Simple and Flexible Stack Types

Frances Perry Chris Hawblitzel =~ Juan Chen
Princeton University Microsoft Research
frances@cs.princeton.edu {chrishaw, juanchen}@microsoft.com
Abstract by reference [12]. By contrast, SST has a simple decision proced-

re, making it easy to use in an intermediate language. It expresses
y-reference arguments, even when multiple references point to the
same aliased location. It is provably type-safe, via standard pre-
aervation and progress lemmas. Finally, SST is simple and elegant
§nough to be a trustworthy component of a typed assembly lan-

Typed intermediate languages and typed assembly languages fOlg
optimizing compilers require types to describe stack-allocated data.
Previous type systems for stack data were either undecidable or
did not treat arguments passed by reference. This paper presents
simple, sound, decidable type system expressive enough to suppor
the Micro-CLI source language, including by-reference arguments. 94a9€- . . .

This type system safely expresses operations on aliased stack loca-, 1° represent stacks in the presence of aliasing, SST builds on

. : . ! : . Ideas from stack-based TAL [12], alias types [18], and linear lo-
tions by using singleton pointers and a small subset of linear logic. gic [6, 19]. Section 2 discusses these systems and related systems in

. more detail. Sections 3 and 4 introduce SST's types and instructions

1. Introduction formally. Section 5 describes a translation from the Micro-CLI [9]
Java and C# are safe, high-level languages. The safety of JavaSOurce language to SST, demonstrating SST’s expressiveness. Sec-
and C# protects one program from another: safe applets cannotion 6 concludes.
crash a browser, safe servlets cannot crash a server, and so on.
The high level of abstraction makes programming easier, but makesy Background and Related Work
compilation more challenging. Java and C# require sophisticated )
optimizing compilation to achieve performance competitive with Stack-based TAL (STAL) was the first TAL to support stacks. Its
programs written direcﬂy inCor assemb|y |anguage. Centl’al |dea, Shared by SST, WastaCk typeWh|Ch SpECIerS the

Unfortunately, a large, complex compiler is likely to have bugs, known types of values on the stack at any pointin a TAL program.
and these bugs may cause the compiler to produce unsafe assemblyor example, the STAL stack type “intint :: p” specifies that two
language code. Proof-carrying code (PCC) [14] and typed assemblyintegers live at the top of the stack, but all types deeper in the stack
language (TAL) [13] solve this problem by verifying the safety of ~are unknown, specified only by the stack type varighle€Code
the assembly language code generated by the compiler, thus removblocks in STAL may be polymorphic over stack type variables.
ing the compiler from the trusted computing base. Because the be- I addition to the concatenation operator:* ", STAL con-
havior of an assembly language program is undecidable in general tains a compound stack type that can express some pointers into
PCC and TAL require machine-checkable evidence to verify a pro- the middle of the stack. Unfortunately, STAL cannot express the
gram’s safety. A type-preserving compiler generates this evidence Possibly aliased pointers that C# compilers use to implement by-
by transforming a We”_typed source program into a We”_typed as- reference al’guments. C_OnSIder the thl’ee C# methOdS be_lOW. The
sembly language program, preserving the well-typedness of the swap method @akes two integer references gnd swaps the integers.
program during each compilation phase in between the source and!hef method instantiates argumentandy with pointers to local
assembly language levels [13]. To do this, the compiler must define variablesa andb, while g instantiatesc andy with pointers toc:
type systems for each intermediate language in the compilation. void £O) {
Java bytecode [11] and CIL [4] are well-known typed intermediate int a = 10. b = 20:
languages, but these still contain many high-level abstractions, such swap(ref a’ ref b)f }
as single instructions for invoking virtual methods and platform- void g0 { ’ ’
independent storage slots for local data. Below the Java bytecode int ¢ = 30:
and CIL levels, these abstractions break down into smaller pieces. swap(ref c’ ref ¢): }
A virtual method invocation turns into a method table lookup, in- void swap(ref int % réf int y) {
structions for pushing arguments onto a stack, a call instruction, int t = x: ’
plus prologue and epilogue code in the called method. Local data % = v: ’
storage slots turn into machine-specific registers and stack slots. _ Zf }

These lower-level concepts need lower-level types. y ’
This paper describes SSSihple Stack Types), a type system  STAL cannot give a useful type to thewap method: even with
that is appropriate for type-checking stack operations in the lowest compound types, STAL stack types must list the types of stack
levels of a type-preserving compiler, including the final typed as- slots in precisely the order that they appear in memory. The STAL

sembly language generated by the compiler. Previous type systemsype for swap must reserve one particular stack slot forand

for stacks were either undecidable without explicit proof annota- another fory, making it impossible for a caller to instantiate
tions [2, 9] or could not represent arguments passed and returnedand y with aliased pointers (ag does), with heap pointers (as
is allowed by C#), or with two stack pointers in the opposite
*The work by Frances Perry was done during an internship at Microsoft order. Regarding these limitations, Morrisett al. say that, “it
Research appears that this limitation could be removed by introducing a
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Figure 1. Logical Stack Implication Rules

limited form of intersection type, but we have not yet explored

linear logic (which includes the standard linear operatorst,

the ramifications of this enhancement.” (In fact, one subsequent &, —, and!) is undecidable [10], making SST more practical than

TAL [2] did add intersection types, but did not explore its use JSWG’s system for a compiler intermediate language. Furthermore,
for stacks. Furthermore, this type system was undecidable [2].) JISWG expresses pointers using a heavyweight notion of “frozen”
SST uses a form of intersection type, rather than using STAL's capabilities (with version numbers and “tag trees” for pointers into

compound types.
A key advantage of stack allocation is the ease of stack deal-
location: a program simply pops data from the top of the stack to

deallocate the data. In general, popping may leave dangling point-

ers to popped data. STAL deals with this safely but awkwardly, ap-
plying a special validation rule before each use of any potentially
dangling pointer. SST follows a more direct and flexible approach

the stack) while SST relies solely on singleton pointer types and
a minimal linear logic. Despite its smaller set of features, SST is
still powerful enough to express Micro-CLI; Section 5 describes a
translation of Micro-CLI programs to SST programs.

3. Simple Stack Types

introduced by alias types [18] (although alias types handled heapsConsider the STAL stack type int int :: p from the Section 2.

objects, not stack data). Alias types split a pointer type into two
parts: the locatiorf of the data, and the type of the data at loca-
tion £. The pointer to the data has a singleton typetrwhich
indicates that the pointer points exactly to the locatipbut delib-
erately does not specify the type of the data at locatidnstead,

a separateapability specifies the current type &t For example,
the capability{¢ — int} specifies that currently holds an integer.

In alias type notation, each integer on the stack would have a
capability {¢ — int}. In linear logic notation, thex operator
would glue capabilities together to form a complete stack capabil-
ity: {{2 — int}®{¢ — int} ® p, wherel, and?; are the locations

of each of the two integers on the stack. SST takes this notation as
a starting point, but makes two modifications. First, to simplify the
type checking algorithm, SST replaces the commutative, associat-

Because of the separation between singleton pointer types and capive ® operator with the non-commutative, non-associative@per-

abilities, the capabilities can evolve, independently of the pointer
types, to track updates and deallocation.

To ensure that no two capabilities specify contradictory inform-
ation about a single location, alias types impose a linearity discip-
line on the program’s treatment of capabilities, prohibiting arbitrary
duplication of the information contained in a capability. In partic-
ular, the capability{¢ — int} is not equivalent to the capability
{¢ — int,¢ — int}. However, alias types (and the similar cap-
ability calculus [3]) use non-standard operators and rules for con-
trolling linearity. Following recent advice [20, 7, 5], SST uses op-
erators and rules directly inspired by standard linear logic [6, 19]
and separation logic [17, 8]. Linear logic and separation logic share
a core of basic operators. Two are of particular interest for stacks:
multiplicative conjunction &” (written as “«” in separation logic)
and additive conjunction&” (written as “A” in separation logic).

For example, to havecbffee ® tea” is to have both coffee and tea.
To have ‘toffee&tea” is to have a choice between coffee and tea,
but not both. Ahmed and Walker observe that additive conjunction
“allows us to specify different ‘views’ of the stack” [1] (though [1]
did not explore applications of this observation); we take this obser-
vation as a starting point for representing by-reference arguments.

Jia, Spalding, Walker and Glew [9] used linear logic as the basis
for a typed low-level language of stacks and heaps (we refer to
this low-level language as “JSWG”). In contrast to STAL, JSWG

ator, resulting in a stack capabilifys — int} :: {£1 — int} :: p.
Second, rather than showing one location per stack slot, SST’s
notation puts stack slots in between locations, writlag int ::
¢y :int :: £o : p to indicate that one integer falls between locations
£y and /1, and the other falls between locatiofisand ¢,. Note
that this adds the extra locatidp to the example — for instance,
the stack pointer might have type fr), pointing to the top of the
stack, while the frame pointer might have type(Bij, pointing to
the bottom of the frame.

The following grammar generates labeled stack typemd
unlabeled stack types(wherer indicates a single-word type, such
as int):

l:0
p | Empty| 76| oA{l:T}

labeled stack type ¢
unlabeled stack type o

The unlabeled stack type variablgsempty stack Empty, and stack
concatenation operatar give SST the same expressiveness as the
core of STAL, but little else. The real power of SST comes from the
A operator, indicating aliasing. The stack type\ {¢ : 7} implies
three things. Firsty holds. Second, the locatidiresides either in

the heap or in the part of the stack described byhird, ¢ currently
contains a word of type. Figure 1 shows the rules governing stack
types; < = ¢’” means that ifc holds, thens’ also holds. Some
rules (s-imp-concat, s-imp-alias, s-imp-eq, s-imp-trans) are basic

expressed by-reference arguments. To demonstrate this, the austructural rules. The s-imp-add-alias and s-imp-merge-alias rules
thors also introduced the high-level “Micro-CLI” source language allow a program to add one or more aliases to a stack type. The
(modeled on the CLI intermediate format targeted by C# com- s-imp-drop-alias rule lets a program drop unneeded aliases. The s-
pilers [4]) and provided a translation from Micro-CLI programs imp-expand-alias rule expands the scope of an alias, as described
to JSWG programs. In contrast to SST's decidable logic, JISWG's in more detail below.
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As an example, consider thevap function from Section 2. the top of the stack “nekf)”, or a heap locationy” (assuming an
Suppose that the compiler pushes argumenés e onto the stack infinite supply of locationg for heap allocation):
from right-to-left, and stores the return address in a register. Upon
entry toswap, the stack will hold the argumenisandy, each of
which is a pointer to some location inside For exagnple, the STAL type int int :: p may be writ%en in SST

) L o, y E as “nex :int :: next(n) :int:: n: p”, where nex is an

Lo 2 Ptr(€y) €1 Ptr(€y) = b : (p A {Ls - int} A {£, :int}) abbreviat(iz)n for ne>(next(t(77))). For convgnience, we fregZJ)ently use

Note that locationg, and¢, may appear anywhere j in any or- the following abbreviation:

location ¢ := 17 | base| next(¥?) | p

der. In fact,, and/, may be the same location. For example, sup- L o ) -

pose that just before callingwap, the stack has typ& : int :: <. (Tn...7)Q:0)=next*(£) : 7 ... onext(§):m Lo

Figure 1's s-imp-add-alias and s-imp-merge-alias rules prove: With this, the STAL type int:: int:: p may be written in as
lo:int ¢ (int;int)Q(n : p).

= Lo ((int::¢) A{lo :int} A {lo :int})

Using this, the program can chooge= (int :: <), choosel, =
£, = Lo, push two pointers té, onto the stack, and cadlap.

Figure 1's rules also allow reordering of aliases. For example,
the s-imp-drop-alias, s-imp-alias, and s-imp-merge-alias rules

4. Formalization

Types.SST supports integer type “int”, nonsense type “Nonsense”
for uninitialized stack slots, heap pointer type “HeapP)t for
pointers to heap values of type singleton type “P{¢)”, and code
type “V[A](T, s)” for code blocks.

prove:
lo: (pA{Ly :intk A{L, :int}) type 7 == int| Nonsensg HeapPt(r)
= Llo:(pA{ls:int} A{L, :int}) | Ptr(£) | V[AI(T, <)

Section 2 mentioned the danger of pointers left dangling after TypeVv[A](T, <) describes preconditions for code blocks. The loc-
the program pops a word from the stack. The syntax {¢ : 7} ation environment\ is a sequence of location variables and stack
expresses a clear scope in whittemains safe to usé:definitely type variables. The register fileis a partial function from registers
contains typer as long asr remains unmodified. If the program  to types.I" ands describe the initial register and stack state for the
pops a word frona, for example, then the aligd : 7} must be dis- blocks. They may refer to the variablesAn

carded (see section 4.1 for details). The rules governing this scope Values and Operands.A stack locationd is either “base” or
are simple: s-imp-expand-alias expands the scope of an alias, buthe next stack location “ned)"”.
there is no rule to contract the scope. Expansion is safe, and allows A word-sized valuew may be an integeri", the “nonsense”

a caller to pass a reference on to another method.LTimethod value for uninitialized stack slots, a heap locatigit,“a stack
shown below expands the scopecdefore callingswap. Contrac- location “d”, or instantiated valuesw[¢]” and “w[o]” where w
tion, on the other hand, could leave unsafe dangling pointers, aspoints to code blocks polymorphic over location variables and stack
shown by the illegal and unsafe C# methidd egalMethod: type variables. Contents of registers and stack slots are word-sized.
. . . As in STAL [12], word-sized values are separated from operands
void h(ref int c) { swap(ref c, ref c); }

ref int illegalMethod() { int c; return ref c; } to prevent registers from containing registers.

Relation to linear logic. Just as :: is a limited version of the woSr?\C/glt)g d - pé\‘snec‘)nns%);\(scg | d | wlg] | wo]
linear logic® operator, the\ operator is a limited version of the wosm p w wie
operand o = r|w]olf]| olo]

linear logic& operator. More specifically, the notatien\ {¢ : 7}
corresponds to the linear logic formud: ({¢ — 7} ® T), where An operando may be a registers”, a word-sized value &”,
T is the linear logic notation to indicate any resource. Intuitively, or instantiated operands[f]” and “o[c]”. A special register sp is
knowingo & ({¢ — 7} ® T) means that you can choose to look at used for the stack pointer.
the stack in one of two ways: either consider the stack to have type  Instructions. Most instructions are standard. Values on the heap
o, or consider the stack to have typé— 7} ® T. The latter case  or stack are accessed through explicit load and store instructions.
tells you that the stack holds typeat location?, plus some other
data represented by.

The s-imp-expand-alias rule and lack of a contraction rule also ; ; _
correspond to linear logic, wherd ® (B&(C ® T)) implies { ](;mglfirdrc:gargii?alloo = (o)
(A® B)&(C ® T), but (A ® B)&(C ® T) does not imply ’
A ® (B&(C ® T)); linear logic can expand, but not contract, SST uses “ladd” instructions for stack location arithmetic. The
the scope of &(C' ® T)”. Unlike JSWG [9]'s scoping via version first operand points to a stack location. The second operand is a

numbers and tag trees, SST’s scoping follows naturally from linear constant integer (positive or negative). A “ladd” instruction moves
logic rules. the stack pointer along the stack according to the integer value.

Decidability. Deciding whether one linear logic formula im-  The standard add and subtract instructions deal with only integer
plies another is undecidable in general [10], but is decidable for arithmetic.
formulas consisting only of atoms, tigeoperator, and thé& oper- The heap allocation instruction “heapalloc= (o)” allocates
ator [10]. Since SST’s :: and operators are limited versions of @ word on the heap with initial value and assigns the new heap
linear logic’s® and& operators, it is not surprising that SST’s lo-  location tor.
gic is also decidable. The companion technical report [15] presents ~ The unpack instruction(), 7) = unpacKo)” coerces a heap
a simple and efficient (near linear-time) algorithm to decide ¢’, pointero to a heap location. It introduces a fresh location variable
based on a syntax-directed reformulation of Figure 1's rules. The 7 for o and assigng to r.
existence of such a decision algorithm is the key to the decidability
of type checking in SST (stated formally in Section 4).

Locations. A location ¢ may be a location variabler”, the The type checker maintains a few environments. The location en-
location of the bottom of the stack “base”, the next location towards vironmentA and the register fil& were explained previously. The

instr ins = movr,o | addr,o | subr,o | laddr,
| loadry, [ro + ] | store[ry + ], 72

4.1 Type Checking Instructions
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heap environment is a partial function from heap locations to

Type LookupThe judgment + ¢ : 7 means that the locatioh

heap pointer types. Stack-related rules are shown here. Appendix Bin stacks has typer. The location? can be either an alias in or

contains all rules.
Operand Typing Rules.The judgmentA; U; T - o : 7 means

that operan@ has typer under the environments. Note that a heap
location can be typed in two ways: the type in the heap environment
(o-p-H) or a singleton type (o-p). A stack location has a singleton

type (o-d).

If an operando has a polymorphic typ&[A](T, <), o[¢] and
o|o] instantiate the first variable i with £ ando respectively. The
judgmentsA + ¢ andA + o mean that ando are well-formed
underA respectively.

Oo-re i
AT ErT(r) 9 A;‘P;I‘Fi:intomt

0-ns -
A; ¥; T nonsense Nonsense A; 0T F d: Ptre(d) o-d

o-p-H o-
P A; T Fop e Ptr(p) P

AT Ep:U(p)
AT Ro:Vn A'lT,s) ARZ

A; W5 T E ofd] - V[A')(T[e/n], <[€/n])

o-inst-I

AUTRo:V[p, A'l(T,¢) Ako
A; W T Fofo] : VA'|(I [0/ pl, <[o/ p])

o-inst-Q

The judgment- (T',<){r <« 7}(I'',<’) means that assigning
a value of typer to registerr results in new environmenis’ and
¢’. Only T is changed if- is not sp. Otherwise the stack grows or
shrinks according to the new value of sp.

r#sp I'=T[r— 1]

- a-not-esp
@ o{r < 7HIY, <)

F Resizdl, ) =<' T’ =T[sp— Ptr({)]
F (T, o) {sp Ptr(¢)}(I", <)

Stack Rules.Resize. When the stack grows or shrinks, SST
uses the judgmert Resizél,s) = ¢’ to get the new stack type.
The judgment means that resizing stacto location/ results in
stacks’. The location? will be the top ofs’. The stack shrinks
if £ is insideg (s-shrink) and grows if is beyond the top of (s-
grow). The stack drops all aliases beyd@nhen shrinking to avoid
dangling pointers.

a-esp

c=>7 QL:0)
F Resizgl,c) ={: o

s-shrink

¢’ = (Nonsensg; . . .; Nonsense)Q({ : o)
- Resizénext*(¢),£: o) = ¢’

s-grow

Location LookupThe judgment - £ + i = ¢ means that in
stacks going: slots from locatior? leads to locatiort’. A positive

i means going toward the stack top and negative means toward
the stack bottom. The notion represents natural numbers. (The

requirement =7 @(¢ : o) ensures that is a stack location, not
a heap location.)

s=7 Q:0)
¢ L+ n=next*(¢)

s-offset-next

s=7 Q:0)
¢knext'(£) + (—n) = ¢

s-offset-prev
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be on the spine aof (the stack type obtained by dropping all aliases
fromg).
s>l (on{l:T})
sHL: T
Stack UpdateThe judgments - ¢ «— 7 ~» ¢’ means that
updating the locatior in stacks with type 7 results in stack’.
Weak updates do not change the stack type (s-update-weak). Strong
updates change the type ©é&nd drop all aliases beyoriecause
they may refer to the old type d@f(s-update-strong).
sHL: T
SHl—T~g

s-lookup

s-update-weak

§:>?@(£ZTZI§I)
cHl—T T QU:7 ¢

Instruction Typing Rules. Figure 2 lists instruction typing
rules.A; ¥  (T;¢){ins}(I";<’) means that checking instruction
“ins” changes the environments ands to new environment$”
and¢’.

The location arithmetic instruction “ladd " requires thatr
point to a location/ and: be a multiple of 4. The stack grows
toward lower addresses.ilfs negative, the result location is further
outward from/.

Loads and stores can operate on heap locations (i-load-p and
i-store-p), stack locations on the spine (i-load-concat and i-store-
concat), and aliases (i-load-aliased and i-store-aliased). SST sup-
ports weak updates on heap locations and aliases, and both strong
and weak updates on stack locations on the spine.

The rule for heap allocation assigns a heap pointer type to
the register that holds the pointer, instead of a singleton type,
because the new heap location is statically unknown. The heap
environment does not change after heap allocation because the rest
of the program does not refer to the new heap location by name.

When control transfers, the type checker matches the current
environments with those of the target. The location environment of
the target should have been fully instantiated= I’ requires that
I be a subset df.

s-update-strong

4.2 Blocks and Programs

A heap value is either a code block “block” or a heap wor¢ts)”.

A code block ¥[A](T, <) b” describes the preconditiorfA] (T, <)

and its bodyb. The block body is a sequence of instructions that
ends with a jump instruction. Only variables & can appear free
inT, ¢, and the block body.

A program consists of a hedf, a register banl®, a stacks,
and a block body as the entry poirf. is a partial function from
heap locations to heap valuggis a partial function from registers
to word-sized values. The stagkecords values on the spine. It is
either the empty stack “empty” or a concatenation of a word-sized
value with a stackib :: s”.

heap value v = block | (w)
block block := V[A](,¢)b
block body b = ins;b | jumpo
heap H = PpP1UL,...,Dn > Un
regbank R = 1 Wi,...,Tn = Wy
stack value s = empty|w:s
program P = (H,R,s,b)

A programP = (H, R, s,b) is well-formed (illustrated by the
judgment— P) if H matches a heap environmeht R matches a
register filel’, s matches a stack type andb is well-formed under
v, T', ands. The notion ‘” means empty environments.



L(r)y=Ptr(¢) sHL+i=1¢

AT Rorr (D ofr < 73TV, <) (T, ){r < PU()}(I',<") ladd
A; U (T;6){movr, o} (T; <) mov AU (Ts6){laddr, —4 i} (T7;¢") a
A;UTRo:int r#sp I(r) =int A;U;THo:int r#sp T'(r) =int b
AU (T;9){addr, o} (T;s) & AU F (T;o){subr,o}(T;5) oV
I'(re) = HeapPtfr) T(re) =71
F(T,0){r1 — XTI, i ['(r1) = HeapPtfr) .
— i-load-p i-store-p
A; U (T ¢){loadry, [r2 + 0] }(IV;¢") A; U+ (T 6){store[r1 + 0], 72} (I'; <)
[(ro) =Ptrl) skHL+i=1¢ L(ri) =Ptr(¢) T'(r2) =7
s 7 F (D) {r — 7HI",¢") ' load sHL4+i=0 ¢l —T1~¢ .
I-load-concat I-store-concat
AU F (T56){loadr, [r2 + (—4 % 1) }(T; <) AU (T 6){store[r; + (—4 *14)], 72 }(T;¢")
[(ro) =Ptr(¢) ckH£L:7 I'(r1) = Ptr(¢)
F (T, ¢){r1 « 7HI',<")  load-aliased ckHe:7 D(re) =7 . lised
AW (T o){loadry, [ra + 0]} (I'5) 000 088 AL (T o) {storefrs + 0], rah(Tsq) o 0o 2se
AU T o7 I(r)=int A;¥;TFo: V[ |(TV,¢)
F (T, ¢){r < HeapPt(r)}(T’,<) ) I ¢=¢ .
~—~ i-heapalloc . - i-jump0
A; U F (T ¢){heapalloe: = (0) }(T;<") A; U F (T 6){jumpif0 r, 0 }(T; <)

Figure 2. Instruction Typing Rules

variablen to A, assigng- a singleton type P¢r), and updates the

FH: UV oUlks:¢ oUVFR:T o;\I/;P;g»—bm_tp stack type to contain.
F (H,R,s,b) A; U (D5 0){insH(I;<")
. . AT Fb
A heapH matches a heap environmehtf they have the same : b-ins
domain and each heap value ih has the corresponding type in A; ;T =ins b
¥ (h-tp). Matching a register bank with a register file is defined
similarly (g-tp). AU T+ o V[](Flljgl)
'=1I1" ¢=¢
v={..,p—7...} H={...p—uv,...} i b-ium
o e UbkviT L h AU T 6 - jumpo Jume
: -p
FH W A; U T F o : HeapPt(r) r#sp nd&A
r={..,r—=mn...} R={..,r—w,...} (A;m); & Tr — Ptr(n); £: (o A{n:7})Fb b-unpack
A TrewiT Ll g-tp AU T L o k= (n,7) = unpacKo) p
A;UER:T

) ) A block is well-formed if under the heap environment and the
A stack values matches a stack typeif all the locations on the specified precondition, the block body type-checks.

spine have the corresponding typesirfs-base and s-concat) and AT Tic b b
¢ contains only aliased locations to heap pointers (s-alias) and to e Rt ek block-tp
stack locations on the spine (s-imp). ¥ EV[ANT,<) b
s-base The judgmentP — P’ means that progran® evaluates to

A; 0 - empty: (base: Empty) programpP”’. Evaluation rules are listed in Appendix B.3.

AT Fs:(Cic) ATiebw:r We proved soundness and decidability of SST. The proofs can

T T EETYE s-concat be found online [16].
’ wis: (NeX(l) 17z L 0) THEOREM 1 (Preservation)lf - P and P — P’, then P’.
A; W {p— HeapPt(r)} Fs: (£:0) i THEOREM2 (Progress)lf - P, then3P’ such thatP — P’.
s-alias
A, {p+— HeapPt(r)} Fs: (£: (o A{p:T})) THEOREM3 (Decidability). Given ¥ and block, there is an al-

gorithm to decide whether® + block” holds.
A;Uks:ic ¢=¢

AU Es:¢ 5. Source Language and Translation
To type check a block body, the checker checks the instructions As mentioned in Section 2, we translate JSWG's Micro-CLI [9]
in order (b-ins) until it reaches the jump instruction (b-jump). to SST. Micro-CLI supports both heap and stack allocation. A

The unpack instruction(), ) = unpacKo)” requireso have a managed pointer can point to either a heap-allocated or a stack-
heap pointer type (b-unpack). The rule introduces a fresh location allocated value. Managed pointers have the same constraints as

s-imp
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those in CLI, such as they cannot be stored in objects nor returned  The function is translated to the following SST function:

from functions.

The syntax of Micro-CLlI is restated here.

V[, 1y, 10, p)(T, <)

mov r,, SP
qualifiers ¢ = S| H movri, 0 ;r1 =05
types T = int| 7 %q ladd sp —4
store[sp+ 0], 71 ; pushry (for ¢)
values v = nl|x movry, 0 ;r1 =05
ladd sp —4
program p = fds b store[sp+ 0], 1 ; pushry (for t)
loadry, [rsp + 0] jT1=2
functiondecls fds == | fd fds loadry, [r1 + 0] s = [r1]
function decl fd = 7T f(nz,...,TnxTn) T store[rsp + (—=8)], 71 ;t=r1 (t =lx)
loadry, [rsp + 4] iT1L=Y
returnblock rb = {lds;ss;returnuv} loadry, [r1 + 0] s71 = [r1]
store[rs, + (—4)],m1 ;t' =71 (' =ly)
localdecls lds == - |ld;lds loadry, [rsp + O] T =
local decl id = Tx=v|TT=newv loadrs, [rip + (—4)] ;re =t
store[r; + 0], r2 ] =re (x:=1t)
statement list  ss = | s;ss loadry, [ryp + 4] iT1 =y
statement s = if vthensselsess | z = v loadrs, [ryp + (—8)] ;r2a=t
|z=v1i+v2 | z=0v1—02 store[r: + 0], 72 ifri]=r2 (y:=1t)
| 2= f(vi,...,vn) ladd sp16 spopt,t,x,y
|z= v |v =02 movry, 0 ;11 =0
. . . ladd sp —4
Micro-CLI supports only the |Hnteger type and p‘0|[’1ter types. store[sp+ 0], 71 - pushry
Each pointer type is qualified bys” (stack pointer) or H” (heap jUMp7rq - JUMP 7

pointer). Heap pointer types are subtypes of stack pointer types
with the same referent types, thatiss is a subtype of xg.

A Micro-CLI program consists of a sequence of function de-
clarations and a return block. A function declaration specifies the
return type, the function name, the parameters, and the body (a re-

wherel" = sp— Ptr(next (1)),

Tra — V[](Sp— Ptr(next(no)), next(no) : int :: 1o : p)

ands = next (o) : Ptr(12) :: next(no) : Ptr(n,) ::

mo : (p A{ne :inth A{ny :int})

turn block). A return block contains a sequence of local variable

The translation is straightforward. Many optimizations can be

declarations and a sequence of statements. A local variable declarapplied to improve the SST code, which is beyond the scope of this
ation declares the type and the initial value of a local variable that paper. The translation reserves register sp for the stack pointer,
can be used in subsequent declarations and statements.

The detailed translation from Micro-CLI to SST is described

for the frame pointer, and.,, for the return address. Two temporary
registersr; and o are used to hold intermediate values during

in the companion technical report. Because SST deals with ali- the translation of a Micro-CLI instruction. Parameters and return
asing differently from JSWG, the two translations differ in rules values are passed through the stack. Local variables are allocated
around managed pointers which introduce aliasing. For example, on the stack.

if a source function has a parameter with type “pointer-to-pointer-

The SST function is polymorphic over four variableg:, n,,

to-int”, the translation to SST creates two aliases for the pointers 7o, andp. The first two represent the valuesofindy. The third
while the translation to JSWG uses existential types to abstract therepresents the location of the rest of the stack (abstracted by the
locations and version numbers to relate the scopes. The precon-stack type variablg). The parameters andy are on the stack upon
dition of the function in SST would have a stack type “riext:

Ptr(n1) =
is polymorphic over;; andrs.

We use the following example to show the result of translation.

n:(pA{m : Ptr(n2)} A{m2 :

int})” where the function

The “swap” function in Section 2 is rewritten into Micro-CLI

syntax as follows:

int swafint xs z,int xs y){

intt = 0;
intt =0;
t=lx;
t'=ly;
x =t
yi=1
return0;

}

Micro-CLI does not allow such syntax ag “.=

y” and is then assigned ta Local

variable ‘¢’” holds the value of!

ly". A new

variables can be initialized only by values. The local variables

andt’' are initialized to O first and then assignel:

and “ly”

respectively. Micro-CLI does not allow functions with no return
values. The “swap” function simply returns an integer value.
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entry to the function. Section 3 explained the initial stack state. The
parameters and the local variables are accessed through the frame
pointer:t, t', x, andy have addresses, — 8, r, — 4, rf,, and

r¢p + 4 respectively.

At the beginning of the function, the frame pointer, is as-
signed sp and the initial values forand¢' are pushed onto the
stack. At the end, the local variables and the parameters are popped
from the stack, the return value is pushed onto the stack, and the
control transfers to the return address, which is kept in register

We proved the type-preservation theorem of the translation:

THEOREM4 (Type-preserving TranslationyVell-typed Micro-CLI
programs translate to well-typed SST programs.

6. Conclusions

With a simple stack type, SST safely supports many low-level
idioms: stack pointers, frame pointers, by-value arguments, and by-
reference arguments, where by-reference arguments may point to
both stack data and heap data.

This paper presented one particular type system built around
the stack type, but many variations are possible. For example, we
treated the stack pointer register as a special register to safely ac-



comodate kernel-mode code in the presence of interrupts, but some structures. Ir8rd ACM SIGPLAN Workshop on Types in Compilation
other settings could treat the stack pointer as an ordinary register. (TIC2000) 2002.

For GC safety, we allowed pointer arithmetic on stack pointers but 18] Frederick Smith, David Walker, and Greg Morrisett. Alias types. In
disallowed pointer arithmetic on heap pointers. For simplicity, we In European Symposium on Programmi@g00.

assumed infinite stack space to grow in, but a type CheCker. basecj[19] P. L. Wadler. A taste of linear logic. IRroceedings of the 18th

on SST could also verify stack overflow checks (perhaps in co- International Symposium on Mathematical Foundations of Computer
operation with virtual-memory-based overflow checks). Also for Science, Génsk New York, NY, 1993. Springer-Verlag.

simplicity, our heap consisted of one-word objects, but this extends [20] David Walker. Mechanical reasoning about low-level programs.

na_tu_rally to ObjeCts.W'th multiple fields. Flnally, to ensure S|r_nple, lecture notes, http://www.cs.cmu.eddpw/papers.html, 2001.
efficient type checking, we used a small, restricted linear logic, but

we could trade efficiency for expressiveness by varying the linear
logic, without abandoning the basic SST approach. A. SST Syntax

location ¢ = 1 | base| next¥) | p
References labeled stack type ¢ = Lo
) ) unlabeled stack type o n= p|Empty| T g
[1] Am_al Ar:mtzego%nch'\;alvsl(IiGVgil’l‘i(’e\lr.WThf rI]oglcal .’fll_pproa_ch I_to stack lon{l:T
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[2] Karl Crary. Toward a foundational typed assembly language. In stack loc  d = base| nextd)

Symposium on Principles of Programming Languag@€e®3. word value  w = g | nonsensq pld
[3] Karl Crary, David Walker, and Greg Morrisett. Typed memory | w[f] | wlo]

management in a calculus of capabilities.Pimceedings of the 26th operand o m= r|w]| ol | olo]

ACM SIGPLAN-SIGACT symposium on Principles of programming instr ins 5= movr,o | addr, o

languagespages 262-275. ACM Press, 1999.

[4] ECMA. Standard ECMA-335 Common Language Infrastructure
(CLI). 2006.

[5] Matthew Fluet, Greg Morrisett, and Amal Ahmed. Linear regions
are all you need. Ii5th European Symposium on Programming
(ESOP’'06) 2006.

[6] Jean-Yves Girard. Linear logic. IMheoretical Computer Science
1987.
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(Tn...1)Ql: o) =next’(£) : 7, =

| subr, o | laddr,

| loadri, [r2 + 7]

| store[ry + 4], 72

| jumpif0r, o

| heapalloer = (o)

| (n,7) = unpacKo)

heap value v = block | (w)
block block := V[A](T,s)b
block body b = ins;b | jumpo
locenv A = eo|mA|pA
heap H = P1Vl,...,Pn > Up
heapenv ¥ = P1IFTi,e..,Pn > Tn
regbank R = TIFWi,...,Th > Wn
regfile T NS OT1I T, ..., Th Ty
stack value s n= empty| w:s
program P x= (H,R,s,b)

We use the following abbreviation:
counext(@):malio
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AFT
Arint WL e NonsenseV NS
AFT AR/ :
——— wf-t-h ———— wif-t-single
A+ HeapPt(r) P A+ Ptr(¢) g

AANFT AANFS AnA ={}
A VAT, <)

wf-t-code

AFT

L AFRT L
AF{ . ..,r—T1...}

wf-G

B.2 Static Semantics
A;U:TkRo: T

_ O-re e O
AT T Y AT oint

0-ns
A; U; T' - nonsense Nonsense

o-p-H o-p

AU T Fp:U(p) A; 0T Fp e Ptr(p)

AUTEd:Pud) ©¢

AU T oV, A'(TY,s) ARY
AW T+ ofd] - V[A(TV[e/n], <[£/n])

o-inst-|

AU T Ho:V[p, A'l(T,s) Abo
AT - ofo] = V[A|(I [0/ pl, 5[0/ p])

0-inst-Q

@ ofr =7}, <)

r#sp I'=T[rw— 7]
F (@ 0{r — 7HI",<)

a-not-esp

F Resizél,c) =<’ T’ =T[sp— Ptr(¢)]

a-esp
= (T, 6){sp— Pt(£)}(I", <)
 Resizél,c) =<’
¢=7 Q:0) hrink
- Resizél,c) = L:0 S0
(A . . .
¢" = (Nonsensg; . ..; Nonsense)Q(¢ : o) S-grow

 Resizénext*(¢),£: o) = ¢’

sHl+i=1

s=7 Q:0)
¢ F £+ n=next' ()

s-offset-next

s=7 Q:0)
sFnext'(¢) + (—n) =4£

s-offset-prev

c=0 (o N{l:T})
skHC:T

s-lookup

SHL—T~¢

cHC:T

————— s-update-weak
SFL—T~g P

C??@(f:r::g')

§"£<—T’W?@(£IT,ZI§I)

s-update-strong

rcr .
= G-imp
=T

[ AW F ([T {insh(I; )

AU T Ro:r F(T,0){r— 7HI,<")
A; W (T 6){movr, o}(T; <)

i-mov

(r) = Pt(l) ¢ - £ +i =0
F (T, ¢){r « Ptri(¢ )} (T, <")

A; U (T56){laddr, —4 % i }(T'; ")

i-ladd

AT Fozint r#sp T'(r)=int dd
AU (T;o){addr, o} (Tie)

AT Fozint r#sp I'(r)=int b
A; 0 F (T 6){subr, 0} (T;5) -su

[(r2) = HeapPt(r) + (T,¢){r1 « 7}{T’,¢)
A; W+ (T 6){loadry, [r2 + 0] }(T; <)

i-load-p

L(r2) =7 TI'(r1) = HeapPtfr)
A; 0+ (T ¢){store[ri + 0], 72 }(T'; <)

i-store-p

D(ra) = P(¢) <k f4i="0
cHO:7 F(T,0){r « }I', <)

A; W F (T 6){loadry, [r2 + (—4 % 4)]}(T; <)

i-load-concat

L(r1) =Ptrt) T'(r2) =7
cHL+i=0 cHl —T~¢

AU F (T 6){store[r1 + (—4 x1)], 72 }(T; <)

i-store-concat

D(ro) =Ptr({) s £4: 7
H (T, o){r « 7}(I",<)
A; U (T56){loadry, [r2 + 0] H(I; <)

i-load-aliased

[(ri)=Ptr(¢) ckHL:7 T(r2)=7
A; W F (T 6){store[r1 + 0], m2}(T; <)

i-store-aliased

AU T o1
= (T, <){r — HeapPt(r)}(I",<')
—— i-heapalloc
A; U F (T ¢){heapalloa = (o) }(I'; <)
L(r) =int A; ;T Fo: V[(TV, <)
'=sI"¢=< -
-jum
AU F (T o) {jumpifor, o} (T q) 0P
FH:V oUlks:¢ o UFR:T" oU;I'ckb
m-tp

}_ (H’ R7 87 b)
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c=d

b:Tug=0:T:g

=g

S1 = G2

’

s-imp-e

G2 = 63

S1 =63

q

s-imp-trans

s-imp-concat

L:o=>/L:0

C:(taq)=>Ll: (T A{l:T})

L:(cN{y:T})=>0l:0

£ (1l

c=>Ll:(cA{li:71})

(o AN{lz:m2})) =L (11 g :0) AN{la: T2})

c=>L: (o AN{lza:72})

s=>L: (o AN{lr:T}A{la:T2})

C:(oA{ly:T})=>L: (0" AN{le:T})

s-imp-add-alias

s-imp-drop-alias

s-imp-expand-alias

s-imp-merge-alias

s-imp-alias

UV={..,p—T7..tH={...p—u,..

.Uy iT L.

Figure 3. Stack Implication Rules

3

FH:U

A;UER:T

r={..,r—=7n..}R={..,r—uw,..

A Usew T L.

h-tp

3

A;UER:T

A; ¥+ empty: (base: Empty)

AU Es:(L:0) A;T;e

Fw:T

AU Ew:s:(next(ld):7::0:0)

A; 0 {p+— HeapPt(r)} Fs: (£:0)

g-tp

s-base

s-concat

s-alias

A; U, {p— HeapPtfr)} Fs: (£: (cA{p:7}))

A;UEs:¢ ¢=

/
S

AU s

A;U:Tc b

AU (T50){ins}(T;¢") A; ;T ;6" F b

s-imp

b-ins

A;U;T;6Fins b

AT Ro: V[T, ) T=T ¢=¢

!

A; U6 F jumpo

A; ;T F o : HeapPt(r) r#
(A;n); U3 Llr = Pt(n)]; £: (o A {n:7})

spn

¢
|_

A
b

b-jump

A; ;T34 o - (n,r) = unpacKo)

A; U6 b
v = V[A|T, )b

block-tp

b-unpack
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A;UbFo:T

U EVY[AT, ¢ b ARV[ANT,)

AU EY[ATTY, ") b VAT, ")

A;U;ebw:T

A; ¥+ (w) : HeapPtfr)

B.3 Dynamic Semantics

d+0 = d
d+(n+1) = n
baset (—(n + 1)) = b
next(d) + (-(n+1)) = d
size(s) =d
sizgempty)y = base
sizdw ::s) = nextsi

resizéd, s) = s

resizésize(s), s)
resizdsize(s) +
resizdsize(s) +

(n

(=(n+

+

1),w:s) =

sizqw :: s)

S-
w

w' s

w: 8)[d — w

I

']

s[d — w]

(w2 8)[d «— w]

v-hp

ext(d) +n
ase
+(=n)

2€(s))

lookup-top

s-lookup

s-assign-top

s-assign

v-code

S
1), s) = nonsense: resizésize(s) + n, s)
resizesize(s) +

(=n), )



RFo—w RFo—w

———— €o-I P —— - _— -inst-
R&r— R(r) Rro—w oW R & o[f] — w[f] eo-inst- R+ olo] — wio]
(R, s){r — w}(R',s")
!/ /
r#sp R = R[r— w| U-not-esp R' = R[sp— dl u-esp
(R, s){r — w}(R', s) (R, s){sp— d}(R', resizdd, s))
P—pP
R+ — ' s
omw (Ro)fr—w)(R.s)
(H,R,s,(movr,o0; b)) — (H,R',s',b)
Rbrw—d (R,s){r—d+i}(R,s) ladd
(H,R, s, (laddr, —4+; b)) — (H,R,s,b) © o
RFr—i. RForis (R,s){r—i1+i2}(R,s) dd
(H,R, s, (addr, 0; b)) — (H,R', s, b) e-a
RFr—ii RForis (R,8){r—i1—i2}(R,s) b
(H, R, s, (subr,0; b)) — (H, R, s,b) e-su
RE H(p) = R — R, s
ey HE) =) (Rl o n)s) oo
(H,R, s, (loadry, [r2 + 0];0)) — (H,R',s',b)
Rbro—d s(d+i)=w (R,s){r1 «—whHR,s)
- VR e-load-d
(H,R, s, (loadry, [r2 + (—4 % 1)];b)) — (H, R, s',b)
— /
Rtri—p H(p)=(w) RbFr—w e-store-p
(H, R, s, (store[ry + 0],72;b)) — (H[p < (w')], R, s,b)
RFri—d Rbra—w s =s[d+i+— w)
- ; e-store-d
(H, R, s, (store[r; + (—4 x14)],72;b)) — (H, R,s',b)
R domaifH) H'=H R R, s
0w _p¢ domairtH) D) R0

(H, R, s, (heapalloa = {(0);b)) — (H',R',s',b)

RFr—i i#0
(H, R, s, (jumpif0r, 0;b)) — (H, R, s,b)

e-jumpO0-false

R+-r—0 RFow p[subst H(p)=V[A|L,g) bz
(H, R, s, (jJumpifOr, 0;b1)) — (H, R, s, ba[subsfA])

e-jumpO0-true

RFor—p (R,s){r— p}R,s)

— e-unpack
(H7 R,s, ((77»7") = unpacl(o); b)) - (H7 R,s 7b[p/77])

RF o~ p[subst H(p) =V[A|(T,¢)b

e-jum
(H, R, s,jumpo) — (H, R, s, bjsubsfA]) - 1°"P

eo-inst-Q

Figure 4. Instruction Evaluation Rules
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