Ownership Domains in the Real World

Marwan Abi-Antoun Jonathan Aldrich
School of Computer Science School of Computer Science
Carnegie Mellon University Carnegie Mellon University
marwan.abi-antoun@cs.cmu.edu jonathan.aldrich@cs.cmu.edu
Abstract We believe this improved tool support promotes the adoptability

of the ownership domains technique by Java developers as follows.
First, all the Eclipse tool support such as syntax highlighting, refac-
aoring, etc., remains available to annotated programs. Second, using
annotations makes it easier to support in a non-breaking way ad-
ditional annotations such as external uniqueness [1é¢adonly
[17]. Third, using annotations gives the ability to incrementally and
eoartially specify annotations on large code bases. Fourth, using an-
notations will make it possible to study the evolution of programs
with ownership annotations, an area that has not received much
attention — since no one will maintain a program with limited
tool support. Finally, annotating existing code is difficult and time-
consuming and tools are being developed to add annotations semi-

utomatically/[6, 16]. One of the benefits of using annotations over
anguage extensions is that an inference algorithm cannot break an
existing program by inserting potentially incorrect annotations.

We made the following design choices for the annotation sys-

. tem. First, we worked within the limits of Java 1.5 annotations
1. Introduction [27], even though annotations may be more verbose than an ele-

Researchers have proposed many ownership type systems, e.g_gantly designed language. Moreover, Java 1.5 annotations impose
[15, 10, 3, 17, 41], but have not reported significant experience with several restrictions, e.g., no annotations on generic type arguments.
most of them on real code. Only a few systems, notably Ownership Other rese.archer.s.have tried to eliminate some of these restrictions
Domains [6, 3], Universes [17] and Generic Ownership [41], have by proposing revisions of the _Iangua@[lg], but until s_uch propos-
released tool support [46, 20, 40], and even fewer systems havedls are off|C|aIIy_ adopte.d, their prototype |mplement§tlons are not
been evaluated in substantial case studigs [6, 25, 2, 38]. Eclipse compatible, an important factor for adoptability. Second, to
The previous implementation of ownership dorrllalﬁb [3] used work around the Java 1.5 limitation of allowing annotations only

non-backwards compatible extensions of Java [46]. As a result, 0N declarations, we consistently declare additional temporary vari-
none of the rich tool support for Java programs was available to ables and add annotations to them. This has worked well for new

programs with ownership domain annotatibns expressions, cast expressions (both implicit and explicit) and ar-
In a previous case study|[2], we identified that adding owner- guments for method and constructors. Thqu, checking owne_rshlp
ship domain annotations to existing code often highlights refactor- d0mMain annotations only generates informational messages, i.e., no
ing opportunities. For instance, a lengthy domain parameter list is €70'S or warnings, and does not stop a developer from running
often an indication of tightly coupled code that could benefit from the program. Fourth, we hard-code a minimal number of implicit
refactoring — such as extracting an interface and programming to 9€faults and provide a separate tool to supply explicit reasonable
thatinterface. Itis unrealistic to assume that it is possible to refactor d€faults to reduce the annotation burden. In the future, this tool can
all such code prior to annotating it. In our experience, having ac- be repla_lced with a smarter annotation inference tool. Finally, the
cess to refactoring tool support during the annotation process wasdnotations are non-executable and do not affect the program's be-
invaluable. Using language extensions also makes it harder to par_hav[oL; unlike the earlier implementation, the current system does
tially and incrementally annotate existing code and thus conduct Ot include runtime checks. As a result, the annotation-based sys-
case studies on interesting systems. Finally, the previous tool used &M iS unsound at casts — but could be made sound using bytecode
modified research infrastructure [8] that is no longer actively main- eWriting to add necessary dynamic checks.)
tained and does not support Java generics — as of this writing. _The rest of the paper is organized as follows: we review owner-
To address these adoptability challenges, we re-implementeds_h'p domainsiin S_ectloﬂ 2, descrlb_e the annotation Ianguage in Sec-
the Ownership Domains type system using the annotation facility tlonB and the s_allent tool features in Sechn_4. We dl_scuss two case
in Java 1.5 [27], so that Java programs with ownership annotationsStudies in Section/5 and show how ownership domains express and
remain legal Java 1.5 programs. We also implemented the tool asem‘or_ce de5|gn intent related to obJect communication and encap-
a plugin to the Eclipse open source development environment thatSulation. We discuss some expressiveness gaps that we encountered
has become popular with researchers and practitioners [24, 37]. N Section 6 and conclude with related work in Section 7.

The Ownership Domains type system has had publicly available
tool support for a few years. However, the previous implementation
used non-backwards compatible language extensions to Java an
ran on a research infrastructure, which made it difficult to conduct
substantial case studies on interesting systems.

We first present a re-implementation of ownership domains us-
ing Java 1.5 annotations and the Eclipse infrastructure. We then us
the improved tool to annotate two real 15,000-line Java programs
while using refactoring tool support, generics and external libraries.

Ownership domains, as most other ownership type systems,
provide useful encapsulation properties. We illustrate using actual
examples from the subject systems how ownership domains also
express and enforce design intent regarding object encapsulatio
and communication and help identify tight coupling. Finally, we
mention some expressiveness gaps that we encountered.

1The Universes tools built on the Java Modeling Language (JML) infras- 2Annotations may increase the memory footprint and slow down class
tructure support both language extensions and stylized comments [20]. loading as a result, but no empirical data has been reported to date.

93

2. Review of Ownership Domains used to hold theons cells in the linked list that is used to represent

Ownership domainsre conceptual groups of objects with explicit thesequ?nce' The full elealmple i§ shown in.Figu 1
domain names and explicit policies that govern references between@Domains: declare public or private domains on a type.
them. Each object belongs to a single ownership domain, and a top- ® Format: identi fier

level domain is assumed. e Applies to: type (class or interface).
Public and Private Domains.Each object can declare one or ¢ Examples: the following declares a privaigmed domain
more public or private domains to hold its internal objects, thus (owned is private by naming convention), and a public domain

supporting hierarchy. A public domain is accessed using a syntax ~ iters to store thelterator objects of theSequence.
similar to field access. Domain declarations are added to a class, @pomaing{"owned" ,"iters"})

but for each instance of that class, fresh instances of these domains class SequenceT> {

are created for that object, i.ehj1.DomainA andobj2.DomainA .

are distinct ifobj1 andobj2 are instances of the same clasand 4
do not alias each other. ' . @DomainParams: declare ordered domain parameters on a type
Explicit Domain Links. Each object can declare a policy de- or method domain parameters on a method.

scribing the permitted aliasing among objects in its public domains, e Format: identifier
and between its private domains and public domains. Ownership e Applies to: type or method.
domains support two kinds of policy specifications: a) a link from e Examples:Sequence declares a domain parameRner to
one domain to another allows objects in the first domain to access hold its elements.
objects in the second domain; and b) permission to access an object
implies permission to access its public domains. In addition to ex-
plicit domain links, the following implicit policy specifications are
included: a) an object has permission to access other objects inthe }
same domain; and b) an object has permission to access objects i
any domain that it declares. Any reference not explicitly permitted
by these rules is prohibited, and link permissions are not transitive.
Ownership Domain Parameters.Two objects can access ob-
jects in the same domain, as long as implicit or explicit permissions
allow that access, by declaring a formal domain parameter on one
object, and binding that formal domain parameter to another do-
main. Method domain parameters are also supported and are often
needed for static methods.
Alias Types. In addition, the following special annotations are %%Omaiﬂpla"’am@ 'list", "Towmer"})
defined for increased expressiveness [3): e e Do)
e unique: indicates an object to which there is only one refer-
ence such as a newly created object. Unique objects can be }
passed linearly from one object to another, by destroying the
old reference to the object when the new reference is created,;
e lent: one ownership domain can temporarily lend an object to
another ownership domain, with the constraint that the second
ownership domain will not create any persistent references to
that object: e.g., a method formal parameter is often annotated
with lent to indicate that it is a temporary alias;
e shared: indicates that an object may be aliased globally. @DomainLinks({..., "iters -> owned", ...})
shared references may not alias non-sharegferences. class SequenceT> {
Unlike owner-as-dominatotype systems [15], public domains
in the ownership domains type system can express constructs such
as iterators|[3] (See Figure 1) or an instance of the Compos- @DomainAssumes:declare domain link assumptions.
ite design pattern [22, p. 163] that does not encapsulate its sub- ® Format: fromDomainld ->toDomainlds
components and gives clients the ability to add components to any ® Applies to: type (class or interface).
composite of the hierarchy and not only to the root compgsite [30]. ® Examples: the Sequence assumes that thewner of the
Developers can still express owner-as-dominator in ownership do- ~ Sequence has access to thowner domain containing the
mains by: a) never declaring a public domain; and b) never linking sequence elements.
a domain parameter to an internal domain [3]. @DomainAssumeg owner -> Towner") /+ default /
class SequenceT> {

@DomainParamE{ "Towner" })
class SequenceT> {

rZt’zJDomainlnherits: pass parameters to superclass or implemented
interfaces.

e Format: typename < parameter, ... >

e Applies to: type (class or interface).

e Examples: theIterator interface is also parameterized by
the Towner domain parameter. Clas®qIterator inherits
domain parametefowner from interfacelterator, and adds
thelist parameter to access thens cells.

@DomainLinks: declare domain links.
e Format: fromDomainld ->toDomainld
e Applies to: type (class or interface).
e Examples: theSequence givesIterator objects intheters
domain permission to access objects in twed domain,
including theCons cells.

3. Annotation Design }
In this section, we describe the concrete annotation syntax. For @Domain: declare the domain, actual parameters and actual array
maximum flexibility and to work around some of the limitations of parameters.
Java 1.5 annotations, all annotation values are strings. Annotations ® Format: annotation<domParams, . ..>[arrayParanms, . ..]
that are plural take values that are arrays of strings. = annotation: indicate a domain name (e.gwned), one of

The annotations are illustrated using snippets from a canonical the special alias types (e.gnique), or a public domain of
Sequence abstract data type, a common benchmark for ownership an object using a field access syntax (esgq.iters);
type systems. Within thBequence, theiters ownership domain = <domParams, . ..>: specify actual domain parameters by
is used to holdIterator objects that clients use to traverse the order of formal domain parameters, at object creation and
Sequence, and the defaulprivate owned ownership domain is access sites;

94

= [arrayParams, ...]: in ownership domains, arrays have
two ownership modifiers, one for the array object itself and
one for the objects stored in the array. For variables of array
type, this argument specifies the actual array parameters by @bomain{{ "owned" ,"iters"})
order of array dimension (for multi-dimensional arrays). @DomainParam{ " Towner" })
= Applies to: local variable declaration, field declaration, ~@PomainAssumefowner -> Towner") .
@DomamL\nkS({ owned->Towner", "iters->Towner",
method formal parameter and method return value. "iters->owned" })
= Examples:the following declares anique Iterator ob- class SequenceT> {
ject and binds theist domain parameter ®eqlterator @Domair("owned<Towner>") Cons<T> head;
to owned domain onSequence, and theTowner domain void add(@bomair("Towner")T 0) {

@Domain(" d<T >n
parameter orseqIterator to the parameter by the same cOnKT; cons = n;yvnzronsiT>(o ,head);

name orSequence. head = cons;
@Domair("unique<owned , Towner>") @Domair("iters<Towner>") Iterator<T> getlter () {
Seqlterato<T> it = new SeqlteratokT>(head); @Domain("iters<owned, Towner>")
Seqlterato<T> it = new SeqlteratokT>(head);
= Examples:alent array ofshared Strings:) return it;
@Domair("lent [shared]") String args[]; }

@DomainReceiver: declare the domain of the receiver of a con- @PomainParam{ "Touner" })
@DomainAssume(" owner -> Towner")
structor or a method. class ConscT> {

e Format: identifier @Domain("Towner") T obj;
e Applies to: constructor or method. @Domair("owner <Towner>")Cons<T> next;
e Examples:

Cons (@Domair("Towner")T obj,
Vel " @Domair("owner<Towner>") Cons<T> next) {
@DomainReceivef"state") . A
void run() { ... } th!S.ObJ—SbJ, -
this.next=next;
¥
}
4. Tool Design and Implementation @DomainParam{ "Touner" })
Ownership domain annotations are typechecked using two visitors interface Iterator<T> {

on the Eclipse Abstract Syntax Tree (AST). boolean haamert Oy MO

}
4.1 Ownership Domains Typechecking
. . . @DomainParamE{ "1ist", "Towner"})
A first-pass visitor performs the following: @DomainAssumel{ "1ist -> Towner"})

e |dentify Problematic Patterns: these will need to be replaced @Domaininherit{{"Iterator <Towner>"})

with equivalent constructs, e.g., by declaring a local variable c'ass SeglteratoxT> implements Iterator<r> {

and adding the appropriate annotations b it; @Pomar(riist Towmer>") Conscl> current;

Read Annotations from AST: the Java 1.5 annotations added Seqlterator @Domair("1ist<Towner>")Cons<T> head) {

to a program are part of the AST. The visitor locates the an- current = head;

notations nodes in the AST and parses their contents using a }ub”c @Domair(*Towner®) T next() {

JavaCC[26] parser. The visitor also locates special block com- P @Domair("Towner")T obj2 = current.obj:

ments on method invocation expressions as described later. In current = current.next;

addition, the visitor infers default annotations for some AST return obj2;

nodes that cannot be annotated, e.g., it implicitly defaults the .}

NullLiteral AST node tounique. The visitor maps each

AST node to an annotation structure in preparation for the sec- @pomaing{ "owned" ,"state" })

ond pass visitor which will typecheck the annotations; class SequenceClient{

Propagate Local Annotations:the visitor propagates the ex- final @Domair("ouned<state>") ,
plicit annotations from the AST nodes (for types, variables, Sequencecinteger> seq =new Sequencelnteger>();
and methods) to all the expression nodes in the AST, includ- void run() {

ing translating formals to actuals. @Domair("state") Integer int5 =new Integer(5);

A second-pass visitor checks the annotations on each expression E@ego'n?;dr((";lts i cetate o

based on the static semantics of Ownership Domains. Checking the |teramr<|n?éger> it = this.seq.getlter ();
assignment rule requires a value flow analysis. A Live Variables while (it.hasNext()) {

Analysis (LVA) from a lightweight data flow analysis framework @Domair("state") Integer cur = it.next();

[5] — that also uses the Eclipse AST, is invoked intra-procedurally e

at each method boundary using a separate visitor. The LVA analysis }
verifies that ainique pointer only has one non-lemead.

}
4.2 Additional Features

The tool offers the following additional features:

Figure 1. A Sequence Abstract Data Type with ownership do-
main annotations.

3Using the Eclipse built-in refactoring (“Extract Local Variable”), this
operation can be performed with very little effort.

95

@DomainParamE{ "state" }) class SequenceT> {
class Student {
@DomainParam@"TTowner") /x Method domain parameters/

} @Domair("shared") /« Domain for return value x/
@DomainParamE{ "state" }) static <TT> String

class Data ... { toString (@Domair("lent<TTowner>")SequenceTlT> seq) {
final @Domain("state<state<state>>") C
SequencecStudent> vStudent; }

void dump() {

@Domair("state<state>") Student @Domain("owned<shared>")
getStudentRecord@Domair("shared") String sSID) { SequenceString> seq = ...;
@Domair("vStudent . iters<state<state>>")
Iterator<Student> i = vStudent. getlter (); @Domair("shared")
while (i.hasNext()) { /% Provide <actuals...> using block comment«/
@Domair("state<state>") String str = Sequence.toString<state>x/(seq);
Student objStudent = i.next(); }
}
}
- Figure 3. Declaring and binding method domain parameters.

Figure 2. Adding annotations to generic code.)) ,
while (objCourseFile.ready ()){

. . this.vCourse.addfew Course(courseFile.readLine ()));
External Libraries. There are two approaches to support

adding annotations to the standard Java libraries and other third-/+ ABOVE MUST BE REWRITTEN AS ...x/

party libraries, one that involves annotating the library and point- W@ggzmgf’r:{]gﬁg;ztﬁ)Flslter-igzatliiyn(e)){_ courseFile . readLine ():
ing the tool to the annotated library and one that involves placing 5 5i(vstate<state>") Course crs =new Course (line):
the annotations in external files. The earlier tool used the former this.vCourse.add(crs);

approach [46], but we adopted the latter approach this time since it }

does not require changing library or third-party code — which may - — - - -
not be available and when it is, tends to evolve separately. Other ~ Figure 4. Re-writing a new expression using local variables.
annotation based systems adopted the same strategy [42]. The tool

supports associating ownership domain annotations with any Java

bytecode. class file using an external XML file, following the own type; (3) It is only legal to use single-member annotations for
same annotation constructs described in Section 3.) annotation types with multiple members, as long as one member
Generics.Our annotation system currently treat generic types s namedvalue, and all other members have default values. Oth-
as orthogonal to ownership domain parameters, so generic type pagryise, the more verbose syntax is required, @pme (first =
rameters and arguments are added separately from ownership donjoe..’ last = "Hacker"); (4) Annotation types cannot extend
main annotations — except that nested actual domains may needyny entity (class, interface or annotation); and (5) Annotations are
to be provided where applicable. Proponents of Generic Owner- gjjowed on type, field, variable and method declarations and not
ship [41] argue that this leads to awkward syntax, which may be ajiowed on type parameters or method invocations.
true. However, in our case studies annotating two 15,000-line Java The fist restriction prevented us from using tbBomain an-
programs including using generic types, we did not observe this to notation to specify both the annotation on the receiver and on the
be a serious problem. Figure 2 illustrates the interaction between return type of a method. The second restriction prevented us from
generics and ownership domains: 8tident class is parameter- haying shorthand constant annotations for the special alias types,
ized by thestate domain parameter. Thata class maintains a ¢ g. @owned instead ofeDomain ("owned"): such constants can-

Sequence Of Student objects and is also parameterizeddayte. not be used inside other annotations a@libmain (annotation
Method Domain Parameters.Java 1.5 annotations cannot be - goyned, parameters = {@owned}).

added at method invocation expressions. So we used block com- Tq avoid having multiple ways of indicating the same mean-
ments to specify the actual domains for a parameterized methoding, we use strings for all the annotations and require annotations
(See Figure 3 for an example). Unfortunately, even proposals t0 of the form @Domain ("owned<owned>"). Although developers
improve the Java 1.5 annotation facilities [19] do not yet address may be more likely to introduce spelling mistakes in string annota-
adding annotations to such expressions. tions, the typechecker will catch these problems early enough. The

Defaulting Tool. To reduce the annotation burden, we imple- third restriction, i.e., the lack of positional arguments, required the
mented a separate tool to add default annotations such as marking;se of the verbose synt@®omains (publicDomains = {"d1",

private fields aswned, method parameters aent, andStrings "d2"}, privateDomains = {"pda", "pdb"}).

asshared. However, an annotation added by the defaulting tool The final restriction and the current lack of annotation inference
(e.g.,owned) may need to be modified manually to supply actual require converting some expressions to more verbose constructs by

domains for domain parameters (e@uned<owned>). declaring local variables and annotating them. The most common
/Annotation ‘owner’. We also added the speciagner anno- such expressions were new expressions (See Figure 4) and cast

tation, similar topeer in Universes[[17]. Usingwner can often expressions (See Figure 5).

eliminate a domain parameter: e.g., in FigureCdns. owner is We plan to address some of the following limitations:

Sequence, SeqIterator.owner IS Sequence. e Infer method domains: just as actual type arguments do not

have to be passed to a generic method in Java, it may be
possible to infer, in most cases, the actuals for method domain
Java 1.5 annotations suffer from the following limitations: (1) A parameters based on the types of the actual arguments;
declaration cannot have multiple annotations of the same annota- e Allow suppressing messagesince reflective code cannot be
tion type; (2) Annotation types cannot have members of the their annotated successfully using ownership domains [6];

4.3 Tool Limitations and Future Work

96

ArrayList vCourse student.getRegisteredCourses ();
for (int i=0; i<vCourse.size (); i++){
if (((Course) vCourse.get(i)).conflicts(course))

L

}
/% ABOVE MUST BE REWRITTEN AS
@Domain("lent<state>")
ArrayList vCourse = student.getRegisteredCourses ();
for (int i=0; i<vCourse.size (); i++){
@Domain("lent<state>")
Course crs = (Course) vCourse.get(i);
if (crs.conflicts(course)){

}
}

Figure 5. Re-writing a cast expression using local variables.

Y

¢ Display annotations more elegantly:an Eclipse plug-in by
Eisenberg and Kiczales [18] can beautify Java 1.5 annotations
for interactive editing while the analysis uses the same AST.

5. Ownership Domains Case Studies

The annotation-based system is mostly complete — the domain
link checks are still being implemented as of this writing. We used
the tools to add and check ownership domain annotations on two
real Java programs with around 15,000 lines of code each.
JHotDraw. The subject system for the first case study is JHot-

that would not account for the learning effect of annotating the
same program twice. Anecdotally, we were more productive with
the annotation-based system than with the earlier tool using lan-
guage extensions. The overall process changed around 40% of the
lines of code in HillClimber. The 40% code changes included boil-
erplateimports to use our Java 1.5 annotations, and code changes
to support adding annotations to some expressions. To more accu-
rately gauge the manual annotation overhead, an AST-visitor was
used to count the instances where the current annotation is the same
as the one generated by the defaulting tool: over 40% of the annota-
tions were exactly the same as the default ones for HillClimber; that
number was around 30% for JHotDraw. There are 60 type errors re-
maining in JHotDraw and 42 errors remaining in HillClimber.

In this following discussion, we illustrate using actual examples
from JHotDraw and HillClimber, how ownership domains can ex-
press and enforce design intent related to object encapsulation and
communication, using code snippets from the subject systems. The
code was slightly edited for presentation by removing trivial modi-
fiers. Some code is highlighted using underlining.

5.1 Ownership domains enforce instance encapsulation

All ownership type systems can express and enforce instance en-
capsulation which is stronger than the module visibility mechanism
of making a fieldprivate. In ownership domains, placing a field

in the privateowned domain means that the object can be reached
only by going through its owner; as a result, no aliases to that object
can leak to the outside. Consid&impositeFigure in JHotDraw:

Draw [23]. Version 5.3 has around 200 classes and 15,000 lines of @pomaing{ "owned" })

Java. JHotDraw is rich with design patterns [22], uses both com-
position and inheritance heavily and has evolved through several
versions. We first used the defaulting tool then manually modified

@DomainParam@{ "M" })...
abstract class CompositeFigure
/1
@D

A
The figures that comprise this figure
omain("owned<M<M>>")Vector<Figure> fFigures;

the annotations as needed. Adding annotations was iterative. For

instance, over several iterations, we made more use ofihed
annotation. JHotDraw was annotated without making any structural

% *
+ Adds a vector of figures.

refactoring such as extracting interfaces, etc. Some code changes, ,ig aqgail (@bomai("u<ucu>>") Vector<Figure> figs) {
were needed however to use our annotation system, e.g., extract // cannot assign object in "MM>" to “owned<M>"

a local variable from a new expression and add an annotation on
the local variable, convert an anonymous class to a nested class to

add domain parameters to it, etc. JHotDraw Version 5.3 did not use
generic types, so we used Eclipse refactorings [21] to infer generic
types of containers.

HillClimber. By many accounts, JHotDraw is considered the
brainchild of experts in object-oriented design and programming.
In comparison, the subject system for this case study, HillClimber,
is another 15,000 line application that was mainly developed
and maintained by undergraduates [2]. In previous work, we re-
engineered the original Java program to an ArchJava [4] imple-
mentation with ownership domain annotations, but using language

/1 this.fFigures figs;

/I This is correct however
fFigures. addAll(figs);

}

}

Annotating fieldfFigures with owned encapsulates the list of
compositeFigures (fFigures) to prevent objects that only have
access to the composite object from modifying the list directly. If
a developer tries to subvert the language visibility mechanisms by
exposing grivate or protected field using apublic accessor
method, the ownership domains type system prohibipsitalic

extensions instead of Java 1.5 annotations [2]. The re-engineeringmethod from having aewned parameter or return value. Letting

case study also produced a version that refactored the original cod
by making most class fields asivate [2]. For this case study, we

&clipse generate a setter for thBigures field produces the fol-

lowing code — without annotations:

started from the refactored Java code and added ownership domain

annotations to it.
Unlike JHotDraw, adding annotations to HillClimber involved

void setFFigures (VectotFigure> figs) {
this.fFigures = figs;

refactoring to decouple the code as discussed below. We also refac-

tored the code to use generics, mostly automatically using Eclipse.

However, Eclipse cannot infer the generic type of a variable of type
Vector storing arrays oflode objects. Such code was manually
refactored to us®ector<Vector<Node>>.

Compared to the earlier case study with language extensions

[2], the annotation-based system allowed using Eclipse refactoring
tools to extract interfaces and infer generic types while adding the
ownership domain annotations. Comparing the number of hours

Upon adding the annotations, a developer can realize that the
setter is overwriting the existing field since the paramétats
cannot be marked asimed and any other annotation would fail
the assignment check when overwriting i gures field.

When manually adding annotations, it is possible to miss many
opportunities for making objectsmed. Indeed, we initially anno-
tatedfFigures with the domain parameterinstead ofowned. In
some cases, objects shoulddsaed but are not, and making them

would not be meaningful since the annotation-based system wasowned may require code changes, e.g., to return a copy of an object

still under development while the case study was under way, and

97

instead of an alias to a private field.

Visualizing the annotations encouraged us to make more use of

the owned annotation sincewned avoids cluttering the top-level li*Drang is a container for Figures. Drawing sends
domains [1]. Perhaps better tool support can prompt a developer = out DrawingChanged events to DrawingChangelisteners
to encapsulate a field that could be annotated withed but is : ¥vr?:ng\t/)2:er3e?ar;t?ér:]tsisa[;edeweti idneVCaO'Ld ?ée?h-e Srawin
not, e.g., a lightweight cqmplle-t_lme own_ers'hlp inference algorithm =2 Viewsp and to enable multiple ’\J/iews. 9
[33] could suggest possible Eclipse “quickfixes”.]

@DomainParam@E{ "M", "V"})
5.2 Ownership domains specify architectural tiers @Domaininherit{{"FigureChangeListener<M>" ,...})

. . . . L interface Drawing extends FigureChangelistener .. {
A tiered architecture is often used to organize an applicationintoa // Adds a listener for this drawing.

User Interface tier, a Business Logic tier, and a Data tier. Ownership void addDrawingChangeListener()

domains can express and enforce such a tiered runtime architecture ~ @Pomain("v<M,v>") DrawingChangelistener 1);
by representing a tier as an ownership dor_ﬁéin [3], and apermission ;; aqds a figure and sets its container
between tiers as a domain link to allow objects in the User Interface // to refer to this drawing.

tier to refer to objects in the Business Logic tier but not vice versa. ~ @Domair("M<M>")))

Such an architectural structure and constraints cannot be easily Figure add(@Domair("h<i>") Figure figure);
expressed in plain Java code. .
We organized the core JHotDraw types in Figure 6 according to
the Model-View-Controller design pattern as follows: Figure 7. Adding annotations tbrawing.

® Model: consists ofDrawing, Figure, Connector, etc. A
Drawing is composed of igures which know their containing

Drawing. A Figure has a list oHandles to allow user interac- @DomainParam@ "M" "y nCn})
tions. ADrawing also extend¥FigureChangeListener (not interface Handle {
shown) to listen to changes to Rsgures. void invokeStart (@Domair("v<M,V,C>")DrawingView Vv);
e View: consists c.)DrarfJingEditor, Drav.vingView an.d associ- @bomair("M<M,V,C>") Undoable getUndoActivity ():
ated typesDrawingView extendSDrawingChangeListener)
(not shown) to listen to changesioawing objects.
e Controller: includes interfaces such &andle, Tool and Figure 8. Handle with M, V andC domain parameters.

Command. A Tool is used by &rawingView to manipulate a
Drawing. A Command encapsulates an action to be executed —) .)
a Simp|e instance of the Command design pat@n [22, p. 233] the observer would not have been discovered this way. OWnerShlp

without undo support. domain annotations help make implicit communication explicit
Once we defined the three top-level ownership domaiisge, when a reference requires permission to access a new part of the
View andController, we passed the corresponding domain pa- Program for the first time. , . _
rameterst, V andc to various types as discussed below. A visual- [N HillClimber, adding ownership domain annotations exposed
ization of the JHotDraw execution structure based on these owner-CoVvert object communication through base classes from two par-
ship domain annotations is available [1]. allel inheritance hierarchies. During an early iteration, we param-
In HillClimber, the applicatiorwindow uses acanvasto dis- eterized the base clasgraphCanvas by the ui and data do-
play nodesand edgesof a graph in order to demonstrate algo- ~Main parameters. We then realized thaph, the base class for
rithms for constraint satisfaction problems provided byehgine. ~ HillGraph, required theui domain parameter (See Figure 12).

So we organized the HillClimber types in Figlre 12 as follows. ClassGraph only needed thei domain parameter to properly an-
The data ownership domain stores the graph objects (instances Notate a&raphCanvas field reference that we did not expect. This

of Graph, Node, etc., and those of their subclasse$]11Graph, in turn revealed thallillGraph andHillCanvas were commu-
HillNode, etc.). Theui domain holds user interface objects. The hicating through their base classesaph and GraphCanvas. In
logic domain holds instances #&fil1Engine, Search (and sub- the end, the reference @raphCanvas was moved fronGraph to

classes thereof) objects, and associated objects. A visualization offii11Graph and generalized as afillCanvas reference by ex-
the HillClimber execution structure based on these ownership do- tracting an interfac&Hi11Graph from HillGraph.
main annotations is available [1].

5.4 Ownership domains expose tight coupling

5.3 Ownership domains expose implicit communication Let us temporarily ignore the earlier limitation with adding anno-

Design patterns — such as Observer [22, p. 293], used to decoupletations to the listeners and assume thadwing could be param-
object-oriented code also tend to make the communication betweeneterized by only thel domain parameter. Let us consider whether
objects implicit. Adding ownership domain annotations helps make it would be possible to parameterize interfazadle (See Figure

that communication more explicit. [8) with domain andC. A Handle would be in thec domain and
We initially wanted to parameterizerawing (See Figuré 7) would access objects in that domain andt ilomain, i.e., it should
with only theM domain parameter, bbtrawingChangeListener not access objects in tledomain parameter. Note that even if the
is implemented byrawingView. SoDrawingChangeListener explicit parametec was not provided, that domain would still be
needed to be annotated with tilelomain parameter correspond- accessible tdlandle using theowner annotation.
ing to theview. By making implicit communication explicit, anno- A comment in the code indicated that Version 4.1 deprecated
tations seem to prematurely constraitawingChangeListener the originalinvokeStart method which took ®@rawing object
objects to be in th&#iew domain. Sinc®rawing was a core inter- as one of its parameters, in favor of amvokeStart method that
face referenced by other interfaces in the cdaremework package, takes instead a formal paramebefawingView parameterized by
this led to passing all three domain parameters to many additionalM,V, andcC. This required passing tendle the additional domain
interfaces and classes. parametel. SinceHandle is a core interface referenced by other

It is true that ifDrawing had to be parameterized by domain interfaces in the coréramework package, this also led to passing
parametel for some other reason, the implicit communication in all three domain parameters to many additional types.

98

Figure 6. Simplified class diagram for JHotDraw (Adapted from manual class diagram by Riehle [43, 12]).

@DomainParame "M, vcr}) Instead of a method domain parameter, 1@t annotation

interface Handle { could also be used to allow a temporary alias to an object within
@DomainParamis{ "V" }) o a method boundary. We found a few such examples in JHotDraw.
void invokeStart (@Domair("v<M,V,C>")DrawingView v); MethodsetAffectedFigures in Figurel 11 makes a copy of the

lent argument so it cannot just hold on to it.

In fact, lent can be formally modeled as a method domain pa-
rameter. However, the type system does not allow a method to re-
Figure 9. Handle with only M andC domain parameters. turn alent value but it allows a method to return an object in a
method domain parameter. In the cas@rdwingView, lent can-
not be used because implementationsmfokeStart () construct
Undoable objects that maintain aliases to theawingView and

@Domain("M<M>") Undoable getUndoActivity ();

@DomainParamE{ "M" ,"C" })

@Domaininherit{{ "Handle<M,C>" }) thus require th& domain parameter.

abstract class AbstractHandleimplements Handle { For that same reason, tiiedoable interface requires the do-

/I Will not typecheck since 'V’ unbound main parameter becausadoable stores th®rawingView where

@Domair("v<M, v, c>")DrawingView view; the activity to be undone was performed in order to undo the

@DomainParami{ "v" }) changes to that view only. This may slightly violate the Model-

void invokeStart (@Domair("V<M,V,C>")DrawingView v) { View-Controller design, where model objects should not hold on to
/I Cannot store argument in field 'this.view’ view objects, because there might be multiple views that need to be

} updated in response to changes in the model. At the same time, it

) would be counter-intuitive for a user to undo a change in one view

Figure 10. Method domain parameters can enforce lifetime. and obs_erve changes in some other _/iew. Thus, ownership dom_ain
annotations expose the tighter coupling that the Undo feature in-
troduced. Figuré 11 shows in more detail the interaction between

5.5 Ownership domains expose and enforce object lifetime Handle, Undoable andDrawingView.

in thi ion that the ref . hich introduced An earlier empirical study of JHotDraw mentioned that “a com-
Let us assume in this section that the refactoring which introduced 1,5, architectural mistake [...] was to proviBiggures with a ref-

the tighter coupling was never performed, ifandle still needed erence to th@rawing or theDrawingView. Figures do not by

aDrawing instéad of arawingView. Undo support was added gefayit have any access to either Iewing or theDrawingView

to JHotDraw for the first time in Version 5.3. In particulizndle in which they are contained. This prevents them from accessing in-

now had a reference tndoable —which in turn required domain 5 mation such as the size of theawing. However, it is possible

parameterst,V and C becauselndoable’s getDrawingView() to overcome this problem by passing the view into the constructor

method returned BravingView. of a figure, which can then store and access this as required” [28].
Now, let us see if it would be possible to annofaieoable and Starting with Version 5.3, one could get to thegure’s Handles

Handle with only the domain parameteiisandC (See Figure 9) — hrgugh itshandles () method then get BrawingView through a
the domain parametar can then be supplied ttnvokeStart () Handle’s UndoActivity objects.

as a method domain parameter.

Using a method domain parameter to annotate the formal pa- . . .
rameterv could enforce the constraint that a developer should not 5.6 Ownership domains promote decoupling code
store in a field th®rawingView object passed as an argument to Ownership domain annotations highlight tight coupling and pro-
invokeStart(), as in Figuré 10. Of course, a developer could mote programming practices that decouple code.
store theDrawingView object in a field of typedbject, but that Programming to an Interface. It is recommended to “refer to
field would have to be cast tobrawingView to be of any use. objects by their interfaces” [7, Item #34] since interfaces can reduce

99

@DomainParam@E{ "ui" ,"logic" ,"data" })
@Domaininherit{{"Node<data>"})
class HillNode extends Node {

@DomainParamE "M", "v", "C"})
@Domaininherit¢{{"LocatorHandle<M,V,C>"})
class ResizeHandleextends LocatorHandle {

@Override @Domain("data<ui,logic,data>")HillGraph graph;
void invokeStart(nt x, int vy,
@Domair("v<M,V,Cc>") DrawingView view) { }

setUndoActivity (createUndoActivity (view); . . .
) 4 yLview) When adding annotations, an unexpected domain parameter of-

} N ten indicates unnecessary coupling, e.g., why sh&dilNode
I o have access to thet domain? Thus a lengthy domain parameter list

* Factory method for undo activity. can be an objective measure of a code smell [2]. Furthermore, own-

+ To be overriden by subclasses. . h 8 .

] ership domain annotations can help a developer lower the coupling

protected @Domair("M<M,V,C>")Undoable by suggesting which specific type declarations need to be general-
createUndoActivity (o) ized to shorten the list of domain parameters on the enclosing type.
~ @Domair("v<m,v,c>")DrawingView view) { In HillClimber, one solution was to extract aiiil1Graph in-
@Domair("unique<M,V,C>") £ f | R h | . h .
ResizeHandle . UndoActivity terface from clas#illGraph that only requires th@ata domain
undoable =new ResizeHandle.UndoActivity (viewy; parameter and makeH 11Node object reference thBillGraph
return undoable; object through th&Hi11Graph interface. We decided against car-

} rying this refactoring further and eliminating the andlogic do-
@DomainParame "M", "y, nen}) main parameters citi11Graph itself. _ _
@Domaininherit{"UndoableAdapter<M,V,C>") Since theHillGraph, HillNode, etc., form a parallel inheri-
static class UndoActivity extends UndoableAdapter{ tance hierarchy t@raph, Node, etc., a similar refactoring was per-

];' : formed onGraph by extracting alGraph interface — even though
} Graph andIGraph are both parameterized lapta.
/* * r " an " 3 n " n
% Basic implementation for an Undoable activity @DomainParams(e logic", fata)
Wy @Domaininherit{{"Graph<data>",

) "IHillGraph<data>"})
@DomainParamE "M", "v", "C"}) ; P
@Domaininherit{"Undoable<M,V,C>") class HillGraph extends Graph

public class UndoableAdapterimplements Undoable { implements 1HillGraph {
@Domain("v<M,V,c>")DrawingView myDrawingView ; T

@DomainParamE{ "data" })
@Domaininherit{{"IGraph<data>"})
interface IHillGraph extends IGraph {

UndoableAdapter@Domair("v<M,V,C>")DrawingView dv) {
setDrawingView (dv);

@Domair("v<M,V,c>") DrawingView getDrawingView () {

return myDrawingView; @DomainParamE{ "data" })

@Domaininherit{{"Node<data>"})
class HillNode extends Node {
@Domain("data<data>") |HillGraph graph;

void setAffectedFigures@Domain("lent<M>")FigureEnumeration fe){
/l the enumeration is not reusable therefore a copy is mdde
// to be able to underedo the command several time

void setDrawingView (@Domair("V<M,V,C>")DrawingView dv) {
myDrawingView = dv;

rememberFigures (fe); Tightly coupled code was observed throughout HillClimber.
3 Similarly, we were surprised that a dialog cla&mtDialog re-
} quired thedata domain parameter. It turned out tintDialog
; - - had a field reference declared with its most specific 8fzhCanvas.
Figure 11. Concrete implementation classiéndle. In some cases, it is possible to generalize the type of the reference,

e.g., usejava.awt.Frame to eliminate the need for the domain
coupling between classes by splitting intent from implementation. parameter. HoweveEontDialog needed access to some of the
When fewer domain parameters are needed to annotate an interGraphCanvas functionality, so a different solution was needed.
face (as compared to the corresponding class), ownership domain Mediator Pattern. Defining an interface is sometimes insuffi-
annotations can enforce this idiom. cient to decouple code since referring to an object through its inter-

In particular, an implementation class can require a private face still requires access to the domain the object is in. One solution
ownership domain to be passed as an actual value for one itsis to use the Mediator design pattern|[22, p. 273], as shown here.
parameters. Since a private ownership domain cannot be named by In the original HillClimber implementationyode obtained a
an outside client, the client is then forced to use the interface which reference toGraphCanvas, which violates the Law of Demeter

does not require these parameters. [32], i.e., objects should only talk to their immediate neighbors:
For instance, in the earlieBequence exa}mple (Flgurar;), @DomainParame{ "data" })
the SeqIterator class receives thBequence’s private domain abstract class Entity {

owned and hides the extra parameterization behindItberator @Domair("data<data>") Graph graph;// parent graph
interface. This forces a client of tfB2quence to access the itera- x
tor objects only through theterator interface. A client may not } o
@DomainParamE{ "data" })
even cast théte_ere_ltor refe_rence to 8eqlterator clags. - @Domaininherit¢{ "Entity<data>"})
We used a similar technique to decouple the code in HillClimber class Node extends Entity {
(See Figure 12 for the inheritance hierarchy). The original im-

plementation for clas#lillNode had a field reference of type = 't tge“*e'ghth() { . FontMetri ,
HillGraph. However,HillGraph took the three domain param- }re urn graph.getCanvas (). getFontMetrics ()...;
etersui, logic anddata, which required passing all those param- }

eters taHillNode.

100

| 0 graphFramework::EdgeIl e graphFramework::NodeIl 2 graphFramework::GraphI

[@ HillEdge | [@ HiliNode |

0.1

0.1 | #node

@ search I

-curNode

| 9 graphFramework::GraphCanv asl

M HillGraph
0.1 | -hillGraph
-hillCanvas a
—5y M HillCanvas
D Hill | —
— 0.1
- hillEngine 0.1 | -hillWindow

B Hillwindow I

| [c] GreRRSearchIl 0 RandSearch Il @ SimpleSearch Il @ SimAnnealSearch Il 0 simRanSearch I

| (] GreedySearchI

| n MCHSearchI

[® Rawksearch |

Figure 12. Partial UML Class Diagram for HillClimber obtained from the original implementation using Eclipse UML [39]. This diagram
does not reflect some of the types introduced during refactoring, sugtragh, IHil1Graph andICanvasMediator.

Extracting an interface froriraphCanvas would not work, as
that reference would still need theé domain parameter. Moreover,
the implementation ofetFontMetrics () could not be moved to

Graph as it required access to objects in thiedomain.

@DomainParamE{ "data" })
abstract class Entity {
@Domain("ui")IGraphCanvas_canvas //

v

ui’ unbound

A mediator was defined as follows:

[%

* Mediator
*/
interface ICanvasMediator{

@Domair("shared") FontMetrics getFontMetrics ();
}

[%

*+ Mediator implementation class

#/

@DomainParam@E{ "ui" ,"data"})

class Mediatorlmpl implements ICanvasMediator{
@Domairn("ui<ui,data>")GraphCanvas_canvas

interface

Mediatorimpl (@Domair("ui<ui,data>")GraphCanvas c){
this.canvas= c;

@Domair("shared") FontMetrics getFontMetrics (){
return canvas getFontMetrics ();

}
GraphCanvas initializes the mediator:
@DomainParam@E{ "ui" ,"data" })

class GraphCanvasextends ...

@Domair("data<ui,data>")Mediatorimpl mediator

@Domair("data")ICanvasMediator getMediator (f
return mediator;
}

}

Entity andNode can then use the mediator as follows:

@DomainParamE{ "data" })
abstract class Entity {
@Domair("data") ICanvasMediator_mediatar

R

101

[% %
+ DrawApplication defines a standard presentation
+ for standalone drawing editors

*/

@DomainParam@g{ "M", "vV", "C"})
@Domaininherit{{"DrawingEditor<M,V,C>", ...)

class DrawApplication implements DrawingEditor ... {

// Opens a new window with a drawing view.
@DomainReceive("unique")
protected void open(...) {

flconkit = new Iconkit(this);

}

class lconkit {
static @Domair("unique")lconkit fglconkit = null;
/Il Constructs an Iconkit that uses the given editor
/l to resolve image path names.
@DomainReceivef"unique")
public Iconkit(@Domair("unique")Component comp{
fglconkit = this;

}
}

Figure 13. Annotating a singleton usinghique.

@DomainParamE{ "data" })
@Domaininherit{{"Entity<data>"})
class Node extends Entity {
int getHeight() {
return getMediator (). getFontMetrics ()...;

}

5.7 Ownership domains can help identify singletons

While adding ownership domain annotations, we discovered a cu-
rious instance of the Singleton design patt@runkKit’s construc-
tor was not private, although it had a statiestance () method.
Indeed, there is anique instance obrawingEditor (the appli-
cation itself) and anique IconKit (See Figuré 13) at runtime.

6. Expressiveness Challenges

In this section, we discuss some of the expressiveness gaps that we
encountered, some of which had been previously mentioned.

class DrawApplication implements DrawingEditor

1
4

class MDI_DrawApplication extends DrawApplication

@DomainParamE "M", "v", "C"})
@Domaininherit{{"MDI_DrawApplication<M,V,C>"})
class JavaDrawApp extends MDI_DrawApplication {

@Domain{{ "Model", "View", "Controller"})
class Main {
@Domain("View<Model ,View,Controller>")
JavaDrawApp app =new JavaDrawApp ();

public static void main(
@Domair("lent [shared]") String args[]) {
@Domain("lent")Main system =new Main();

Figure 14. Defining the top-level domains in a separate class.

6.1 An object cannot be in more than one ownership domain

Ownership domains, as most other ownership type systems, support

only single ownership, i.e., an object cannot be part of more than
one ownership hierarchy. Proposals faultiple ownership[11]

lift this restriction in other type systems. Ownership domains do
not supportownership transfef31] either, i.e., an object’s owner
does not change — onlyhique objects can flow between any two
domains. As a result, many fine-grained ownership domains cannot
be defined to represent multiple roles in design patterns: e.g., if an
object is both a mediator in the Mediator pattern and a view in the

/% %
+ DrawingView renders a Drawing and listens to its
x+ changes. It receives user input and delegates
* it to the current Tool.
*/
@DomainParamE{ "M", "v", "C"})
@Domaininherit¢{{"DrawingChangeListener<M,V>"})
interface DrawingView extends DrawingChangelListener .. .{
I/l Add a listener for selection changes
void addFigureSelectionListener (
@Domairn("?<M,V,C>") FigureSelectionListener fsl);

@Domain{{ "owned" })

@DomainParamE{ "M", "v", "C"})

@Domaininherit{{"DravingView<M,V,C>"})

class StandardDrawingViewimplements DrawingView ... {
I/l Registered list of listeners for selection changes
private @Domair("owned<?<M,V,C>>")
Vector<FigureSelectionListener fSelectionListeners;

StandardDrawingView (
@Domair("v<M,V,c>")DrawingEditor editor, ...){
/1 editor is in 'V’ domain parameter, not 'C’!
addFigureSelectionListener(editor);

I/l Add a listener for selection changes.

/I Command implements FigureSelectionListener

// but Command is in the 'C’ domain parameter!

void addFigureSelectionListener (
@Domair("?<M,V,C>") FigureSelectionListener fsl)
fSelectionListeners.add(fsl);

Model-View-Controller pattern, it cannot be in botiMadiator
ownership domain and&iew ownership domain at the same time.
For instance, creating top-level ownership domains to corre-
spond to the design in Figure 6 would have been more challeng-
ing than creating the three top-level domainsiMoedel, View and
Controller: placing abrawingEditor objectin aMediator do-
main would have prohibited it from also being in thisew domain.

6.2 An object cannot place itself in a domain it declares

An object cannot place itself in an ownership domain that it de-
clares. This is problematic for the root application object, i.e., the
JavaDrawApp instance (JavaDrawApgextend®rawApplication
which in turn extend®rawingEditor). True to form, we solve
this problem with an extra level of indirection by creating a fake
top-level clas$lain to declare thélodel, View andController
top-level ownership domains and declare fheaDrawApp object

in theview domain (See Figufe 14).

6.3 Public domains are hard to use

Public domains make the ownership domains type system more
flexible thanowner-as-dominatotype systems [15]. Also, public
domains are ideal for visualization because placing an object inside
a public domain of another object relates these objects without
cluttering the top-level domains [1]. However, public domains are
typically hard to use without refactoring the code. We started using
them in a few cases but quickly abandoned those attempts.

Since the Observer design pattern tends to make communica-

tion between objects implicit, we attempted to represent listeners
more explicitly using ownership domain annotations. For instance,
it might make sense to create a public doniaiSTENERS as a do-
main to hold theListener objects that abserver will notify
— alistener often needs special access to teserver, but
usually does not need special access t@iftgject.

JHotDraw uses a delegation-based event model: for instance,
aDrawingView calls methodfigureSelectionChanged to no-
tify a FigureSelectionListener observer of selection changes.
So it might make sense to declarBIEGzURESELECTIONLISTENERS

102

Figure 15. How to annotateddFigureSelectionListener?

public domain ortommand to hold theFigureSelectionListener
objects. ButCommand implementsFigureSelectionListener,

SO aCommand is-aFigureSelectionListener. Thus aCommand
object cannot split a part of itself and place it in the public domain
FIGURESELECTIONLISTENERS that it declares.

6.4 Listener objects are particularly challenging

There were additional complications when trying to highlight the
event subsystem in JHotDraw using ownership domain annota-
tions. Command, which is in theController domain, implements
FigureSelectionListener, and so doeBrawingEditor, which
is in theview domain.

Consider methodaddFigureSelectionListener in (See

Figure 15). How would one annotate the formal paranietgtireSelectionList

The parameter should support both annotatior®,v,C> and
V<M, V,C>. Existential ownership [13, 29, 34] may be the answer
to increase the expressiveness, e.g., by annotating the parameter
with “any” [84]. Other problems of adding ownership domains
annotations to listeners had been previously identified [44].

6.5 Static code can be challenging

Even in such a well-designed program as JHotDraw, we found a
few instances where ownership annotations cannot be made to type-
check. In particular, in Figufe 16, the stafisshtable cannot have
theM, v, andC domain parameters because the domain parameters
declared on the clagsil1DrawingView are not in scope for static
members. Static members can only be annotated stiftred or
unique, and these values cannot flow to tite Vx or Cx method
domain parameters.

Annotating the generiBashtable also requires nested param-
eters:Hashtable has three domain parameters for its keys, values
and entries. BotbrawingView and DrawingEditor takeM, V,
andC as parameters. Although the number of annotations seems
excessive and maybe argues in favor of generic ownership [41], the

@DomainParamE "M", "v", "C"}) @Domain{{ "owned" })

@Domaininherit¢{"DrawingView<M,V,C>"}) @DomainParam@E{ "M" ,"V" ,"C"})
class NullDrawingView implements DrawingView ... { public class UndoManager{
static @Domain("unique<?<?,?,?>,7<?,7,7>,7>") /% *
Hashtable<DrawingEditor , DrawingView dvMgr = ...; * Collection of undo activities
*/
@DomainParam@ "Mx" ,"Vx" ,"Cx" }) @Domair("owned<M<M,V,C>>")Vector<Undoable> undoStack;
public synchronized static @Domain("Vx<Mx,Vx,Cx>")
DrawingView getManagedDrawingView (void clearStackVerbose (
@Domair("Vx<Mx,Vx,Cx>") DrawingEditor ed) { @Domair("lent<M<M,V,C>>")Vector<Undoable> s) {
if (dvMgr.containsKey (ed)){ s.removeAllElements ();
@Domain("Vx<Mx,Vx,Cx>") }
DrawingView dv = dvMgr.get(ed);
return dv; void clearStackAny (

@Domair("lent<?<?,7,7>>")Vector<Undoable> s) {
s.removeAllElements ();

Yy }

. ; ; i fi 2 void clearStack (
Figure 16. How to annotate oljjects that are stored in static fields® @Domair("lent") Vector<Undoables s) {

s.removeAllElements ();

ownership domains for thigashtable key, value and entries need }

not correspond to thi, Vv andC ownership domains.
A solution that is not type-safe would be to storellaghtable Figure 17. Reducing annotations when they are not really needed.

asObject, then cast down to Hashtable upon use — the equiv-

alent of raw types but without re-implementing them in the own-])) o

ership domains type system. Another solution would be to refactor Universes [36, 17] on an industrial software application and refac-

the program to eliminate this static field since it gives any object ac- toring the code in the process. Although the subject system in the

cess to all th@rawingView andDrawingEditor objects. Since it ~ case study is larger than JHotDraw (around 55,000 lines of code),

is often unrealistic to perform such a significant refactoring, maybe the author annotated only a portion of the system. The author man-

the best solution would be to support package-level static owner- ually generated visualizations of the ownership structure whereas

ship domains, similar to confined types [9]. we had access to tool support to visualize the ownership structure
_] and adjust the annotations accordingly [1].
6.6 Annotations may be unnecessarily verbose Nageli [38] evaluated how the Universes and Ownership Do-

Ownership domain annotations tend to be verbose: e.g., formal Mains type systems express the standard object-oriented design pat-
method parameters need to be fully annotated even if they are nott€'ns [22]. However, in real world complex object-oriented code,
used in the method body or used in a restricted way. This producesdesign patterns rarely occur in isolation [43]. As we discussed ear-
particularly unwieldy annotations for containers of generic types. lier, these subtle interactions, combined with the single ownership
In Figure/ 17, methodlearStackVerbose indicates the cur- constraint of the type system, make the annotations difficult.

rent level of annotations needed. It should be possible to leave In @ previous case study, we re-engineered HillClimber using
out domain parameters when they are not really needed. ThisArchJava [4] to specify a component-and-connector architecture in
may involve using implicit existential ownership types as in code and owngrshlp domain annotations to specify the dat.a sharlng
clearStackAny: i.e., there exists some domain parametts [2]. In the earlier case study, we performed refactorings similar to
d2, d3, d4, such that the formal method parameteould be an- the ones described here. However, adding ownership domain anno-
notated withlent<d1<d2,d3,d4>>. Using appropriate defaults, fations to the ArchJava program seemed easier. Indeed, ArchJava’s

the annotations could probably be reduced to the level needed toport construct effectively reduces coupling; in the plain Java im-

annotate a raw type, as showndhearStack. plementation, the same effect had to be achieved using program-
ming to interfaces, using mediators, etc.
6.7 Manifest ownership can reduce the annotation burden ArchJava’s properties are available at the expense of various re-

The current defaulting tool only adds tkaared annotation to strictions on object-oriented implementations. The previous case
String objects. However, during the annotation process, we found study also identified that adding ownership domain annotations re-
ourselves adding thehared annotation to many other types such quired less effort than encoding the architectural structure in Arch-
asFont, FontMetrics, Color, etc. Specifying a per-type default Qava@PB]. Fewer defects are introduced since code th_at passes_ob-
globally and not for every instance, asrimanifest ownershifl3] ject references need not be changed and the ownership annotations

would have reduced the annotation burden. need not affect the runtime semantics of the program. Moreover, the
ownership domain annotations, while tedious to add manually, are
6.8 Reflective code cannot be annotated relatively straightforward once the top-level domains are decided,

JHotDraw uses reflective code to serialize and deserialize its statetOMPared to re-engineering to use ArchJava. . .
Adding ownership domains annotations manually still required

and such code cannot be annotated using ownership domains [6]. . "> - . -
9 p dom: [6] significant effort, and researchers are still looking at scalable infer-

6.9 Annotate Exceptions adent ence of ownership domain annotations/[6} 16]. Current inference

We annotated exceptions willent since we were not particularly techniques [35, 33] however only_ |nfer_ the equivalentoohed, .
shared, lent andunique annotations, i.e., they assume a strict

interested in reasoning about them. However, richer annotations are - - S :
possible [45]. owner-as-dominator hierarchy which is not flexible enough to rep-

resent many design patterns. Some approaches do not map the re-
sults of the analysis back to an ownership type system [35, 33]. A
7. Related Work fully automated inference cannot create multiple public domains in
Case studies applying ownership type systems on real code are fewone object and meaningful domain parameters, which are critical
and far between. &thler [25] documented a case study applying for representing the abstract design intent, as in the three top-level

103

Model, View, andController domains in JHotDraw. Existing in- [18] A. D. Eisenberg and G. Kiczales. Expressive Programs through
ference algorithms often generate imprecise annotations, producing Presentation Extension. KOSD, 2007.

for each class a long list of domain parameters, often placing each [19] M. D. Ernst and D. Coward. JSR 308: Annotations on Java types.
field in a separate domain, and annotating many more objects as http://pag.csail.mit.edu/jsr308/, 2006.

shared or lent than necessary [6, 16]. [20] Universes Toolsuww.sct.ethz.ch/research/universes/tools/,

2007.

8. Conclusion [21] R. M. Fuhrer, F. Tip, A. Kiezun, J. Dolby, and M. Keller. Efficiently
We presented an annotation-based system that re-implements the Refactoring Java Applications to Use Generic LibrariesEGOOP,
ownership domains type system as a set of Java 1.5 annotations, :
using the Eclipse infrastructure. Using annotations imposes many [22] E. Gamma, R. Helm, R. Johnson, and J. Vlissidessign Patterns:
restrictions and requires changing the code slightly to add anno- Elements of Reusable Object-Oriented Software. Addison-Wesley,
tations to it, and the annotation language does take some getting 1994
used to. Still, the annotation-based system is an improvement over [23] Gamma, E. et al. JHotDrattp: //www. jhotdraw.org/, 1996.
custom infrastructure, language extensions, and the resulting lim- 124] G. Goth. Beware the march of this IDE: Eclipse is overshadowing
ited tool support: it enabled us to annotate larger object-oriented other tool techniquedEEE Software, 22(4), 2005.
programs “in the wild” to study how ownership domains can ex- 25]
press and enforce design intent related to object encapsulation an(]1
communication and to identify expressiveness limitations.

In future work, we plan on making the type system more flexible

T. Hachler. Applying the Universe Type System to an Industrial
Application: Case Study. Master's thesis, ETH Zurich, 2005.

[26] JavaCChttps://javacc.dev.java.net/, 2006.

and extending the annotation language in a non-breaking way. [27] JSR 175: A Metadata Facility for the Java Programming Language.
http://jcp.org/en/jsr/detail?id=175, 2006.
Acknowledgments [28] D. Kirk, M. Roper, and M. Wood. Identifying and Addressing
. . Problems in Object-Oriented Framework ReuBepirical Software
This work was supported in part by NSF grant CCF-0546550, Engineering, 2006.

DARPA contract HR00110710019, the Department of Defense,

- - >~ [29] N. Krish i . Aldrich. Permission-B hip:
and the Software Industry Center at Carnegie Mellon University [29] rishnaswami and J. Aldric ermission-Based Ownership

Encapsulating State in Higher-Order Typed LanguagesPLDI,

and its sponsors, especially the Alfred P. Sloan Foundation. 2005.
Ref [30] G. T. Leavens, K. R. M. Leino, and P.iMer. Specification and
ererences Verification Challenges for Sequential Object-Oriented Programs.
[1] M. Abi-Antoun and J. Aldrich. Compile-Time Views of Execution Formal Aspects of Computing, 2007. Submitted.
Structure Based on Ownership. Intl. Workshop on Aliasing, [31] K. R. M. Leino and P. Miller. Object Invariants in Dynamic Contexts.
Confinement and Ownership, 2007. In ECOOP, 2004.

[2] M. Abi-Antoun, J. Aldrich, and W. Coelho. A Case Study in Re- [32] K. J. Lieberherr and I. M. Holland. Assuring Good Style for Object-
engineering to Enforce Architectural Control Flow and Data Sharing. Oriented ProgramdEEE Software, 6(5), 1989.

J. Systems and Software, 80(2), 2007. i ; . .
. . . . [33] Y. Liu and A. Milanova. Ownership and Immutability Inference for
[3] J. Aldrich and C. Chambers. Ownership Domains: Separating UML-based Object Access Control. IESE, 2007.

Aliasing Policy from Mechanism. I[ECOOP, 2004. .] .
)))) [34] Y. Lu and J. Potter. Protecting Representation with Effect Encapsula-
[4] J. Aldrich, C. _Chambers, and D. Not_kln. ArchJava: Connecting tion. In POPL, 2006.
Software Architecture to Implementation. IGSE, 2002. . o .
) .) [35] K.-K. Ma and J. S. Foster. Inferring Aliasing and Encapsulation
[5] J. Aldrich and D. Dickey. The Crystal Data Flow Analysis Framework Properties for Java. IBOPSLA, 2007. To appear.
2.0.http://www.cs.cmu.edu/~aldrich/courses/654/, 2006. .)
[36] P. Muller and A. Poetzsch-Heffter. Universes: A Type System for

[6] J. Aldrich, V. Kostadinov, and C. Chambers. Alias Annotations for Controlling Representation Exposure. In A. Poetzsch-Heffter and
Program Understanding. ROPSLA, 2002. J. Meyer, editorsProgramming Languages and Fundamentals of

[7] J. Bloch. Effective Java. Addison-Wesley, 2001. Programming, 1999.

[8] B. Bokowski and A. Spiegel. Barat — A Front-End for Java. [37] G. C. Murphy, M Kersten_, and L. Findlater. How are Java Software
Technical Report B-98-09, Freie UniveiiBerlin, 1998. Developers Using the Eclipse IDEREE Software, 23(4), 2006.

[9] B. Bokowski and J. Vitek. Confined Types. @OPSLA, 1999. [38] S. Nageli. Ownership in Design Patterns. Master’s thesis, Department

[10] C. Boyapati, B. Liskov, and L. Shrira. Ownership Types for Object of Computer Science, Federal Institute of Technology Zurich, 2006.

Encapsulation. IfPOPL, 2003. [39] Omondo. EclipseUMLhttp://www.omondo.com/, 2006.

[11] N. Cameron, S. Drossopoulou, J. Noble, and M. Smith. Multiple [40] A. Potanin. Ownership Generic Javaw .mcs . vuw.ac.nz/~alex/ogj/,
Ownership. INDOPSLA, 2007. To appear. 2005.

[12] H. B. Christensen. Frameworks: Putting Design Patterns into [41] A. Potanin, J. Noble, D. Clarke, and R. Biddle. Generic Ownership
Perspective. I'8IGCSE Innov. & Tech. in Comp. Sci. Ed., 2004. for Generic Java. I@OPSLA, 2006.

[13] D. Clarke.Object Ownership & Containment. PhD thesis, University ~ [42] Annotation File Utilitieshttp://pag.csail.mit.edu/jsr308/annotation-fil
of New South Wales, 2001. 2006.

[14] D. Clarke and T. Wrigstad. External Uniqueness is Unique Enough. [43] D. Riehle. Framework Design: a Role Modeling Approach. PhD
In ECOOP, 2003. thesis, Federal Institute of Technology Zurich, 2000.

[15] D. G. Clarke, J. M. Potter, and J. Noble. Ownership Types for Flexible [44] J. Sctafer and A. Poetzsch-Heffter. Simple Loose Ownership
Alias Protection. IMOOPSLA, 1998. Domains. InFTfJP, 2006.

[16] W. Cooper. Interactive Ownership Type Inference. Senior Thesis, [45] D. Werner, , and P. Miler. Exceptions in Ownership Type Systems.
Carnegie Mellon University, 2005. In FT{JP, 2004.

[17] W. Dietl and P. Miller. Universes: Lightweight Ownership for JML. [46] ArchJavahttp://www.archjava.org/, 2007.
Journal of Object Technology, 4(8), 2005.

104

http://www.cs.cmu.edu/~aldrich/courses/654/
http://pag.csail.mit.edu/jsr308/
www.sct.ethz.ch/research/universes/tools/
http://www.jhotdraw.org/
https://javacc.dev.java.net/
http://jcp.org/en/jsr/detail?id=175
http://www.omondo.com/
www.mcs.vuw.ac.nz/~alex/ogj/
http://pag.csail.mit.edu/jsr308/annotation-file-utilities/
http://www.archjava.org/

	Introduction
	Review of Ownership Domains
	Annotation Design
	Tool Design and Implementation
	Ownership Domains Typechecking
	Additional Features
	Tool Limitations and Future Work

	Ownership Domains Case Studies
	Ownership domains enforce instance encapsulation
	Ownership domains specify architectural tiers
	Ownership domains expose implicit communication
	Ownership domains expose tight coupling
	Ownership domains expose and enforce object lifetime
	Ownership domains promote decoupling code
	Ownership domains can help identify singletons

	Expressiveness Challenges
	An object cannot be in more than one ownership domain
	An object cannot place itself in a domain it declares
	Public domains are hard to use
	Listener objects are particularly challenging
	Static code can be challenging
	Annotations may be unnecessarily verbose
	Manifest ownership can reduce the annotation burden
	Reflective code cannot be annotated
	Annotate Exceptions as lent

	Related Work
	Conclusion

