teF igu re . . .{

/ / The f i g u r e s t h a t compr ise t h i s f i g u r e
@Domain( "owned<M<M>>" ) Vector<Figure> f F i g u r e s;

/∗∗
∗ Adds a v e c t o r o f f i g u r e s .
∗ /

vo id addAl l (@Domain( "M<M<M>>" ) Vector<Figure> f i g s ) {
/ / Cannot a s s i g n o b j e c t i n ”M<M>” t o ”owned<M>”
/ / t h i s . f F i g u r e s = f i g s ;

/ / Th i s i s c o r r e c t however
f F i g u r e s. addA l l ( f i g s ) ;

}
. . .
}

Annotating fieldfFigures with owned encapsulates the list of
compositeFigures (fFigures) to prevent objects that only have
access to the composite object from modifying the list directly. If
a developer tries to subvert the language visibility mechanisms by
exposing aprivate or protected field using apublic accessor
method, the ownership domains type system prohibits apublic
method from having anowned parameter or return value. Letting
Eclipse generate a setter for thefFigures field produces the fol-
lowing code — without annotations:

vo id s e t F F i g u r e s ( Vector<Figure> f i g s ) {
t h i s . f F i g u r e s = f i g s ;

}

Upon adding the annotations, a developer can realize that the
setter is overwriting the existing field since the parameterfigs
cannot be marked asowned and any other annotation would fail
the assignment check when overwriting thefFigures field.

When manually adding annotations, it is possible to miss many
opportunities for making objectsowned. Indeed, we initially anno-
tatedfFigures with the domain parameterM instead ofowned. In
some cases, objects should beowned but are not, and making them
owned may require code changes, e.g., to return a copy of an object
instead of an alias to a private field.
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Visualizing the annotations encouraged us to make more use of
the owned annotation sinceowned avoids cluttering the top-level
domains [1]. Perhaps better tool support can prompt a developer
to encapsulate a field that could be annotated withowned but is
not, e.g., a lightweight compile-time ownership inference algorithm
[33] could suggest possible Eclipse “quickfixes”.

5.2 Ownership domains specify architectural tiers

A tiered architecture is often used to organize an application into a
User Interface tier, a Business Logic tier, and a Data tier. Ownership
domains can express and enforce such a tiered runtime architecture
by representing a tier as an ownership domain [3], and a permission
between tiers as a domain link to allow objects in the User Interface
tier to refer to objects in the Business Logic tier but not vice versa.
Such an architectural structure and constraints cannot be easily
expressed in plain Java code.

We organized the core JHotDraw types in Figure 6 according to
the Model-View-Controller design pattern as follows:
• Model: consists ofDrawing, Figure, Connector, etc. A
Drawing is composed ofFigures which know their containing
Drawing. A Figure has a list ofHandles to allow user interac-
tions. A Drawing also extendsFigureChangeListener (not
shown) to listen to changes to itsFigures.

• View: consists ofDrawingEditor, DrawingView and associ-
ated types.DrawingView extendsDrawingChangeListener
(not shown) to listen to changes toDrawing objects.

• Controller: includes interfaces such asHandle, Tool and
Command. A Tool is used by aDrawingView to manipulate a
Drawing. A Command encapsulates an action to be executed —
a simple instance of the Command design pattern [22, p. 233]
without undo support.
Once we defined the three top-level ownership domains,Model,

View andController, we passed the corresponding domain pa-
rametersM, V andC to various types as discussed below. A visual-
ization of the JHotDraw execution structure based on these owner-
ship domain annotations is available [1].

In HillClimber, the applicationwindow uses acanvasto dis-
play nodesand edgesof a graph in order to demonstrate algo-
rithms for constraint satisfaction problems provided by theengine.
So we organized the HillClimber types in Figure 12 as follows.
The data ownership domain stores the graph objects (instances
of Graph, Node, etc., and those of their subclasses,HillGraph,
HillNode, etc.). Theui domain holds user interface objects. The
logic domain holds instances ofHillEngine, Search (and sub-
classes thereof) objects, and associated objects. A visualization of
the HillClimber execution structure based on these ownership do-
main annotations is available [1].

5.3 Ownership domains expose implicit communication

Design patterns — such as Observer [22, p. 293], used to decouple
object-oriented code also tend to make the communication between
objects implicit. Adding ownership domain annotations helps make
that communication more explicit.

We initially wanted to parameterizeDrawing (See Figure 7)
with only theM domain parameter, butDrawingChangeListener
is implemented byDrawingView. SoDrawingChangeListener
needed to be annotated with theV domain parameter correspond-
ing to theView. By making implicit communication explicit, anno-
tations seem to prematurely constrainDrawingChangeListener
objects to be in theView domain. SinceDrawing was a core inter-
face referenced by other interfaces in the coreframework package,
this led to passing all three domain parameters to many additional
interfaces and classes.

It is true that ifDrawing had to be parameterized by domain
parameterV for some other reason, the implicit communication in

/∗∗
∗ Drawing i s a c o n t a i n e r f o r F igu res . Drawing sends
∗ ou t DrawingChanged e v e n t s t o DrawingChangeL is teners
∗ whenever a p a r t o f i t s area was i n v a l i d a t e d .
∗ The Observer p a t t e r n i s used t o decoup le t h e Drawing
∗ f rom i t s v iews and t o enab le m u l t i p l e v iews .
∗ /

@DomainParams({"M" , "V"})
@DomainInher i ts({"FigureChangeListener <M>" , . . .} )
i n t e r f a c e Drawing ex tends F i g u r e C h a n g e L i s t e n e r . . .{

/ / Adds a l i s t e n e r f o r t h i s drawing .
vo id addDrawingChangeL is tener (

@Domain( "V<M,V>" ) Draw ingChangeL is tener l ) ;

/ / Adds a f i g u r e and s e t s i t s c o n t a i n e r
/ / t o r e f e r t o t h i s drawing .
@Domain( "M<M>" )
Fi g u r e add (@Domain( "M<M>" ) F i g u r e f i g u r e ) ;

. . .
}

Figure 7. Adding annotations toDrawing.

@DomainParams({"M" ,"V" ,"C"})
i n t e r f a c e Handle {
vo id i n v o k e S t a r t (@Domain( "V<M,V,C>" ) DrawingView v ) ;
. . .
@Domain( "M<M,V,C>" ) Undoable g e t U n d o A c t i v i t y ( ) ;

}

Figure 8. Handle with M, V andC domain parameters.

the observer would not have been discovered this way. Ownership
domain annotations help make implicit communication explicit
when a reference requires permission to access a new part of the
program for the first time.

In HillClimber, adding ownership domain annotations exposed
covert object communication through base classes from two par-
allel inheritance hierarchies. During an early iteration, we param-
eterized the base classGraphCanvas by the ui and data do-
main parameters. We then realized thatGraph, the base class for
HillGraph, required theui domain parameter (See Figure 12).
ClassGraph only needed theui domain parameter to properly an-
notate aGraphCanvas field reference that we did not expect. This
in turn revealed thatHillGraph andHillCanvas were commu-
nicating through their base classesGraph andGraphCanvas. In
the end, the reference toGraphCanvas was moved fromGraph to
HillGraph and generalized as anIHillCanvas reference by ex-
tracting an interfaceIHillGraph from HillGraph.

5.4 Ownership domains expose tight coupling

Let us temporarily ignore the earlier limitation with adding anno-
tations to the listeners and assume thatDrawing could be param-
eterized by only theM domain parameter. Let us consider whether
it would be possible to parameterize interfaceHandle (See Figure
8) with domainsM andC. A Handle would be in theC domain and
would access objects in that domain and inM domain, i.e., it should
not access objects in theV domain parameter. Note that even if the
explicit parameterC was not provided, that domain would still be
accessible toHandle using theowner annotation.

A comment in the code indicated that Version 4.1 deprecated
the originalinvokeStart method which took aDrawing object
as one of its parameters, in favor of aninvokeStart method that
takes instead a formal parameterDrawingView parameterized by
M,V, andC. This required passing toHandle the additional domain
parameterV. SinceHandle is a core interface referenced by other
interfaces in the coreframework package, this also led to passing
all three domain parameters to many additional types.
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Figure 6. Simplified class diagram for JHotDraw (Adapted from manual class diagram by Riehle [43, 12]).

@DomainParams({"M" ,"C"})
i n t e r f a c e Handle {
@DomainParams({"V"})
vo id i n v o k e S t a r t (@Domain( "V<M,V,C>" ) DrawingView v ) ;
. . .
@Domain( "M<M>" ) Undoable g e t U n d o A c t i v i t y ( ) ;

}

Figure 9. Handle with only M andC domain parameters.

@DomainParams({"M" ,"C"})
@DomainInher i ts({"Handle<M,C>"})
a b s t r a c t c l a s s A b s t r a c t H a n d l e implements Handle {

/ / W i l l no t t y p e c h e c k s i n c e ’V ’ unbound
@Domain( "V<M,V,C>" ) DrawingView view;
. . .
@DomainParams({"V"})
vo id i n v o k e S t a r t (@Domain( "V<M,V,C>" ) DrawingView v ) {

/ / Cannot s t o r e argument i n f i e l d ’ t h i s . v iew ’
}

}

Figure 10. Method domain parameters can enforce lifetime.

5.5 Ownership domains expose and enforce object lifetime

Let us assume in this section that the refactoring which introduced
the tighter coupling was never performed, i.e.,Handle still needed
a Drawing instead of aDrawingView. Undo support was added
to JHotDraw for the first time in Version 5.3. In particular,Handle
now had a reference toUndoable — which in turn required domain
parametersM,V and C becauseUndoable’s getDrawingView()
method returned aDrawingView.

Now, let us see if it would be possible to annotateUndoable and
Handle with only the domain parametersM andC (See Figure 9) —
the domain parameterV can then be supplied toinvokeStart()
as a method domain parameter.

Using a method domain parameter to annotate the formal pa-
rameterv could enforce the constraint that a developer should not
store in a field theDrawingView object passed as an argument to
invokeStart(), as in Figure 10. Of course, a developer could
store theDrawingView object in a field of typeObject, but that
field would have to be cast to aDrawingView to be of any use.

Instead of a method domain parameter, thelent annotation
could also be used to allow a temporary alias to an object within
a method boundary. We found a few such examples in JHotDraw.
MethodsetAffectedFigures in Figure 11 makes a copy of the
lent argument so it cannot just hold on to it.

In fact,lent can be formally modeled as a method domain pa-
rameter. However, the type system does not allow a method to re-
turn alent value but it allows a method to return an object in a
method domain parameter. In the case ofDrawingView, lent can-
not be used because implementations ofinvokeStart() construct
Undoable objects that maintain aliases to theDrawingView and
thus require theV domain parameter.

For that same reason, theUndoable interface requires theV do-
main parameter becauseUndoable stores theDrawingView where
the activity to be undone was performed in order to undo the
changes to that view only. This may slightly violate the Model-
View-Controller design, where model objects should not hold on to
view objects, because there might be multiple views that need to be
updated in response to changes in the model. At the same time, it
would be counter-intuitive for a user to undo a change in one view
and observe changes in some other view. Thus, ownership domain
annotations expose the tighter coupling that the Undo feature in-
troduced. Figure 11 shows in more detail the interaction between
Handle, Undoable andDrawingView.

An earlier empirical study of JHotDraw mentioned that “a com-
mon architectural mistake [. . . ] was to provideFigures with a ref-
erence to theDrawing or theDrawingView. Figures do not by
default have any access to either theDrawing or theDrawingView
in which they are contained. This prevents them from accessing in-
formation such as the size of theDrawing. However, it is possible
to overcome this problem by passing the view into the constructor
of a figure, which can then store and access this as required” [28].
Starting with Version 5.3, one could get to theFigure’s Handles
through itshandles() method then get aDrawingView through a
Handle’s UndoActivity objects.

5.6 Ownership domains promote decoupling code

Ownership domain annotations highlight tight coupling and pro-
mote programming practices that decouple code.

Programming to an Interface. It is recommended to “refer to
objects by their interfaces” [7, Item #34] since interfaces can reduce
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@DomainParams({"M" , "V" , "C"})
@DomainInher i ts({"LocatorHandle<M,V,C>"})
c l a s s Res izeHand le ex tends Loca to rHand le {

@Override
vo id i n v o k e S t a r t (i n t x , i n t y ,
@Domain( "V<M,V,C>" ) DrawingView view) {

se t U n d o A c t i v i t y ( c r e a t e U n d o A c t i v i t y ( view) ) ;
. . .

}
/∗∗
∗ Fac to ry method f o r undo a c t i v i t y .
∗ To be o v e r r i d e n by s u b c l a s s e s .
∗ /

p ro tec ted @Domain( "M<M,V,C>" ) Undoable
cr e a t e U n d o A c t i v i t y (

@Domain( "V<M,V,C>" ) DrawingView view) {
@Domain( "unique<M,V,C>" )
Res izeHand le . UndoAc t i v i t y
undoab le = new Res izeHand le . UndoAc t i v i t y ( view) ;
re turn undoab le ;

}

@DomainParams({"M" , "V" , "C"})
@DomainInher i ts( "UndoableAdapter<M,V,C>" )
s t a t i c c l a s s UndoAc t i v i t y ex tends Undoab leAdapter{
. . .
}

}
/∗∗
∗ Bas ic i m p l e m e n t a t i o n f o r an Undoable a c t i v i t y
∗ /

@DomainParams({"M" , "V" , "C"})
@DomainInher i ts( "Undoable<M,V,C>" )
pub l i c c l a s s Undoab leAdapter implements Undoable {

@Domain( "V<M,V,C>" ) DrawingView myDrawingView ;

Undoab leAdapter (@Domain( "V<M,V,C>" ) DrawingView dv ) {
setDrawingView ( dv ) ;

}
@Domain( "V<M,V,C>" ) DrawingView getDrawingView ( ) {

re turn myDrawingView ;
}
vo id setDrawingView (@Domain( "V<M,V,C>" ) DrawingView dv ) {

myDrawingView = dv ;
}
vo id s e t A f f e c t e d F i g u r e s (@Domain( "lent<M>" ) F igu reEnumera t i on f e ){

/ / t h e enumera t ion i s no t r e u s a b l e t h e r e f o r e a copy i s made
/ / t o be ab le t o undo−redo t h e command s e v e r a l t ime
rememberF igures ( f e ) ;

}
}

Figure 11. Concrete implementation class ofHandle.

coupling between classes by splitting intent from implementation.
When fewer domain parameters are needed to annotate an inter-
face (as compared to the corresponding class), ownership domain
annotations can enforce this idiom.

In particular, an implementation class can require a private
ownership domain to be passed as an actual value for one its
parameters. Since a private ownership domain cannot be named by
an outside client, the client is then forced to use the interface which
does not require these parameters.

For instance, in the earlierSequence example (Figure 1),
the SeqIterator class receives theSequence’s private domain
owned and hides the extra parameterization behind theIterator
interface. This forces a client of theSequence to access the itera-
tor objects only through theIterator interface. A client may not
even cast theIterator reference to aSeqIterator class.

We used a similar technique to decouple the code in HillClimber
(See Figure 12 for the inheritance hierarchy). The original im-
plementation for classHillNode had a field reference of type
HillGraph. However,HillGraph took the three domain param-
etersui, logic anddata, which required passing all those param-
eters toHillNode.

@DomainParams({"ui" ,"logic" ,"data"})
@DomainInher i ts({"Node<data>"})
c l a s s Hi l lNode ex tends Node {

@Domain( "data<ui,logic,data>" ) H i l lG raph graph;
. . .
}

When adding annotations, an unexpected domain parameter of-
ten indicates unnecessary coupling, e.g., why shouldHillNode
have access to theui domain? Thus a lengthy domain parameter list
can be an objective measure of a code smell [2]. Furthermore, own-
ership domain annotations can help a developer lower the coupling
by suggesting which specific type declarations need to be general-
ized to shorten the list of domain parameters on the enclosing type.

In HillClimber, one solution was to extract anIHillGraph in-
terface from classHillGraph that only requires thedata domain
parameter and make aHillNode object reference theHillGraph
object through theIHillGraph interface. We decided against car-
rying this refactoring further and eliminating theui andlogic do-
main parameters onHillGraph itself.

Since theHillGraph, HillNode, etc., form a parallel inheri-
tance hierarchy toGraph, Node, etc., a similar refactoring was per-
formed onGraph by extracting aIGraph interface – even though
Graph andIGraph are both parameterized bydata.

@DomainParams({"ui" ,"logic" ,"data"})
@DomainInher i ts({"Graph<data>" ,

"IHillGraph<data>"})
c l a s s Hi l lG raph ex tends Graph

implements I H i l l G r a p h {
. . .

}
@DomainParams({"data"})
@DomainInher i ts({"IGraph<data>"})
i n t e r f a c e I H i l l G r a p h ex tends IGraph {
. . .
}
@DomainParams({"data"})
@DomainInher i ts({"Node<data>"})
c l a s s Hi l lNode ex tends Node {

@Domain( "data<data>" ) I H i l l G r a p h graph;
. . .
}

Tightly coupled code was observed throughout HillClimber.
Similarly, we were surprised that a dialog classFontDialog re-
quired thedata domain parameter. It turned out thatFontDialog
had a field reference declared with its most specific typeGraphCanvas.
In some cases, it is possible to generalize the type of the reference,
e.g., usejava.awt.Frame to eliminate the need for the domain
parameter. However,FontDialog needed access to some of the
GraphCanvas functionality, so a different solution was needed.

Mediator Pattern. Defining an interface is sometimes insuffi-
cient to decouple code since referring to an object through its inter-
face still requires access to the domain the object is in. One solution
is to use the Mediator design pattern [22, p. 273], as shown here.

In the original HillClimber implementation,Node obtained a
reference toGraphCanvas, which violates the Law of Demeter
[32], i.e., objects should only talk to their immediate neighbors:

@DomainParams({"data"})
a b s t r a c t c l a s s E n t i t y {

@Domain( "data<data>" ) Graph graph ; / / p a r e n t graph
. . .
}
@DomainParams({"data"})
@DomainInher i ts({"Entity<data>"})
c l a s s Node ex tends E n t i t y {

. . .
i n t g e t H e i g h t ( ) {

re turn graph . ge tCanvas ( ) . g e t F o n t M e t r i c s ( ) . . . ;
}

}
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Figure 12. Partial UML Class Diagram for HillClimber obtained from the original implementation using Eclipse UML [39]. This diagram
does not reflect some of the types introduced during refactoring, such asIGraph, IHillGraph andICanvasMediator.

Extracting an interface fromGraphCanvas would not work, as
that reference would still need theui domain parameter. Moreover,
the implementation ofgetFontMetrics() could not be moved to
Graph as it required access to objects in theui domain.

@DomainParams({"data"})
a b s t r a c t c l a s s E n t i t y {

@Domain( "ui" ) IGraphCanvas canvas; / / ‘ u i ’ unbound
. . .
}

A mediator was defined as follows:

/∗∗
∗ Media tor i n t e r f a c e
∗ /

i n t e r f a c e ICanvasMed ia to r{
@Domain( "shared" ) F o n t M e t r i c s g e t F o n t M e t r i c s ( ) ;

. . .
}
/∗∗
∗ Media tor i m p l e m e n t a t i o n c l a s s
∗ /

@DomainParams({"ui" ,"data"})
c l a s s Media to r Imp l implements ICanvasMed ia to r{
@Domain( "ui<ui,data>" ) GraphCanvas canvas;

M ed ia to r Imp l (@Domain( "ui<ui,data>" ) GraphCanvas c ){
t h i s . canvas = c ;

}
@Domain( "shared" ) F o n t M e t r i c s g e t F o n t M e t r i c s ( ){

re turn canvas. g e t F o n t M e t r i c s ( ) ;
}

. . .
}

GraphCanvas initializes the mediator:

@DomainParams({"ui" ,"data"})
c l a s s GraphCanvasex tends . . . {
@Domain( "data<ui,data>" ) Med ia to r Imp l med ia to r;
. . .
@Domain( "data" ) ICanvasMed ia to r g e t M e d i a t o r ( ){

re turn med ia to r;
}

}

Entity andNode can then use the mediator as follows:

@DomainParams({"data"})
a b s t r a c t c l a s s E n t i t y {

@Domain( "data" ) ICanvasMed ia to r med ia to r;
. . .
}

/∗∗
∗ DrawApp l i ca t i on d e f i n e s a s tanda rd p r e s e n t a t i o n
∗ f o r s t a n d a l o n e drawing e d i t o r s
∗ /

@DomainParams({"M" , "V" , "C"})
@DomainInher i ts({"DrawingEditor<M,V,C>" , . . . )
c l a s s DrawApp l i ca t i on implements DrawingEd i to r . . . {

/ / Opens a new window w i th a drawing v iew .
@DomainReceiver( "unique" )
p ro tec ted void open ( . . . ) {

f I c o n k i t = new I c o n k i t ( t h i s ) ;
. . .

}
}
c l a s s I c o n k i t {

s t a t i c @Domain( "unique" ) I c o n k i t f g I c o n k i t = n u l l ;

/ / C o n s t r u c t s an I c o n k i t t h a t uses t h e g i v e n e d i t o r
/ / t o r e s o l v e image path names .
@DomainReceiver( "unique" )
pub l i c I c o n k i t (@Domain( "unique" ) Component comp){

f g I c o n k i t = t h i s ;
. . .

}
}

Figure 13. Annotating a singleton usingunique.

@DomainParams({"data"})
@DomainInher i ts({"Entity<data>"})
c l a s s Node ex tends E n t i t y {

i n t g e t H e i g h t ( ) {
re turn g e t M e d i a t o r ( ) . g e t F o n t M e t r i c s ( ) . . . ;

}

5.7 Ownership domains can help identify singletons

While adding ownership domain annotations, we discovered a cu-
rious instance of the Singleton design pattern:IconKit’s construc-
tor was not private, although it had a staticinstance() method.
Indeed, there is aunique instance ofDrawingEditor (the appli-
cation itself) and aunique IconKit (See Figure 13) at runtime.

6. Expressiveness Challenges
In this section, we discuss some of the expressiveness gaps that we
encountered, some of which had been previously mentioned.
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c l a s s DrawApp l i ca t i on implements DrawingEd i to r . . . {
. . .
c l a s s MDI DrawAppl icat ion ex tends DrawApp l i ca t i on . . .{
. . .
@DomainParams({"M" , "V" , "C"})
@DomainInher i ts({"MDI_DrawApplication<M,V,C>"})
c l a s s JavaDrawApp ex tends MDI DrawAppl icat ion {
. . .
@Domains({"Model" , "View" , "Controller"})
c l a s s Main {

@Domain( "View<Model,View,Controller>" )
JavaDrawApp app =new JavaDrawApp ( ) ;

pub l i c s t a t i c vo id main (
@Domain( "lent[shared]" ) S t r i n g a r g s [ ] ) {
@Domain( "lent" ) Main sys tem = new Main ( ) ;

}
}

Figure 14. Defining the top-level domains in a separate class.

6.1 An object cannot be in more than one ownership domain

Ownership domains, as most other ownership type systems, support
only single ownership, i.e., an object cannot be part of more than
one ownership hierarchy. Proposals formultiple ownership[11]
lift this restriction in other type systems. Ownership domains do
not supportownership transfer[31] either, i.e., an object’s owner
does not change — onlyunique objects can flow between any two
domains. As a result, many fine-grained ownership domains cannot
be defined to represent multiple roles in design patterns: e.g., if an
object is both a mediator in the Mediator pattern and a view in the
Model-View-Controller pattern, it cannot be in both aMediator
ownership domain and aView ownership domain at the same time.

For instance, creating top-level ownership domains to corre-
spond to the design in Figure 6 would have been more challeng-
ing than creating the three top-level domains forModel, View and
Controller: placing aDrawingEditor object in aMediator do-
main would have prohibited it from also being in theView domain.

6.2 An object cannot place itself in a domain it declares

An object cannot place itself in an ownership domain that it de-
clares. This is problematic for the root application object, i.e., the
JavaDrawApp instance (JavaDrawAppextendsDrawApplication
which in turn extendsDrawingEditor). True to form, we solve
this problem with an extra level of indirection by creating a fake
top-level classMain to declare theModel, View andController
top-level ownership domains and declare theJavaDrawApp object
in theView domain (See Figure 14).

6.3 Public domains are hard to use

Public domains make the ownership domains type system more
flexible thanowner-as-dominatortype systems [15]. Also, public
domains are ideal for visualization because placing an object inside
a public domain of another object relates these objects without
cluttering the top-level domains [1]. However, public domains are
typically hard to use without refactoring the code. We started using
them in a few cases but quickly abandoned those attempts.

Since the Observer design pattern tends to make communica-
tion between objects implicit, we attempted to represent listeners
more explicitly using ownership domain annotations. For instance,
it might make sense to create a public domainLISTENERS as a do-
main to hold theListener objects that anObserver will notify
— a Listener often needs special access to theObserver, but
usually does not need special access to theSubject.

JHotDraw uses a delegation-based event model: for instance,
a DrawingView calls methodfigureSelectionChanged to no-
tify a FigureSelectionListener observer of selection changes.
So it might make sense to declare aFIGURESELECTIONLISTENERS

/∗∗
∗ DrawingView r e n d e r s a Drawing and l i s t e n s t o i t s
∗ changes . I t r e c e i v e s use r i n p u t and d e l e g a t e s
∗ i t t o t h e c u r r e n t Tool .
∗ /

@DomainParams({"M" , "V" , "C"})
@DomainInher i ts({"DrawingChangeListener<M,V>"})
i n t e r f a c e DrawingView ex tends DrawingChangeL is tener . . .{

/ / Add a l i s t e n e r f o r s e l e c t i o n changes
vo id a d d F i g u r e S e l e c t i o n L i s t e n e r (
@Domain( "?<M,V,C>" ) F i g u r e S e l e c t i o n L i s t e n e r f s l ) ;

. . .
}
@Domains({"owned"})
@DomainParams({"M" , "V" , "C"})
@DomainInher i ts({"DrawingView<M,V,C>"})
c l a s s StandardDrawingView implements DrawingView . . . {

/ / R e g i s t e r e d l i s t o f l i s t e n e r s f o r s e l e c t i o n changes
p r i v a t e @Domain( "owned<?<M,V,C>>" )
V ector<F i g u r e S e l e c t i o n L i s t e n e r> f S e l e c t i o n L i s t e n e r s ;

StandardDrawingView (
@Domain( "V<M,V,C>" ) Draw ingEd i to r e d i t o r , . . . ) {
/ / e d i t o r i s i n ’V ’ domain parameter , no t ’C ’ !
a d d F i g u r e S e l e c t i o n L i s t e n e r ( e d i t o r ) ;
. . .

}
/ / Add a l i s t e n e r f o r s e l e c t i o n changes .
/ / Command imp lemen ts F i g u r e S e l e c t i o n L i s t e n e r
/ / bu t Command i s i n t h e ’C ’ domain parameter !
vo id a d d F i g u r e S e l e c t i o n L i s t e n e r (

@Domain( "?<M,V,C>" ) F i g u r e S e l e c t i o n L i s t e n e r f s l ){
f S e l e c t i o n L i s t e n e r s . add ( f s l ) ;

}

Figure 15. How to annotateaddFigureSelectionListener?

public domain onCommand to hold theFigureSelectionListener
objects. ButCommand implementsFigureSelectionListener,
so aCommand is-aFigureSelectionListener. Thus aCommand
object cannot split a part of itself and place it in the public domain
FIGURESELECTIONLISTENERS that it declares.

6.4 Listener objects are particularly challenging

There were additional complications when trying to highlight the
event subsystem in JHotDraw using ownership domain annota-
tions.Command, which is in theController domain, implements
FigureSelectionListener, and so doesDrawingEditor, which
is in theView domain.

Consider methodaddFigureSelectionListener in (See
Figure 15). How would one annotate the formal parameterFigureSelectionListener
The parameter should support both annotationsC<M,V,C> and
V<M,V,C>. Existential ownership [13, 29, 34] may be the answer
to increase the expressiveness, e.g., by annotating the parameter
with “any” [34]. Other problems of adding ownership domains
annotations to listeners had been previously identified [44].

6.5 Static code can be challenging

Even in such a well-designed program as JHotDraw, we found a
few instances where ownership annotations cannot be made to type-
check. In particular, in Figure 16, the staticHashtable cannot have
theM, V, andC domain parameters because the domain parameters
declared on the classNullDrawingView are not in scope for static
members. Static members can only be annotated withshared or
unique, and these values cannot flow to theMx, Vx or Cx method
domain parameters.

Annotating the genericHashtable also requires nested param-
eters:Hashtable has three domain parameters for its keys, values
and entries. BothDrawingView and DrawingEditor take M, V,
andC as parameters. Although the number of annotations seems
excessive and maybe argues in favor of generic ownership [41], the
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@DomainParams({"M" , "V" , "C"})
@DomainInher i ts({"DrawingView<M,V,C>"})
c l a s s NullDrawingView implements DrawingView . . . {

s t a t i c @Domain( "unique<?<?,?,?>,?<?,?,?>,?>" )
Hash tab le<DrawingEdi to r , DrawingView> dvMgr = . . . ;

@DomainParams({"Mx" ,"Vx" ,"Cx"})
pub l i c synchron ized s t a t i c @Domain( "Vx<Mx,Vx,Cx>" )
DrawingView getManagedDrawingView (

@Domain( "Vx<Mx,Vx,Cx>" ) Draw ingEd i to r ed ) {
i f ( dvMgr . con ta insKey ( ed ) ){

@Domain( "Vx<Mx,Vx,Cx>" )
DrawingView dv = dvMgr . g e t ( ed ) ;
re turn dv ;

}
. . .

}

Figure 16. How to annotate objects that are stored in static fields?y

ownership domains for theHashtable key, value and entries need
not correspond to theM, V andC ownership domains.

A solution that is not type-safe would be to store theHashtable
asObject, then cast down to aHashtable upon use — the equiv-
alent of raw types but without re-implementing them in the own-
ership domains type system. Another solution would be to refactor
the program to eliminate this static field since it gives any object ac-
cess to all theDrawingView andDrawingEditor objects. Since it
is often unrealistic to perform such a significant refactoring, maybe
the best solution would be to support package-level static owner-
ship domains, similar to confined types [9].

6.6 Annotations may be unnecessarily verbose

Ownership domain annotations tend to be verbose: e.g., formal
method parameters need to be fully annotated even if they are not
used in the method body or used in a restricted way. This produces
particularly unwieldy annotations for containers of generic types.

In Figure 17, methodclearStackVerbose indicates the cur-
rent level of annotations needed. It should be possible to leave
out domain parameters when they are not really needed. This
may involve using implicit existential ownership types as in
clearStackAny: i.e., there exists some domain parametersd1,
d2, d3, d4, such that the formal method parameters could be an-
notated withlent<d1<d2,d3,d4>>. Using appropriate defaults,
the annotations could probably be reduced to the level needed to
annotate a raw type, as shown inclearStack.

6.7 Manifest ownership can reduce the annotation burden

The current defaulting tool only adds theshared annotation to
String objects. However, during the annotation process, we found
ourselves adding theshared annotation to many other types such
asFont, FontMetrics, Color, etc. Specifying a per-type default
globally and not for every instance, as inmanifest ownership[13],
would have reduced the annotation burden.

6.8 Reflective code cannot be annotated

JHotDraw uses reflective code to serialize and deserialize its state
and such code cannot be annotated using ownership domains [6].

6.9 Annotate Exceptions aslent

We annotated exceptions withlent since we were not particularly
interested in reasoning about them. However, richer annotations are
possible [45].

7. Related Work
Case studies applying ownership type systems on real code are few
and far between. Ḧachler [25] documented a case study applying

@Domains({"owned"})
@DomainParams({"M" ,"V" ,"C"})
pub l i c c l a s s UndoManager{

/∗∗
∗ C o l l e c t i o n o f undo a c t i v i t i e s
∗ /

@Domain( "owned<M<M,V,C>>" ) Vector<Undoable> undoStack ;

vo id c l e a r S t a c k V e r b o s e (
@Domain( "lent<M<M,V,C>>" ) Vector<Undoable> s ) {
s . removeAl lE lements ( ) ;

}

vo id c lea rS tackAny (
@Domain( "lent<?<?,?,?>>" ) Vector<Undoable> s ) {
s . removeAl lE lements ( ) ;

}

vo id c l e a r S t a c k (
@Domain( "lent" ) Vector<Undoable> s ) {
s . removeAl lE lements ( ) ;

}
}

Figure 17. Reducing annotations when they are not really needed.

Universes [36, 17] on an industrial software application and refac-
toring the code in the process. Although the subject system in the
case study is larger than JHotDraw (around 55,000 lines of code),
the author annotated only a portion of the system. The author man-
ually generated visualizations of the ownership structure whereas
we had access to tool support to visualize the ownership structure
and adjust the annotations accordingly [1].

Nägeli [38] evaluated how the Universes and Ownership Do-
mains type systems express the standard object-oriented design pat-
terns [22]. However, in real world complex object-oriented code,
design patterns rarely occur in isolation [43]. As we discussed ear-
lier, these subtle interactions, combined with the single ownership
constraint of the type system, make the annotations difficult.

In a previous case study, we re-engineered HillClimber using
ArchJava [4] to specify a component-and-connector architecture in
code and ownership domain annotations to specify the data sharing
[2]. In the earlier case study, we performed refactorings similar to
the ones described here. However, adding ownership domain anno-
tations to the ArchJava program seemed easier. Indeed, ArchJava’s
port construct effectively reduces coupling; in the plain Java im-
plementation, the same effect had to be achieved using program-
ming to interfaces, using mediators, etc.

ArchJava’s properties are available at the expense of various re-
strictions on object-oriented implementations. The previous case
study also identified that adding ownership domain annotations re-
quired less effort than encoding the architectural structure in Arch-
Java [2, 6]. Fewer defects are introduced since code that passes ob-
ject references need not be changed and the ownership annotations
need not affect the runtime semantics of the program. Moreover, the
ownership domain annotations, while tedious to add manually, are
relatively straightforward once the top-level domains are decided,
compared to re-engineering to use ArchJava.

Adding ownership domains annotations manually still required
significant effort, and researchers are still looking at scalable infer-
ence of ownership domain annotations [6, 16]. Current inference
techniques [35, 33] however only infer the equivalent ofowned,
shared, lent andunique annotations, i.e., they assume a strict
owner-as-dominator hierarchy which is not flexible enough to rep-
resent many design patterns. Some approaches do not map the re-
sults of the analysis back to an ownership type system [35, 33]. A
fully automated inference cannot create multiple public domains in
one object and meaningful domain parameters, which are critical
for representing the abstract design intent, as in the three top-level
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Model, View, andController domains in JHotDraw. Existing in-
ference algorithms often generate imprecise annotations, producing
for each class a long list of domain parameters, often placing each
field in a separate domain, and annotating many more objects as
shared or lent than necessary [6, 16].

8. Conclusion
We presented an annotation-based system that re-implements the
ownership domains type system as a set of Java 1.5 annotations,
using the Eclipse infrastructure. Using annotations imposes many
restrictions and requires changing the code slightly to add anno-
tations to it, and the annotation language does take some getting
used to. Still, the annotation-based system is an improvement over
custom infrastructure, language extensions, and the resulting lim-
ited tool support: it enabled us to annotate larger object-oriented
programs “in the wild” to study how ownership domains can ex-
press and enforce design intent related to object encapsulation and
communication and to identify expressiveness limitations.

In future work, we plan on making the type system more flexible
and extending the annotation language in a non-breaking way.
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[38] S. Nägeli. Ownership in Design Patterns. Master’s thesis, Department
of Computer Science, Federal Institute of Technology Zurich, 2006.

[39] Omondo. EclipseUML.http://www.omondo.com/, 2006.

[40] A. Potanin. Ownership Generic Java.www.mcs.vuw.ac.nz/~alex/ogj/,
2005.

[41] A. Potanin, J. Noble, D. Clarke, and R. Biddle. Generic Ownership
for Generic Java. InOOPSLA, 2006.

[42] Annotation File Utilities.http://pag.csail.mit.edu/jsr308/annotation-file-
2006.

[43] D. Riehle. Framework Design: a Role Modeling Approach. PhD
thesis, Federal Institute of Technology Zurich, 2000.
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Abstract
Representation exposure is a well documented and studied prob-
lem in object-oriented systems. We introduce the Potential Access
Path methodology as a tool to reason about composite objects and
protection of their representation. Our system enforces the owner-
as-modifier disciplin, which does not restrict aliasing but requires
that all modifications to an encapsulated aggregate are initiated by
the aggregate’s owner. A novel design choice in our system is the
free mode that allows read-only aliases. This new weak unique-
ness property provides us with additional flexibility to transfer sub-
components from one aggregate to another.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.1.5 [Programming
Techniques]: Object-oriented Programming

General Terms Languages, Security, Theory

Keywords Alias protection, Representation exposure, Ownership
types, State encapsulation, Java

1. Introduction
The recursive combination of smaller objects to one composite ob-
ject (object composition) is a central technique in the construction
of object-oriented software. The encapsulation of such composite
objects is an important criterion for the quality of object-oriented
designs. A lack of encapsulation makes the composite object’s cor-
rect functioning depend on its context – its implementation cannot
be verified in a modular way and cannot be safely reused in new
contexts.

When discussing object-oriented software systems one often
considers three related notions of the object concept. At the base-
level, the system is a flat ”sea” of elementary implementation ob-
jects – instances of concrete classes. At the top level we have ab-
stract objects, which are defined solely by their operations’ exter-
nally visible behaviour (e.g described with the concept of interfaces
in Java along with some behavioural specification). The implemen-
tation of this behaviour is delegated to the in-between level – struc-
tures of collaborating implementation objects rooted in a represen-
tative. That representative, aided by its collaborators, provides the
desired functionality specified in the interface. This cluster of co-
operating objects will be referred henceforth as the composite ob-
ject (or the aggregate).

An abstract object’s invariant – specified in the behavioural
component of the interface – may depend on the internal structure
of the composite object. In general, object-oriented languages do
not prevent ”outsiders” from obtaining references to the internal
structure. Such exposure of the internal representation can lead to
mutation of the structure while the representative object remains
completely oblivious to the changes. The invariant may be violated
and the implementation of the abstract object might behave incon-
sistent with its specification.

Among the first attempts to address the perils of representation
exposure are [11] and [3]. Here the composite object is fully encap-
sulated and neither incoming nor outgoing references are allowed.
The absence of incoming references guarantees that any modifica-
tions to the internal structure of the composite object must be trig-
gered through the representative object’s interface. Unfortunately
the full encapsulation is well too restrictive and many common
object-oriented idioms are impossible to implement in such sys-
tems.

The ownership type (OT) system introduced in [8] relaxes the
restriction on the outgoing references. Each object is treated as a
representative of a certain composite object, which is owned by the
representative. Which objects constitute the owned composite ob-
ject is specified by program annotations (ownership contexts). A
tree-like ownership structure is established among the run-time ob-
jects and the system satisfies the owner-as-dominator property: All
reference chains from the root object to any other object o (thus
any reference chain leading inside the composite object to which o
belongs) must pass through o object’s owner (the representative).
The owner-as-dominator property guarantees again that any mod-
ifications to the internal structure of the composite object must be
triggered through the representative object’s interface. Outgoing
references are permitted, but only upwards in the ownership tree
structure. Incoming references are still prevented by the type sys-
tem. Although more flexible than full encapsulation, many popular
design patterns cannot be implemented using ownership types. An
often cited example is that of the Iterator pattern. A composite ob-
ject – collection – often provides clients with an external iterator
that allows the client to travers the elements stored in the collection.
To move from one element to another, the iterator must be able to
access the internal structure of the collection composite object. But
because the ownership type system does not permit incoming refer-
ences, the iterator must itself be part of the encapsulated composite
object. This again prevents the external client to acces the iterator.

Systems that enforce the owner-as-modifier discipline [14],
[17], [13] and [10] constitute a natural evolution of the ownership
type system. We still have a tree-like hierarchy of object ownership
and the mode annotations determine membership in the composite
object. But unlike in the OT systems, the ownership information
determines the legality of method calls. Arbitrary incoming and
outgoing references are permitted. At the same time the owner-as-
modifier property is satisfied: If an object o is modified (the com-
posite object changes) then the change has been triggered through
a sequence of method calls originating in the o’s owner (the repre-
sentative).

In this workshop paper we describe the Potential Access Pass
methodology introduced in [17] as a tool to reason about composite
objects and representation protection. We also put forward a novel
weak uniqueness property for reference paths that generalizes the
standard notion of free or unique references by allowing read-only
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aliases. This property provides us with an additional flexibility to
transfer sub-components from one composite object to another.

Outline In section 2 we present an example – the Set composite
object. Section 3 introduces the Potential Access Path methodol-
ogy. In section 4 we present our language JaM and develop the
formal mode-system. Section 5 provides the operational semantics
for our language. Next we formally verify the CSE property (sec-
tion 6). In section 7 we revisit the Set example – guiding the reader
through the design and implementation process and and providing
detailed JaM code. Related Work follows in section 8. We briefly
conclude the paper with section 9.

2. The Set Example
We will consider now the implementation of an abstract object
Set. Our Set shall provide the standard methods add, remove and
contains. We will also supply an external iterator that provides
clients with the possibility to traverse all the Set elements. How
would we go about implementing the Set? Let’s assume that we
have available a pre-existing List component (implemented as a
composite object with a single linked list of nodes ni with data
objects di, node iterator nIt and the representative l). We can use
the List component to implement our Set. The node iterator can be
used to implement an iterator over the data elements. Assuming
three elements in our set, we end up with the following (run-time)
object structure – s is the representative of the composite Set object
and dIt an iterator over the set elements:

n1

l

d1

n2 n3

d2

dIt
s

nIt

d3

cl1

cl2

In general, it is possible that other objects obtain references into
the above structure. Through these references the Set composite ob-
ject might be modified. For example, an object cl1 with a reference
to n2, could send the message setNext to n2 with nil as param-
eter, destroying the integrity of the Set composite object. What’s
worse, the representative object s will not even be aware about the
changes. Such situation certainly must be prevented. In a differ-
ent setting, an outsider, cl2, might obtain a reference to d3. Here
it is not so clear, if cl2 should be allowed to modify d3. It all de-
pends on what elements are stored in the set. If the set is used by
an online lottery to maintain a viewable list of winning numbers,
it would be undesirable to allow some dishonest players to make
modifications to the element d3 (replacing legitimate number with
one selected by the devious player). Only the owners of the set
(e.g. lottery providers) should be allowed to make modifications to
d3. On the other hand, if the set is used to keep track of players
registrations, the participants should be permitted to make modifi-
cations to their registration data (update e-mail address, telephone,
etc.). From the set (or lottery organizers) perspective, what matters
is that the created registrations are preserved, not their contents. In
both scenarios we want the representative object s to protect the in-
tegrity of the composite object Set. What differs is the extent of the
protection.

What does it mean that s protects certain objects? We take the
viewpoint that any changes to the state of these objects should
be initiated by s itself. We will be referring to the set of objects
protected by s as the composite of s. In our Set example, depending
on the context, we have two different composites. (The dark grey
area represents composite that corresponds to the set of player
registrations; the larger boundary corresponds to the set of winning
numbers.):

n1

l

d1

n2 n3

d2

dIt
s

nIt

d3

cl1

cl2

We still need to specify what it means that changes to these
objects are initiated by s. To this effect we separate the methods
of s into two kinds: observers and mutators. When executing an
observer on s we are guaranteed of no changes to its instance
variables, whereas mutators have the right to modify them. But
this is not enough. Observers shall never affect changes to instance
variables of any object in the composite of s. As a consequence, for
an object in s’ composite to change its state, s must be executing
a mutator – s is aware of the fact that it’s composite state might
change.

The next issue we have to address is: How can programmers
specify membership inside a composite object? We borrow here
from work of others [11], [15], [8] and use mode annotations
on object’s references. To begin with, we will use three kinds of
modes: rep, co and read. The most important mode is rep -
if a reference from an object o to an object ω is designated by
programmer as rep, we put ω into o’s composite. The co mode
states that the two objects linked by a co-reference belong to the
same composite object. The third mode, read, tells us that based on
that particular reference no statement about composite membership
of both objects can be determined. In our original example we
could assign the following modes (if we want to model the winning
numbers set – in the other case replace co-references from n to d
with read-references):

n1

l

d1

n2 n3

d2

dIt
s

nIt

d3

cl1

cl2

co co

co co co

rep

rep rep

read

read

read

free

Unfortunately, to address both Set scenarios, we would need to
define the class Node twice - once with a co-reference to its data
and in the second case with a read-reference. If we want to reuse
components, the modes rep, co and read are not enough. We need
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more flexibility. To this effect we introduce an additional class of
modes α ∈ A and parameterize the base modes with correlations.
Now our complete modes are of the form µ < α = µ′ >. The
intuition is as follows: if o has a reference of mode µ<α = µ′>
to ω and ω has a reference of mode α to another object ω′, then o
can potentially obtain a µ′ reference to ω (via a series of method
calls). An α-reference o α−→ ω does not tell us anything about
o’ and ω’s membership in a composite object. We need some
external reference to o, to possibly determine ω’s membership.
The described association modes1 and correlations are crucial for
the structural flexibility of the mode technique. They allow a class
to fix the modes of references in its instances without fixing the
reference targets’ assignment to a composite object. This decision
is postponed to each instance’s clients. Hence the same class can
be reused in many different structural contexts. In our example we
obtain the following situation:

n1

l

d1

n2 n3

d2

DIt
s

NIt

d3

cl1

cl2

co co

data data data

      rep<data=lst-elem>

rep<lst-elem=rep>     
rep<nit-dest=read<data=dit-dest>>

read<data=read>

read

nit-dest

free<dit-dest=rep>

lst-elem

rep

The above diagram tells us, that l could potentially obtain an
lst-elem-reference to d1, and therefore s could obtain a rep-
reference to d1. s could also obtain a rep-reference to d2 (via l,
n1 and n2). Additionally we can infer that dIt (the data iterator)
can obtain a read-reference to n2 and dit-dest-reference to d2.
Hence with the help of dIt, s can avail of a rep-reference to d2 –
this time via a different path.

To allow a safe transfer of sub-components, we introduce one
additional mode: free. By assigning a free-reference from o to
ω we state that ω belongs to a special part of o’s composite – its
movables. o has the right to transfer the sub-component represented
by ω to another aggregate. Note, that ω can be aliased by other
read references.

In section 7 we revisit this example and elaborate more on
transfer of sub-components.

3. Potential Access Paths and Composite Objects
During the execution of object-oriented programs, new objects are
created, old ones are destroyed and links between objects (through
which messages can be exchanged) are established. The run-time
system constitutes a graph with objects as nodes and references as
edges. If the programmer has the option of annotating references
with the previously introduced modes, these annotations will be
reflected in the graph.

Our tool in reasoning about composite object protection are
paths of references between two (not necessarily directly) con-
nected objects.

Paths in a graph are non-empty sequences π = h1, . . . , hn of
object references hi = oi

µi−→ ωi with oi+1 = ωi (also written
π = o1

µ1−→ o2 . . . on
µn−−→ on+1). Among all the possible paths in

a given graph, we are only interested in certain kinds, namely those
that allow us to make judgements about membership in composite

1 They are related to, but nevertheless different from ownership parameters.

objects. We already discussed in section 2 how to arrive at the
judgment for immediate paths of length one. Now let’s turn our
attention to paths that emerge from combination of two adjacent
edges. We first look at the following path: o

rep−−→ ω
co−→ ϕ. ω

belongs to o’s composite and therefore ϕ must also belong to o’s
composite (remember the intuition behind co). We could as well
imagine an inferred edge o

rep
99K ϕ in our graph. This inferred edge

tells us directly, that ϕ belongs to o’s composite. In contrast to
o

rep−−→ ω, o
rep
99K ϕ does not tell us if o has direct access to ϕ. But

potentially, o could obtain a direct access to ϕ if there is a method
of ϕ that returns this and if ϕ is propagated then to o as a result
of some ω method. Therefore we will refer to the inferred edge
o
rep
99K ϕ as a potential access path. As mentioned before, many of

the paths in the graph will convey no meaningful information about
composite object membership. From our perspective interesting
access paths are defined as follows:2

< o, µ, ω >∈ g

g `< o, µ, ω >∈ PAP (o, µ, ω)

g ` π1 ∈ PAP (o, µ, q) g ` π2 ∈ PAP (q, co, ω)

g ` π1 •π2 ∈ PAP (o, µ, ω)

For association modes with correlations we have the additional
rule:

g ` π1 ∈ PAP (o, µ〈. . . , α = µ′, . . . 〉, q)
g ` π2 ∈ PAP (q, α <>, ω)

g ` π1 •π2 ∈ PAP (o, µ, ω)

The modes rep (and free) not only decide about the composite
object membership, but also allow us to make statements about
the yet to be defined object ownership. If there is a reference
o

rep−−→ ω, then o is considered the owner of object ω (having
complete control about the changes to ω’s state). But the ownership
property can extend beyond objects reachable directly via rep-
references (consider the extensions via co- or α-references). We
formalize these concepts with the following definition.

DEFINITION 1. In a graph g we call an object o the owner of an
object ω iff there exists an ownership path from o to ω. The set of
ownership paths from o to ω is defined as follows:

Oshg(o, ω) = PAPg(o, rep, ω) ∪ PAPg(o, free, ω)

For each object o in g, the corresponding composite object is
defined as:

compositeg(o) = {o} ∪
[

Oshg(o,ω)6=Ø

compositeg(ω).

o is called the representative of the composite object. If ω ∈
compositeg(o) then o dominates ω.

In general it is possible that an object has more than one owner
in a given object graph. This is counterintuitive to our understand-
ing that the owner controls the changes to the state of objects in
its composite. We lose this exclusive control right, if an object has
more than one owner. It is desirable (and for our composite state
encapsulation property essential) that all objects in a given object
graph have a unique owner.

DEFINITION 2. We say that an object graph g has the Unique
Owner (UO) property, g � UO, iff ∀o, õ, ω . (Oshg(o, ω) 6=
∅ ∧ Oshg(õ, ω) 6= ∅)⇒ (õ = o).

2 For technical reasons, the PAP’s are determined in the object graph to
which inverses of all co-labeled edges are added

107



There might be more than one ownership path from o to ω, and
in case of rep-paths, two of these paths may start with different
references outgoing from o, e.g o

rep−−→ ψ
co−→ ω and o

rep−−→ χ
co−→

ϕ
co−→ ω. This is fine, as long as the owner is unique. The situation

changes in case of free paths. free-references were introduced to
allow safe transfer of sub-components (after destructive read). In
the previous situation when replacing rep with free we arrive at
following paths: o free−−→ ψ

co−→ ω and o free−−→ χ
co−→ ϕ

co−→ ω. We
still might have a unique owner of ω, but this is not enough. Even if
we read destructively the free-reference from o to χ, o will retain
another free access path to ω (via ψ) and it would not be safe
to pass this sub-component to another composite object. Here we
need a stronger property.

DEFINITION 3. We say that an object graph g has the Unique
Head (UH) property, g � UH , iff ∀o, õ, ω, h, π, h̃, π̃ .( h •π ∈
PAPg(o, free, ω) ∧ h̃ • π̃ ∈ Oshg(õ, ω̃)) ⇒ (h̃ = h ∧
mult(h, g) = 1).

UH tells us that if we have multiple free paths to an object ω,
the initial free-reference must be unique (thereafter we can have
multiple co-paths leading to ω). Under such circumstances, after
destructive read of the initial reference we are guaranteed that o
does not own ω anymore.

Both UO and UH are properties of the object graph at a frozen
point in time. When the graph changes, so might its compliance
with UO and UH.

When an object ω executes a method f , we can find in the object
graph a path of references through which a sequence of method
calls leading to the call of f took place. When the method f is a
mutator, the state of ω (and therefore the composite state of any
object o to whose composite ω belongs) might change. We expect
that o actually initiates the change. The next two properties help us
with it.

DEFINITION 4. The Representative Control (RC) property en-
sures that if ω (belonging to the composite object o) executes a
mutator, then this mutator execution is nested inside a mutator ex-
ecution on o. The Mutator Control Path (MCP) property ensures
that a mutator on an object ω is always invoked via a sequence of
calls along the edges of an ownership path to ω. 3

Notice, that o does not necessarily control the membership in its
composite object – through temporary rep, co or free references
in the execution of observers new paths can be established that add
an object to compositeg(o). Even though this addition is only tem-
porary, it is a change of compositeg(o) not necessarily controlled
by o. The desired state encapsulation property does not require us
to impose control on temporary additions since temporary mem-
bers cannot be used to represent the composite’s state. To represent
state, only a core of composite object’s members can be used that
remains in the composite between method invocations.

DEFINITION 5. For an object o, its state representation is defined
as:

strepg(o) = compositebg(o),

where bg ⊆ g is a subgraph containing references stored only in the
instance variables of objects. The composite state of an object o is
defined as

compStateg(o) =
[

ω∈strepg(o)

state(ω)

strepg(o) is a set of implementation objects which collectively
represent the composite object’s state by virtue of their shallow
states.

3 A formal definition of these properties can be found in [17]

At this point we state the main property of our system:

DEFINITION 6. The Composite State Encapsulation (CSE) prop-
erty ensures that if an execution step of a JaM program trans-
forms an object graph g into g′ such that compStateg(o) 6=
compState ′g(o) then o is executing a mutator.4

One of the features of our system is the ability to move sub-
components from one aggregate to another. The set of all objects
belonging to a composite object can be divided into two parts,
depending on the ability of the composite object to transfer these
objects.

DEFINITION 7. Fixtures is the subset of compositeg(o) that is
reachable via rep path sequences only:

fixturesg(o) =
[

PAPg(o,rep,ω)6=Ø

“
{ω} ∪ fixturesg(ω)

”
Movables, another subset of compositeg(o) is defined as:

movablesg(o) = compositeg(o) \ (fixturesg(o) ∪ {o})

Objects in fixturesg(o) can never be removed from the com-
posite object. movablesg(o) on the other hand contains objects,
which can be safely transferred between different agregates (via de-
structive read of free references). However, the transfer can hap-
pen only as sub-components and not as single objects.

DEFINITION 8. Let ω ∈ compositeg(o) and let ϕ be an object
such that g ` π ∈ PAP (ϕ, free, ω) for some path π. Then
compositeg(ω) is called a (movable) sub-component of o.

4. Mode Checking in JaM
So far we did not introduce the syntax of our language JaM (Java
with Modes). It is a fully orthogonal extension of a Java subset
that classifies object references by mode annotations. To reduce the
complexity of the formal treatment, we omit several nonessential
features (e.g. static methods, subclassing). The grammar of JaM is
defined below:

p ∈ P ::= D∗

d ∈ D ::= class C {(T Id; )∗ Meth∗}
f ∈Meth ::= K T Id((T Id)∗) {(T Id; )∗ S; return E}

κ ∈ K ::= mut | obs
t ∈ T ::= M C
µ ∈M ::= (rep | co | read | free | A)<∆>

δ ∈ ∆ ::= (A = M)∗

s ∈ S ::= S;S | V = E | if(E � E){S}
| while(E � E){S}

o ∈ � ::= == | !=
e ∈ E ::= val(V ) | destval(V ) | null<∆>

| new<∆> C() | E ⇐ Id(E∗)

v ∈ V ::= v | this.v

Notable difference from Java is the introduction of modes, marking
of methods as mutator or observer and the explicit read operations
(val and destval). All JaM programs stripped of their annotations
are legal Java programs. Java programs can be translated into legal
JaM programs by annotating all variable/parameter declarations
with co, declaring all methods as mut and introducing the explicit
non-destructive read operator val.

4 A more formal definition of CSE can be found in section 6
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In general, when executing JaM programs, the properties listed
in section 3 will not hold. We rule out illegal JaM programs with
the help of a mode-system, which is orthogonal to the standard Java
type-system.5 For space reasons we concentrate here on deriving
the correct modes for expressions. When checking method defini-
tions in the class c, we must verify that the method body is well
typed (moded) and the result is of the same type as declared in
the method signature. The verification of the method body happens
with respect to a type/mode assignment Γ. It is constructed by as-
signing to this the mode ref co, and by assigning to each local
variable/parameter with the type τ in the signature, the type ref
τ .6

The typing judgment Γ, κ ` e : τ expresses that term e is
legal inside a method of kind κ (mut or obs) and has static type
τ in the context of type assumptions Γ for local variables and
parameters. Selected rules for deriving types/modes in base-JaM
are given below:

Γ, κ ` ν : ref τ τ∗ = τ [free 7→ read]

Γ, κ ` val(ν) : τ∗

Γ, κ ` ν : ref free c ν = this.y ⇒ κ = mut

Γ, κ ` destval(ν) : free c

` c ok
Γ, κ ` new<δ> c() : free<δ> c

Γ, κ ` ν : ref τ Γ, κ ` e : τ ′ ` τ ′ ≤m τ
ν 6= this ν = this.y ⇒ κ = mut

Γ, κ ` ν = e : Cmd

Γ, κ ` e : µ c ` (f : τi
κ∗−−→ τ) ∈ Σ(µ c)

κ∗ = mut⇒ κ = mut ∧ µ 6= read

Γ, κ ` ei : τ ′i ` τ ′i ≤m τi

Γ, κ ` e⇐ f(ei) : τ

Non-destructive read of a variable ν is assigned the type τ of the
reference stored in that variable. But this works only if the mode of
the reference is rep, co or read. If the mode is free, we cannot
do it. The copy of that reference could be then stored in another
variable with the mode rep (as free can be converted to any other
mode) and the UH property would be violated. We do not want
to disallow a non-destructive read of free variables and therefore
change in such cases the resulting mode to read (which is always
safe).

We can destructively read only free variables (we would not
gain anything by allowing it for rep, co or read). There is no
restriction on reading local variables and parameters, but if the read
variable is an instance variable, we can do it only inside mutators
(we are setting the instance variable to nil, therefore modifying
the state of the object executing the method).

In the creation expression we decided to specify the correlation
set δ to be added to the free mode of its value. Although not
necessary, it simplifies the formal treatment.

Assignment to instance variables is legal only inside mutators.
Also, the mode of the value must be compatible with the mode of
the variable.7

5 We also disallow certain class of modes – see section 6
6 In the full formal system the set of types is extended to include ref τ , so
we can distinguish between values of type τ and variables that hold values
of that type. As ref types are not visible to the programmer, we excluded
them from the JaM syntax.
7 We have µ<δ> ≤m read<δ>, free<δ> ≤m rep<δ>, read<δ, α =
µ, δ′> ≤m read<δ, δ′> and read<α = µ> ≤m read<α = µ′> if
µ ≤m µ′. We elaborate more in section 6.

Method invocations e ⇐ f(e1, . . . , en) are rather tricky. As-
suming that f has the (mode) signature µ → µ̃ it is tempting to
return to the sender of a message f as a result reference with the
mode specified in the signature of f , namely µ̃. But what the sig-
nature of f tells us is merely the mode of the temporary reference
to the result that the receiving objects has. When this reference is
passed from the receiver to the sender, that mode might have to be
adjusted. Let’s consider the following situation:

n1

l

d1

n2 n3

d2 d3

co co

rep

n0

l

d0

n1 n2

d1 d2

co

repco    rep

co
✓

✗

n'
co

co✗

✓

Object l invokes next() on Node n1 which returns the co
reference n1 −→ n2. The reference l −→ n2 which l obtains must
not be a co reference, since n2 must be owned by l. The return of
the co reference can be better understood as the mode-preserving
shortening of two-reference path l

rep−−→ n1 co−→ n2 to a one-
reference path l

rep−−→ n2. Should, on the other hand, the node n1 call
next() on its co-object n2, then the returned reference’s mode is
not adapted, since the return simply shortens co path n1 co−→ n2 co−→
n3 to n1 co−→ n3. Analogously, the mode of references passed as
parameters has to be adapted: If l has created a new Node object n0
in its composite (to be included in the list structure), then it should
supply to n0’s setNext operation (expecting a co reference) one
of its rep references, namely l

rep−−→ n1, and not a reference l co−→ n’
to a node that is a co-object in the same composite as l.

Consequently, two notions of signatures have to be distin-
guished:

Exported signatures The interfaces which all instances of a class
c export have a signature Σ(c) defined by the class. Its entries
f : µi di → µ d specify the types of the parameter values
which implementations of operation f expect to receive, and the
type of the result values which they ensure to produce. Against
this signature, the operations’ implementations in class c are
type-checked.

Imported signatures The interfaces which senders import through
µr-references to c-objects have the signature Σ(µrc) with
modes from c-objects’ signature Σ(c) adapted relative to call-
link mode µr . Its entries f : µr ◦ µi di → µr ◦ µ d specify the
types of the parameter values which the sender must ensure to
supply, and the type of the result values which the sender can
expect to obtain.

The method invokation rule type checks against the imported
signature. The following rule provides us with the imported sig-
nature of a class c relative to the call link µr (here we show the
simplified rule for modes without correlations):

` (f : µi di
κ−→ µ d) ∈ Σ(c)

µi 6= rep µi = co⇒ µr 6= read

` (f : µr ◦ µi di
κ−→ µr ◦ µ d) ∈ Σ(µr c)

How do we read this rule? Our system disallows rep as param-
eter mode and permits calling of methods with co parameters only
via references that are not read. If the call over the µr link is legal,
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the sender must supply an argument of mode µr ◦ µi (not just µi).
The returned reference is viewed by the sender as µr ◦ µ (and not
µ). The adaptation, called the import of µ through µr and written
µr ◦ µ, is defined as follows:

µr ◦ read<α = µ> = read<α = µr ◦ µ>
µr ◦ free<α = µ> = free<α = µr ◦ µ>
µr ◦ rep<α = µ> = read<α = µr ◦ µ>
µr ◦ α<> = µ′ if µr = µ<α = µ′> .

Let’s verify the plausibility of these definitions with respect to
the result µ̂-reference returned via a µr-reference (we leave out
correlations for now):

• µ̂ = read: The receiver returns a read reference and therefore
does not know anything about the targets owner. Without this
information, the sender can accept it only as a read reference
– any other choice would be unsafe. This is what µr ◦ read =
read gives us.
• µ̂ = free: The sender can safely accept a free reference from

the receiver as free, since it was the unique initial segment of
ownership paths to all co-objects reachable through it, and all
these old ownership paths are destroyed by the removal of the
receiver’s free handle from the graph (via destructive read).
µr ◦ free = free does it.
• µ̂ = rep: If the receiver returns a rep reference, the receiver

may still possess further rep handles with the same target, and
thus remain the target’s owner. Hence the sender cannot accept
the handle as free or rep without risking a violation of unique
ownership. Accepting it as co would make the sender a co-
object of the target, and thus also owned by the receiver. This
might raise a uniqueness conflict with any old owner of the
sender. Only read is safe and µr ◦ rep = read gives us the
right mode.
• µ̂ = co: If the returned reference is co, i.e., points to the

receiver’s co-object, the sender best accepts it with the mode
µr of the call-link: If µr is rep or free, then the sender already
had an ownership path to the target by concatenation of the
call-link and the receiver’s co handle. Hence it is reasonable
to shorten it to a direct µr handle. In case of free, the accepted
reference will replace the unstored free call-link as the unique
initial edge of free ownership paths to the receiver and all
its co-objects. If µr is co then sender and target were already
co-objects through the call-link and the handle of the receiver,
so that a direct co-handle is safe. And if µr is read then the
accepted handle can only be read, since a read call-link gives
the sender no information about the receiver’s owner. Again
µr ◦ co = µr is the right choice.

Similarly we consider the parameter passing mechanism. The
receiver of a method expects a parameter of mode µ̂. The sender
passes µ̃ argument over µr-reference. The call rule tells us that µ̃
must be compatible with µr ◦ µ̂. Is it sensible?

• µ̂ = read: A parameter of mode read means that the receiver
makes no assumptions about the target’s place in the object
graph. Hence the sender can supply references of any mode and
any mode is compatible with read = µr ◦ read.
• µ̂ = free: If the receiver expects a free parameter then

only free references of the sender (which are destroyed in the
call step) can guarantee the necessary uniqueness of the initial
ownership path segments. µr ◦ free = free does the trick.
• µ̂ = rep: If the receiver expects a rep-reference then a ref-

erence to an object in the receiver’s composite object must be
passed. However, no mode on sender’s reference can guaran-

tee that the target is in the receiver’s composite. Hence methods
with rep parameters are disallowed.
• µ̂ = co: A parameter of mode co means that the receiver

expects a handle to an object with the same owner as itself.
If the call-link is of mode µr = read then the sender has no
information about the receiver’s owner and thus cannot know
which handle’s target would have the same status. This situation
is disallowed by the typing rule. The other call-links provide
us with enough information about the owner of the receiver.
If the call-link is of mode µr = co, then sender and receiver
have both the same owner. Therefore it is safe to pass a co-
reference (the object at its end has again the same owner). And
if the call-link is of mode µr = rep or free then respectively,
rep or free handle of the sender guarantees that receiver and
target have the same owner, namely the sender. In all three cases
µr ◦ co = µr does the trick.

Notice that we are also required to recursively import the modes
”hidden” in the correlations. A related discussion can be found in
[17].

5. Operational Semantics
The formalization of the execution of JaM programs is provided
in the style of small-step semantics. We take the standard ap-
proach, where transformation of program terms (e, ~η, s, om) →
(e′, ~η′, s′, om′) is defined in the following three contexts: a dy-
namic stack ~η of environments ηi ∈ Env that maps local identi-
fiers to locations, a changing store s ∈ Store that maps locations
` ∈ Loc to values currently at these locations and a growing object
map om ∈ Omap that maps identifiers o ∈ O of created ob-
jects to object ”values”: tuples of field environments ρo (mapping
field names to locations), and method suites Fo (mapping operation
names to methods).

The reduction steps are the expected ones, but we include three
non-standard features specifically for accommodating reasoning
about composite objects:

• We formalize reference values as so-called handles: A handle
is not just the object-identifier ω of the target object, but a triple
h =< o, µ, ω > which also includes the identifier o of the
source object and the mode µ of o’s reference to ω.
• We record call-links (references through which method invoca-

tions are made) in the computational state (as annotations to the
stack environments)
• Object graph is included (and manipulated) as an explicit fourth

context g of the term reduction rules.

The meaning of program p as a computational process is for-
malized now as a sequence of reduction steps (e, ~η, s, om, g) =⇒
(e′, ~η′, s′, om′, g). The transformations starts with the expression
new<> cn()⇐main() in the initial context (η0, s0, om0,g0) =
(∅obs<nil,read,nil>, ∅, ∅, ∅). Each reduction step replaces in the term
e one subterm, the redex, by another term. In particular, locations
` ∈ Loc are substituted for identifiers x (using η) and for field
names this.x (using ρthis). Values of variables are substituted for
read access expressions (using s) and method bodies are substituted
for operation call expressions (using om). Through these substitu-
tions, the transformed terms are not just the statements and expres-
sions of the program syntax, but belong to the larger categoryR of
runtime terms.8

The sources in all handles in the store and the runtime term
should coincide with the object to which the corresponding store
location or method nesting level belongs (source consistency). At

8 Detailed syntax forR can be found in [17]
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locations ` = ρo(x) of fields x of object o, we expect to find
only handles s(`) = h whose source is o. Then the object-map
is source consistent, in symbols, |=s om. Analogously, at locations
` = ηi(x) of local variables and parameters x in environments ηi of
invocations with receiver r , we expect to find only handles s(`) =
h whose source is r . Then the environment is source consistent,
|=s η. And at all method nesting levels in the runtime term e
with corresponding receiver r , we expect to find only handles h
with source r , and locations ` containing handles s(`) = h with
source r . If this is the case the runtime term is source consistent, in
symbols, |=s,η e.

We split the definition of reduction steps into two complemen-
tary aspects. On one side are sub-terms that can be completely sub-
stituted in one step to a new term. This substitution will be captured
in redex replacement rules (e, ~η, s, om, g) −→ (e′, ~η′, s′, om′, g).
On the other side we must select a suitable sub-term for the next
substitution. This selection can be conveniently specified with the
help of a reduction context. A reduction context E is a runtime term
”with a hole” symbolized by ‘�’. A complete runtime term ê =
E [e] is obtained by filling a term e into the hole. Reduction steps
are then written (E [e], ~η, s, om,g) =⇒ (E [e′], ~η′, s′, om′,g′) and
performed according to the following reduction rule:

E ∈ R� (e, ~η, s, om, g) −→ (e′, ~η′, s′, om′, g)

(E [e], ~η, s, om,g) =⇒ (E [e′], ~η′, s′, om′,g′)

A selection of redex replacement rules is given below.

s(l) =< o, µ, ω > µ′ = µ[free 7→ read]
(val(l), ~η, s, om, g)

−→ (< o, µ′, ω >, ~η, s, om, g⊕ o µ′−→ ω)

s(l) =< o, µ, ω >
(destval(l), ~η, s, om, g)
−→ (< o, µ, ω >, ~η, s[l 7→< o, µ, nil >], om, g)

h =< s, µ, r > ` V arMths(c) = 〈{xi : ref ti}, F 〉
fresh o ∈ Oc fresh li ∈ [[ref µi ci]]
ρ = {xi 7→ li} hi =< o, µi, nil >

(new<δ> c(), ~η • ηκh , s, om, g) −→
(< r, free<δ>, o >, ~η • ηκh , s[li 7→ hi],

om[o 7→< ρ, F >], g⊕ r free−−−→ o)

r ∈ Oc om(r) =< . . . , F >

F (f) = κ∗ τ f(µi ci yi){µ′j c′j z′j ; s; return e}
fresh l ∈ [[ref co c]] fresh lyi ∈ [[ref µi ci]]
fresh lzi ∈ [[ref µ′i c

′
i]]

η̂ = {this 7→ l, yi 7→ lyi , zj 7→ lzj }
s′ = s[l 7→< r, co, r >, lyi 7→< r, µi, oi >,

lzj 7→< r, µ′j , nil >]

g′ = g	 s µ”−→ oi ⊕ r
co−→ r ⊕ r µi−→ oi

(<s, µr, r>⇐ f(< s, µi”, oi >), ~η, s, om, g) −→
(� s; return e�, ~η • η̂κ

∗
<s,µr,r>, s

′, om, g′)

l ∈ Locµ c
(l =< o, µ̃, ω̃ >, ~η, s, om, g) −→
(ε, ~η, s[l 7→< o, µ, ω̃ >], om, g	 o µ̃−→ ω̃ 	 s(l)⊕ o µ−→ ω̃)

(s′ = s[l 7→ ⊥ | l ∈ im(η̂)]

g′ = g⊕ s µr◦µ−−−→ ω 	 s µr−−→ r 	 r µ−→ ω 	 s(im(η̂))

� return<r, µ, ω>�, ~η • η̂κ
∗
<s,µr,r>, s, om, g) −→

(<s, µr ◦ µ, ω>, ~η, s′, om, g′)

Below we provide the rationale for the given semantics rules
(explanation for graph modifications is provided separately):

• Non-destructive read access val(l) copies the value from the
store (at location `) to the runtime term (at the redex position).
This value is always a handle < o, µ, ω >. In case of a free
handle, an exact copy would immediately violate UH. The copy
is safe if its mode is weakened to read.
• Destructive read access destval(l) evaluates to the value at

location `, but resets the store at ` to a nil-handle.
• An object creation expression instantiates the class c to a new

object with a fresh object-identifier o . It evaluates to a free
handle from the current (creator) object r to the new object o .
Instantiating c also involves the initialization of fresh locations
`i of respective types ref µi ci, to nil-handles with source
o and modes µi. Furthermore o is mapped to an object value
< {xi 7→ li}, F >.
• A method invocation is executed after all its subexpressions, ar-

guments and the receiver have evalueted. The execution contin-
ues with the body� s; return e�. The newly created en-
vironment contains this, parameters and local variables. They
are bound to fresh locations of corresponding ref-types. These
locations are initialized to: a handle to the receiver (of mode
co), argument expression values adapted to the parameters’
modes, and nil-handles of the local variables’ modes.
• An assignment statement is executed after the left-hand side

has reduced to a location ` and the right-hand side to a value
< o, µ′, ω′ >. It updates the store at ` to the handle with the
mode adapted according to the location’s store partition.
• A return statement is executed after its return expression

has evaluated to a result handle. Evaluation continues in the
environment ~η with the result handle adapted to the calling
context, i.e., with the sender as the new source and with a
mode adapted to the sender’s perspective. The current top-level
environment is removed from the stack and the locations of the
names in it (parameters, locals, and this) are removed from the
store.

The object graph is formalized as a multiset g ∈ NO×M×O of edges
whose multiplicity represents the number of the corresponding han-
dlesoccurrences in s, η, or e. The multiplicity of edges is increased
and decreased in accordance with the addition and removal of han-
dles to/from e, η and s.

We will examine now some of the graph transformations during
different reduction steps.

• Non-destructive read increases the multiplicity of the handle
h =< o, µ′, ω >. This models the redex’s substitution to h,
which increases the number of h’s occurences in the term.
• Destructive read of a (free) variable leaves the object graph

unchanged: The new occurence of handle h =< o, µ, ω > in
the term is balanced by removing one occurence from the store.
• New object creation adds creator object r ’s initial reference to

the new object ω to the object graph: g′ = g⊕ < r , free, ω >.
This models the redex’s substitution to < r , free, ω >.
• Method invocation equips the receiver with a new this refer-

ence < r , co, r > and with a parameter handle < r , µi, ωi >
for every argument handle < s , µ′′i , ωi > supplied by the
sender. That is, the multiplicity of < r , co, r > and edges
< r , µi, ωi > increases, while that of edges < s , µ′′i , ωi >
decreases. This matches the arguments’ disappearance from the
term and the parameters’ and the this-reference’s appearance
at fresh locations in the store. The call-link < s, µr, r > is
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not changed. Its disappearance from the term is balanced by its
occurence in the new top-level environment.
• Variable update converts a handle < o, µ̃, ω̃ > to < o, µ, ω̃ >,

i.e., decreases the multiplicity of the first handle and increases
that of the second one. This matches, respectively, the disap-
pearence of the right-hand side handle < o, µ̃, ω̃ > from the
term and the appearance of the handle < o, µ, ω̃ > at location
` in the store. Additionally, the multiplicity of the old handle
< o, µ, ω > at location ` decreases since the update at location
` overwrites it.
• Method return combines the call-link < s , µr, r > and the

return handle < r , µ, ω > to the edge < s , µr ◦ µ, ω > in
the sender, i.e., the former two edge’s multiplicity decreases
while the latter one’s multiplicity increases. This matches the
appearence of < s, µr ◦ µ, r > in the runtime term and the
disappearence of handle < r , µ, ω > from the term and of
call-link < s, µr, r > (together with the finished invocation)
from the environment stack. Additionally, since the locations
of the finished invocation’s variables in the store are reset, the
multiplicities of all (non-nil) handles lost by this are decreased
to keep the object graph in sync.

For the implementations of the JaM language, no representation
of the object graph at runtime is needed. The graph has no impact
on the computation and is invisible from outside of the program.
It can actually be calculated from the other run-time contexts. We
included it in the rules to make the nature of transformations more
obvious.

6. Verifying Run-Time Properties
The reduction rules are a tool that enables us to establish the
properties that we expect to hold during execution of legal JaM
programs. (In the following, e0 = new<> cn()⇐main(), is the
initial expression of a legal program p.)

The ownership paths in all object graphs reachable in the execu-
tion of legal JaM programs satisfy the Unique Owner and Unique
Head integrity invariants.

THEOREM 1. If (e0, ~η0, s0, om0,g0) =⇒∗ (e, ~η, s, om,g) then

g |= UH,UO

The structure of mutator access as recorded in the environment
stack during the execution of legal JaM programs is always con-
sistent with ownership paths as captured in the integrity invariants
Representative Control and Mutator Control Path.

THEOREM 2. If (e0, ~η0, s0, om0,g0) =⇒∗ (e, ~η, s, om,g) then

g, ~η |= RC and g, ~η |= MCP

The following theorem is the main result, which establishes the
Composite State Encapsulation property.

THEOREM 3. Let (e0, ~η0, s0, om0,g0) =⇒∗ (e, ~η, s, om,g) =⇒
(e′, ~η′, s′, om′,g′). Then for all o ∈ dom(om):

compStateg(o) 6= compStateg′(o)

⇒ ∃i ≤ n• ri = o ∧ κi = mut,

where ~η = η1
κ1
h1
, . . . , ηn

κn
hn

with hi =< si, µi, ri >.

The theorem simply states that if a state of a composite object
(represented by o) changes, then the representative o is executing a
mutator.

The proofs for the first two theorems are by induction on the
number of reduction steps from e0 to e. Once we establish these
properties (plus several helpful lemmas), the proof for Composite
State Encapsulation is straightforward.

Complete set of proofs for JaM and base-JaM (without associ-
ation modes and correlations) can be found in [17]. Although of-
ten tedious and lengthy, proving these results in base-JaM is fairly
manageable. Things change, when introducing association modes
with correlations. While the formal treatment of many JaM prop-
erties is a simple forward adaptation from base-JaM, the proofs of
the unique owner and unique head invariants must be redone com-
pletely. Potential access paths in JaM have much more complicated
structure than in base-JaM. The possibility of extending µ-paths to
non-µ paths is the culprit. We were forced to restrict permissible
association modes and their correlations.

• We don’t consider extensions o co99K q
α99K ω and o

α′99K
q

α99K ω of co- and association paths by association paths.
Also the extension o µ99K q α99K ω of potential access paths by
association paths to co- and free paths o co99K ω and o free9999K ω
is disallowed. This simplification is reflected in constraints on
the nesting structure of mode-terms. Only modes free, rep and
read are parameterized by correlations (free<δ>, rep<δ>
and read<δ > are legal, but co<δ > and α< δ > are not).
Also, only correlations to rep, read and association modes are
permitted (µ<α = rep< δ >>, µ<α = read< δ >> and
µ<α = γ<>>).
• Implicit mode-conversions from free<> to co<> or α<>

caused by assignment or parameter passing is disallowed. (Te-
dious invariants about all sequences of association paths start-
ing from targets of free<> paths are needed in order to show
that such conversions preserve the uniquness of ownership.)
This simplification is reflected in the definition of the mode
compatibility relation ≤m.

At this point we want to comment on the sub-mode rules introduced
in section 4. There we constrain the width- (more or fewer corre-
lations) and depth- (correlations with compatible modes) compati-
bility between modes. Without this restriction it would be possible
for an object to convert read references to rep. We could weaken
a rep<data=rep<>> reference to ω to a rep<data=read<>> ref-
erence. Through this reference the source could store a read ref-
erence in ω as a data reference and read it back through the
original reference as a rep. The same scenario can be set up
using width-compatibility. Two distinct rep<data=rep<>> and
rep<data=read<>> references to ω could be converted to the
same mode rep<> and then linked by a co-reference. By read-
ing it back through the original references the source can obtain,
as with depth-compatibility, a rep<data=rep<>> reference and
a rep<data=read<>> reference to the same object. Depth- and
width- compatibility in JaM’s type system exists only between
readmodes. The readmodes are compatible because through con-
verted read references nothing can be stored in the target (since
only observers can be called on the target).

7. The Set Example Revisited
We take a look now at concrete implementation of our Set compos-
ite object. The relevant interfaces are: Iterator<T>, List<T> and
Set<T>. The types of variables, parameters and results are prefixed
by our mode annotations (e.g. rep Node<T>).9 We don’t show val

9 Although generic types are not part of our syntax, we use them in the
example. This does not really affect our system, as the mode annotations
are completely orthogonal to the standard Java types.
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and destval in our code.10 We also use void methods, which are
not declared in our syntax.11

interface Iterator<T>{
void step();
dest T current();

}

interface List<T>{
void add(lst-elem T e);
void remove(read T e);
lst-elem T contains(read T e);
free<nit-dest=lst-elem> Iterator<Node<T>>

getNodeIter();
}

interface Set<T>{
void add(set-elem T e);
void remove(read T e);
set-elem T contains(read T e);
free<dit-dest=set-elem> Iterator<T>

getDataIter();
}

Inspecting the add method of the List<T> interface we see,
that to add an element to a List, we must supply an element that has
the same composite membership as the other list elements. Notice,
that we are not saying anything about what the membership will
be (e.g in the composite of the list object itself or in some other
composite). This will depend on the context in which List<T>
instantiations are used. The contains method tells us, that when
we look for an element in the list, we can supply any element
without worrying about its composite membership. But if we find
this object, we return it with the information that it belongs to
the same composite as all other list elements. The getNodeIter
method returns an iterator that can be passed to other components
(this is the meaning of free). At the same time we specify that this
iterator’s destination is in the same composite as the list elements
(this is what the correlation <nit-dest=lst-elem> tells us). In
the case of the Set<T> interface we can extract similar information:
we can only add elements that belong to the same composite as all
the other set elements. The set iterator can again be passed to other
components, and the iterator’s destination is in the same composite
as all the set elements.

The List abstract object will be implemented with objects of the
class Node<T>:

class Node<T>{
co Node<T> next;
data T value;

void setNext(co Node<T> n){
this.next = n;

}

void setValue(data T p){
this.value = p;

}

co Node<T> getNext(){

10 The compiler can deduce, based on the context, which read operation
should be used.
11 We can view them as syntactic sugar for methods that return this as
result and assign it right back to the variable trough wich the method was
invoked. This is particularly helpful, if we try to send mutators over free
references without losing them.

return this.next;
}

data T getValue(){
return this.value;

}
}

Here we notice that the next link points to an object in the same
composite as the referring node (co Node<T> next). The values
stored in our nodes belong to some yet unspecified composite data.
The signature of the setNext method tells us, that we must provide
an object belonging to the same composite as the node executing
that method.

Next we implement a node iterator, that allows us to traverse
nodes contained in some structure:

class NodeIt<T> implements Iterator<Node<T>>{
nit-dest Node<T> curnode;

void startAt(nit-dest Node<T> n){
this.curnode = n;

}

void step(){
this.curnode = this.curnode<=getNext();

}

nit-dest Node<T> current(){
return this.curnode;

}
}

Here the iterrator points to a current node that belongs to some
composite nit-dest. To set up the initial point of the node traver-
sal, we need to supply a node that belongs to that nit-dest com-
posite.

We use the node iterator to implement an iterator DataIt<T>
that traverses not the nodes themselves, but the values stored in the
nodes:

class DataIt<T> implements Iterator<T>{
rep<nit-dest=read<data=dit-dest>>

Iterator<Node<T>> nIt;

void wrap(free<nit-dest=read<data=dit-dest>>
Iterator<Node<T>> newnIt){

this.nIt = newnIt;
}

void step(){
this.nIt<=step();

}

dit-dest T current(){
dit-dest T res;
if (this.nIt<=current() != null){

res = this.nIt<=current()<=getValue();
}
return res;

}
}

This iterator ”wraps” the node iterator. It puts the internal node
iterator nIt into the composite controlled by the data iterator (the
base mode rep does it). Any changes to the state of nIt can only be
initiated on data iterator’s instigation. At the same time we specify
that we don’t expect any information about nit-dest composite
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(setting <nit-dest=read<...>> says exactly this). The method
current returns objects in dit-dest composite.

Now we are ready to direct our attention to the List implemen-
tation:

class ListImp<T> implements List<T>{
rep<data=lst-elem> Node<T> anchor;

void add(lst-elem T e){
rep<data=lst-elem> temp;

temp = anchor;
this.anchor = new<data=lst-elem> Node<T>();
this.anchor<=setData( e );
this.anchor<=setNext( temp );

}

void remove(read T e){
...

}

lst-elem T contains(read T e){
...

}

free<nit-dest=rep<data=lst-elem>> Iterator<T>
getNIt(){

free<nit-dest=rep<data=lst-elem>> NodeIt<T>
nIt;

nIt = new<nit-dest=rep<data=lst-elem>>
NodeIt<T>()<=startAt(this.anchor);

return nIt;
}

}

The anchor points to the initial node that is put into the
list’s composite (via rep). Concurrently we specify that objects
in that node’s data composite belong to list’s lst-elem compos-
ite. getNIt provides a node iterator over the node structure. The
iterator belongs to List’s movables (free mode) and therefore can
be safely passed to other composite objects (e.g the SetImp<T>).
Also, the iterator’s destination objects (the nodes) belong to list’s
composite (via rep).

The remaining part of the puzzle is the SetImp<T> class imple-
mentation:

class SetImp<T> implements Set<T> {
rep<lst-elem=set-elem> T entryList;

void add(set-elem T e){
if (entryList<=contains(e) == null){

entryList<=add(e)
}

}

set-elem contains (read T e){
return entryList<=contains(e)

}

void remove(read T e){
entryList<=remove(e)

}

free<dit-dest=set-elem> Iterator<T> getDIt(){

free<nit-dest=read<data=set-elem>>
NodeIt<T> nIt;

free<dit-dest = set-elem> dIt;

nIt = entryList<=getNIt();
dIt = new<dit-dest=set-elem> DataIt();
return dIt<=wrap(nIt);

}
}

The Set is implemented with the help of a List component. The
list is put into set’s composite, so only the set can make changes
to list’s structure. Even if some other objects have references to the
nodes, they cannot send setNext() to them. The list elements (in
the composite lst-elem) end up in the composite set-elem.

In the following code we define the class OnlineLottery
that holds both, the winning numbers and the players’ registra-
tions. winningNumbers are in OnlineLottery’s composite and
therefore cannot ever be transferred to another composite object.
playersReg on the other hand is part of OnlineLottery’s mov-
ables and can at any point be ”sold” to another ”lottery enterprise”.

class OnlineLottery {
rep<set-elem=rep> SetImp<NUM> winningNumbers;

free<set-elem=reg> SetImp<REG> playersReg;

free<dit-dest=rep> Iterator<NUM> getWinIt(){
return winningNumbers<=getDIt();

}

free<dit-dest=reg> Iterator<REG> getRegIt(){
return playersReg<=getDIt();

}

void newDraw() {
rep<dit-dest=rep> Iterator<T> internalIt

= this<=getWinIt();

while (internalIt<=current() != null) {
internalIt<=current()<=setNum(random);
internalIt<=step()

}
}

free<set-elem=reg> SetImp<REG> sellRegSet() {
return destval(playersReg);

}

read<set-elem=reg> SetImp<REG> exposeRegSet() {
return val(playersReg);

}
}

OnlineLottery class provides two iterators getWinIt() and
getRegIt(), which either iterate other the set of winning num-
bers or the set of registrations. The getWinIt() iterator, when
used internally (e.g. in the newDraw method), returns rep refer-
ences that can be modified. When requested by an external client,
the exported mode is adapted to free<dit-dest=read> allowing
only read acces to the numbers.12 Player’s registrations belong to
some composite reg and therefore getRegIt() iterator returns
immutable references to an OnlineLottery object. On the other
hand, clients that own reg, will receive mutable references from
getRegIt().

12 See the import operation in section 4
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Our OnlineLottery objects can sell the registration set,
playersReg, to another gambling provider. Notice the destval in
sellRegSet. The new owner can modify the sellRegSet (adding
and removing registrations), but cannot change the content of any
registrations (only the owner of the reg composite can). We can
also expose the playersReg set, but the value of such operation is
not clear here (the set cannot be modified - we can only obtain an
iterator from such set, which is identical to the iterator obtained via
getRegIt()).

If we want the OnlineLottery to own both, the list of reg-
istrations and the registrations themselves and later on transfer
the ownership of the list and the registrations to another provider,
we might be tempted to declare playersReg with the mode
free<set-elem=free>. Unfortunately we cannot do it – our sys-
tem does not allow it. We simply cannot guarantee the unique-
ness of the references to the set elements (e.g. we could repeat-
edly call observers that return ”free” references to the same set
element and every-time store them in a different free variable
of OnlineLottery). To make the described transfer feasible, we
would need to modify the Node class. The mode of value needs
to be change to free. The OnlineLottery (or playersReg set)
owns now the registrations indirectly through the nodes, which
are the direct owners of the registrations). The DataIt must be
changed now as well, returning a read reference (via val – not
destval).

8. Related Work
Blake and Cook were the first to characterize the problem of com-
posite object encapsulation [4]. They warned that the common
handing out of references to part objects enables clients to mod-
ify them in a way violating the integrity of the whole.

The Islands approach [11] proposes three techniques for mak-
ing object interaction more predictable: the observer/mutator dis-
tinction, the uniqueness of certain references and the isolation of
specific regions in the object graph (Islands). The work also con-
tributes a system of access mode annotations with read, unique
and free. read references cannot be assigned to variables but they
can be bound to parameters. Island’s free indicates references to
whose target no other reference exist. unique is a variation on
free with temporary aliases. Only un-captured references are al-
lowed in or out of Islands. They must be either read or aliases of
unique.

Flexible Alias Protection (FAP) [15] is another approach to-
wards encapsulation of composite objects. FAP addresses the cou-
pling caused through sharing of mutable state by a two-pronged
strategy: the absence of all inbound references into composite ob-
jects representation and the independence of container objects from
their contents’ state. It is the first system to introduce the rep mode,
which describes references from an object to its state-representing
components. The ability to specify rep references by some kind of
annotation is fundamental to nearly all typing disciplines for com-
posite object encapsulation. FAP also introduces association roles
α, for a user-defined classification of object references according
to different semantic roles.

Ownership Types (OT) [8] was the first system of composite ob-
ject encapsulation presented with complete formal definitions (typ-
ing rules, interpretation of annotations, encapsulation property) and
a proof sketch. The authors introduced the graph-theoretical notion
of dominator to define the relaxed hiding policy of representation
containment. The concept of co references was introduced in OT
(under the name owner). The authors also observed the importance
of co for the proper typing of this. α roles from FAP reappear
here as context parameters to the class. Like any hiding policy, OT
excludes iterators and other common patterns. Some of the OT de-
scendants and variations are [6], [5], [1], [12] and [16].

The Calculus in [9] is an ambitious foundational work on the
isolation of regions in the object graph with several technical in-
novations. The OT system is generalized to cover the missing lan-
guage features and make it more flexible. The formalization is done
with the help of an object calculus. The decisive step towards more
flexibility was to loosen the connection between the structure of
object composition and the nesting of protection domains, the own-
ership contexts.

Universes [14] is the first technique that enforces a policy of
encapsulation without hiding. Universes simplify OT by replacing
OTs problematic context parameters by runtime ownership checks.
Universes prevent flexible object creation and composition by fix-
ing new objects owner always to their creator.

AliasJava [2] is characterized as a capability-based system.
It combines aliasing annotations with ownership annotations. It
makes aliasing patterns explicit and enforces a relaxed hiding pol-
icy. The authors are the first to develop a constraint-based algorithm
for inferring the new annotations, and the first to report on the us-
ability of their system for real-world software like Java’s standard
library. A drawback of AliasJava is its need to represent ownership
parameters at runtime.

The work most closely related to ours is [13] and [10] (the later
evolved from [14]). [13] introduces a novel type system ”Effective
Ownership Types” (EOT). Each method definition is provided with
effective owners. A method owned by o can only update objects
with an owner that dominates o. The ownership tree is established
in the same manner as in OT. The static type system tracks down
the unsafe mutations. As in our system, object references and non-
mutating access are unrestricted. OT system is a special case of
EOT, where all methods belong to the owner of the defining object.
Unlike in our system, mutator calls via inside-out references are
permitted. EOT also can express mutating iterators. Such iterator
carries a reference to its collection object and can therefore add and
delete elements by making calls on the collection’s interface. This
is not possible in our system. Our system allows the safe transfer of
sub-components (inside the movables) from one composite object
to another. In EOT the owner of an object is fixed for its lifetime
and transfer of sub-components is not possible.

Transfer of ownership has been first described in [7]. The au-
thors introduce the concept of ”external uniqueness”. Here unique
describes the only reference into an aggregate from outside the ag-
gregate. Internal aliases to a unique reference are permitted. The
authors work in the owner-as dominator setting. In JaM, free ref-
erences can have arbitrary read aliases and the free reference as
well as its aliases can be captured in variables.

Ownership transfer is not possible in the Universe Types system
[14], [10]. As in our system read-only references (or any in [10])
are allowed to cross the boundary of encapsulation. In both cases
modification of objects through such references is disallowed. [14]
cannot produce iterators that deliver mutable objects (a dynamic
downcast from read to rep is required). This has been rectified
in [10]. The Viewpoint Adaptation in [10] is closely related to our
Signature Import. In our system we have to deal additionally with
free modes. Without them Viewpoint Adaptation and Signature
Import appear almost identical.

9. Conclusion
We presented the Potential Access Path methodology as a toll to
reason about composite objects and their state. The main technical
result of this paper is the Composite State Encapsulation property
– a guarantee that modifications to composite object’s state are
controlled solely by its representative.

Our system enables the definition of nested composite objects
with a complex internal structure, their observation through exter-
nal iterator objects, their incremental construction, and their trans-
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fer across abstraction boundaries. It is a purely static system in
which container objects and their iterator objects can each be en-
capsulated individually (state-protected from one another).

The flexibility of our system results from a novel weak unique-
ness property for reference paths. That property generalizes the
standard notion of free or unique references (which are not aliased
by any references). We believe that our system is one of the first to
combine object-as-modifier discipline with transfer of ownership.

In our system all ownership information is removed from ob-
jects. This should mitigate the loss of ownership information prob-
lem in subclassing. The association modes (or roles) are not place-
holders for reference target’s owner, but uninterpreted type tags on
object’s references. The available roles are not limited by a param-
eter list, nor by the references targeting it. Our system allows the
bottom-up construction process, in which sub-objects are created
before their owners.
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