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Abstract
Representation exposure is a well documented and studied prob-
lem in object-oriented systems. We introduce the Potential Access
Path methodology as a tool to reason about composite objects and
protection of their representation. Our system enforces the owner-
as-modifier disciplin, which does not restrict aliasing but requires
that all modifications to an encapsulated aggregate are initiated by
the aggregate’s owner. A novel design choice in our system is the
free mode that allows read-only aliases. This new weak unique-
ness property provides us with additional flexibility to transfer sub-
components from one aggregate to another.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.1.5 [Programming
Techniques]: Object-oriented Programming

General Terms Languages, Security, Theory

Keywords Alias protection, Representation exposure, Ownership
types, State encapsulation, Java

1. Introduction
The recursive combination of smaller objects to one composite ob-
ject (object composition) is a central technique in the construction
of object-oriented software. The encapsulation of such composite
objects is an important criterion for the quality of object-oriented
designs. A lack of encapsulation makes the composite object’s cor-
rect functioning depend on its context – its implementation cannot
be verified in a modular way and cannot be safely reused in new
contexts.

When discussing object-oriented software systems one often
considers three related notions of the object concept. At the base-
level, the system is a flat ”sea” of elementary implementation ob-
jects – instances of concrete classes. At the top level we have ab-
stract objects, which are defined solely by their operations’ exter-
nally visible behaviour (e.g described with the concept of interfaces
in Java along with some behavioural specification). The implemen-
tation of this behaviour is delegated to the in-between level – struc-
tures of collaborating implementation objects rooted in a represen-
tative. That representative, aided by its collaborators, provides the
desired functionality specified in the interface. This cluster of co-
operating objects will be referred henceforth as the composite ob-
ject (or the aggregate).

An abstract object’s invariant – specified in the behavioural
component of the interface – may depend on the internal structure
of the composite object. In general, object-oriented languages do
not prevent ”outsiders” from obtaining references to the internal
structure. Such exposure of the internal representation can lead to
mutation of the structure while the representative object remains
completely oblivious to the changes. The invariant may be violated
and the implementation of the abstract object might behave incon-
sistent with its specification.

Among the first attempts to address the perils of representation
exposure are [11] and [3]. Here the composite object is fully encap-
sulated and neither incoming nor outgoing references are allowed.
The absence of incoming references guarantees that any modifica-
tions to the internal structure of the composite object must be trig-
gered through the representative object’s interface. Unfortunately
the full encapsulation is well too restrictive and many common
object-oriented idioms are impossible to implement in such sys-
tems.

The ownership type (OT) system introduced in [8] relaxes the
restriction on the outgoing references. Each object is treated as a
representative of a certain composite object, which is owned by the
representative. Which objects constitute the owned composite ob-
ject is specified by program annotations (ownership contexts). A
tree-like ownership structure is established among the run-time ob-
jects and the system satisfies the owner-as-dominator property: All
reference chains from the root object to any other object o (thus
any reference chain leading inside the composite object to which o
belongs) must pass through o object’s owner (the representative).
The owner-as-dominator property guarantees again that any mod-
ifications to the internal structure of the composite object must be
triggered through the representative object’s interface. Outgoing
references are permitted, but only upwards in the ownership tree
structure. Incoming references are still prevented by the type sys-
tem. Although more flexible than full encapsulation, many popular
design patterns cannot be implemented using ownership types. An
often cited example is that of the Iterator pattern. A composite ob-
ject – collection – often provides clients with an external iterator
that allows the client to travers the elements stored in the collection.
To move from one element to another, the iterator must be able to
access the internal structure of the collection composite object. But
because the ownership type system does not permit incoming refer-
ences, the iterator must itself be part of the encapsulated composite
object. This again prevents the external client to acces the iterator.

Systems that enforce the owner-as-modifier discipline [14],
[17], [13] and [10] constitute a natural evolution of the ownership
type system. We still have a tree-like hierarchy of object ownership
and the mode annotations determine membership in the composite
object. But unlike in the OT systems, the ownership information
determines the legality of method calls. Arbitrary incoming and
outgoing references are permitted. At the same time the owner-as-
modifier property is satisfied: If an object o is modified (the com-
posite object changes) then the change has been triggered through
a sequence of method calls originating in the o’s owner (the repre-
sentative).

In this workshop paper we describe the Potential Access Pass
methodology introduced in [17] as a tool to reason about composite
objects and representation protection. We also put forward a novel
weak uniqueness property for reference paths that generalizes the
standard notion of free or unique references by allowing read-only
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aliases. This property provides us with an additional flexibility to
transfer sub-components from one composite object to another.

Outline In section 2 we present an example – the Set composite
object. Section 3 introduces the Potential Access Path methodol-
ogy. In section 4 we present our language JaM and develop the
formal mode-system. Section 5 provides the operational semantics
for our language. Next we formally verify the CSE property (sec-
tion 6). In section 7 we revisit the Set example – guiding the reader
through the design and implementation process and and providing
detailed JaM code. Related Work follows in section 8. We briefly
conclude the paper with section 9.

2. The Set Example
We will consider now the implementation of an abstract object
Set. Our Set shall provide the standard methods add, remove and
contains. We will also supply an external iterator that provides
clients with the possibility to traverse all the Set elements. How
would we go about implementing the Set? Let’s assume that we
have available a pre-existing List component (implemented as a
composite object with a single linked list of nodes ni with data
objects di, node iterator nIt and the representative l). We can use
the List component to implement our Set. The node iterator can be
used to implement an iterator over the data elements. Assuming
three elements in our set, we end up with the following (run-time)
object structure – s is the representative of the composite Set object
and dIt an iterator over the set elements:

n1

l

d1

n2 n3

d2

dIt
s

nIt

d3

cl1

cl2

In general, it is possible that other objects obtain references into
the above structure. Through these references the Set composite ob-
ject might be modified. For example, an object cl1 with a reference
to n2, could send the message setNext to n2 with nil as param-
eter, destroying the integrity of the Set composite object. What’s
worse, the representative object s will not even be aware about the
changes. Such situation certainly must be prevented. In a differ-
ent setting, an outsider, cl2, might obtain a reference to d3. Here
it is not so clear, if cl2 should be allowed to modify d3. It all de-
pends on what elements are stored in the set. If the set is used by
an online lottery to maintain a viewable list of winning numbers,
it would be undesirable to allow some dishonest players to make
modifications to the element d3 (replacing legitimate number with
one selected by the devious player). Only the owners of the set
(e.g. lottery providers) should be allowed to make modifications to
d3. On the other hand, if the set is used to keep track of players
registrations, the participants should be permitted to make modifi-
cations to their registration data (update e-mail address, telephone,
etc.). From the set (or lottery organizers) perspective, what matters
is that the created registrations are preserved, not their contents. In
both scenarios we want the representative object s to protect the in-
tegrity of the composite object Set. What differs is the extent of the
protection.

What does it mean that s protects certain objects? We take the
viewpoint that any changes to the state of these objects should
be initiated by s itself. We will be referring to the set of objects
protected by s as the composite of s. In our Set example, depending
on the context, we have two different composites. (The dark grey
area represents composite that corresponds to the set of player
registrations; the larger boundary corresponds to the set of winning
numbers.):

n1

l

d1

n2 n3

d2

dIt
s

nIt

d3

cl1

cl2

We still need to specify what it means that changes to these
objects are initiated by s. To this effect we separate the methods
of s into two kinds: observers and mutators. When executing an
observer on s we are guaranteed of no changes to its instance
variables, whereas mutators have the right to modify them. But
this is not enough. Observers shall never affect changes to instance
variables of any object in the composite of s. As a consequence, for
an object in s’ composite to change its state, s must be executing
a mutator – s is aware of the fact that it’s composite state might
change.

The next issue we have to address is: How can programmers
specify membership inside a composite object? We borrow here
from work of others [11], [15], [8] and use mode annotations
on object’s references. To begin with, we will use three kinds of
modes: rep, co and read. The most important mode is rep -
if a reference from an object o to an object ω is designated by
programmer as rep, we put ω into o’s composite. The co mode
states that the two objects linked by a co-reference belong to the
same composite object. The third mode, read, tells us that based on
that particular reference no statement about composite membership
of both objects can be determined. In our original example we
could assign the following modes (if we want to model the winning
numbers set – in the other case replace co-references from n to d
with read-references):

n1

l

d1

n2 n3

d2

dIt
s

nIt

d3

cl1

cl2

co co

co co co

rep

rep rep

read

read

read

free

Unfortunately, to address both Set scenarios, we would need to
define the class Node twice - once with a co-reference to its data
and in the second case with a read-reference. If we want to reuse
components, the modes rep, co and read are not enough. We need
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more flexibility. To this effect we introduce an additional class of
modes α ∈ A and parameterize the base modes with correlations.
Now our complete modes are of the form µ < α = µ′ >. The
intuition is as follows: if o has a reference of mode µ<α = µ′>
to ω and ω has a reference of mode α to another object ω′, then o
can potentially obtain a µ′ reference to ω (via a series of method
calls). An α-reference o α−→ ω does not tell us anything about
o’ and ω’s membership in a composite object. We need some
external reference to o, to possibly determine ω’s membership.
The described association modes1 and correlations are crucial for
the structural flexibility of the mode technique. They allow a class
to fix the modes of references in its instances without fixing the
reference targets’ assignment to a composite object. This decision
is postponed to each instance’s clients. Hence the same class can
be reused in many different structural contexts. In our example we
obtain the following situation:

n1

l

d1

n2 n3

d2

DIt
s

NIt

d3

cl1

cl2

co co

data data data

      rep<data=lst-elem>

rep<lst-elem=rep>     
rep<nit-dest=read<data=dit-dest>>

read<data=read>

read

nit-dest

free<dit-dest=rep>

lst-elem

rep

The above diagram tells us, that l could potentially obtain an
lst-elem-reference to d1, and therefore s could obtain a rep-
reference to d1. s could also obtain a rep-reference to d2 (via l,
n1 and n2). Additionally we can infer that dIt (the data iterator)
can obtain a read-reference to n2 and dit-dest-reference to d2.
Hence with the help of dIt, s can avail of a rep-reference to d2 –
this time via a different path.

To allow a safe transfer of sub-components, we introduce one
additional mode: free. By assigning a free-reference from o to
ω we state that ω belongs to a special part of o’s composite – its
movables. o has the right to transfer the sub-component represented
by ω to another aggregate. Note, that ω can be aliased by other
read references.

In section 7 we revisit this example and elaborate more on
transfer of sub-components.

3. Potential Access Paths and Composite Objects
During the execution of object-oriented programs, new objects are
created, old ones are destroyed and links between objects (through
which messages can be exchanged) are established. The run-time
system constitutes a graph with objects as nodes and references as
edges. If the programmer has the option of annotating references
with the previously introduced modes, these annotations will be
reflected in the graph.

Our tool in reasoning about composite object protection are
paths of references between two (not necessarily directly) con-
nected objects.

Paths in a graph are non-empty sequences π = h1, . . . , hn of
object references hi = oi

µi−→ ωi with oi+1 = ωi (also written
π = o1

µ1−→ o2 . . . on
µn−−→ on+1). Among all the possible paths in

a given graph, we are only interested in certain kinds, namely those
that allow us to make judgements about membership in composite

1 They are related to, but nevertheless different from ownership parameters.

objects. We already discussed in section 2 how to arrive at the
judgment for immediate paths of length one. Now let’s turn our
attention to paths that emerge from combination of two adjacent
edges. We first look at the following path: o

rep−−→ ω
co−→ ϕ. ω

belongs to o’s composite and therefore ϕ must also belong to o’s
composite (remember the intuition behind co). We could as well
imagine an inferred edge o

rep
99K ϕ in our graph. This inferred edge

tells us directly, that ϕ belongs to o’s composite. In contrast to
o

rep−−→ ω, o
rep
99K ϕ does not tell us if o has direct access to ϕ. But

potentially, o could obtain a direct access to ϕ if there is a method
of ϕ that returns this and if ϕ is propagated then to o as a result
of some ω method. Therefore we will refer to the inferred edge
o
rep
99K ϕ as a potential access path. As mentioned before, many of

the paths in the graph will convey no meaningful information about
composite object membership. From our perspective interesting
access paths are defined as follows:2

< o, µ, ω >∈ g

g `< o, µ, ω >∈ PAP (o, µ, ω)

g ` π1 ∈ PAP (o, µ, q) g ` π2 ∈ PAP (q, co, ω)

g ` π1 •π2 ∈ PAP (o, µ, ω)

For association modes with correlations we have the additional
rule:

g ` π1 ∈ PAP (o, µ〈. . . , α = µ′, . . . 〉, q)
g ` π2 ∈ PAP (q, α <>, ω)

g ` π1 •π2 ∈ PAP (o, µ, ω)

The modes rep (and free) not only decide about the composite
object membership, but also allow us to make statements about
the yet to be defined object ownership. If there is a reference
o

rep−−→ ω, then o is considered the owner of object ω (having
complete control about the changes to ω’s state). But the ownership
property can extend beyond objects reachable directly via rep-
references (consider the extensions via co- or α-references). We
formalize these concepts with the following definition.

DEFINITION 1. In a graph g we call an object o the owner of an
object ω iff there exists an ownership path from o to ω. The set of
ownership paths from o to ω is defined as follows:

Oshg(o, ω) = PAPg(o, rep, ω) ∪ PAPg(o, free, ω)

For each object o in g, the corresponding composite object is
defined as:

compositeg(o) = {o} ∪
[

Oshg(o,ω)6=Ø

compositeg(ω).

o is called the representative of the composite object. If ω ∈
compositeg(o) then o dominates ω.

In general it is possible that an object has more than one owner
in a given object graph. This is counterintuitive to our understand-
ing that the owner controls the changes to the state of objects in
its composite. We lose this exclusive control right, if an object has
more than one owner. It is desirable (and for our composite state
encapsulation property essential) that all objects in a given object
graph have a unique owner.

DEFINITION 2. We say that an object graph g has the Unique
Owner (UO) property, g � UO, iff ∀o, õ, ω . (Oshg(o, ω) 6=
∅ ∧ Oshg(õ, ω) 6= ∅)⇒ (õ = o).

2 For technical reasons, the PAP’s are determined in the object graph to
which inverses of all co-labeled edges are added
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There might be more than one ownership path from o to ω, and
in case of rep-paths, two of these paths may start with different
references outgoing from o, e.g o

rep−−→ ψ
co−→ ω and o

rep−−→ χ
co−→

ϕ
co−→ ω. This is fine, as long as the owner is unique. The situation

changes in case of free paths. free-references were introduced to
allow safe transfer of sub-components (after destructive read). In
the previous situation when replacing rep with free we arrive at
following paths: o free−−→ ψ

co−→ ω and o free−−→ χ
co−→ ϕ

co−→ ω. We
still might have a unique owner of ω, but this is not enough. Even if
we read destructively the free-reference from o to χ, o will retain
another free access path to ω (via ψ) and it would not be safe
to pass this sub-component to another composite object. Here we
need a stronger property.

DEFINITION 3. We say that an object graph g has the Unique
Head (UH) property, g � UH , iff ∀o, õ, ω, h, π, h̃, π̃ .( h •π ∈
PAPg(o, free, ω) ∧ h̃ • π̃ ∈ Oshg(õ, ω̃)) ⇒ (h̃ = h ∧
mult(h, g) = 1).

UH tells us that if we have multiple free paths to an object ω,
the initial free-reference must be unique (thereafter we can have
multiple co-paths leading to ω). Under such circumstances, after
destructive read of the initial reference we are guaranteed that o
does not own ω anymore.

Both UO and UH are properties of the object graph at a frozen
point in time. When the graph changes, so might its compliance
with UO and UH.

When an object ω executes a method f , we can find in the object
graph a path of references through which a sequence of method
calls leading to the call of f took place. When the method f is a
mutator, the state of ω (and therefore the composite state of any
object o to whose composite ω belongs) might change. We expect
that o actually initiates the change. The next two properties help us
with it.

DEFINITION 4. The Representative Control (RC) property en-
sures that if ω (belonging to the composite object o) executes a
mutator, then this mutator execution is nested inside a mutator ex-
ecution on o. The Mutator Control Path (MCP) property ensures
that a mutator on an object ω is always invoked via a sequence of
calls along the edges of an ownership path to ω. 3

Notice, that o does not necessarily control the membership in its
composite object – through temporary rep, co or free references
in the execution of observers new paths can be established that add
an object to compositeg(o). Even though this addition is only tem-
porary, it is a change of compositeg(o) not necessarily controlled
by o. The desired state encapsulation property does not require us
to impose control on temporary additions since temporary mem-
bers cannot be used to represent the composite’s state. To represent
state, only a core of composite object’s members can be used that
remains in the composite between method invocations.

DEFINITION 5. For an object o, its state representation is defined
as:

strepg(o) = compositebg(o),

where bg ⊆ g is a subgraph containing references stored only in the
instance variables of objects. The composite state of an object o is
defined as

compStateg(o) =
[

ω∈strepg(o)

state(ω)

strepg(o) is a set of implementation objects which collectively
represent the composite object’s state by virtue of their shallow
states.

3 A formal definition of these properties can be found in [17]

At this point we state the main property of our system:

DEFINITION 6. The Composite State Encapsulation (CSE) prop-
erty ensures that if an execution step of a JaM program trans-
forms an object graph g into g′ such that compStateg(o) 6=
compState ′g(o) then o is executing a mutator.4

One of the features of our system is the ability to move sub-
components from one aggregate to another. The set of all objects
belonging to a composite object can be divided into two parts,
depending on the ability of the composite object to transfer these
objects.

DEFINITION 7. Fixtures is the subset of compositeg(o) that is
reachable via rep path sequences only:

fixturesg(o) =
[

PAPg(o,rep,ω)6=Ø

“
{ω} ∪ fixturesg(ω)

”
Movables, another subset of compositeg(o) is defined as:

movablesg(o) = compositeg(o) \ (fixturesg(o) ∪ {o})

Objects in fixturesg(o) can never be removed from the com-
posite object. movablesg(o) on the other hand contains objects,
which can be safely transferred between different agregates (via de-
structive read of free references). However, the transfer can hap-
pen only as sub-components and not as single objects.

DEFINITION 8. Let ω ∈ compositeg(o) and let ϕ be an object
such that g ` π ∈ PAP (ϕ, free, ω) for some path π. Then
compositeg(ω) is called a (movable) sub-component of o.

4. Mode Checking in JaM
So far we did not introduce the syntax of our language JaM (Java
with Modes). It is a fully orthogonal extension of a Java subset
that classifies object references by mode annotations. To reduce the
complexity of the formal treatment, we omit several nonessential
features (e.g. static methods, subclassing). The grammar of JaM is
defined below:

p ∈ P ::= D∗

d ∈ D ::= class C {(T Id; )∗ Meth∗}
f ∈Meth ::= K T Id((T Id)∗) {(T Id; )∗ S; return E}

κ ∈ K ::= mut | obs
t ∈ T ::= M C
µ ∈M ::= (rep | co | read | free | A)<∆>

δ ∈ ∆ ::= (A = M)∗

s ∈ S ::= S;S | V = E | if(E � E){S}
| while(E � E){S}

o ∈ � ::= == | !=
e ∈ E ::= val(V ) | destval(V ) | null<∆>

| new<∆> C() | E ⇐ Id(E∗)

v ∈ V ::= v | this.v

Notable difference from Java is the introduction of modes, marking
of methods as mutator or observer and the explicit read operations
(val and destval). All JaM programs stripped of their annotations
are legal Java programs. Java programs can be translated into legal
JaM programs by annotating all variable/parameter declarations
with co, declaring all methods as mut and introducing the explicit
non-destructive read operator val.

4 A more formal definition of CSE can be found in section 6
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In general, when executing JaM programs, the properties listed
in section 3 will not hold. We rule out illegal JaM programs with
the help of a mode-system, which is orthogonal to the standard Java
type-system.5 For space reasons we concentrate here on deriving
the correct modes for expressions. When checking method defini-
tions in the class c, we must verify that the method body is well
typed (moded) and the result is of the same type as declared in
the method signature. The verification of the method body happens
with respect to a type/mode assignment Γ. It is constructed by as-
signing to this the mode ref co, and by assigning to each local
variable/parameter with the type τ in the signature, the type ref
τ .6

The typing judgment Γ, κ ` e : τ expresses that term e is
legal inside a method of kind κ (mut or obs) and has static type
τ in the context of type assumptions Γ for local variables and
parameters. Selected rules for deriving types/modes in base-JaM
are given below:

Γ, κ ` ν : ref τ τ∗ = τ [free 7→ read]

Γ, κ ` val(ν) : τ∗

Γ, κ ` ν : ref free c ν = this.y ⇒ κ = mut

Γ, κ ` destval(ν) : free c

` c ok
Γ, κ ` new<δ> c() : free<δ> c

Γ, κ ` ν : ref τ Γ, κ ` e : τ ′ ` τ ′ ≤m τ
ν 6= this ν = this.y ⇒ κ = mut

Γ, κ ` ν = e : Cmd

Γ, κ ` e : µ c ` (f : τi
κ∗−−→ τ) ∈ Σ(µ c)

κ∗ = mut⇒ κ = mut ∧ µ 6= read

Γ, κ ` ei : τ ′i ` τ ′i ≤m τi

Γ, κ ` e⇐ f(ei) : τ

Non-destructive read of a variable ν is assigned the type τ of the
reference stored in that variable. But this works only if the mode of
the reference is rep, co or read. If the mode is free, we cannot
do it. The copy of that reference could be then stored in another
variable with the mode rep (as free can be converted to any other
mode) and the UH property would be violated. We do not want
to disallow a non-destructive read of free variables and therefore
change in such cases the resulting mode to read (which is always
safe).

We can destructively read only free variables (we would not
gain anything by allowing it for rep, co or read). There is no
restriction on reading local variables and parameters, but if the read
variable is an instance variable, we can do it only inside mutators
(we are setting the instance variable to nil, therefore modifying
the state of the object executing the method).

In the creation expression we decided to specify the correlation
set δ to be added to the free mode of its value. Although not
necessary, it simplifies the formal treatment.

Assignment to instance variables is legal only inside mutators.
Also, the mode of the value must be compatible with the mode of
the variable.7

5 We also disallow certain class of modes – see section 6
6 In the full formal system the set of types is extended to include ref τ , so
we can distinguish between values of type τ and variables that hold values
of that type. As ref types are not visible to the programmer, we excluded
them from the JaM syntax.
7 We have µ<δ> ≤m read<δ>, free<δ> ≤m rep<δ>, read<δ, α =
µ, δ′> ≤m read<δ, δ′> and read<α = µ> ≤m read<α = µ′> if
µ ≤m µ′. We elaborate more in section 6.

Method invocations e ⇐ f(e1, . . . , en) are rather tricky. As-
suming that f has the (mode) signature µ → µ̃ it is tempting to
return to the sender of a message f as a result reference with the
mode specified in the signature of f , namely µ̃. But what the sig-
nature of f tells us is merely the mode of the temporary reference
to the result that the receiving objects has. When this reference is
passed from the receiver to the sender, that mode might have to be
adjusted. Let’s consider the following situation:

n1

l

d1

n2 n3

d2 d3

co co

rep

n0

l

d0

n1 n2

d1 d2

co

repco    rep

co
✓

✗

n'
co

co✗

✓

Object l invokes next() on Node n1 which returns the co
reference n1 −→ n2. The reference l −→ n2 which l obtains must
not be a co reference, since n2 must be owned by l. The return of
the co reference can be better understood as the mode-preserving
shortening of two-reference path l

rep−−→ n1 co−→ n2 to a one-
reference path l

rep−−→ n2. Should, on the other hand, the node n1 call
next() on its co-object n2, then the returned reference’s mode is
not adapted, since the return simply shortens co path n1 co−→ n2 co−→
n3 to n1 co−→ n3. Analogously, the mode of references passed as
parameters has to be adapted: If l has created a new Node object n0
in its composite (to be included in the list structure), then it should
supply to n0’s setNext operation (expecting a co reference) one
of its rep references, namely l

rep−−→ n1, and not a reference l co−→ n’
to a node that is a co-object in the same composite as l.

Consequently, two notions of signatures have to be distin-
guished:

Exported signatures The interfaces which all instances of a class
c export have a signature Σ(c) defined by the class. Its entries
f : µi di → µ d specify the types of the parameter values
which implementations of operation f expect to receive, and the
type of the result values which they ensure to produce. Against
this signature, the operations’ implementations in class c are
type-checked.

Imported signatures The interfaces which senders import through
µr-references to c-objects have the signature Σ(µrc) with
modes from c-objects’ signature Σ(c) adapted relative to call-
link mode µr . Its entries f : µr ◦ µi di → µr ◦ µ d specify the
types of the parameter values which the sender must ensure to
supply, and the type of the result values which the sender can
expect to obtain.

The method invokation rule type checks against the imported
signature. The following rule provides us with the imported sig-
nature of a class c relative to the call link µr (here we show the
simplified rule for modes without correlations):

` (f : µi di
κ−→ µ d) ∈ Σ(c)

µi 6= rep µi = co⇒ µr 6= read

` (f : µr ◦ µi di
κ−→ µr ◦ µ d) ∈ Σ(µr c)

How do we read this rule? Our system disallows rep as param-
eter mode and permits calling of methods with co parameters only
via references that are not read. If the call over the µr link is legal,
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the sender must supply an argument of mode µr ◦ µi (not just µi).
The returned reference is viewed by the sender as µr ◦ µ (and not
µ). The adaptation, called the import of µ through µr and written
µr ◦ µ, is defined as follows:

µr ◦ read<α = µ> = read<α = µr ◦ µ>
µr ◦ free<α = µ> = free<α = µr ◦ µ>
µr ◦ rep<α = µ> = read<α = µr ◦ µ>
µr ◦ α<> = µ′ if µr = µ<α = µ′> .

Let’s verify the plausibility of these definitions with respect to
the result µ̂-reference returned via a µr-reference (we leave out
correlations for now):

• µ̂ = read: The receiver returns a read reference and therefore
does not know anything about the targets owner. Without this
information, the sender can accept it only as a read reference
– any other choice would be unsafe. This is what µr ◦ read =
read gives us.
• µ̂ = free: The sender can safely accept a free reference from

the receiver as free, since it was the unique initial segment of
ownership paths to all co-objects reachable through it, and all
these old ownership paths are destroyed by the removal of the
receiver’s free handle from the graph (via destructive read).
µr ◦ free = free does it.
• µ̂ = rep: If the receiver returns a rep reference, the receiver

may still possess further rep handles with the same target, and
thus remain the target’s owner. Hence the sender cannot accept
the handle as free or rep without risking a violation of unique
ownership. Accepting it as co would make the sender a co-
object of the target, and thus also owned by the receiver. This
might raise a uniqueness conflict with any old owner of the
sender. Only read is safe and µr ◦ rep = read gives us the
right mode.
• µ̂ = co: If the returned reference is co, i.e., points to the

receiver’s co-object, the sender best accepts it with the mode
µr of the call-link: If µr is rep or free, then the sender already
had an ownership path to the target by concatenation of the
call-link and the receiver’s co handle. Hence it is reasonable
to shorten it to a direct µr handle. In case of free, the accepted
reference will replace the unstored free call-link as the unique
initial edge of free ownership paths to the receiver and all
its co-objects. If µr is co then sender and target were already
co-objects through the call-link and the handle of the receiver,
so that a direct co-handle is safe. And if µr is read then the
accepted handle can only be read, since a read call-link gives
the sender no information about the receiver’s owner. Again
µr ◦ co = µr is the right choice.

Similarly we consider the parameter passing mechanism. The
receiver of a method expects a parameter of mode µ̂. The sender
passes µ̃ argument over µr-reference. The call rule tells us that µ̃
must be compatible with µr ◦ µ̂. Is it sensible?

• µ̂ = read: A parameter of mode read means that the receiver
makes no assumptions about the target’s place in the object
graph. Hence the sender can supply references of any mode and
any mode is compatible with read = µr ◦ read.
• µ̂ = free: If the receiver expects a free parameter then

only free references of the sender (which are destroyed in the
call step) can guarantee the necessary uniqueness of the initial
ownership path segments. µr ◦ free = free does the trick.
• µ̂ = rep: If the receiver expects a rep-reference then a ref-

erence to an object in the receiver’s composite object must be
passed. However, no mode on sender’s reference can guaran-

tee that the target is in the receiver’s composite. Hence methods
with rep parameters are disallowed.
• µ̂ = co: A parameter of mode co means that the receiver

expects a handle to an object with the same owner as itself.
If the call-link is of mode µr = read then the sender has no
information about the receiver’s owner and thus cannot know
which handle’s target would have the same status. This situation
is disallowed by the typing rule. The other call-links provide
us with enough information about the owner of the receiver.
If the call-link is of mode µr = co, then sender and receiver
have both the same owner. Therefore it is safe to pass a co-
reference (the object at its end has again the same owner). And
if the call-link is of mode µr = rep or free then respectively,
rep or free handle of the sender guarantees that receiver and
target have the same owner, namely the sender. In all three cases
µr ◦ co = µr does the trick.

Notice that we are also required to recursively import the modes
”hidden” in the correlations. A related discussion can be found in
[17].

5. Operational Semantics
The formalization of the execution of JaM programs is provided
in the style of small-step semantics. We take the standard ap-
proach, where transformation of program terms (e, ~η, s, om) →
(e′, ~η′, s′, om′) is defined in the following three contexts: a dy-
namic stack ~η of environments ηi ∈ Env that maps local identi-
fiers to locations, a changing store s ∈ Store that maps locations
` ∈ Loc to values currently at these locations and a growing object
map om ∈ Omap that maps identifiers o ∈ O of created ob-
jects to object ”values”: tuples of field environments ρo (mapping
field names to locations), and method suites Fo (mapping operation
names to methods).

The reduction steps are the expected ones, but we include three
non-standard features specifically for accommodating reasoning
about composite objects:

• We formalize reference values as so-called handles: A handle
is not just the object-identifier ω of the target object, but a triple
h =< o, µ, ω > which also includes the identifier o of the
source object and the mode µ of o’s reference to ω.
• We record call-links (references through which method invoca-

tions are made) in the computational state (as annotations to the
stack environments)
• Object graph is included (and manipulated) as an explicit fourth

context g of the term reduction rules.

The meaning of program p as a computational process is for-
malized now as a sequence of reduction steps (e, ~η, s, om, g) =⇒
(e′, ~η′, s′, om′, g). The transformations starts with the expression
new<> cn()⇐main() in the initial context (η0, s0, om0,g0) =
(∅obs<nil,read,nil>, ∅, ∅, ∅). Each reduction step replaces in the term
e one subterm, the redex, by another term. In particular, locations
` ∈ Loc are substituted for identifiers x (using η) and for field
names this.x (using ρthis). Values of variables are substituted for
read access expressions (using s) and method bodies are substituted
for operation call expressions (using om). Through these substitu-
tions, the transformed terms are not just the statements and expres-
sions of the program syntax, but belong to the larger categoryR of
runtime terms.8

The sources in all handles in the store and the runtime term
should coincide with the object to which the corresponding store
location or method nesting level belongs (source consistency). At

8 Detailed syntax forR can be found in [17]
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locations ` = ρo(x) of fields x of object o, we expect to find
only handles s(`) = h whose source is o. Then the object-map
is source consistent, in symbols, |=s om. Analogously, at locations
` = ηi(x) of local variables and parameters x in environments ηi of
invocations with receiver r , we expect to find only handles s(`) =
h whose source is r . Then the environment is source consistent,
|=s η. And at all method nesting levels in the runtime term e
with corresponding receiver r , we expect to find only handles h
with source r , and locations ` containing handles s(`) = h with
source r . If this is the case the runtime term is source consistent, in
symbols, |=s,η e.

We split the definition of reduction steps into two complemen-
tary aspects. On one side are sub-terms that can be completely sub-
stituted in one step to a new term. This substitution will be captured
in redex replacement rules (e, ~η, s, om, g) −→ (e′, ~η′, s′, om′, g).
On the other side we must select a suitable sub-term for the next
substitution. This selection can be conveniently specified with the
help of a reduction context. A reduction context E is a runtime term
”with a hole” symbolized by ‘�’. A complete runtime term ê =
E [e] is obtained by filling a term e into the hole. Reduction steps
are then written (E [e], ~η, s, om,g) =⇒ (E [e′], ~η′, s′, om′,g′) and
performed according to the following reduction rule:

E ∈ R� (e, ~η, s, om, g) −→ (e′, ~η′, s′, om′, g)

(E [e], ~η, s, om,g) =⇒ (E [e′], ~η′, s′, om′,g′)

A selection of redex replacement rules is given below.

s(l) =< o, µ, ω > µ′ = µ[free 7→ read]
(val(l), ~η, s, om, g)

−→ (< o, µ′, ω >, ~η, s, om, g⊕ o µ′−→ ω)

s(l) =< o, µ, ω >
(destval(l), ~η, s, om, g)
−→ (< o, µ, ω >, ~η, s[l 7→< o, µ, nil >], om, g)

h =< s, µ, r > ` V arMths(c) = 〈{xi : ref ti}, F 〉
fresh o ∈ Oc fresh li ∈ [[ref µi ci]]
ρ = {xi 7→ li} hi =< o, µi, nil >

(new<δ> c(), ~η • ηκh , s, om, g) −→
(< r, free<δ>, o >, ~η • ηκh , s[li 7→ hi],

om[o 7→< ρ, F >], g⊕ r free−−−→ o)

r ∈ Oc om(r) =< . . . , F >

F (f) = κ∗ τ f(µi ci yi){µ′j c′j z′j ; s; return e}
fresh l ∈ [[ref co c]] fresh lyi ∈ [[ref µi ci]]
fresh lzi ∈ [[ref µ′i c

′
i]]

η̂ = {this 7→ l, yi 7→ lyi , zj 7→ lzj }
s′ = s[l 7→< r, co, r >, lyi 7→< r, µi, oi >,

lzj 7→< r, µ′j , nil >]

g′ = g	 s µ”−→ oi ⊕ r
co−→ r ⊕ r µi−→ oi

(<s, µr, r>⇐ f(< s, µi”, oi >), ~η, s, om, g) −→
(� s; return e�, ~η • η̂κ

∗
<s,µr,r>, s

′, om, g′)

l ∈ Locµ c
(l =< o, µ̃, ω̃ >, ~η, s, om, g) −→
(ε, ~η, s[l 7→< o, µ, ω̃ >], om, g	 o µ̃−→ ω̃ 	 s(l)⊕ o µ−→ ω̃)

(s′ = s[l 7→ ⊥ | l ∈ im(η̂)]

g′ = g⊕ s µr◦µ−−−→ ω 	 s µr−−→ r 	 r µ−→ ω 	 s(im(η̂))

� return<r, µ, ω>�, ~η • η̂κ
∗
<s,µr,r>, s, om, g) −→

(<s, µr ◦ µ, ω>, ~η, s′, om, g′)

Below we provide the rationale for the given semantics rules
(explanation for graph modifications is provided separately):

• Non-destructive read access val(l) copies the value from the
store (at location `) to the runtime term (at the redex position).
This value is always a handle < o, µ, ω >. In case of a free
handle, an exact copy would immediately violate UH. The copy
is safe if its mode is weakened to read.
• Destructive read access destval(l) evaluates to the value at

location `, but resets the store at ` to a nil-handle.
• An object creation expression instantiates the class c to a new

object with a fresh object-identifier o . It evaluates to a free
handle from the current (creator) object r to the new object o .
Instantiating c also involves the initialization of fresh locations
`i of respective types ref µi ci, to nil-handles with source
o and modes µi. Furthermore o is mapped to an object value
< {xi 7→ li}, F >.
• A method invocation is executed after all its subexpressions, ar-

guments and the receiver have evalueted. The execution contin-
ues with the body� s; return e�. The newly created en-
vironment contains this, parameters and local variables. They
are bound to fresh locations of corresponding ref-types. These
locations are initialized to: a handle to the receiver (of mode
co), argument expression values adapted to the parameters’
modes, and nil-handles of the local variables’ modes.
• An assignment statement is executed after the left-hand side

has reduced to a location ` and the right-hand side to a value
< o, µ′, ω′ >. It updates the store at ` to the handle with the
mode adapted according to the location’s store partition.
• A return statement is executed after its return expression

has evaluated to a result handle. Evaluation continues in the
environment ~η with the result handle adapted to the calling
context, i.e., with the sender as the new source and with a
mode adapted to the sender’s perspective. The current top-level
environment is removed from the stack and the locations of the
names in it (parameters, locals, and this) are removed from the
store.

The object graph is formalized as a multiset g ∈ NO×M×O of edges
whose multiplicity represents the number of the corresponding han-
dlesoccurrences in s, η, or e. The multiplicity of edges is increased
and decreased in accordance with the addition and removal of han-
dles to/from e, η and s.

We will examine now some of the graph transformations during
different reduction steps.

• Non-destructive read increases the multiplicity of the handle
h =< o, µ′, ω >. This models the redex’s substitution to h,
which increases the number of h’s occurences in the term.
• Destructive read of a (free) variable leaves the object graph

unchanged: The new occurence of handle h =< o, µ, ω > in
the term is balanced by removing one occurence from the store.
• New object creation adds creator object r ’s initial reference to

the new object ω to the object graph: g′ = g⊕ < r , free, ω >.
This models the redex’s substitution to < r , free, ω >.
• Method invocation equips the receiver with a new this refer-

ence < r , co, r > and with a parameter handle < r , µi, ωi >
for every argument handle < s , µ′′i , ωi > supplied by the
sender. That is, the multiplicity of < r , co, r > and edges
< r , µi, ωi > increases, while that of edges < s , µ′′i , ωi >
decreases. This matches the arguments’ disappearance from the
term and the parameters’ and the this-reference’s appearance
at fresh locations in the store. The call-link < s, µr, r > is
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not changed. Its disappearance from the term is balanced by its
occurence in the new top-level environment.
• Variable update converts a handle < o, µ̃, ω̃ > to < o, µ, ω̃ >,

i.e., decreases the multiplicity of the first handle and increases
that of the second one. This matches, respectively, the disap-
pearence of the right-hand side handle < o, µ̃, ω̃ > from the
term and the appearance of the handle < o, µ, ω̃ > at location
` in the store. Additionally, the multiplicity of the old handle
< o, µ, ω > at location ` decreases since the update at location
` overwrites it.
• Method return combines the call-link < s , µr, r > and the

return handle < r , µ, ω > to the edge < s , µr ◦ µ, ω > in
the sender, i.e., the former two edge’s multiplicity decreases
while the latter one’s multiplicity increases. This matches the
appearence of < s, µr ◦ µ, r > in the runtime term and the
disappearence of handle < r , µ, ω > from the term and of
call-link < s, µr, r > (together with the finished invocation)
from the environment stack. Additionally, since the locations
of the finished invocation’s variables in the store are reset, the
multiplicities of all (non-nil) handles lost by this are decreased
to keep the object graph in sync.

For the implementations of the JaM language, no representation
of the object graph at runtime is needed. The graph has no impact
on the computation and is invisible from outside of the program.
It can actually be calculated from the other run-time contexts. We
included it in the rules to make the nature of transformations more
obvious.

6. Verifying Run-Time Properties
The reduction rules are a tool that enables us to establish the
properties that we expect to hold during execution of legal JaM
programs. (In the following, e0 = new<> cn()⇐main(), is the
initial expression of a legal program p.)

The ownership paths in all object graphs reachable in the execu-
tion of legal JaM programs satisfy the Unique Owner and Unique
Head integrity invariants.

THEOREM 1. If (e0, ~η0, s0, om0,g0) =⇒∗ (e, ~η, s, om,g) then

g |= UH,UO

The structure of mutator access as recorded in the environment
stack during the execution of legal JaM programs is always con-
sistent with ownership paths as captured in the integrity invariants
Representative Control and Mutator Control Path.

THEOREM 2. If (e0, ~η0, s0, om0,g0) =⇒∗ (e, ~η, s, om,g) then

g, ~η |= RC and g, ~η |= MCP

The following theorem is the main result, which establishes the
Composite State Encapsulation property.

THEOREM 3. Let (e0, ~η0, s0, om0,g0) =⇒∗ (e, ~η, s, om,g) =⇒
(e′, ~η′, s′, om′,g′). Then for all o ∈ dom(om):

compStateg(o) 6= compStateg′(o)

⇒ ∃i ≤ n• ri = o ∧ κi = mut,

where ~η = η1
κ1
h1
, . . . , ηn

κn
hn

with hi =< si, µi, ri >.

The theorem simply states that if a state of a composite object
(represented by o) changes, then the representative o is executing a
mutator.

The proofs for the first two theorems are by induction on the
number of reduction steps from e0 to e. Once we establish these
properties (plus several helpful lemmas), the proof for Composite
State Encapsulation is straightforward.

Complete set of proofs for JaM and base-JaM (without associ-
ation modes and correlations) can be found in [17]. Although of-
ten tedious and lengthy, proving these results in base-JaM is fairly
manageable. Things change, when introducing association modes
with correlations. While the formal treatment of many JaM prop-
erties is a simple forward adaptation from base-JaM, the proofs of
the unique owner and unique head invariants must be redone com-
pletely. Potential access paths in JaM have much more complicated
structure than in base-JaM. The possibility of extending µ-paths to
non-µ paths is the culprit. We were forced to restrict permissible
association modes and their correlations.

• We don’t consider extensions o co99K q
α99K ω and o

α′99K
q

α99K ω of co- and association paths by association paths.
Also the extension o µ99K q α99K ω of potential access paths by
association paths to co- and free paths o co99K ω and o free9999K ω
is disallowed. This simplification is reflected in constraints on
the nesting structure of mode-terms. Only modes free, rep and
read are parameterized by correlations (free<δ>, rep<δ>
and read<δ > are legal, but co<δ > and α< δ > are not).
Also, only correlations to rep, read and association modes are
permitted (µ<α = rep< δ >>, µ<α = read< δ >> and
µ<α = γ<>>).
• Implicit mode-conversions from free<> to co<> or α<>

caused by assignment or parameter passing is disallowed. (Te-
dious invariants about all sequences of association paths start-
ing from targets of free<> paths are needed in order to show
that such conversions preserve the uniquness of ownership.)
This simplification is reflected in the definition of the mode
compatibility relation ≤m.

At this point we want to comment on the sub-mode rules introduced
in section 4. There we constrain the width- (more or fewer corre-
lations) and depth- (correlations with compatible modes) compati-
bility between modes. Without this restriction it would be possible
for an object to convert read references to rep. We could weaken
a rep<data=rep<>> reference to ω to a rep<data=read<>> ref-
erence. Through this reference the source could store a read ref-
erence in ω as a data reference and read it back through the
original reference as a rep. The same scenario can be set up
using width-compatibility. Two distinct rep<data=rep<>> and
rep<data=read<>> references to ω could be converted to the
same mode rep<> and then linked by a co-reference. By read-
ing it back through the original references the source can obtain,
as with depth-compatibility, a rep<data=rep<>> reference and
a rep<data=read<>> reference to the same object. Depth- and
width- compatibility in JaM’s type system exists only between
readmodes. The readmodes are compatible because through con-
verted read references nothing can be stored in the target (since
only observers can be called on the target).

7. The Set Example Revisited
We take a look now at concrete implementation of our Set compos-
ite object. The relevant interfaces are: Iterator<T>, List<T> and
Set<T>. The types of variables, parameters and results are prefixed
by our mode annotations (e.g. rep Node<T>).9 We don’t show val

9 Although generic types are not part of our syntax, we use them in the
example. This does not really affect our system, as the mode annotations
are completely orthogonal to the standard Java types.
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and destval in our code.10 We also use void methods, which are
not declared in our syntax.11

interface Iterator<T>{
void step();
dest T current();

}

interface List<T>{
void add(lst-elem T e);
void remove(read T e);
lst-elem T contains(read T e);
free<nit-dest=lst-elem> Iterator<Node<T>>

getNodeIter();
}

interface Set<T>{
void add(set-elem T e);
void remove(read T e);
set-elem T contains(read T e);
free<dit-dest=set-elem> Iterator<T>

getDataIter();
}

Inspecting the add method of the List<T> interface we see,
that to add an element to a List, we must supply an element that has
the same composite membership as the other list elements. Notice,
that we are not saying anything about what the membership will
be (e.g in the composite of the list object itself or in some other
composite). This will depend on the context in which List<T>
instantiations are used. The contains method tells us, that when
we look for an element in the list, we can supply any element
without worrying about its composite membership. But if we find
this object, we return it with the information that it belongs to
the same composite as all other list elements. The getNodeIter
method returns an iterator that can be passed to other components
(this is the meaning of free). At the same time we specify that this
iterator’s destination is in the same composite as the list elements
(this is what the correlation <nit-dest=lst-elem> tells us). In
the case of the Set<T> interface we can extract similar information:
we can only add elements that belong to the same composite as all
the other set elements. The set iterator can again be passed to other
components, and the iterator’s destination is in the same composite
as all the set elements.

The List abstract object will be implemented with objects of the
class Node<T>:

class Node<T>{
co Node<T> next;
data T value;

void setNext(co Node<T> n){
this.next = n;

}

void setValue(data T p){
this.value = p;

}

co Node<T> getNext(){

10 The compiler can deduce, based on the context, which read operation
should be used.
11 We can view them as syntactic sugar for methods that return this as
result and assign it right back to the variable trough wich the method was
invoked. This is particularly helpful, if we try to send mutators over free
references without losing them.

return this.next;
}

data T getValue(){
return this.value;

}
}

Here we notice that the next link points to an object in the same
composite as the referring node (co Node<T> next). The values
stored in our nodes belong to some yet unspecified composite data.
The signature of the setNext method tells us, that we must provide
an object belonging to the same composite as the node executing
that method.

Next we implement a node iterator, that allows us to traverse
nodes contained in some structure:

class NodeIt<T> implements Iterator<Node<T>>{
nit-dest Node<T> curnode;

void startAt(nit-dest Node<T> n){
this.curnode = n;

}

void step(){
this.curnode = this.curnode<=getNext();

}

nit-dest Node<T> current(){
return this.curnode;

}
}

Here the iterrator points to a current node that belongs to some
composite nit-dest. To set up the initial point of the node traver-
sal, we need to supply a node that belongs to that nit-dest com-
posite.

We use the node iterator to implement an iterator DataIt<T>
that traverses not the nodes themselves, but the values stored in the
nodes:

class DataIt<T> implements Iterator<T>{
rep<nit-dest=read<data=dit-dest>>

Iterator<Node<T>> nIt;

void wrap(free<nit-dest=read<data=dit-dest>>
Iterator<Node<T>> newnIt){

this.nIt = newnIt;
}

void step(){
this.nIt<=step();

}

dit-dest T current(){
dit-dest T res;
if (this.nIt<=current() != null){

res = this.nIt<=current()<=getValue();
}
return res;

}
}

This iterator ”wraps” the node iterator. It puts the internal node
iterator nIt into the composite controlled by the data iterator (the
base mode rep does it). Any changes to the state of nIt can only be
initiated on data iterator’s instigation. At the same time we specify
that we don’t expect any information about nit-dest composite
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(setting <nit-dest=read<...>> says exactly this). The method
current returns objects in dit-dest composite.

Now we are ready to direct our attention to the List implemen-
tation:

class ListImp<T> implements List<T>{
rep<data=lst-elem> Node<T> anchor;

void add(lst-elem T e){
rep<data=lst-elem> temp;

temp = anchor;
this.anchor = new<data=lst-elem> Node<T>();
this.anchor<=setData( e );
this.anchor<=setNext( temp );

}

void remove(read T e){
...

}

lst-elem T contains(read T e){
...

}

free<nit-dest=rep<data=lst-elem>> Iterator<T>
getNIt(){

free<nit-dest=rep<data=lst-elem>> NodeIt<T>
nIt;

nIt = new<nit-dest=rep<data=lst-elem>>
NodeIt<T>()<=startAt(this.anchor);

return nIt;
}

}

The anchor points to the initial node that is put into the
list’s composite (via rep). Concurrently we specify that objects
in that node’s data composite belong to list’s lst-elem compos-
ite. getNIt provides a node iterator over the node structure. The
iterator belongs to List’s movables (free mode) and therefore can
be safely passed to other composite objects (e.g the SetImp<T>).
Also, the iterator’s destination objects (the nodes) belong to list’s
composite (via rep).

The remaining part of the puzzle is the SetImp<T> class imple-
mentation:

class SetImp<T> implements Set<T> {
rep<lst-elem=set-elem> T entryList;

void add(set-elem T e){
if (entryList<=contains(e) == null){

entryList<=add(e)
}

}

set-elem contains (read T e){
return entryList<=contains(e)

}

void remove(read T e){
entryList<=remove(e)

}

free<dit-dest=set-elem> Iterator<T> getDIt(){

free<nit-dest=read<data=set-elem>>
NodeIt<T> nIt;

free<dit-dest = set-elem> dIt;

nIt = entryList<=getNIt();
dIt = new<dit-dest=set-elem> DataIt();
return dIt<=wrap(nIt);

}
}

The Set is implemented with the help of a List component. The
list is put into set’s composite, so only the set can make changes
to list’s structure. Even if some other objects have references to the
nodes, they cannot send setNext() to them. The list elements (in
the composite lst-elem) end up in the composite set-elem.

In the following code we define the class OnlineLottery
that holds both, the winning numbers and the players’ registra-
tions. winningNumbers are in OnlineLottery’s composite and
therefore cannot ever be transferred to another composite object.
playersReg on the other hand is part of OnlineLottery’s mov-
ables and can at any point be ”sold” to another ”lottery enterprise”.

class OnlineLottery {
rep<set-elem=rep> SetImp<NUM> winningNumbers;

free<set-elem=reg> SetImp<REG> playersReg;

free<dit-dest=rep> Iterator<NUM> getWinIt(){
return winningNumbers<=getDIt();

}

free<dit-dest=reg> Iterator<REG> getRegIt(){
return playersReg<=getDIt();

}

void newDraw() {
rep<dit-dest=rep> Iterator<T> internalIt

= this<=getWinIt();

while (internalIt<=current() != null) {
internalIt<=current()<=setNum(random);
internalIt<=step()

}
}

free<set-elem=reg> SetImp<REG> sellRegSet() {
return destval(playersReg);

}

read<set-elem=reg> SetImp<REG> exposeRegSet() {
return val(playersReg);

}
}

OnlineLottery class provides two iterators getWinIt() and
getRegIt(), which either iterate other the set of winning num-
bers or the set of registrations. The getWinIt() iterator, when
used internally (e.g. in the newDraw method), returns rep refer-
ences that can be modified. When requested by an external client,
the exported mode is adapted to free<dit-dest=read> allowing
only read acces to the numbers.12 Player’s registrations belong to
some composite reg and therefore getRegIt() iterator returns
immutable references to an OnlineLottery object. On the other
hand, clients that own reg, will receive mutable references from
getRegIt().

12 See the import operation in section 4
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Our OnlineLottery objects can sell the registration set,
playersReg, to another gambling provider. Notice the destval in
sellRegSet. The new owner can modify the sellRegSet (adding
and removing registrations), but cannot change the content of any
registrations (only the owner of the reg composite can). We can
also expose the playersReg set, but the value of such operation is
not clear here (the set cannot be modified - we can only obtain an
iterator from such set, which is identical to the iterator obtained via
getRegIt()).

If we want the OnlineLottery to own both, the list of reg-
istrations and the registrations themselves and later on transfer
the ownership of the list and the registrations to another provider,
we might be tempted to declare playersReg with the mode
free<set-elem=free>. Unfortunately we cannot do it – our sys-
tem does not allow it. We simply cannot guarantee the unique-
ness of the references to the set elements (e.g. we could repeat-
edly call observers that return ”free” references to the same set
element and every-time store them in a different free variable
of OnlineLottery). To make the described transfer feasible, we
would need to modify the Node class. The mode of value needs
to be change to free. The OnlineLottery (or playersReg set)
owns now the registrations indirectly through the nodes, which
are the direct owners of the registrations). The DataIt must be
changed now as well, returning a read reference (via val – not
destval).

8. Related Work
Blake and Cook were the first to characterize the problem of com-
posite object encapsulation [4]. They warned that the common
handing out of references to part objects enables clients to mod-
ify them in a way violating the integrity of the whole.

The Islands approach [11] proposes three techniques for mak-
ing object interaction more predictable: the observer/mutator dis-
tinction, the uniqueness of certain references and the isolation of
specific regions in the object graph (Islands). The work also con-
tributes a system of access mode annotations with read, unique
and free. read references cannot be assigned to variables but they
can be bound to parameters. Island’s free indicates references to
whose target no other reference exist. unique is a variation on
free with temporary aliases. Only un-captured references are al-
lowed in or out of Islands. They must be either read or aliases of
unique.

Flexible Alias Protection (FAP) [15] is another approach to-
wards encapsulation of composite objects. FAP addresses the cou-
pling caused through sharing of mutable state by a two-pronged
strategy: the absence of all inbound references into composite ob-
jects representation and the independence of container objects from
their contents’ state. It is the first system to introduce the rep mode,
which describes references from an object to its state-representing
components. The ability to specify rep references by some kind of
annotation is fundamental to nearly all typing disciplines for com-
posite object encapsulation. FAP also introduces association roles
α, for a user-defined classification of object references according
to different semantic roles.

Ownership Types (OT) [8] was the first system of composite ob-
ject encapsulation presented with complete formal definitions (typ-
ing rules, interpretation of annotations, encapsulation property) and
a proof sketch. The authors introduced the graph-theoretical notion
of dominator to define the relaxed hiding policy of representation
containment. The concept of co references was introduced in OT
(under the name owner). The authors also observed the importance
of co for the proper typing of this. α roles from FAP reappear
here as context parameters to the class. Like any hiding policy, OT
excludes iterators and other common patterns. Some of the OT de-
scendants and variations are [6], [5], [1], [12] and [16].

The Calculus in [9] is an ambitious foundational work on the
isolation of regions in the object graph with several technical in-
novations. The OT system is generalized to cover the missing lan-
guage features and make it more flexible. The formalization is done
with the help of an object calculus. The decisive step towards more
flexibility was to loosen the connection between the structure of
object composition and the nesting of protection domains, the own-
ership contexts.

Universes [14] is the first technique that enforces a policy of
encapsulation without hiding. Universes simplify OT by replacing
OTs problematic context parameters by runtime ownership checks.
Universes prevent flexible object creation and composition by fix-
ing new objects owner always to their creator.

AliasJava [2] is characterized as a capability-based system.
It combines aliasing annotations with ownership annotations. It
makes aliasing patterns explicit and enforces a relaxed hiding pol-
icy. The authors are the first to develop a constraint-based algorithm
for inferring the new annotations, and the first to report on the us-
ability of their system for real-world software like Java’s standard
library. A drawback of AliasJava is its need to represent ownership
parameters at runtime.

The work most closely related to ours is [13] and [10] (the later
evolved from [14]). [13] introduces a novel type system ”Effective
Ownership Types” (EOT). Each method definition is provided with
effective owners. A method owned by o can only update objects
with an owner that dominates o. The ownership tree is established
in the same manner as in OT. The static type system tracks down
the unsafe mutations. As in our system, object references and non-
mutating access are unrestricted. OT system is a special case of
EOT, where all methods belong to the owner of the defining object.
Unlike in our system, mutator calls via inside-out references are
permitted. EOT also can express mutating iterators. Such iterator
carries a reference to its collection object and can therefore add and
delete elements by making calls on the collection’s interface. This
is not possible in our system. Our system allows the safe transfer of
sub-components (inside the movables) from one composite object
to another. In EOT the owner of an object is fixed for its lifetime
and transfer of sub-components is not possible.

Transfer of ownership has been first described in [7]. The au-
thors introduce the concept of ”external uniqueness”. Here unique
describes the only reference into an aggregate from outside the ag-
gregate. Internal aliases to a unique reference are permitted. The
authors work in the owner-as dominator setting. In JaM, free ref-
erences can have arbitrary read aliases and the free reference as
well as its aliases can be captured in variables.

Ownership transfer is not possible in the Universe Types system
[14], [10]. As in our system read-only references (or any in [10])
are allowed to cross the boundary of encapsulation. In both cases
modification of objects through such references is disallowed. [14]
cannot produce iterators that deliver mutable objects (a dynamic
downcast from read to rep is required). This has been rectified
in [10]. The Viewpoint Adaptation in [10] is closely related to our
Signature Import. In our system we have to deal additionally with
free modes. Without them Viewpoint Adaptation and Signature
Import appear almost identical.

9. Conclusion
We presented the Potential Access Path methodology as a toll to
reason about composite objects and their state. The main technical
result of this paper is the Composite State Encapsulation property
– a guarantee that modifications to composite object’s state are
controlled solely by its representative.

Our system enables the definition of nested composite objects
with a complex internal structure, their observation through exter-
nal iterator objects, their incremental construction, and their trans-
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fer across abstraction boundaries. It is a purely static system in
which container objects and their iterator objects can each be en-
capsulated individually (state-protected from one another).

The flexibility of our system results from a novel weak unique-
ness property for reference paths. That property generalizes the
standard notion of free or unique references (which are not aliased
by any references). We believe that our system is one of the first to
combine object-as-modifier discipline with transfer of ownership.

In our system all ownership information is removed from ob-
jects. This should mitigate the loss of ownership information prob-
lem in subclassing. The association modes (or roles) are not place-
holders for reference target’s owner, but uninterpreted type tags on
object’s references. The available roles are not limited by a param-
eter list, nor by the references targeting it. Our system allows the
bottom-up construction process, in which sub-objects are created
before their owners.
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