
Ownership Domains in the Real World

Marwan Abi-Antoun
School of Computer Science
Carnegie Mellon University

marwan.abi-antoun@cs.cmu.edu

Jonathan Aldrich
School of Computer Science
Carnegie Mellon University

jonathan.aldrich@cs.cmu.edu

Abstract
The Ownership Domains type system has had publicly available
tool support for a few years. However, the previous implementation
used non-backwards compatible language extensions to Java and
ran on a research infrastructure, which made it difficult to conduct
substantial case studies on interesting systems.

We first present a re-implementation of ownership domains us-
ing Java 1.5 annotations and the Eclipse infrastructure. We then use
the improved tool to annotate two real 15,000-line Java programs
while using refactoring tool support, generics and external libraries.

Ownership domains, as most other ownership type systems,
provide useful encapsulation properties. We illustrate using actual
examples from the subject systems how ownership domains also
express and enforce design intent regarding object encapsulation
and communication and help identify tight coupling. Finally, we
mention some expressiveness gaps that we encountered.

1. Introduction
Researchers have proposed many ownership type systems, e.g.,
[15, 10, 3, 17, 41], but have not reported significant experience with
most of them on real code. Only a few systems, notably Ownership
Domains [6, 3], Universes [17] and Generic Ownership [41], have
released tool support [46, 20, 40], and even fewer systems have
been evaluated in substantial case studies [6, 25, 2, 38].

The previous implementation of ownership domains [3] used
non-backwards compatible extensions of Java [46]. As a result,
none of the rich tool support for Java programs was available to
programs with ownership domain annotations1.

In a previous case study [2], we identified that adding owner-
ship domain annotations to existing code often highlights refactor-
ing opportunities. For instance, a lengthy domain parameter list is
often an indication of tightly coupled code that could benefit from
refactoring — such as extracting an interface and programming to
that interface. It is unrealistic to assume that it is possible to refactor
all such code prior to annotating it. In our experience, having ac-
cess to refactoring tool support during the annotation process was
invaluable. Using language extensions also makes it harder to par-
tially and incrementally annotate existing code and thus conduct
case studies on interesting systems. Finally, the previous tool used a
modified research infrastructure [8] that is no longer actively main-
tained and does not support Java generics — as of this writing.

To address these adoptability challenges, we re-implemented
the Ownership Domains type system using the annotation facility
in Java 1.5 [27], so that Java programs with ownership annotations
remain legal Java 1.5 programs. We also implemented the tool as
a plugin to the Eclipse open source development environment that
has become popular with researchers and practitioners [24, 37].

1 The Universes tools built on the Java Modeling Language (JML) infras-
tructure support both language extensions and stylized comments [20].

We believe this improved tool support promotes the adoptability
of the ownership domains technique by Java developers as follows.
First, all the Eclipse tool support such as syntax highlighting, refac-
toring, etc., remains available to annotated programs. Second, using
annotations makes it easier to support in a non-breaking way ad-
ditional annotations such as external uniqueness [14] orreadonly
[17]. Third, using annotations gives the ability to incrementally and
partially specify annotations on large code bases. Fourth, using an-
notations will make it possible to study the evolution of programs
with ownership annotations, an area that has not received much
attention — since no one will maintain a program with limited
tool support. Finally, annotating existing code is difficult and time-
consuming and tools are being developed to add annotations semi-
automatically [6, 16]. One of the benefits of using annotations over
language extensions is that an inference algorithm cannot break an
existing program by inserting potentially incorrect annotations.

We made the following design choices for the annotation sys-
tem. First, we worked within the limits of Java 1.5 annotations
[27], even though annotations may be more verbose than an ele-
gantly designed language. Moreover, Java 1.5 annotations impose
several restrictions, e.g., no annotations on generic type arguments.
Other researchers have tried to eliminate some of these restrictions
by proposing revisions of the language [19], but until such propos-
als are officially adopted, their prototype implementations are not
Eclipse compatible, an important factor for adoptability. Second, to
work around the Java 1.5 limitation of allowing annotations only
on declarations, we consistently declare additional temporary vari-
ables and add annotations to them. This has worked well for new
expressions, cast expressions (both implicit and explicit) and ar-
guments for method and constructors. Third, checking ownership
domain annotations only generates informational messages, i.e., no
errors or warnings, and does not stop a developer from running
the program. Fourth, we hard-code a minimal number of implicit
defaults and provide a separate tool to supply explicit reasonable
defaults to reduce the annotation burden. In the future, this tool can
be replaced with a smarter annotation inference tool. Finally, the
annotations are non-executable and do not affect the program’s be-
havior2; unlike the earlier implementation, the current system does
not include runtime checks. As a result, the annotation-based sys-
tem is unsound at casts — but could be made sound using bytecode
rewriting to add necessary dynamic checks.

The rest of the paper is organized as follows: we review owner-
ship domains in Section 2, describe the annotation language in Sec-
tion 3 and the salient tool features in Section 4. We discuss two case
studies in Section 5 and show how ownership domains express and
enforce design intent related to object communication and encap-
sulation. We discuss some expressiveness gaps that we encountered
in Section 6 and conclude with related work in Section 7.

2 Annotations may increase the memory footprint and slow down class
loading as a result, but no empirical data has been reported to date.

93

2. Review of Ownership Domains
Ownership domainsare conceptual groups of objects with explicit
domain names and explicit policies that govern references between
them. Each object belongs to a single ownership domain, and a top-
level domain is assumed.

Public and Private Domains.Each object can declare one or
more public or private domains to hold its internal objects, thus
supporting hierarchy. A public domain is accessed using a syntax
similar to field access. Domain declarations are added to a class,
but for each instance of that class, fresh instances of these domains
are created for that object, i.e.,obj1.DomainA andobj2.DomainA
are distinct ifobj1 andobj2 are instances of the same classT and
do not alias each other.

Explicit Domain Links. Each object can declare a policy de-
scribing the permitted aliasing among objects in its public domains,
and between its private domains and public domains. Ownership
domains support two kinds of policy specifications: a) a link from
one domain to another allows objects in the first domain to access
objects in the second domain; and b) permission to access an object
implies permission to access its public domains. In addition to ex-
plicit domain links, the following implicit policy specifications are
included: a) an object has permission to access other objects in the
same domain; and b) an object has permission to access objects in
any domain that it declares. Any reference not explicitly permitted
by these rules is prohibited, and link permissions are not transitive.

Ownership Domain Parameters.Two objects can access ob-
jects in the same domain, as long as implicit or explicit permissions
allow that access, by declaring a formal domain parameter on one
object, and binding that formal domain parameter to another do-
main. Method domain parameters are also supported and are often
needed for static methods.

Alias Types. In addition, the following special annotations are
defined for increased expressiveness [3]:
• unique: indicates an object to which there is only one refer-

ence such as a newly created object. Unique objects can be
passed linearly from one object to another, by destroying the
old reference to the object when the new reference is created;

• lent: one ownership domain can temporarily lend an object to
another ownership domain, with the constraint that the second
ownership domain will not create any persistent references to
that object: e.g., a method formal parameter is often annotated
with lent to indicate that it is a temporary alias;

• shared: indicates that an object may be aliased globally.
shared references may not alias non-sharedreferences.
Unlike owner-as-dominatortype systems [15], public domains

in the ownership domains type system can express constructs such
as iterators [3] (See Figure 1) or an instance of the Compos-
ite design pattern [22, p. 163] that does not encapsulate its sub-
components and gives clients the ability to add components to any
composite of the hierarchy and not only to the root composite [30].
Developers can still express owner-as-dominator in ownership do-
mains by: a) never declaring a public domain; and b) never linking
a domain parameter to an internal domain [3].

3. Annotation Design
In this section, we describe the concrete annotation syntax. For
maximum flexibility and to work around some of the limitations of
Java 1.5 annotations, all annotation values are strings. Annotations
that are plural take values that are arrays of strings.

The annotations are illustrated using snippets from a canonical
Sequence abstract data type, a common benchmark for ownership
type systems. Within theSequence, theiters ownership domain
is used to holdIterator objects that clients use to traverse the
Sequence, and the defaultprivate owned ownership domain is

used to hold theCons cells in the linked list that is used to represent
theSequence. The full example is shown in Figure 1.

@Domains: declare public or private domains on a type.
• Format: identifier
• Applies to: type (class or interface).
• Examples: the following declares a privateowned domain

(owned is private by naming convention), and a public domain
iters to store theIterator objects of theSequence.

@Domains({"owned" ,"iters"})
c l a s s Sequence<T> {
. . .
}

@DomainParams:declare ordered domain parameters on a type
or method domain parameters on a method.

• Format: identifier
• Applies to: type or method.
• Examples:Sequence declares a domain parameterTowner to

hold its elements.

@DomainParams({"Towner"})
c l a s s Sequence<T> {
. . .
}

@DomainInherits: pass parameters to superclass or implemented
interfaces.

• Format: typename < parameter, . . . >
• Applies to: type (class or interface).
• Examples: theIterator interface is also parameterized by

the Towner domain parameter. ClassSeqIterator inherits
domain parameterTowner from interfaceIterator, and adds
thelist parameter to access theCons cells.

@DomainParams({"list" , "Towner"})
@DomainInher i ts({"Iterator <Towner>"})
c l a s s S e q I t e r a t o r<T> implements I t e r a t o r<T> {
. . .
}

@DomainLinks: declare domain links.
• Format: fromDomainId -> toDomainId
• Applies to: type (class or interface).
• Examples: theSequence givesIterator objects in theiters

domain permission to access objects in theowned domain,
including theCons cells.

@DomainLinks({ . . . , "iters -> owned" , . . .})
c l a s s Sequence<T> {
. . .
}

@DomainAssumes:declare domain link assumptions.
• Format: fromDomainId -> toDomainIds
• Applies to: type (class or interface).
• Examples: the Sequence assumes that theowner of the
Sequence has access to theTowner domain containing the
sequence elements.

@DomainAssumes("owner -> Towner") /∗ de f a u l t ∗ /
c l a s s Sequence<T> {
. . .
}

@Domain: declare the domain, actual parameters and actual array
parameters.

• Format: annotation<domParams,...>[arrayParams,...]
annotation: indicate a domain name (e.g.,owned), one of
the special alias types (e.g.,unique), or a public domain of
an object using a field access syntax (e.g.,seq.iters);
<domParams,...>: specify actual domain parameters by
order of formal domain parameters, at object creation and
access sites;

94

[arrayParams,...]: in ownership domains, arrays have
two ownership modifiers, one for the array object itself and
one for the objects stored in the array. For variables of array
type, this argument specifies the actual array parameters by
order of array dimension (for multi-dimensional arrays).
Applies to: local variable declaration, field declaration,
method formal parameter and method return value.
Examples:the following declares aunique Iterator ob-
ject and binds thelist domain parameter onSeqIterator
to owned domain onSequence, and theTowner domain
parameter onSeqIterator to the parameter by the same
name onSequence.

@Domain("unique<owned,Towner>")
Se q I t e r a t o r<T> i t = new S e q I t e r a t o r<T>(head) ;

Examples:alent array ofshared Strings:

@Domain("lent[shared]") S t r i n g a r g s [] ;

@DomainReceiver: declare the domain of the receiver of a con-
structor or a method.

• Format: identifier
• Applies to: constructor or method.
• Examples:

@DomainReceiver("state")
vo id run () { . . . }

4. Tool Design and Implementation
Ownership domain annotations are typechecked using two visitors
on the Eclipse Abstract Syntax Tree (AST).

4.1 Ownership Domains Typechecking

A first-pass visitor performs the following:
• Identify Problematic Patterns: these will need to be replaced

with equivalent constructs, e.g., by declaring a local variable
and adding the appropriate annotations to it;3

• Read Annotations from AST: the Java 1.5 annotations added
to a program are part of the AST. The visitor locates the an-
notations nodes in the AST and parses their contents using a
JavaCC [26] parser. The visitor also locates special block com-
ments on method invocation expressions as described later. In
addition, the visitor infers default annotations for some AST
nodes that cannot be annotated, e.g., it implicitly defaults the
NullLiteral AST node tounique. The visitor maps each
AST node to an annotation structure in preparation for the sec-
ond pass visitor which will typecheck the annotations;

• Propagate Local Annotations: the visitor propagates the ex-
plicit annotations from the AST nodes (for types, variables,
and methods) to all the expression nodes in the AST, includ-
ing translating formals to actuals.
A second-pass visitor checks the annotations on each expression

based on the static semantics of Ownership Domains. Checking the
assignment rule requires a value flow analysis. A Live Variables
Analysis (LVA) from a lightweight data flow analysis framework
[5] — that also uses the Eclipse AST, is invoked intra-procedurally
at each method boundary using a separate visitor. The LVA analysis
verifies that aunique pointer only has one non-lentread.

4.2 Additional Features

The tool offers the following additional features:

3 Using the Eclipse built-in refactoring (“Extract Local Variable”), this
operation can be performed with very little effort.

@Domains({"owned" ,"iters"})
@DomainParams({"Towner"})
@DomainAssumes("owner -> Towner")
@DomainLinks({"owned->Towner" , "iters->Towner" ,

"iters->owned"})
c l a s s Sequence<T> {

@Domain("owned<Towner>") Cons<T> head ;
vo id add (@Domain("Towner")T o) {

@Domain("owned<Towner>")
Cons<T> cons = new Cons<T>(o , head) ;
head = cons ;

}
@Domain("iters<Towner>") I t e r a t o r<T> g e t I t e r () {

@Domain("iters<owned, Towner>")
Se q I t e r a t o r<T> i t = new S e q I t e r a t o r<T>(head) ;
re turn i t ;

}
}

@DomainParams({"Towner"})
@DomainAssumes("owner -> Towner")
c l a s s Cons<T> {
@Domain("Towner") T ob j ;
@Domain("owner<Towner>") Cons<T> nex t ;

Cons (@Domain("Towner")T obj ,
@Domain("owner<Towner>") Cons<T> nex t) {

t h i s . ob j = ob j ;
t h i s . nex t = nex t ;

}
}

@DomainParams({"Towner"})
i n t e r f a c e I t e r a t o r<T> {

@Domain("Towner")T nex t () ;
boolean hasNext () ;

}

@DomainParams({"list" , "Towner"})
@DomainAssumes({"list -> Towner"})
@DomainInher i ts({"Iterator <Towner>"})
c l a s s S e q I t e r a t o r<T> implements I t e r a t o r<T> {

@Domain("list<Towner>") Cons<T> cu r r e n t ;
. . .
S e q I t e r a t o r (@Domain("list<Towner>") Cons<T> head) {

c u r r e n t = head ;
}
pub l i c @Domain("Towner") T nex t () {

@Domain("Towner")T ob j2 = c u r r e n t . ob j ;
cu r r e n t = c u r r e n t . nex t ;
re turn ob j2 ;

}
}

@Domains({"owned" ,"state"})
c l a s s S e q u e n c e C l i e n t{

f i n a l @Domain("owned<state>")
Sequence<I n t e g e r> seq = new Sequence<I n t e g e r> () ;

vo id run () {
@Domain("state") I n t e g e r i n t 5 = new I n t e g e r (5) ;
seq . add (i n t 5) ;
@Domain("seq.iters<state>")
I t e r a t o r<I n t e g e r> i t = t h i s . seq . g e t I t e r () ;
whi le (i t . hasNext ()) {

@Domain("state") I n t e g e r cu r = i t . nex t () ;
. . .

}
}
. . .

}

Figure 1. A Sequence Abstract Data Type with ownership do-
main annotations.

95

@DomainParams({"state"})
c l a s s S t u d e n t {
. . .
}
@DomainParams({"state"})
c l a s s Data . . . {

f i n a l @Domain("state<state<state>>")
Sequence<Studen t> vS tuden t ;

@Domain("state<state>") S t u d e n t
ge t S t u d e n t R e c o r d (@Domain("shared") S t r i n g sSID) {

@Domain("vStudent.iters<state<state>>")
I t e r a t o r<Studen t> i = vS tuden t . g e t I t e r () ;
whi le (i . hasNext ()) {

@Domain("state<state>")
St u d e n t o b j S t u d e n t = i . nex t () ;
. . .
}

. . .
}

}

Figure 2. Adding annotations to generic code.

External Libraries. There are two approaches to support
adding annotations to the standard Java libraries and other third-
party libraries, one that involves annotating the library and point-
ing the tool to the annotated library and one that involves placing
the annotations in external files. The earlier tool used the former
approach [46], but we adopted the latter approach this time since it
does not require changing library or third-party code — which may
not be available and when it is, tends to evolve separately. Other
annotation based systems adopted the same strategy [42]. The tool
supports associating ownership domain annotations with any Java
bytecode.class file using an external XML file, following the
same annotation constructs described in Section 3.

Generics.Our annotation system currently treat generic types
as orthogonal to ownership domain parameters, so generic type pa-
rameters and arguments are added separately from ownership do-
main annotations — except that nested actual domains may need
to be provided where applicable. Proponents of Generic Owner-
ship [41] argue that this leads to awkward syntax, which may be
true. However, in our case studies annotating two 15,000-line Java
programs including using generic types, we did not observe this to
be a serious problem. Figure 2 illustrates the interaction between
generics and ownership domains: theStudent class is parameter-
ized by thestate domain parameter. TheData class maintains a
Sequence of Student objects and is also parameterized bystate.

Method Domain Parameters.Java 1.5 annotations cannot be
added at method invocation expressions. So we used block com-
ments to specify the actual domains for a parameterized method
(See Figure 3 for an example). Unfortunately, even proposals to
improve the Java 1.5 annotation facilities [19] do not yet address
adding annotations to such expressions.

Defaulting Tool. To reduce the annotation burden, we imple-
mented a separate tool to add default annotations such as marking
private fields asowned, method parameters aslent, andStrings
asshared. However, an annotation added by the defaulting tool
(e.g.,owned) may need to be modified manually to supply actual
domains for domain parameters (e.g.,owned<owned>).

Annotation ‘owner’. We also added the specialowner anno-
tation, similar topeer in Universes [17]. Usingowner can often
eliminate a domain parameter: e.g., in Figure 1,Cons.owner is
Sequence, SeqIterator.owner is Sequence.

4.3 Tool Limitations and Future Work

Java 1.5 annotations suffer from the following limitations: (1) A
declaration cannot have multiple annotations of the same annota-
tion type; (2) Annotation types cannot have members of the their

c l a s s Sequence<T> {
. . .

@DomainParams("TTowner") /∗ Method domain parameter∗ /
@Domain("shared") /∗ Domain f o r r e t u r n v a l u e ∗ /
s t a t i c <TT> S t r i n g

t o S t r i n g (@Domain("lent<TTowner>") Sequence<TT> seq) {
. . .

}
vo id dump () {

@Domain("owned<shared>")
Sequence<S t r i n g> seq = . . . ;

@Domain("shared")
/∗ Prov ide <a c t u a l s . . .> u s i n g b l o c k comment∗ /
S t r i n g s t r = Sequence . t o S t r i n g/∗<s t a t e>∗ / (seq) ;

}
}

Figure 3. Declaring and binding method domain parameters.

whi le (o b j C o u r s e F i l e . ready ()){
t h i s . vCourse . add (new Course (c o u r s e F i l e . r eadL ine ())) ;

}
/∗ ABOVE MUST BE REWRITTEN AS∗ /
whi le (o b j C o u r s e F i l e . ready ()){
@Domain("shared") S t r i n g l i n e = c o u r s e F i l e . r eadL ine () ;
@Domain("state<state>") Course c r s =new Course (l i n e) ;
t h i s . vCourse . add (c r s) ;

}

Figure 4. Re-writing a new expression using local variables.

own type; (3) It is only legal to use single-member annotations for
annotation types with multiple members, as long as one member
is namedvalue, and all other members have default values. Oth-
erwise, the more verbose syntax is required, e.g.,@Name(first =
"Joe", last = "Hacker"); (4) Annotation types cannot extend
any entity (class, interface or annotation); and (5) Annotations are
allowed on type, field, variable and method declarations and not
allowed on type parameters or method invocations.

The fist restriction prevented us from using the@Domain an-
notation to specify both the annotation on the receiver and on the
return type of a method. The second restriction prevented us from
having shorthand constant annotations for the special alias types,
e.g.,@owned instead of@Domain("owned"): such constants can-
not be used inside other annotations as in@Domain(annotation
= @owned, parameters = {@owned}).

To avoid having multiple ways of indicating the same mean-
ing, we use strings for all the annotations and require annotations
of the form @Domain("owned<owned>"). Although developers
may be more likely to introduce spelling mistakes in string annota-
tions, the typechecker will catch these problems early enough. The
third restriction, i.e., the lack of positional arguments, required the
use of the verbose syntax@Domains(publicDomains = {"d1",
"d2"}, privateDomains = {"pda", "pdb"}).

The final restriction and the current lack of annotation inference
require converting some expressions to more verbose constructs by
declaring local variables and annotating them. The most common
such expressions were new expressions (See Figure 4) and cast
expressions (See Figure 5).

We plan to address some of the following limitations:
• Infer method domains: just as actual type arguments do not

have to be passed to a generic method in Java, it may be
possible to infer, in most cases, the actuals for method domain
parameters based on the types of the actual arguments;

• Allow suppressing messages:since reflective code cannot be
annotated successfully using ownership domains [6];

96

A r r a y L i s t vCourse = s t u d e n t . g e t R e g i s t e r e d C o u r s e s () ;
f o r (i n t i =0 ; i<vCourse . s i z e () ; i ++){

i f (((Course) vCourse . g e t (i)) . c o n f l i c t s (c o u r s e)){
. . .

}
}
/∗ ABOVE MUST BE REWRITTEN AS . . .∗ /
@Domain("lent<state>")
A r r a y L i s t vCourse = s t u d e n t . g e t R e g i s t e r e d C o u r s e s () ;
f o r (i n t i =0 ; i<vCourse . s i z e () ; i ++){

@Domain("lent<state>")
Course c r s = (Course) vCourse . g e t (i) ;
i f (c r s . c o n f l i c t s (c o u r s e)){

. . .
}

}

Figure 5. Re-writing a cast expression using local variables.

• Display annotations more elegantly:an Eclipse plug-in by
Eisenberg and Kiczales [18] can beautify Java 1.5 annotations
for interactive editing while the analysis uses the same AST.

5. Ownership Domains Case Studies
The annotation-based system is mostly complete — the domain
link checks are still being implemented as of this writing. We used
the tools to add and check ownership domain annotations on two
real Java programs with around 15,000 lines of code each.

JHotDraw. The subject system for the first case study is JHot-
Draw [23]. Version 5.3 has around 200 classes and 15,000 lines of
Java. JHotDraw is rich with design patterns [22], uses both com-
position and inheritance heavily and has evolved through several
versions. We first used the defaulting tool then manually modified
the annotations as needed. Adding annotations was iterative. For
instance, over several iterations, we made more use of theowned
annotation. JHotDraw was annotated without making any structural
refactoring such as extracting interfaces, etc. Some code changes
were needed however to use our annotation system, e.g., extract
a local variable from a new expression and add an annotation on
the local variable, convert an anonymous class to a nested class to
add domain parameters to it, etc. JHotDraw Version 5.3 did not use
generic types, so we used Eclipse refactorings [21] to infer generic
types of containers.

HillClimber. By many accounts, JHotDraw is considered the
brainchild of experts in object-oriented design and programming.
In comparison, the subject system for this case study, HillClimber,
is another 15,000 line application that was mainly developed
and maintained by undergraduates [2]. In previous work, we re-
engineered the original Java program to an ArchJava [4] imple-
mentation with ownership domain annotations, but using language
extensions instead of Java 1.5 annotations [2]. The re-engineering
case study also produced a version that refactored the original code
by making most class fields asprivate [2]. For this case study, we
started from the refactored Java code and added ownership domain
annotations to it.

Unlike JHotDraw, adding annotations to HillClimber involved
refactoring to decouple the code as discussed below. We also refac-
tored the code to use generics, mostly automatically using Eclipse.
However, Eclipse cannot infer the generic type of a variable of type
Vector storing arrays ofNode objects. Such code was manually
refactored to useVector<Vector<Node>>.

Compared to the earlier case study with language extensions
[2], the annotation-based system allowed using Eclipse refactoring
tools to extract interfaces and infer generic types while adding the
ownership domain annotations. Comparing the number of hours
would not be meaningful since the annotation-based system was
still under development while the case study was under way, and

that would not account for the learning effect of annotating the
same program twice. Anecdotally, we were more productive with
the annotation-based system than with the earlier tool using lan-
guage extensions. The overall process changed around 40% of the
lines of code in HillClimber. The 40% code changes included boil-
erplateimports to use our Java 1.5 annotations, and code changes
to support adding annotations to some expressions. To more accu-
rately gauge the manual annotation overhead, an AST-visitor was
used to count the instances where the current annotation is the same
as the one generated by the defaulting tool: over 40% of the annota-
tions were exactly the same as the default ones for HillClimber; that
number was around 30% for JHotDraw. There are 60 type errors re-
maining in JHotDraw and 42 errors remaining in HillClimber.

In this following discussion, we illustrate using actual examples
from JHotDraw and HillClimber, how ownership domains can ex-
press and enforce design intent related to object encapsulation and
communication, using code snippets from the subject systems. The
code was slightly edited for presentation by removing trivial modi-
fiers. Some code is highlighted using underlining.

5.1 Ownership domains enforce instance encapsulation

All ownership type systems can express and enforce instance en-
capsulation which is stronger than the module visibility mechanism
of making a fieldprivate. In ownership domains, placing a field
in the privateowned domain means that the object can be reached
only by going through its owner; as a result, no aliases to that object
can leak to the outside. ConsiderCompositeFigure in JHotDraw:

@Domains({"owned"})
@DomainParams({"M" }) . . .
a b s t r a c t c l a s s Compos i teF igu re . . .{

/ / The f i g u r e s t h a t compr ise t h i s f i g u r e
@Domain("owned<M<M>>") Vector<Figure> f F i g u r e s;

/∗∗
∗ Adds a v e c t o r o f f i g u r e s .
∗ /

vo id addAl l (@Domain("M<M<M>>") Vector<Figure> f i g s) {
/ / Cannot a s s i g n o b j e c t i n ”M<M>” t o ”owned<M>”
/ / t h i s . f F i g u r e s = f i g s ;

/ / Th i s i s c o r r e c t however
f F i g u r e s. addA l l (f i g s) ;

}
. . .
}

Annotating fieldfFigures with owned encapsulates the list of
compositeFigures (fFigures) to prevent objects that only have
access to the composite object from modifying the list directly. If
a developer tries to subvert the language visibility mechanisms by
exposing aprivate or protected field using apublic accessor
method, the ownership domains type system prohibits apublic
method from having anowned parameter or return value. Letting
Eclipse generate a setter for thefFigures field produces the fol-
lowing code — without annotations:

vo id s e t F F i g u r e s (Vector<Figure> f i g s) {
t h i s . f F i g u r e s = f i g s ;

}

Upon adding the annotations, a developer can realize that the
setter is overwriting the existing field since the parameterfigs
cannot be marked asowned and any other annotation would fail
the assignment check when overwriting thefFigures field.

When manually adding annotations, it is possible to miss many
opportunities for making objectsowned. Indeed, we initially anno-
tatedfFigures with the domain parameterM instead ofowned. In
some cases, objects should beowned but are not, and making them
owned may require code changes, e.g., to return a copy of an object
instead of an alias to a private field.

97

Visualizing the annotations encouraged us to make more use of
the owned annotation sinceowned avoids cluttering the top-level
domains [1]. Perhaps better tool support can prompt a developer
to encapsulate a field that could be annotated withowned but is
not, e.g., a lightweight compile-time ownership inference algorithm
[33] could suggest possible Eclipse “quickfixes”.

5.2 Ownership domains specify architectural tiers

A tiered architecture is often used to organize an application into a
User Interface tier, a Business Logic tier, and a Data tier. Ownership
domains can express and enforce such a tiered runtime architecture
by representing a tier as an ownership domain [3], and a permission
between tiers as a domain link to allow objects in the User Interface
tier to refer to objects in the Business Logic tier but not vice versa.
Such an architectural structure and constraints cannot be easily
expressed in plain Java code.

We organized the core JHotDraw types in Figure 6 according to
the Model-View-Controller design pattern as follows:
• Model: consists ofDrawing, Figure, Connector, etc. A
Drawing is composed ofFigures which know their containing
Drawing. A Figure has a list ofHandles to allow user interac-
tions. A Drawing also extendsFigureChangeListener (not
shown) to listen to changes to itsFigures.

• View: consists ofDrawingEditor, DrawingView and associ-
ated types.DrawingView extendsDrawingChangeListener
(not shown) to listen to changes toDrawing objects.

• Controller: includes interfaces such asHandle, Tool and
Command. A Tool is used by aDrawingView to manipulate a
Drawing. A Command encapsulates an action to be executed —
a simple instance of the Command design pattern [22, p. 233]
without undo support.
Once we defined the three top-level ownership domains,Model,

View andController, we passed the corresponding domain pa-
rametersM, V andC to various types as discussed below. A visual-
ization of the JHotDraw execution structure based on these owner-
ship domain annotations is available [1].

In HillClimber, the applicationwindow uses acanvasto dis-
play nodesand edgesof a graph in order to demonstrate algo-
rithms for constraint satisfaction problems provided by theengine.
So we organized the HillClimber types in Figure 12 as follows.
The data ownership domain stores the graph objects (instances
of Graph, Node, etc., and those of their subclasses,HillGraph,
HillNode, etc.). Theui domain holds user interface objects. The
logic domain holds instances ofHillEngine, Search (and sub-
classes thereof) objects, and associated objects. A visualization of
the HillClimber execution structure based on these ownership do-
main annotations is available [1].

5.3 Ownership domains expose implicit communication

Design patterns — such as Observer [22, p. 293], used to decouple
object-oriented code also tend to make the communication between
objects implicit. Adding ownership domain annotations helps make
that communication more explicit.

We initially wanted to parameterizeDrawing (See Figure 7)
with only theM domain parameter, butDrawingChangeListener
is implemented byDrawingView. SoDrawingChangeListener
needed to be annotated with theV domain parameter correspond-
ing to theView. By making implicit communication explicit, anno-
tations seem to prematurely constrainDrawingChangeListener
objects to be in theView domain. SinceDrawing was a core inter-
face referenced by other interfaces in the coreframework package,
this led to passing all three domain parameters to many additional
interfaces and classes.

It is true that ifDrawing had to be parameterized by domain
parameterV for some other reason, the implicit communication in

/∗∗
∗ Drawing i s a c o n t a i n e r f o r F igu res . Drawing sends
∗ ou t DrawingChanged e v e n t s t o DrawingChangeL is teners
∗ whenever a p a r t o f i t s area was i n v a l i d a t e d .
∗ The Observer p a t t e r n i s used t o decoup le t h e Drawing
∗ f rom i t s v iews and t o enab le m u l t i p l e v iews .
∗ /

@DomainParams({"M" , "V"})
@DomainInher i ts({"FigureChangeListener <M>" , . . .})
i n t e r f a c e Drawing ex tends F i g u r e C h a n g e L i s t e n e r . . .{

/ / Adds a l i s t e n e r f o r t h i s drawing .
vo id addDrawingChangeL is tener (

@Domain("V<M,V>") Draw ingChangeL is tener l) ;

/ / Adds a f i g u r e and s e t s i t s c o n t a i n e r
/ / t o r e f e r t o t h i s drawing .
@Domain("M<M>")
Fi g u r e add (@Domain("M<M>") F i g u r e f i g u r e) ;

. . .
}

Figure 7. Adding annotations toDrawing.

@DomainParams({"M" ,"V" ,"C"})
i n t e r f a c e Handle {
vo id i n v o k e S t a r t (@Domain("V<M,V,C>") DrawingView v) ;
. . .
@Domain("M<M,V,C>") Undoable g e t U n d o A c t i v i t y () ;

}

Figure 8. Handle with M, V andC domain parameters.

the observer would not have been discovered this way. Ownership
domain annotations help make implicit communication explicit
when a reference requires permission to access a new part of the
program for the first time.

In HillClimber, adding ownership domain annotations exposed
covert object communication through base classes from two par-
allel inheritance hierarchies. During an early iteration, we param-
eterized the base classGraphCanvas by the ui and data do-
main parameters. We then realized thatGraph, the base class for
HillGraph, required theui domain parameter (See Figure 12).
ClassGraph only needed theui domain parameter to properly an-
notate aGraphCanvas field reference that we did not expect. This
in turn revealed thatHillGraph andHillCanvas were commu-
nicating through their base classesGraph andGraphCanvas. In
the end, the reference toGraphCanvas was moved fromGraph to
HillGraph and generalized as anIHillCanvas reference by ex-
tracting an interfaceIHillGraph from HillGraph.

5.4 Ownership domains expose tight coupling

Let us temporarily ignore the earlier limitation with adding anno-
tations to the listeners and assume thatDrawing could be param-
eterized by only theM domain parameter. Let us consider whether
it would be possible to parameterize interfaceHandle (See Figure
8) with domainsM andC. A Handle would be in theC domain and
would access objects in that domain and inM domain, i.e., it should
not access objects in theV domain parameter. Note that even if the
explicit parameterC was not provided, that domain would still be
accessible toHandle using theowner annotation.

A comment in the code indicated that Version 4.1 deprecated
the originalinvokeStart method which took aDrawing object
as one of its parameters, in favor of aninvokeStart method that
takes instead a formal parameterDrawingView parameterized by
M,V, andC. This required passing toHandle the additional domain
parameterV. SinceHandle is a core interface referenced by other
interfaces in the coreframework package, this also led to passing
all three domain parameters to many additional types.

98

Figure 6. Simplified class diagram for JHotDraw (Adapted from manual class diagram by Riehle [43, 12]).

@DomainParams({"M" ,"C"})
i n t e r f a c e Handle {
@DomainParams({"V"})
vo id i n v o k e S t a r t (@Domain("V<M,V,C>") DrawingView v) ;
. . .
@Domain("M<M>") Undoable g e t U n d o A c t i v i t y () ;

}

Figure 9. Handle with only M andC domain parameters.

@DomainParams({"M" ,"C"})
@DomainInher i ts({"Handle<M,C>"})
a b s t r a c t c l a s s A b s t r a c t H a n d l e implements Handle {

/ / W i l l no t t y p e c h e c k s i n c e ’V ’ unbound
@Domain("V<M,V,C>") DrawingView view;
. . .
@DomainParams({"V"})
vo id i n v o k e S t a r t (@Domain("V<M,V,C>") DrawingView v) {

/ / Cannot s t o r e argument i n f i e l d ’ t h i s . v iew ’
}

}

Figure 10. Method domain parameters can enforce lifetime.

5.5 Ownership domains expose and enforce object lifetime

Let us assume in this section that the refactoring which introduced
the tighter coupling was never performed, i.e.,Handle still needed
a Drawing instead of aDrawingView. Undo support was added
to JHotDraw for the first time in Version 5.3. In particular,Handle
now had a reference toUndoable — which in turn required domain
parametersM,V and C becauseUndoable’s getDrawingView()
method returned aDrawingView.

Now, let us see if it would be possible to annotateUndoable and
Handle with only the domain parametersM andC (See Figure 9) —
the domain parameterV can then be supplied toinvokeStart()
as a method domain parameter.

Using a method domain parameter to annotate the formal pa-
rameterv could enforce the constraint that a developer should not
store in a field theDrawingView object passed as an argument to
invokeStart(), as in Figure 10. Of course, a developer could
store theDrawingView object in a field of typeObject, but that
field would have to be cast to aDrawingView to be of any use.

Instead of a method domain parameter, thelent annotation
could also be used to allow a temporary alias to an object within
a method boundary. We found a few such examples in JHotDraw.
MethodsetAffectedFigures in Figure 11 makes a copy of the
lent argument so it cannot just hold on to it.

In fact,lent can be formally modeled as a method domain pa-
rameter. However, the type system does not allow a method to re-
turn alent value but it allows a method to return an object in a
method domain parameter. In the case ofDrawingView, lent can-
not be used because implementations ofinvokeStart() construct
Undoable objects that maintain aliases to theDrawingView and
thus require theV domain parameter.

For that same reason, theUndoable interface requires theV do-
main parameter becauseUndoable stores theDrawingView where
the activity to be undone was performed in order to undo the
changes to that view only. This may slightly violate the Model-
View-Controller design, where model objects should not hold on to
view objects, because there might be multiple views that need to be
updated in response to changes in the model. At the same time, it
would be counter-intuitive for a user to undo a change in one view
and observe changes in some other view. Thus, ownership domain
annotations expose the tighter coupling that the Undo feature in-
troduced. Figure 11 shows in more detail the interaction between
Handle, Undoable andDrawingView.

An earlier empirical study of JHotDraw mentioned that “a com-
mon architectural mistake [. . .] was to provideFigures with a ref-
erence to theDrawing or theDrawingView. Figures do not by
default have any access to either theDrawing or theDrawingView
in which they are contained. This prevents them from accessing in-
formation such as the size of theDrawing. However, it is possible
to overcome this problem by passing the view into the constructor
of a figure, which can then store and access this as required” [28].
Starting with Version 5.3, one could get to theFigure’s Handles
through itshandles() method then get aDrawingView through a
Handle’s UndoActivity objects.

5.6 Ownership domains promote decoupling code

Ownership domain annotations highlight tight coupling and pro-
mote programming practices that decouple code.

Programming to an Interface. It is recommended to “refer to
objects by their interfaces” [7, Item #34] since interfaces can reduce

99

@DomainParams({"M" , "V" , "C"})
@DomainInher i ts({"LocatorHandle<M,V,C>"})
c l a s s Res izeHand le ex tends Loca to rHand le {

@Override
vo id i n v o k e S t a r t (i n t x , i n t y ,
@Domain("V<M,V,C>") DrawingView view) {

se t U n d o A c t i v i t y (c r e a t e U n d o A c t i v i t y (view)) ;
. . .

}
/∗∗
∗ Fac to ry method f o r undo a c t i v i t y .
∗ To be o v e r r i d e n by s u b c l a s s e s .
∗ /

p ro tec ted @Domain("M<M,V,C>") Undoable
cr e a t e U n d o A c t i v i t y (

@Domain("V<M,V,C>") DrawingView view) {
@Domain("unique<M,V,C>")
Res izeHand le . UndoAc t i v i t y
undoab le = new Res izeHand le . UndoAc t i v i t y (view) ;
re turn undoab le ;

}

@DomainParams({"M" , "V" , "C"})
@DomainInher i ts("UndoableAdapter<M,V,C>")
s t a t i c c l a s s UndoAc t i v i t y ex tends Undoab leAdapter{
. . .
}

}
/∗∗
∗ Bas ic i m p l e m e n t a t i o n f o r an Undoable a c t i v i t y
∗ /

@DomainParams({"M" , "V" , "C"})
@DomainInher i ts("Undoable<M,V,C>")
pub l i c c l a s s Undoab leAdapter implements Undoable {

@Domain("V<M,V,C>") DrawingView myDrawingView ;

Undoab leAdapter (@Domain("V<M,V,C>") DrawingView dv) {
setDrawingView (dv) ;

}
@Domain("V<M,V,C>") DrawingView getDrawingView () {

re turn myDrawingView ;
}
vo id setDrawingView (@Domain("V<M,V,C>") DrawingView dv) {

myDrawingView = dv ;
}
vo id s e t A f f e c t e d F i g u r e s (@Domain("lent<M>") F igu reEnumera t i on f e){

/ / t h e enumera t ion i s no t r e u s a b l e t h e r e f o r e a copy i s made
/ / t o be ab le t o undo−redo t h e command s e v e r a l t ime
rememberF igures (f e) ;

}
}

Figure 11. Concrete implementation class ofHandle.

coupling between classes by splitting intent from implementation.
When fewer domain parameters are needed to annotate an inter-
face (as compared to the corresponding class), ownership domain
annotations can enforce this idiom.

In particular, an implementation class can require a private
ownership domain to be passed as an actual value for one its
parameters. Since a private ownership domain cannot be named by
an outside client, the client is then forced to use the interface which
does not require these parameters.

For instance, in the earlierSequence example (Figure 1),
the SeqIterator class receives theSequence’s private domain
owned and hides the extra parameterization behind theIterator
interface. This forces a client of theSequence to access the itera-
tor objects only through theIterator interface. A client may not
even cast theIterator reference to aSeqIterator class.

We used a similar technique to decouple the code in HillClimber
(See Figure 12 for the inheritance hierarchy). The original im-
plementation for classHillNode had a field reference of type
HillGraph. However,HillGraph took the three domain param-
etersui, logic anddata, which required passing all those param-
eters toHillNode.

@DomainParams({"ui" ,"logic" ,"data"})
@DomainInher i ts({"Node<data>"})
c l a s s Hi l lNode ex tends Node {

@Domain("data<ui,logic,data>") H i l lG raph graph;
. . .
}

When adding annotations, an unexpected domain parameter of-
ten indicates unnecessary coupling, e.g., why shouldHillNode
have access to theui domain? Thus a lengthy domain parameter list
can be an objective measure of a code smell [2]. Furthermore, own-
ership domain annotations can help a developer lower the coupling
by suggesting which specific type declarations need to be general-
ized to shorten the list of domain parameters on the enclosing type.

In HillClimber, one solution was to extract anIHillGraph in-
terface from classHillGraph that only requires thedata domain
parameter and make aHillNode object reference theHillGraph
object through theIHillGraph interface. We decided against car-
rying this refactoring further and eliminating theui andlogic do-
main parameters onHillGraph itself.

Since theHillGraph, HillNode, etc., form a parallel inheri-
tance hierarchy toGraph, Node, etc., a similar refactoring was per-
formed onGraph by extracting aIGraph interface – even though
Graph andIGraph are both parameterized bydata.

@DomainParams({"ui" ,"logic" ,"data"})
@DomainInher i ts({"Graph<data>" ,

"IHillGraph<data>"})
c l a s s Hi l lG raph ex tends Graph

implements I H i l l G r a p h {
. . .

}
@DomainParams({"data"})
@DomainInher i ts({"IGraph<data>"})
i n t e r f a c e I H i l l G r a p h ex tends IGraph {
. . .
}
@DomainParams({"data"})
@DomainInher i ts({"Node<data>"})
c l a s s Hi l lNode ex tends Node {

@Domain("data<data>") I H i l l G r a p h graph;
. . .
}

Tightly coupled code was observed throughout HillClimber.
Similarly, we were surprised that a dialog classFontDialog re-
quired thedata domain parameter. It turned out thatFontDialog
had a field reference declared with its most specific typeGraphCanvas.
In some cases, it is possible to generalize the type of the reference,
e.g., usejava.awt.Frame to eliminate the need for the domain
parameter. However,FontDialog needed access to some of the
GraphCanvas functionality, so a different solution was needed.

Mediator Pattern. Defining an interface is sometimes insuffi-
cient to decouple code since referring to an object through its inter-
face still requires access to the domain the object is in. One solution
is to use the Mediator design pattern [22, p. 273], as shown here.

In the original HillClimber implementation,Node obtained a
reference toGraphCanvas, which violates the Law of Demeter
[32], i.e., objects should only talk to their immediate neighbors:

@DomainParams({"data"})
a b s t r a c t c l a s s E n t i t y {

@Domain("data<data>") Graph graph ; / / p a r e n t graph
. . .
}
@DomainParams({"data"})
@DomainInher i ts({"Entity<data>"})
c l a s s Node ex tends E n t i t y {

. . .
i n t g e t H e i g h t () {

re turn graph . ge tCanvas () . g e t F o n t M e t r i c s () . . . ;
}

}

100

HillEdge HillGraph

HillEngine

HillCanvas
Hill

HillWindow

Search

HillNode

graphFramework::GraphgraphFramework::NodegraphFramework::Edge

graphFramework::GraphCanvas

GreRRSearch RandSearch SimAnnealSearchSimpleSearch

Gre edySearch MC HSearch RdWkSearch

SimRanSearch

 - hillGraph0..1

 - currNode

0..1

 # engine

0..1
 - hillEngine0..1

 - hillCanvas

0..1

 - hillWindow0..1

 # node0..1

Figure 12. Partial UML Class Diagram for HillClimber obtained from the original implementation using Eclipse UML [39]. This diagram
does not reflect some of the types introduced during refactoring, such asIGraph, IHillGraph andICanvasMediator.

Extracting an interface fromGraphCanvas would not work, as
that reference would still need theui domain parameter. Moreover,
the implementation ofgetFontMetrics() could not be moved to
Graph as it required access to objects in theui domain.

@DomainParams({"data"})
a b s t r a c t c l a s s E n t i t y {

@Domain("ui") IGraphCanvas canvas; / / ‘ u i ’ unbound
. . .
}

A mediator was defined as follows:

/∗∗
∗ Media tor i n t e r f a c e
∗ /

i n t e r f a c e ICanvasMed ia to r{
@Domain("shared") F o n t M e t r i c s g e t F o n t M e t r i c s () ;

. . .
}
/∗∗
∗ Media tor i m p l e m e n t a t i o n c l a s s
∗ /

@DomainParams({"ui" ,"data"})
c l a s s Media to r Imp l implements ICanvasMed ia to r{
@Domain("ui<ui,data>") GraphCanvas canvas;

M ed ia to r Imp l (@Domain("ui<ui,data>") GraphCanvas c){
t h i s . canvas = c ;

}
@Domain("shared") F o n t M e t r i c s g e t F o n t M e t r i c s (){

re turn canvas. g e t F o n t M e t r i c s () ;
}

. . .
}

GraphCanvas initializes the mediator:

@DomainParams({"ui" ,"data"})
c l a s s GraphCanvasex tends . . . {
@Domain("data<ui,data>") Med ia to r Imp l med ia to r;
. . .
@Domain("data") ICanvasMed ia to r g e t M e d i a t o r (){

re turn med ia to r;
}

}

Entity andNode can then use the mediator as follows:

@DomainParams({"data"})
a b s t r a c t c l a s s E n t i t y {

@Domain("data") ICanvasMed ia to r med ia to r;
. . .
}

/∗∗
∗ DrawApp l i ca t i on d e f i n e s a s tanda rd p r e s e n t a t i o n
∗ f o r s t a n d a l o n e drawing e d i t o r s
∗ /

@DomainParams({"M" , "V" , "C"})
@DomainInher i ts({"DrawingEditor<M,V,C>" , . . .)
c l a s s DrawApp l i ca t i on implements DrawingEd i to r . . . {

/ / Opens a new window w i th a drawing v iew .
@DomainReceiver("unique")
p ro tec ted void open (. . .) {

f I c o n k i t = new I c o n k i t (t h i s) ;
. . .

}
}
c l a s s I c o n k i t {

s t a t i c @Domain("unique") I c o n k i t f g I c o n k i t = n u l l ;

/ / C o n s t r u c t s an I c o n k i t t h a t uses t h e g i v e n e d i t o r
/ / t o r e s o l v e image path names .
@DomainReceiver("unique")
pub l i c I c o n k i t (@Domain("unique") Component comp){

f g I c o n k i t = t h i s ;
. . .

}
}

Figure 13. Annotating a singleton usingunique.

@DomainParams({"data"})
@DomainInher i ts({"Entity<data>"})
c l a s s Node ex tends E n t i t y {

i n t g e t H e i g h t () {
re turn g e t M e d i a t o r () . g e t F o n t M e t r i c s () . . . ;

}

5.7 Ownership domains can help identify singletons

While adding ownership domain annotations, we discovered a cu-
rious instance of the Singleton design pattern:IconKit’s construc-
tor was not private, although it had a staticinstance() method.
Indeed, there is aunique instance ofDrawingEditor (the appli-
cation itself) and aunique IconKit (See Figure 13) at runtime.

6. Expressiveness Challenges
In this section, we discuss some of the expressiveness gaps that we
encountered, some of which had been previously mentioned.

101

c l a s s DrawApp l i ca t i on implements DrawingEd i to r . . . {
. . .
c l a s s MDI DrawAppl icat ion ex tends DrawApp l i ca t i on . . .{
. . .
@DomainParams({"M" , "V" , "C"})
@DomainInher i ts({"MDI_DrawApplication<M,V,C>"})
c l a s s JavaDrawApp ex tends MDI DrawAppl icat ion {
. . .
@Domains({"Model" , "View" , "Controller"})
c l a s s Main {

@Domain("View<Model,View,Controller>")
JavaDrawApp app =new JavaDrawApp () ;

pub l i c s t a t i c vo id main (
@Domain("lent[shared]") S t r i n g a r g s []) {
@Domain("lent") Main sys tem = new Main () ;

}
}

Figure 14. Defining the top-level domains in a separate class.

6.1 An object cannot be in more than one ownership domain

Ownership domains, as most other ownership type systems, support
only single ownership, i.e., an object cannot be part of more than
one ownership hierarchy. Proposals formultiple ownership[11]
lift this restriction in other type systems. Ownership domains do
not supportownership transfer[31] either, i.e., an object’s owner
does not change — onlyunique objects can flow between any two
domains. As a result, many fine-grained ownership domains cannot
be defined to represent multiple roles in design patterns: e.g., if an
object is both a mediator in the Mediator pattern and a view in the
Model-View-Controller pattern, it cannot be in both aMediator
ownership domain and aView ownership domain at the same time.

For instance, creating top-level ownership domains to corre-
spond to the design in Figure 6 would have been more challeng-
ing than creating the three top-level domains forModel, View and
Controller: placing aDrawingEditor object in aMediator do-
main would have prohibited it from also being in theView domain.

6.2 An object cannot place itself in a domain it declares

An object cannot place itself in an ownership domain that it de-
clares. This is problematic for the root application object, i.e., the
JavaDrawApp instance (JavaDrawAppextendsDrawApplication
which in turn extendsDrawingEditor). True to form, we solve
this problem with an extra level of indirection by creating a fake
top-level classMain to declare theModel, View andController
top-level ownership domains and declare theJavaDrawApp object
in theView domain (See Figure 14).

6.3 Public domains are hard to use

Public domains make the ownership domains type system more
flexible thanowner-as-dominatortype systems [15]. Also, public
domains are ideal for visualization because placing an object inside
a public domain of another object relates these objects without
cluttering the top-level domains [1]. However, public domains are
typically hard to use without refactoring the code. We started using
them in a few cases but quickly abandoned those attempts.

Since the Observer design pattern tends to make communica-
tion between objects implicit, we attempted to represent listeners
more explicitly using ownership domain annotations. For instance,
it might make sense to create a public domainLISTENERS as a do-
main to hold theListener objects that anObserver will notify
— a Listener often needs special access to theObserver, but
usually does not need special access to theSubject.

JHotDraw uses a delegation-based event model: for instance,
a DrawingView calls methodfigureSelectionChanged to no-
tify a FigureSelectionListener observer of selection changes.
So it might make sense to declare aFIGURESELECTIONLISTENERS

/∗∗
∗ DrawingView r e n d e r s a Drawing and l i s t e n s t o i t s
∗ changes . I t r e c e i v e s use r i n p u t and d e l e g a t e s
∗ i t t o t h e c u r r e n t Tool .
∗ /

@DomainParams({"M" , "V" , "C"})
@DomainInher i ts({"DrawingChangeListener<M,V>"})
i n t e r f a c e DrawingView ex tends DrawingChangeL is tener . . .{

/ / Add a l i s t e n e r f o r s e l e c t i o n changes
vo id a d d F i g u r e S e l e c t i o n L i s t e n e r (
@Domain("?<M,V,C>") F i g u r e S e l e c t i o n L i s t e n e r f s l) ;

. . .
}
@Domains({"owned"})
@DomainParams({"M" , "V" , "C"})
@DomainInher i ts({"DrawingView<M,V,C>"})
c l a s s StandardDrawingView implements DrawingView . . . {

/ / R e g i s t e r e d l i s t o f l i s t e n e r s f o r s e l e c t i o n changes
p r i v a t e @Domain("owned<?<M,V,C>>")
V ector<F i g u r e S e l e c t i o n L i s t e n e r> f S e l e c t i o n L i s t e n e r s ;

StandardDrawingView (
@Domain("V<M,V,C>") Draw ingEd i to r e d i t o r , . . .) {
/ / e d i t o r i s i n ’V ’ domain parameter , no t ’C ’ !
a d d F i g u r e S e l e c t i o n L i s t e n e r (e d i t o r) ;
. . .

}
/ / Add a l i s t e n e r f o r s e l e c t i o n changes .
/ / Command imp lemen ts F i g u r e S e l e c t i o n L i s t e n e r
/ / bu t Command i s i n t h e ’C ’ domain parameter !
vo id a d d F i g u r e S e l e c t i o n L i s t e n e r (

@Domain("?<M,V,C>") F i g u r e S e l e c t i o n L i s t e n e r f s l){
f S e l e c t i o n L i s t e n e r s . add (f s l) ;

}

Figure 15. How to annotateaddFigureSelectionListener?

public domain onCommand to hold theFigureSelectionListener
objects. ButCommand implementsFigureSelectionListener,
so aCommand is-aFigureSelectionListener. Thus aCommand
object cannot split a part of itself and place it in the public domain
FIGURESELECTIONLISTENERS that it declares.

6.4 Listener objects are particularly challenging

There were additional complications when trying to highlight the
event subsystem in JHotDraw using ownership domain annota-
tions.Command, which is in theController domain, implements
FigureSelectionListener, and so doesDrawingEditor, which
is in theView domain.

Consider methodaddFigureSelectionListener in (See
Figure 15). How would one annotate the formal parameterFigureSelectionListener
The parameter should support both annotationsC<M,V,C> and
V<M,V,C>. Existential ownership [13, 29, 34] may be the answer
to increase the expressiveness, e.g., by annotating the parameter
with “any” [34]. Other problems of adding ownership domains
annotations to listeners had been previously identified [44].

6.5 Static code can be challenging

Even in such a well-designed program as JHotDraw, we found a
few instances where ownership annotations cannot be made to type-
check. In particular, in Figure 16, the staticHashtable cannot have
theM, V, andC domain parameters because the domain parameters
declared on the classNullDrawingView are not in scope for static
members. Static members can only be annotated withshared or
unique, and these values cannot flow to theMx, Vx or Cx method
domain parameters.

Annotating the genericHashtable also requires nested param-
eters:Hashtable has three domain parameters for its keys, values
and entries. BothDrawingView and DrawingEditor take M, V,
andC as parameters. Although the number of annotations seems
excessive and maybe argues in favor of generic ownership [41], the

102

@DomainParams({"M" , "V" , "C"})
@DomainInher i ts({"DrawingView<M,V,C>"})
c l a s s NullDrawingView implements DrawingView . . . {

s t a t i c @Domain("unique<?<?,?,?>,?<?,?,?>,?>")
Hash tab le<DrawingEdi to r , DrawingView> dvMgr = . . . ;

@DomainParams({"Mx" ,"Vx" ,"Cx"})
pub l i c synchron ized s t a t i c @Domain("Vx<Mx,Vx,Cx>")
DrawingView getManagedDrawingView (

@Domain("Vx<Mx,Vx,Cx>") Draw ingEd i to r ed) {
i f (dvMgr . con ta insKey (ed)){

@Domain("Vx<Mx,Vx,Cx>")
DrawingView dv = dvMgr . g e t (ed) ;
re turn dv ;

}
. . .

}

Figure 16. How to annotate objects that are stored in static fields?y

ownership domains for theHashtable key, value and entries need
not correspond to theM, V andC ownership domains.

A solution that is not type-safe would be to store theHashtable
asObject, then cast down to aHashtable upon use — the equiv-
alent of raw types but without re-implementing them in the own-
ership domains type system. Another solution would be to refactor
the program to eliminate this static field since it gives any object ac-
cess to all theDrawingView andDrawingEditor objects. Since it
is often unrealistic to perform such a significant refactoring, maybe
the best solution would be to support package-level static owner-
ship domains, similar to confined types [9].

6.6 Annotations may be unnecessarily verbose

Ownership domain annotations tend to be verbose: e.g., formal
method parameters need to be fully annotated even if they are not
used in the method body or used in a restricted way. This produces
particularly unwieldy annotations for containers of generic types.

In Figure 17, methodclearStackVerbose indicates the cur-
rent level of annotations needed. It should be possible to leave
out domain parameters when they are not really needed. This
may involve using implicit existential ownership types as in
clearStackAny: i.e., there exists some domain parametersd1,
d2, d3, d4, such that the formal method parameters could be an-
notated withlent<d1<d2,d3,d4>>. Using appropriate defaults,
the annotations could probably be reduced to the level needed to
annotate a raw type, as shown inclearStack.

6.7 Manifest ownership can reduce the annotation burden

The current defaulting tool only adds theshared annotation to
String objects. However, during the annotation process, we found
ourselves adding theshared annotation to many other types such
asFont, FontMetrics, Color, etc. Specifying a per-type default
globally and not for every instance, as inmanifest ownership[13],
would have reduced the annotation burden.

6.8 Reflective code cannot be annotated

JHotDraw uses reflective code to serialize and deserialize its state
and such code cannot be annotated using ownership domains [6].

6.9 Annotate Exceptions aslent

We annotated exceptions withlent since we were not particularly
interested in reasoning about them. However, richer annotations are
possible [45].

7. Related Work
Case studies applying ownership type systems on real code are few
and far between. Ḧachler [25] documented a case study applying

@Domains({"owned"})
@DomainParams({"M" ,"V" ,"C"})
pub l i c c l a s s UndoManager{

/∗∗
∗ C o l l e c t i o n o f undo a c t i v i t i e s
∗ /

@Domain("owned<M<M,V,C>>") Vector<Undoable> undoStack ;

vo id c l e a r S t a c k V e r b o s e (
@Domain("lent<M<M,V,C>>") Vector<Undoable> s) {
s . removeAl lE lements () ;

}

vo id c lea rS tackAny (
@Domain("lent<?<?,?,?>>") Vector<Undoable> s) {
s . removeAl lE lements () ;

}

vo id c l e a r S t a c k (
@Domain("lent") Vector<Undoable> s) {
s . removeAl lE lements () ;

}
}

Figure 17. Reducing annotations when they are not really needed.

Universes [36, 17] on an industrial software application and refac-
toring the code in the process. Although the subject system in the
case study is larger than JHotDraw (around 55,000 lines of code),
the author annotated only a portion of the system. The author man-
ually generated visualizations of the ownership structure whereas
we had access to tool support to visualize the ownership structure
and adjust the annotations accordingly [1].

Nägeli [38] evaluated how the Universes and Ownership Do-
mains type systems express the standard object-oriented design pat-
terns [22]. However, in real world complex object-oriented code,
design patterns rarely occur in isolation [43]. As we discussed ear-
lier, these subtle interactions, combined with the single ownership
constraint of the type system, make the annotations difficult.

In a previous case study, we re-engineered HillClimber using
ArchJava [4] to specify a component-and-connector architecture in
code and ownership domain annotations to specify the data sharing
[2]. In the earlier case study, we performed refactorings similar to
the ones described here. However, adding ownership domain anno-
tations to the ArchJava program seemed easier. Indeed, ArchJava’s
port construct effectively reduces coupling; in the plain Java im-
plementation, the same effect had to be achieved using program-
ming to interfaces, using mediators, etc.

ArchJava’s properties are available at the expense of various re-
strictions on object-oriented implementations. The previous case
study also identified that adding ownership domain annotations re-
quired less effort than encoding the architectural structure in Arch-
Java [2, 6]. Fewer defects are introduced since code that passes ob-
ject references need not be changed and the ownership annotations
need not affect the runtime semantics of the program. Moreover, the
ownership domain annotations, while tedious to add manually, are
relatively straightforward once the top-level domains are decided,
compared to re-engineering to use ArchJava.

Adding ownership domains annotations manually still required
significant effort, and researchers are still looking at scalable infer-
ence of ownership domain annotations [6, 16]. Current inference
techniques [35, 33] however only infer the equivalent ofowned,
shared, lent andunique annotations, i.e., they assume a strict
owner-as-dominator hierarchy which is not flexible enough to rep-
resent many design patterns. Some approaches do not map the re-
sults of the analysis back to an ownership type system [35, 33]. A
fully automated inference cannot create multiple public domains in
one object and meaningful domain parameters, which are critical
for representing the abstract design intent, as in the three top-level

103

Model, View, andController domains in JHotDraw. Existing in-
ference algorithms often generate imprecise annotations, producing
for each class a long list of domain parameters, often placing each
field in a separate domain, and annotating many more objects as
shared or lent than necessary [6, 16].

8. Conclusion
We presented an annotation-based system that re-implements the
ownership domains type system as a set of Java 1.5 annotations,
using the Eclipse infrastructure. Using annotations imposes many
restrictions and requires changing the code slightly to add anno-
tations to it, and the annotation language does take some getting
used to. Still, the annotation-based system is an improvement over
custom infrastructure, language extensions, and the resulting lim-
ited tool support: it enabled us to annotate larger object-oriented
programs “in the wild” to study how ownership domains can ex-
press and enforce design intent related to object encapsulation and
communication and to identify expressiveness limitations.

In future work, we plan on making the type system more flexible
and extending the annotation language in a non-breaking way.

Acknowledgments
This work was supported in part by NSF grant CCF-0546550,
DARPA contract HR00110710019, the Department of Defense,
and the Software Industry Center at Carnegie Mellon University
and its sponsors, especially the Alfred P. Sloan Foundation.

References
[1] M. Abi-Antoun and J. Aldrich. Compile-Time Views of Execution

Structure Based on Ownership. InIntl. Workshop on Aliasing,
Confinement and Ownership, 2007.

[2] M. Abi-Antoun, J. Aldrich, and W. Coelho. A Case Study in Re-
engineering to Enforce Architectural Control Flow and Data Sharing.
J. Systems and Software, 80(2), 2007.

[3] J. Aldrich and C. Chambers. Ownership Domains: Separating
Aliasing Policy from Mechanism. InECOOP, 2004.

[4] J. Aldrich, C. Chambers, and D. Notkin. ArchJava: Connecting
Software Architecture to Implementation. InICSE, 2002.

[5] J. Aldrich and D. Dickey. The Crystal Data Flow Analysis Framework
2.0. http://www.cs.cmu.edu/~aldrich/courses/654/, 2006.

[6] J. Aldrich, V. Kostadinov, and C. Chambers. Alias Annotations for
Program Understanding. InOOPSLA, 2002.

[7] J. Bloch.Effective Java. Addison-Wesley, 2001.

[8] B. Bokowski and A. Spiegel. Barat — A Front–End for Java.
Technical Report B-98-09, Freie Universität Berlin, 1998.

[9] B. Bokowski and J. Vitek. Confined Types. InOOPSLA, 1999.

[10] C. Boyapati, B. Liskov, and L. Shrira. Ownership Types for Object
Encapsulation. InPOPL, 2003.

[11] N. Cameron, S. Drossopoulou, J. Noble, and M. Smith. Multiple
Ownership. InOOPSLA, 2007. To appear.

[12] H. B. Christensen. Frameworks: Putting Design Patterns into
Perspective. InSIGCSE Innov. & Tech. in Comp. Sci. Ed., 2004.

[13] D. Clarke.Object Ownership & Containment. PhD thesis, University
of New South Wales, 2001.

[14] D. Clarke and T. Wrigstad. External Uniqueness is Unique Enough.
In ECOOP, 2003.

[15] D. G. Clarke, J. M. Potter, and J. Noble. Ownership Types for Flexible
Alias Protection. InOOPSLA, 1998.

[16] W. Cooper. Interactive Ownership Type Inference. Senior Thesis,
Carnegie Mellon University, 2005.

[17] W. Dietl and P. M̈uller. Universes: Lightweight Ownership for JML.
Journal of Object Technology, 4(8), 2005.

[18] A. D. Eisenberg and G. Kiczales. Expressive Programs through
Presentation Extension. InAOSD, 2007.

[19] M. D. Ernst and D. Coward. JSR 308: Annotations on Java types.
http://pag.csail.mit.edu/jsr308/, 2006.

[20] Universes Tools.www.sct.ethz.ch/research/universes/tools/,
2007.

[21] R. M. Fuhrer, F. Tip, A. Kiezun, J. Dolby, and M. Keller. Efficiently
Refactoring Java Applications to Use Generic Libraries. InECOOP,
2005.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[23] Gamma, E. et al. JHotDraw.http://www.jhotdraw.org/, 1996.

[24] G. Goth. Beware the march of this IDE: Eclipse is overshadowing
other tool techniques.IEEE Software, 22(4), 2005.

[25] T. Hächler. Applying the Universe Type System to an Industrial
Application: Case Study. Master’s thesis, ETH Zurich, 2005.

[26] JavaCC.https://javacc.dev.java.net/, 2006.

[27] JSR 175: A Metadata Facility for the Java Programming Language.
http://jcp.org/en/jsr/detail?id=175, 2006.

[28] D. Kirk, M. Roper, and M. Wood. Identifying and Addressing
Problems in Object-Oriented Framework Reuse.Empirical Software
Engineering, 2006.

[29] N. Krishnaswami and J. Aldrich. Permission-Based Ownership:
Encapsulating State in Higher-Order Typed Languages. InPLDI,
2005.

[30] G. T. Leavens, K. R. M. Leino, and P. M̈uller. Specification and
Verification Challenges for Sequential Object-Oriented Programs.
Formal Aspects of Computing, 2007. Submitted.

[31] K. R. M. Leino and P. M̈uller. Object Invariants in Dynamic Contexts.
In ECOOP, 2004.

[32] K. J. Lieberherr and I. M. Holland. Assuring Good Style for Object-
Oriented Programs.IEEE Software, 6(5), 1989.

[33] Y. Liu and A. Milanova. Ownership and Immutability Inference for
UML-based Object Access Control. InICSE, 2007.

[34] Y. Lu and J. Potter. Protecting Representation with Effect Encapsula-
tion. In POPL, 2006.

[35] K.-K. Ma and J. S. Foster. Inferring Aliasing and Encapsulation
Properties for Java. InOOPSLA, 2007. To appear.

[36] P. Müller and A. Poetzsch-Heffter. Universes: A Type System for
Controlling Representation Exposure. In A. Poetzsch-Heffter and
J. Meyer, editors,Programming Languages and Fundamentals of
Programming, 1999.

[37] G. C. Murphy, M. Kersten, and L. Findlater. How are Java Software
Developers Using the Eclipse IDE?IEEE Software, 23(4), 2006.

[38] S. Nägeli. Ownership in Design Patterns. Master’s thesis, Department
of Computer Science, Federal Institute of Technology Zurich, 2006.

[39] Omondo. EclipseUML.http://www.omondo.com/, 2006.

[40] A. Potanin. Ownership Generic Java.www.mcs.vuw.ac.nz/~alex/ogj/,
2005.

[41] A. Potanin, J. Noble, D. Clarke, and R. Biddle. Generic Ownership
for Generic Java. InOOPSLA, 2006.

[42] Annotation File Utilities.http://pag.csail.mit.edu/jsr308/annotation-file-
2006.

[43] D. Riehle. Framework Design: a Role Modeling Approach. PhD
thesis, Federal Institute of Technology Zurich, 2000.

[44] J. Scḧafer and A. Poetzsch-Heffter. Simple Loose Ownership
Domains. InFTfJP, 2006.

[45] D. Werner, , and P. M̈uller. Exceptions in Ownership Type Systems.
In FTfJP, 2004.

[46] ArchJava.http://www.archjava.org/, 2007.

104

http://www.cs.cmu.edu/~aldrich/courses/654/
http://pag.csail.mit.edu/jsr308/
www.sct.ethz.ch/research/universes/tools/
http://www.jhotdraw.org/
https://javacc.dev.java.net/
http://jcp.org/en/jsr/detail?id=175
http://www.omondo.com/
www.mcs.vuw.ac.nz/~alex/ogj/
http://pag.csail.mit.edu/jsr308/annotation-file-utilities/
http://www.archjava.org/

	Introduction
	Review of Ownership Domains
	Annotation Design
	Tool Design and Implementation
	Ownership Domains Typechecking
	Additional Features
	Tool Limitations and Future Work

	Ownership Domains Case Studies
	Ownership domains enforce instance encapsulation
	Ownership domains specify architectural tiers
	Ownership domains expose implicit communication
	Ownership domains expose tight coupling
	Ownership domains expose and enforce object lifetime
	Ownership domains promote decoupling code
	Ownership domains can help identify singletons

	Expressiveness Challenges
	An object cannot be in more than one ownership domain
	An object cannot place itself in a domain it declares
	Public domains are hard to use
	Listener objects are particularly challenging
	Static code can be challenging
	Annotations may be unnecessarily verbose
	Manifest ownership can reduce the annotation burden
	Reflective code cannot be annotated
	Annotate Exceptions as lent

	Related Work
	Conclusion

