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Abstract
A developer often needs to understand both the code structure
and the execution structure of an object-oriented program. Class
diagrams extracted from source are often sufficient to understand
the code structure. However, existing static or dynamic analyses
that produce raw graphs of objects and relations between them, do
not convey design intent or readily scale to large programs.

Imposing an ownership hierarchy on a program’s execution
structure through ownership domain annotations provides an intu-
itive and appealing mechanism to obtain, at compile-time, a visual-
ization of a system’s execution structure. The visualization conveys
design intent, is hierarchical, and thus is more scalable than existing
approaches that produce raw object graphs.

We first describe the construction of the visualization and then
evaluate it on two real Java programs of 15,000 lines of code each
that have been previously annotated. In both cases, the automati-
cally generated visualization fit on one page, and gave us insights
into the execution structure that would be otherwise hard to obtain
by looking at the code, at existing class diagrams, or at unreadable
visualizations produced by existing compile-time approaches.

1. Introduction
When modifying an object-oriented program, both the code struc-
ture (static hierarchies of classes) and the execution structure (dy-
namic networks of communicating objects) must be understood.
“For a developer unfamiliar with the system to obtain this under-
standing is a non-trivial task. Little work has been done on mini-
mizing this learning curve” [38].

In many cases, developers cannot rely that external design doc-
umentation is up-to-date. Many tools can automatically generate
class diagrams from program source [21]. However, a class dia-
gram shows the code structure and does not explain the execution
structure of the system. In object-oriented design patterns, much
of the functionality is determined by what instances point to what
other instances. For instance, in the Observer design pattern [15, p.
293], understanding “what” gets notified during a change notifica-
tion is crucial for the function of the system, but “what” does not
usually mean a class, “what” means a particular instance. Further-
more, a class diagram often shows several classes depending on a
single container class such asjava.util.ArrayList. However,
different instantiations of such a class often correspond to different
elements in the design, hence the need for an instance-based view
to complementa class diagram.

A running object-oriented program can be represented as anob-
ject graph: nodes correspond to objects and edges correspond to
relations between objects. Existing dynamic analyses can describe
the runtime object graph of a system for a particular set of inputs
and exercised use cases [12, 33]. Obtaining at compile time a finite
and conservative abstraction of all possible runtime object graphs
is more challenging because of aliasing, precision and scalability

issues. Static analyses [29, 40] that approximate the runtime ob-
ject graph often produce large non-hierarchical graphs that do not
convey design intent and do not scale to large programs (See visu-
alizations [2] for examples).

Many type systems enforceownershipat compile time, i.e.,
make one object part of another object’s representation [8, 7, 3, 11].
In the ownership domains type system [3], each object contains
one or more public or privateownership domains— conceptual
groups of objects — and each object is in exactly one domain.
As with most other ownership type systems, adding ownership
domain annotations to a program’s source code can control aliasing
and enforceinstance encapsulationwhich is stronger than module
visibility mechanisms. Moreover, ownership domains can express
and enforce a tiered runtime architecture by representing a tier as
an ownership domain. Adomain linkcan abstract permissions of
when objects can communicate [1].

Our contribution in this paper is to leverage ownership domain
annotations to obtain at compile-time a sound visualization of the
execution structure of a program with ownership domain annota-
tions, the Ownership Object Graph. The visualization is hierarchi-
cal, conveys design intent and compares favorably with existing
compile-time visualizations of two previously annotated Java pro-
grams, each consisting of 15,000 lines of code.

Currently, annotations are added mostly manually, however,
active work in the area of semi-automated annotation inference
[4, 9, 24, 25] promises to lower the annotation overhead. The vi-
sualization reflects the annotations, and the quality of the visual-
ization reflects the quality of the annotations. The design intent is
expressed by choosing the ownership domains and their structure,
then adding annotations to the program — currently manually.

The ideas and techniques of ownership are fundamental for ob-
taining such a compile time visualization. First, ownership domains
provide a coarse-grained ownership structure of an application with
a granularity larger than an object or a class [37]. Second, own-
ership organizes a flat object graph into an ownership tree, and
hierarchy is needed to achieve scalability and attain both high-
level understanding and detail. Third, different ownership domains
and different places in the hierarchy provide precision about inter-
domain aliasing and conservatively describe all aliasing that could
take place at runtime. Since two objects in two different domains
cannot be aliased, the analysis can distinguish between instances
that would be merged in a class diagram, allowing better under-
standing of the runtime structure of the system. Fourth, ownership
domain names are specified by a developer and therefore can con-
vey more design intent than the aliasing information obtained using
a static analysis that does not rely on annotations [34].

We first define the Ownership Object Graph (Section 2) and de-
scribe the algorithm to construct it at compile time (Section 3). We
then present concrete and in-depth examples of the visualization of
two real annotated 15,000-line object-oriented programs (Section
4). Finally, we survey related work in Section 5 and conclude.
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2. The Ownership Object Graph
This section discusses the challenges in visualizing an annotated
program and describes the different intermediate representations
we used to obtain the visualization.

A running object-oriented program can be represented as arun-
time object graph: nodes correspond toruntime objectsand edges
correspond to relations between runtime objects such as creation,
usage and reference [32]. The aim is to statically approximate all of
the runtime object graphs that may be generated in any run of the
program. The goals of the visualization are as follows:
• Scalability: to support high-level understanding, the visualiza-

tion groups runtime objects into relatively few top-level “ab-
stract” elements, each represented by a canonical object;

• Hierarchy: to provide detailed understanding, the visualization
supports the ability to show the substructure of an abstract
element. Thus the visualization can be viewed as a hierarchical
tree of objects;

• Design Intent: the visualization groups runtime objects into
clusters that are meaningful abstractions — e.g., that an object
is in a tier — and documents design-level constraints using
domain links — e.g., that two tiers may communicate. The user
provides the design intent regarding object encapsulation and
communication using ownership domain annotations [1];

• Soundness:to ensure that the visualization is a faithful rep-
resentation of the runtime object graph, it must besound. In
particular, all objects and relations present at runtime should be
represented. Furthermore, if two variables may alias at runtime,
they should appear in the graph as a single “abstract” element.
The analysis builds two intermediate representations, anab-

stract graph, which is converted into avisual graph, which is then
displayed as the Ownership Object Graph.

2.1 Abstract Graph

The abstract graphis built from ownership domain annotations
in the source code (Figure 1). The syntax for declaring and using
ownership domains follows that used for Java generics [3].

For each type in the program, the abstract graph shows the own-
ership domains declared in it, and shows field and variable declara-
tions asabstract objectsdeclared insideabstract domains. The ab-
stract graph provides scalability through ownership hierarchy and
captures design intent as described above, but is not adequate for
visualization for several reasons (See Figure 2).

First, the abstract graph is not really hierarchical in the sense
of an object having children; rather, an object has a type and the
type has domains and the domains have object children. Second,
it does not include all objects: a domain contains abstract objects
only for the locally declared fields, but if that domain is passed as
a domain parameter to another object, and that object declares its
fields in that domain, those non-local fields will not be represented.
Third, it does not show all aliasing: different field declarations —
and therefore different abstract objects, could be aliased and thus
must be shown as one. To realize the properties above, the abstract
graph is converted into avisual graph.

2.2 Visual Graph

The visual graph is an intermediate representation which instanti-
ates the types in the abstract graph and shows only objects and do-
mains: eachvisual objectcontainsvisual domainsand eachvisual
domaincontainsvisual objects. Thus, in the visual graph, one can
view the children of an object without going through its declared
type. Furthermore, to support the visualization goals listed earlier,
the construction of the visual graph takes into accountobject merg-
ing, object pullingandtype abstraction.

We visualize ownership domains as follows: a dashed border
white-filled rectangle represents an actual ownership domain. A

c l a s s Branch< CUSTOMERS> /∗ Formal domain parameter∗ / {
pub l i c domain TELLERS, VAULTS ;
l i n k TELLERS −> VAULTS ;

CUSTOMERS Customer c1 ;
TELLERS T e l l e r t 1 ;
TELLERS T e l l e r t 2 ;
VAULTS Vau l t v1 ;
VAULTS Vau l t v2 ;

}
c l a s s Bank {

domain owned; /∗ Pr i v a t e d e f a u l t domain ∗ /

/∗ Bind Branch<CUSTOMERS> f o rma l t o ‘ owned ’ a c t u a l ∗ /
owned Branch<owned> b1 ;

}

Summary of syntax for ownership domains annotations [3]:
d T o: declare objecto of typeT in domaind;
[public] domain a: declare private [or public] domain;
class C<d>: declare formal domain parameterd on classC;
C<actual> cObj: provide actual for formal domain parameter;
link b -> d: give domainb permission to access domaind;

Figure 1. Ownership domains illustrated with a simplified Bank
system [3].Branch declares two domains,TELLERS for Teller
objects andVAULTS for Vault objects.Branch also declares a
domain link from theTELLERS domain to theVAULTS domain
to allow Teller objects to accessVault objects.Branch also
takes aCUSTOMERS formal domain parameter to holdCustomer
objects.Bank references aBranch object in fieldb1, binding the
CUSTOMERS formal domain ofBranch to theBank’s own private
domainowned.

solid border grey-filled rectangle with a bold label represents an
object. A dashed edge represents a link permission between two
ownership domains. A solid edge represents a creation, usage, or
reference relation between two objects. An object labeled “obj : T”
indicates an object of typeT as in UML object diagrams.

Object Merging. In the visual graph, a canonical visual object
is created to represent all the abstract objects of a given type in a
given source-level domain declaration. Two abstract objects in the
same domain in the abstract graph, if related by inheritance, could
indeed refer to the same runtime object, and thus are merged for
soundness. In general, this object may summarize multiple runtime
objects. For the annotated code in Figure 1, the visual graph in
Figure 3 merges into one visual object (labelled witht1: Teller)

 owned

 CUSTOMERS  TELLERS  VAULTS

b1:
Branch

Branch

Bank

c1:
Customer

t1:
Teller

t2:
Teller

v1:
Vault

v2:
Vault

Figure 2. The abstract graph for the Bank system. A black-filled
box represents a type, with white-filled domains declared inside it
and grey objects declared inside each domain.
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 owned

 CUSTOMERS  TELLERS  VAULTS

c1:
Customer

t1:
Teller

v1:
Vault

b1:
Branch

bank:
Bank

Figure 3. The visual graph for aBranch objectwithout pulling:
objectst1 andt2 are merged in domainTELLERS, and similarly,
objectsv1 andv2 in domainVAULTS. Objectc1 is shown in the
formal domain parameterCUSTOMERS (dotted border).

 

 owned

 TELLERS  VAULTS

t1:
Teller

v1:
VaultTELLERS --> VAULTS

b1:
Branch

c1*:
Customer

bank:
Bank

Figure 4. Objectc1* waspulled from the formal domain param-
eterCUSTOMERS in Figure 3 into the actual domainBank.owned
to which it is bound. The dashed edge represents a domain link
betweenTELLERS andVAULTS.

the abstract objectst1 andt2 declared in domainTELLERS since
they have the same declared type.

Merging objects of the same declared type that are in the same
domain may be imprecise. For instance, twoVector objects in
the same domain would get merged even if they are never aliased.
Our analysis remains more precise than a class diagram which also
summarizes objects by type, because the type system guarantees
that two objects that are in two different domains can never be
aliased. In some cases, adding generic types where applicable, e.g.,
for generic containers, can minimize excessive merging.

A developer can also prevent merging by placing two objects
that should never get merged in separate domains, e.g., by defining
two domainsCASHVAULT and GOLDVAULT to storev1 and v2 in
Figure 1 instead of using a single domainVAULTS.

Object Pulling. The abstract graph may display an object only
in the domain where the domain is declared as a formal param-
eter. But in the visual graph, each runtime object that is actually
in a domain must appear where that domain is declared. To en-
sure this property of visual graphs, an abstract object declared in-
side a formal domain ispulled into each domain that the formal
domain is transitively bound to. Figure 3 shows objectc1 in the
formal domain parameterCUSTOMERS (dotted border). In Figure 4,
objectc1 — marked with∗ — was pulled from the formal domain
CUSTOMERS in Branch to the actual domainowned in Bank (the
former is bound to the latter using the annotationBranch<owned>
on fieldb1 in Figure 1).

Type Abstraction. For soundness, it may be necessary to merge
abstract objects of different but compatible declared types. For ex-
ample, consider the classes from the Java Abstract Window Toolkit
(AWT) library in Figure 5. A variable of typeWindow and a dif-
ferent variable of typeFrame in the same domain may alias each
other, the corresponding abstract objects must therefore be merged
for soundness.

In addition, it may be useful to do further heuristic merging to
improve abstraction and reduce clutter in the graph. For example, if
abstract objects of typeButton, Panel andFrame were declared
in the same domain, it may make sense to merge them into a sin-
gle visual object of typeComponent or Accessible. On the other
hand, merging can be taken too far: merging all the abstract objects
in a domain into a single visual object of typejava.lang.Object
would result in a trivial and uninteresting visual graph. Thus, we
heuristically merge abstract objects whenever they share one or
more non-trivialleast upper bound types. The resulting visual ob-
ject is marked as having an intersection type that includes all the
least upper bounds. In the example above, the least upper bound
would be the intersection of the set{Component, Accessible}.

The definition of “trivial” is user-configurable; typically types
such asObject andSerializable are trivial, and so abstract ob-
jects which share these as a supertype are not merged according to
this heuristic. Again, a developer controls this heuristic by adding
or removing types from the list of trivial types.

Instantiation-Based View.Merging abstract objects based on
non-trivial least-upper-bound types can sometimes lead to un-
wanted merging. For instance, in the JHotDraw case study dis-
cussed in Section 4.2, both interfacesCommand and Tool are in
the sameController domain and both extend the same inter-
faceViewChangeListener. As a result, the abstract objects for
Command and Tool get merged into the same visual object un-
less interfaceViewChangeListener is added to the list of trivial
types. However, this would not work since several variables have
ViewChangeListener as their declared type.

The key insight however is that there are no object allocations
of the interfaceViewChangeListener since an interface cannot be
instantiated directly. As an alternative to merging abstract objects,
it is possible to achieve soundness by scanning object allocations
instead of field and variable declarations, and then only adding
visual objects for types that are actually instantiated and not the
ones that are just declared. This technique is similar to how Rapid
Type Analysis (RTA) [5] determines the receiver of a method call
during the construction of a call graph.

In the example above, if the analysis encounters an object allo-
cation of aTool object but never that of aViewChangeListener
object, the analysis would only create a visual object forTool, and
similarly for Command, thus achieving the desired effect of keeping
Command andTool distinct. This solution can also prevent merg-
ing all the abstract objects in a domain into a single visual object of

java::awt::Button

java::awt::Panel

java::awt::Component

java::awt::Window

«interface»
javax::accessibility::Accessible

java::awt::Frame

java::awt::Container

Figure 5. Type hierarchy excerpts from AWT.

83

_bank__bank_bank_owned_b1_b1_CUSTOMERS_c1_c1
_bank__bank_bank_owned_b1_b1_CUSTOMERS_c1_c1
_bank__bank_bank_owned_b1_b1_TELLERS_t1_t1
_bank__bank_bank_owned_b1_b1_TELLERS_t1_t1
_bank__bank_bank_owned_b1_b1_VAULTS_v1_v1
_bank__bank_bank_owned_b1_b1_VAULTS_v1_v1
_bank__bank_bank_owned_b1_b1
_bank__bank_bank_owned_b1_b1
_bank__bank_bank
_bank__bank_bank
_bank__bank_bank_owned_b1_b1_TELLERS_t1_t1
_bank__bank_bank_owned_b1_b1_TELLERS_t1_t1
_bank__bank_bank_owned_b1_b1_VAULTS_v1_v1
_bank__bank_bank_owned_b1_b1_VAULTS_v1_v1
_bank__bank_bank_owned_b1_b1
_bank__bank_bank_owned_b1_b1
_bank__bank_bank_owned_c1_c1
_bank__bank_bank_owned_c1_c1
_bank__bank_bank
_bank__bank_bank


typejava.lang.Object. If the analysis does not encounter an al-
location expression of the formnew Object() in the code, it never
creates a visual object for thejava.lang.Object abstract type.

A class hierarchy analysis could determine that a variable of
type ViewChangeListener could alias a variable of type — of
course, an alias analysis could do better. A newly allocated object
can be considered un-aliased orunique [3]. A standard flow anal-
ysis can track the flow of an object from its point of creation to the
point at which it is first assigned to an ownership domain.

Design Intent Types.Since the visualization is instance-based,
labelling instances is important for conveying design intent. A
visual object can merge one or more abstract objects, and each
abstract object has an abstract type corresponding to a declared
type in the program. A visual object is labelled “obj: T” as in
UML object diagrams – whereobj is an optional instance name
andT is an optional type name. An abstract object maintains the
field name or variable name in the program.obj is selected from
one of the abstract objects merged into a visual object.T is a list of
least upper bound types as discussed above. The user can optionally
specify a list of informativedesign intenttypes. Adesign intent type
is the preferred abstract type used to label a visual object. A trivial
type is not used in the label unless it occurs as a declared type in
the program. Design intent types do not affect the soundness of the
Ownership Object Graph and are just for labelling.

2.3 Ownership Object Graph

A visual object can contain itself so the visual graph must represent
a potentially unbounded runtime object graph with a finite graph.
For example, consider a classC which declares a domaind and a
field of typeC in domaind:

c l a s s C {
domain d; /∗ Dec la re domain d ∗ /
d C f ;

}

Since there is a unique canonical object for each type in each
domain, the object representingC in domaind must also represent
the child object of typeC in domaind of the parent; it is therefore its
own parent in this representation. A finite representation is essential
to ensure that the analysis terminates, but we want to show the user
a hierarchical view where no object is its own parent. We therefore
compute the Ownership Object Graph as a finite, depth-limited,
unrolling of the visual graph. In the example above, we would show
oneC object within another down to a finite depth.

To summarize, an Ownership Object Graph is a graph with two
types of nodes, objects and domains. The nodes form a hierarchy
where each object node has a unique parent domain and each do-
main node has a unique parent object. The root of the graph is a
top-level domain. In addition, the Ownership Object Graph has the
object merging, object pulling and type abstraction properties. Fi-
nally, there are two kinds of edges: edges between objects corre-
spond to object creation, usage and reference relations, and edges
between domains correspond to domain links. Compared to ear-
lier definitions of object graphs [32], the Ownership Object Graph
explicitly represents clusters of nodes, i.e., domains, and edges be-
tween these clusters, i.e., domain links.

2.4 Soundness

For the Ownership Object Graph to be most useful, it should be
a soundapproximation of the true runtime object graph for any
possible run of the program. In this section, we only present an
operational definition of the soundness of the Ownership Object
Graph and leave a proof of soundness for future work.

Intuitively, soundness means that every object, domain, and
edge in the runtime object graph is represented in the Ownership
Object Graph. However, the Ownership Object Graph may be an

approximation of the true runtime object graph, as it may represent
multiple runtime objects with a single visual object, and similarly
for domains and edges. The following invariants relate the Owner-
ship Object Graph to the runtime object graph:
• Unique Representatives:Each object in the runtime object

graph is represented by exactly one object in the visual graph.
Similarly, each domain in the runtime object graph — as de-
fined in the dynamic semantics of ownership domains [3, p. 15],
is represented by exactly one domain in the visual graph;

• Edge Soundness:If there is a field reference from objecto1

to objecto2 in the runtime object graph, then there is a field
reference edge between visual objectsθ1 andθ2 in the visual
graph, corresponding too1 ando2 — similarly for domain links
and edges;

• Ownership Soundness:If object o is in domaind in the run-
time object graph, then objectθ (corresponding too) is in do-
main δ (corresponding to domaind) in the visual graph. Sim-
ilarly, if o declares domaind in the abstract graph, thenθ de-
clares domainδ in the visual graph.
The Ownership Object Graph inherits other properties that are

guaranteed by the soundness of the underlying ownership system
— for example, that every object is assigned an owning domain
which is consistent with all program annotations and does not
change over time. These invariants are correct up to the following
assumptions:
• All Sources Available: The program’s whole source code is

available, and the program operates by creating some main
object and calling a method on it (this justifies the Ownership
Object Graph’s focus on a single root object, although multiple
root objects could in principle be shown). The class of that main
object is the type of the root of the Ownership Object Graph;

• No Reflective Code:Reflection and dynamic code loading may
violate the above invariants by introducing unknown objects
and edges, and possibly violating the guarantees of the under-
lying ownership system;

• Flow Analysis: Objects marked asshared andunique are not
currently shown in the Ownership Object Graph. Objects that
areshared would be trivial to add but would add many unin-
teresting edges to the Ownership Object Graph. Objects that are
unique would require a flow analysis to be handled properly
(See Section 3.5). Usage edges (e.g., method invocations, field
accesses) could be generated for a system with only ownership,
but a flow analysis is required for usage edges to be sound in
the presence oflent objects.
Despite the assumptions about the whole program source being

available and restrictions on reflection and dynamic loading, our
system is stillrelatively soundin the presence of these features.
In particular, as long as the reflective operations are annotated
correctly and consistently with ownership information, then any
object referred to by some field in the source code that is available
will show up in the Ownership Object Graph, as specified above.

For edge soundness, all field references in external library code
must be annotated. Since it is often not possible to annotate all
such code, “virtual” [26] or “ghost” [13] fields may be declared as
annotations in external files. Avirtual field holds information that
is closely related to the meaning of an object, but need not be kept
directly in the object in a particular implementation [26]. These
annotations do not affect the execution of the system at runtime but
are treated as an object’s actual fields by the analysis.

3. Analysis
At a high-level, the analysis works as follows: (1) Obtain an ab-
stract graph from ownership domain annotations; (2) Collapse the
inheritance hierarchy by copying fields into subclasses; (3) Instan-
tiate abstractly the types in the abstract graph into objects in the
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visual graph, merging objects in the same domain by compatible
types (two types are compatible if they have a non-trivial least up-
per bound); (4) Pull objects in the visual graph from formal do-
mains to actual domains, again merging as necessary; (5) Add de-
tails to the visual graph, such as field references, domain links, etc.;
and (6) Extract the display Ownership Object Graph as a depth-
limited projection of the visual graph.

3.1 Data Representations

The analysis first creates from the program text anAbstractGraph
and then converts it into aVisualGraph. The data type declarations
of the AbstractGraph andVisualGraph are in Figure 6, and will
be referred to by the metavariables shown in parentheses. To help
keep the representations distinct, we use English letters (o, d, . . .)
for elements of theAbstractGraph, and Greek letters (θ, δ, . . .) for
elements of theVisualGraph.

TheAbstractGraph consists of theAbstractTypes in the pro-
gram, theAbstractDomains declared in each type, and theAb-
stractObjects declared in each domain. AnAbstractType also
lists AbstractEdges andAbstractLinks. TheVisualGraph instan-
tiates the types in theAbstractGraph and showsVisualObjects
andVisualDomains: eachVisualObject containsVisualDomains
and eachVisualDomain containsVisualObjects. TheVisualGraph
also hasVisualEdges andVisualLinks.

The identifiers used for the elements in theAbstractGraph and
VisualGraph do not correspond to the declared names of domains
or objects (e.g., field or variable names) since these cannot be as-
sumed to be globally unique, and do not take into account bind-
ing and scope. An implementation would typically have additional
fields to hold the user-friendly display name. In addition, anAb-
stractType maintains its underlyingTypeBinding to determine its
sub-typing relationship with respect to otherAbstractTypes.

The analysis maintains a one-to-one mapping between aVisual-
Domain δ and its correspondingAbstractDomain d to avoid extra
copying. However, aVisualObject typically merges severalAb-
stractObjects as discussed earlier.

3.2 Extract an AbstractGraph from Annotated Code

An AbstractGraph is obtained from the annotated program text
using a visitor on the Abstract Syntax Tree of the annotated pro-
gram. Most steps in Figure 7 are straightforward and are not shown
in great detail. During the construction of theAbstractGraph, pri-
vate ownership domains are given aprotectedsemantics1. The de-
fault domainowned is considered to be declared at the first point
of use and inherited thereafter. Ifowned were to be declared in
java.lang.Object, all the objects declared in theowned domain
would be in the same inherited domain and would get unnecessar-
ily merged if they have the same declared type. Singletonshared,
lent andunique AbstractDomains are created.

To simplify the treatment of inheritance when creating theVi-
sualGraph, theAbstractGraph is post-processed by collapsing the
type hierarchy, i.e., pushing field references declared in theAb-
stractType corresponding to a given typet into eachAbstractType
of the sub-types oft.

While the algorithm described in Figure 7 is presented in terms
of the ownership domains type system, it can be easily applied
to other ownership type systems that do not have the concept
of multiple ownership domains per object and assume a single
domain or “context” per object [8]. In those cases, we consider that
each class implicitly declares a single ownership domainowned
and proceed according to the algorithm. The other details of the
transformation and visualization are unchanged.

1 Domains declared in a class are inherited by its subclasses [3,Aux-
Domains rule(Fig.14)], but are called somewhat confusinglyprivate.

• AbstractGraph (g)
Root : AbstractObject /* the root */
Types: List<AbstractType>

• AbstractType (t)
TypeBinding: TypeBinding/* Java type */
Domains: List<AbstractDomain>
Links: List<AbstractLink>
Edges: List<AbstractEdge>

• AbstractDomain (d)
DomainType: public | private | parameter
Objects: List<AbstractObject>
DeclaringType: AbstractType

• AbstractObject (o)
Type: AbstractType /* declared type */
Domain: AbstractDomain /* my owner */
Bindings: List<Binding>
Visualized: boolean/* bookkeeping */

• Binding (b)
Formal: AbstractDomain
Actual: AbstractDomain

• AbstractEdge (e)
From: AbstractType /* edge source */
To: AbstractObject /* edge target */
EdgeType: creation | usage | reference

• AbstractLink (s)
From: AbstractDomain /* link source */
To: AbstractDomain /* link target */

• VisualGraph (γ)
Root: VisualObject
Objects: List<VisualObject>
Edges: List<VisualEdge>
Links: List<VisualLink>

• VisualObject (θ)
Domains: List<VisualDomain>
Merged: List<AbstractObject> /* abstract objects
merged into ‘this’ */
Pulled: List<VisualObject> /* visual objects ‘this’
was pulled into */
IsPulled: boolean/* bookkeeping */
Parent: VisualDomain /* my owner */

• VisualDomain (δ)
Objects: List<VisualObject> /* objects in this
domain */
Parents: List<VisualObject> /* objects this domain
is part of */
AbstractDomain: AbstractDomain /* map */

• VisualEdge (η)
From: VisualObject /* edge source */
To: VisualObject /* edge destination */
EdgeType: creation | usage | reference

• VisualLink (σ)
From: VisualDomain /* link source */
To: VisualDomain /* link destination */

Figure 6. Data types used byAbstractGraph andVisualGraph.
Some fields are for bookkeeping only.

3.3 Convert an AbstractGraph to a VisualGraph

Constructing theVisualGraph from anAbstractGraph takes into
account the properties described earlier. The pseudo-code for the
algorithm is presented in Figures 8, 9 and 10. The notation

for (T anObject : setOfObjects) . . .

is similar to the Java 1.5 “enhancedfor-loop” for iterating over
collections and arrays. An overbar represents a sequence.

The transformation takes as input theAbstractGraph g whose
root is the top-levelAbstractObject oroot, andAbstractDomain
droot is the domain fororoot. The top-level procedure VISUAL-
IZEGRAPH (Figure 8) first creates a top-levelVisualDomain δroot

and then visualizes theAbstractObject oroot.
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1. For each type declarationC in the program
(a) CreateAbstractType t and add it tog.Types
(b) For each formal domain parameter inC

i. Create correspondingAbstractDomain d
ii. Add d to t.Domains

(c) For each declared ownership domain
i. Create correspondingAbstractDomain d
ii. Add d to t.Domains

(d) For each domain link betweend1 andd2 in C
i. CreateAbstractLink between theAbstractDomain of d1

and theAbstractDomain of d2

ii. Add AbstractLink to t.Links
(e) For each declarationd C′<a> o in C

i. If C′ has noAbstractType, createt′ for C′

ii. If AbstractType t of TypeC has noAbstractDomain d,
created and addd to t.Domains

iii. CreateAbstractObject o and add tod.Objects
iv. Create bindingsb from formalsf of AbstractType t′ to

actualsa of t and add too.Bindings
v. If declaration is a field declaration

A. CreateAbstractEdge e of type reference from Ab-
stractType t to AbstractObject o

B. Add e to t.Edges
2. Collapse inheritance hierarchy

(a) Copy any public domains defined on an interface to the classes
implementing the interface

(b) Push field references from each super-class into its sub-classes

Figure 7. Obtaining theAbstractGraph.

The conversion involves two mutually recursive functions, VI-
SUALIZEOBJECT to convert anAbstractObject into aVisualOb-
ject and VISUALIZEDOMAIN to convert anAbstractDomain into
aVisualDomain. EachAbstractDomain declared in theAbstract-
Type of anAbstractObject is visualized in turn.

Before aVisualObject θ is created for anAbstractObject o of
typet inside aVisualDomain δ, the analysis calls FINDOBJECT to
look for an existingVisualObject in δ with whicho can be merged,
i.e., if δ has aθ of type t′ wheret and t′ havenon-trivial least
upper boundsusing procedure GETLEASTUPPERBOUNDS. If such
an object does not exist, a newVisualObject is created. Ifθ exists,
then it is used ando is added to the list ofAbstractObjects that
are merged byθ. Each call to FINDOBJECT takes into account the
AbstractTypes of all theAbstractObjects that are merged into a
VisualObject.

Procedure ARENONTRIVIAL TYPES excludes from the com-
puted types any type mentioned in the list of trivial types. By de-
fault, the list includesjava.lang.Object, java.io.Serializable
and other user-selected types. However, a trivial type is allowed to
be part of the least upper bounds, if theAbstractObject is declared
of that type.

Once VisualObjects andVisualDomains have been created,
procedure PULL OBJECTS uses a worklist to pull existingVisu-
alObjects: eachVisualObject is pulled from a formal to an ac-
tual domain, potentially creating a newVisualObject if it cannot be
merged with an existing one. If a newAbstractObject is merged
into an existingVisualObject, theVisualObject is added back to
the worklist. NewVisualObjects are also added to the worklist so
they get pulled in turn. The analysis tracks theVisualObjects that
a givenVisualObject is pulled into.

Finally, the top-level procedure VISUALIZEGRAPH calls VISU-
ALIZE FIELDREFS to add field references to theVisualGraph and
V ISUALIZEDOMAIN L INKS to add the domain links.

When adding the field references associated with aVisualOb-
ject θ, ADDFIELDREFS(Figure 10) takes into account all the field
references declared in theAbstractType of eachAbstractObject
merged into aVisualObject. ADDFIELDREFSalso adds field refer-
ences to all the pulledVisualObjects that are tracked by the book-
keeping fields.

The algorithm given in Figure 8 is sound for systems that use
single inheritance and have no declared variables of a trivial type.
In systems that do not meet these restrictions, the algorithm may
produce multiple visual objects to represent the same runtime ob-
ject. In this case, two possible approaches can be used to restore
soundness. The first approach is the instantiation-based view de-
scribed in Section 2 above, whereby visual objects are created for
each object that is instantiated rather than for each field or variable
declaration in the program.

In the second approach, the procedure FINDOBJECTin Figure 8
is modified to identify allVisualObjects that could be merged with
the targetTypeBindings. If there is more than one suchVisualOb-
ject, the analysis unifies theVisualObjects and the resultingVisu-
alObject has the union of theVisualDomains, mergedAbstractO-
bjects, etc. The analysis then unifies recursively all theVisualOb-
jects that a unifiedVisualObject was pulled into. The FINDOB-
JECTprocedure then returns the unifiedVisualObject.

3.4 Convert the VisualGraph into the Ownership Object
Graph

The ownership object graph that is displayed is a depth-restricted
projection of the visual graph, starting from a root object. The
visualization currently uses the nested boxes discussed earlier but
the algorithm is not tied to a specific graphical notation.

This step is depends on the visualization package used. In our
prototype implementation, we use GraphViz [16]. Each dark grey
box for each object and white-filled node for each domain must
have a unique identifier — otherwise, nodes with the same identifer
get unified. Since there is oneVisualDomain corresponding to
an AbstractDomain, and anAbstractDomain is shared across
all the AbstractObject instances of a givenAbstractType, each
occurrence of aVisualDomain that appears in aVisualObject must
be assigned a new identifier.

Because the Ownership Object Graph is a depth-limited projec-
tion, it may omit objects deeply nested in the ownership hierarchy.
These objects are conceptually summarized by their containing ob-
ject, and the visualization remains sound with this summarization.
However, those objects may have field references to objects that are
present in the projection; for soundness, the corresponding edges
should be shown. In our approach, these field reference edges can
be represented by summary fields in the leaf objects of the graph.

These summary fields are identified as follows. For each leaf
object θleaf in the Ownership Object Graph, for each transitive
child objectθchild of θleaf , in anextended depth-limited projection
of the VisualGraph, we consider all actual field references from
VisualObject θchild to VisualObject θtarget, whereθtarget is not
a child of θleaf . Each such edge is represented by a summary
edge fromθleaf to θparent, whereθparent is the nearest parent
of θtarget that is visible in the Ownership Object Graph. This
algorithm will find summary fields for all fields present at runtime
as long as theextended depth-limited projectionprojects below the
leaves of the graph until a cycle in theVisualGraph is reached —
i.e., for each path downward from a leaf, the sameVisualObject is
reached a second time. This projection must still be depth-limited,
as in general theVisualGraph may have an infinite depth due to
reference cycles.

3.5 Limitations and Future Work

In future work, we plan on improving the precision of the analysis,
proving the soundness of the Ownership Object Graph, and evalu-
ating the scalability of the approach on large systems.

Precision. Merging objects of the same type that are in the
same domain can lead to unwanted merging in some cases. Adding
generic types improves the precision of the analysis, but for addi-
tional precision, an alias analysis may be needed [29].
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Global: Map<AbstractDomain ,VisualDomain > map
Global:AbstractGraph g (input)
Global:VisualGraph γ (output)

V ISUALIZEGRAPH()

δroot = newVisualDomain ()
δroot.AbstractDomain= droot

γ = newVisualGraph ()
γ.Root= V ISUALIZEOBJECT(δroot, oroot)
PULL OBJECTS()
V ISUALIZEFIELDREFS()
V ISUALIZEDOMAIN L INKS()

V ISUALIZEOBJECT(VisualDomain δ, AbstractObject o)

t = GETTYPEBINDINGS(o.Type)
θ = FINDOBJECT(δ, t)
if ( θ == NULL )

then θ = newVisualObject ()
δ.Objects.add(θ )
θ.Parent= δ
γ.Objects.add(θ )

θ.Merged.add(o )
o.Visualized= TRUE

for ( di : t.Domains)
do δi = V ISUALIZEDOMAIN (θ, di)

δi.Parents.add(θ )
θ.Domains.add(δi )

return θ

V ISUALIZEDOMAIN (AbstractDomain d)

δ = map.get(d)
if ( δ == NULL )

then δ = newVisualDomain ()
map.put(d,δ)
δ.AbstractDomain= d
for ( oi : d.Objects)

do if ( oi.Visualized)
then continue

V ISUALIZEOBJECT(δ, oi)
return δ

FINDOBJECT(VisualDomain δ, List<TypeBinding> t)

for ( θi : δ.Objects)
do tm = GETMERGEDTYPES(θi)

` = GETLEASTUPPERBOUNDS(tm, t)
if ( ARENONTRIVIAL TYPES(`, t) )

then return θi

return NULL

GETTYPEBINDINGS(AbstractType t)

� Obtain list of transitive supertypes

GETLEASTUPPERBOUNDS(List `, List t)

� Compute least-upper-bounds if they exist

ARENONTRIVIAL TYPES(List `, List t)

� Exclude from` trivial types such asjava.lang.Object
� or in the user-specified list of trivial types
� EXCEPT if it is one of the declared types int
return TRUE if remaining list of types non-empty

GETMERGEDTYPES(VisualObject θ)

List l = newList()
for ( oi : θ.Merged)

do l.add(oi.Type)
return l

Figure 8. Pseudo-code for creatingVisualGraph.

PULL OBJECTS()

Stackworklist = newStack()
for ( θ : γ.Objects)

do worklist.push(θ)
while ( !worklist.isEmpty() )

do VisualObject θ = worklist.pop()
PULL OBJECT(θ, worklist)

PULL OBJECT(VisualObject θ, Stackworklist)

� List.add first checks if element exists to avoid duplicates
� and returnsTRUE if element is added,FALSE otherwise.
� b1| = b2 is shorthand forb1 = b1 OR b2
δf = θ.Parent
df = δf .AbtractDomain
for ( da : GETACTUALS(df ) )

do if ( da == df )
then continue

δa = map.get(da)
tm = GETMERGEDTYPES(θ)
θp = FINDOBJECT(δa, tm)
changed = FALSE

if ( θp == NULL )
then θp = newVisualObject ()

γ.Objects.add(θp )
θp.Parent= δa

θp.IsPulled= TRUE

δa.Objects.add(θp )
changed = TRUE

θ.Pulled.add(θp )
for ( o : θ.Merged)

do changed | = θp.Merged.add(o )
� Add domains from merged object
for ( δi : θ.Domains)

do changed | = θp.Domains.add(δi )
δi.Parents.add(θp )

� If anything changed, add back toworklist
� so that merged objects get pulled too...
if ( changed )

then worklist.push(θp )

GETACTUALS(AbstractDomain df )

List l = newList()
δf = map.get(df )
for ( θi : δf .Parents) � Pull “up” only

do for ( oi : θi.Merged)
do for ( bi : o.Bindings)

do if ( bi.Formal== df )
then l.add(bi.Actual)

return l

Figure 9. Pseudo-code for creatingVisualGraph (continued).

An object markedunique is not shown until it is assigned to a
specific domain. Thus, an inter-procedural flow analysis is needed
to track an object from its creation (at which point it isunique)
until its assignment to a specific domain. In the current tool, this
flow analysis is not implemented, so aunique object returned from
a factory method must be annotated with the domain in which it
should be displayed. In addition, the flow analysis can determine
what domain alent object is really in. A precise handling of
the lent annotation is needed to add to the Ownership Object
Graph usage edges corresponding to method invocations and field
accesses since many method parameters are annotated withlent.
Those edges are currently missing.

Scalability. Finally, we lack empirical evidence of the scala-
bility of the approach to large systems. In the absence of semi-
or fully-automated annotation inference (a separate research prob-
lem), the main difficulty would be adding the ownership domain
annotations to legacy code.
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V ISUALIZEFIELDREFS()

for ( θ : γ.Objects)
do ADDFIELDREFS( θ )

ADDFIELDREFS(VisualObject θsrc)

for ( o : θsrc.Merged)
do for ( e : o.Type.Edges)

do for ( da : GETBINDINGS(o, e.To.Domain) )
do δa = map.get(da)

θdst = GETMERGED(δa, e.To )
if ( θdst != NULL )

then ADDFIELDREFS(θsrc, θdst)

ADDFIELDREFS(VisualObject θsrc, VisualObject θdst)

η = newVisualEdge ()
η.From= θsrc

η.To= θdst

if ( γ.Edges.add(η ) )
then for ( θsrcp

: θsrc.Pulled)
do for ( θdstp

: θdst.Pulled)
do ADDFIELDREFS(θsrcp

, θdstp
)

GETBINDINGS(AbstractObject o, AbstractDomain d)

List l = newList()
for ( b : o.Bindings)

do if ( b.Formal== d )
then l.add(b.Actual)

return l

GETMERGED(VisualDomain δ, AbstractObject o)

for ( θi : δ.Objects)
do for ( om : θi.Merged)

do if ( om == o )
then return θi

return NULL

V ISUALIZEDOMAIN L INKS()

for ( t : g.Types)
do for ( s : t.Links)

do VisualLink σ = newVisualLink ()
σ.From= map.get(s.From )
σ.To= map.get(s.To )
γ.Links.add(σ )

Figure 10. Pseudo-code for creatingVisualGraph (continued).

4. Evaluation
To evaluate our approach, we built tools and conducted two case
studies on real object-oriented implementations.

4.1 Ownership Object Graph Tool

The tool obtains the Ownership Object Graph of an annotated
program, represents it as a GraphViz clustered graph [16] and offers
the following features:
• Top-Level Objects: the displayed Ownership Object Graph is a

depth-limited projection of the visual graph — the depth is user-
selectable but cannot be too large. The user can interactively
select an object as the root of the graph to view its substructure;

• Trivial Types: the tool allows the user to specify an optional
list of trivial types;

• Design Intent Types: the tool allows the user to specify an
optional list of design intent types for labelling objects;

• Object Labels: objects can be labelled with an optional field
name or variable name and an optional type name. The type
used in the label consists of a least-upper-bound type or a design
intent type as discussed earlier;

• Elide Private Domains: the tool allows the user to elide all the
private domains at once and show only the public domains in
the visible Ownership Object Graph;

• User Elision: the tool can elide temporarily uninteresting ele-
ments. When the sub-structure of an object is elided, the symbol
(+) is appended to its label;

• Traceability: the tool can show for a given visual object, the
list of abstract objects and their abstract types merged into it, to
help the user fine-tune the list of trivial types;

• Navigation: the tool supports zooming, searching byAbstrac-
tObject or AbsractType name, etc.

4.2 Case Study: JHotDraw

The subject system for the first case study is JHotDraw [20].
Version 5.3 has around 200 classes and around 15,000 lines of
Java. The core types in JHotDraw were organized according to the
Model-View-Controller pattern as follows:
• Model: consists ofDrawing, Figure, etc. ADrawing is com-

posed ofFigures which know their containingDrawing. A
Figure has a list ofHandles to allow user interactions;

• View: consists ofDrawingEditor, DrawingView, etc.;
• Controller: includesHandle, Tool andCommand. A Tool is

used by aDrawingView to manipulate aDrawing. A Command
encapsulates an action to be executed.
Annotation Process.JHotDraw was annotated without making

any structural refactoring such as extracting interfaces, etc. Since
JHotDraw Version 5.3 did not use generic types and to improve
the precision of the analysis, we used Eclipse refactorings [14] to
infer the most specific generic types of containers such asVector
— and prevent objects of typeVector<Handle> and those of type
Vector<Figure> from getting merged. The annotation process is
described in detail elsewhere [1].

Ownership Object Graph. We made use of the visualization
during the annotation process: for instance, visualizing the anno-
tations encouraged us to make more use of theowned annotation
sinceowned pushes objects down in the ownership hierarchy and
avoids cluttering the top-level domains.

The list of trivial types includes interfaces implemented by
many classes, e.g.,Storable, Animatable, constant interfaces,
e.g., SwingConstants2, as well as interfaces implementing the
Observer design pattern, e.g.,ViewChangeListener. Both Tool
and Command implementViewChangeListener and are in the
Controller domain, so they may get merged otherwise3.

Evaluation. Existing compile-time analyses [40, 19] cannot
produce, for a program the size of JHotDraw, a readable flat object
graph that fits on one page (See other visualizations [2]). The
top-level Ownership Object Graph obtained from the annotated
program using our approach is shown in Figure 11 and clearly
illustrates the Model-View-Controller design.

Each gray box corresponds to a “canonical object” that repre-
sents many instances at runtime and is labeled with one or more
“design intent” type from the coreframework package (variable
names were not particularly informative and are not shown).

In the visualization, theController domain clearly shows
Command, Handle and Tool instances. The self-edge onTool
is explained by the fact that anUndoableTool wraps aTool
and similarly, anUndoableCommand wraps aCommand. TheView
domain shows instances ofDrawingEditor (the application itself)
andDrawingView. TheModel domain shows instances ofFigure:

2 Inheriting from a constant interface to access the constants without qual-
ifying them is a bad coding practice, the Constant Interfaceantipattern[6,
Item #17] and Java 1.5 supportsstatic importsto avoid it.
3 The tool currently scans field and variable declarations and not object
allocations as discussed in Section 2.
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aFigure has one or moreConnectors that define how to locate a
“connection point”.

Understanding whyDrawing did not appear in theModel tier
led us to discover thatStandardDrawing, the base class imple-
menting theDrawing interface, extendsCompositeFigure, thus a
Drawing is-aFigure4. Although this is not a design problemper se,
it is inconsistent with the design intent in the coreframework pack-
age: there, interfaceDrawing does not extend interfaceFigure.
This finding was unexpected in a framework as carefully designed
and as widely studied as JHotDraw. Although a class diagram could
reveal that aStandardDrawing is aFigure, the Ownership Ob-
ject Graph quickly pinpoints that.

The top-level domains have only 28 objects even though JHot-
Draw has 200 around types and presumably each type is instanti-
ated at least once. This illustrates how the properties of the Owner-
ship Object Graph provide more abstraction and more design intent
than a visualization of the raw object graph [19, 40].

In fact, designers often employ similar techniques in a design-
oriented class diagram, i.e., one not retrieved from an implementa-
tion using a tool: a)merge interface and abstract implementation
class— although important for code reuse, such a code factoring is
often unimportant from a design standpoint; and b)subsume a set
of similar classes under a smaller set of representative classes—
showing many similar subclasses that vary only in minor aspects on
a class diagram often leads to needless clutter [36, pp. 139–140]. It
seems the JHotDraw designers used similar techniques to present
the JHotDraw design in their tutorials [36].

In the Ownership Object Graph, all runtime figure objects ref-
erenced in the program by theFigure interface, its abstract imple-
mentation classAbstractFigure, or any of its concrete subclasses
DecoratorFigure, ConnectionFigure, etc., appear as a single
Figure object in theModel domain.

The distinction between public and private domains within each
object enables eliding all the private domains at once to show only
the top-levelModel, View and Controller domains in object
Main. To illustrate the hierarchy however, objects were selected in-
dividually and their internals were elided — those have the symbol
(+) appended to their labels.DrawingEditor shows its internals:
its privateowned domain has anIconkit object among others, and
IconKit has its own substructure, but the latter is elided.

Currently, the visualization does not show multiplicities: at run-
time, there is oneDrawingEditor (the application itself), one
IconKit, but one or moreDrawingView objects.

4.3 Case Study: HillClimber

By many accounts, JHotDraw is considered the brainchild of ex-
perts in object-oriented design and programming. In comparison,
the subject system for this case study, HillClimber, is another
15,000 line application that was mainly developed and maintained
by undergraduates.

In HillClimber, the applicationwindowuses acanvasto display
nodesandedgesof a graph in order to demonstrate algorithms for
constraint satisfaction problems provided by theengine.

Annotation Process.HillClimber was organized into adata
ownership domain to store thegraph, a ui domain to hold the
user interface elements, and alogic domain to hold the engine,
search objects, and associated objects. Unlike JHotDraw, adding
annotations to HillClimber involved refactoring to decouple the
code. Again, to increase the precision of the analysis, we refac-
tored the code to use generics, mostly automatically using Eclipse.
However, Eclipse cannot infer the generic type of a variable of type
Vector storing arrays ofNode objects: such code was manually

4 According to the Release Notes for JHotDraw Version 5.1, this change was
made to support inserting aDrawing as aFigure inside anotherDrawing.

refactored to useVector<Vector<Node>>. The annotation pro-
cess is described in detail elsewhere [1].

Evaluation. The Ownership Object Graph in Figure 12 shows
clearly the core HillClimber top-level objects,window, canvas,
engine andgraph. Similarly, theSearch object in thelogicTier
domain merges many instances of sub-classes of classSearch such
asMCHSearch, RandSearch, etc.

The Graph base class declares anodes:Vector<Node> field
and its subclassHillGraph refers to that same object. Generic
types improved the precision of the analysis and prevented the
merging of edges:Vector<Edge> and nodes:Vector<Node>.
Thegraph:Graph object merges bothGraph andHillGraph and
shows objectsnodes andedges in its owned domain.

Since a domain is introduced where it is declared and then
is inherited according to theprotected semantics,HillGraph
and Graph share the sameowned domain. However, when two
“unrelated” objects, e.g., aButton object and aPanel object get
merged (since they have a non-trivial least upper bound) and each
has its declaredowned domain, it is possible to have multiple
domains of the same name in a given visual object — in that case,
a domain name is fully qualified with the type name where it was
declared in the abstract graph.

The visualization highlights the need to potentially make object
edgesIn, the incident edges on a node, encapsulated inside object
node:Entity. This would require changing the annotations and
the code as necessary to abide by the rules of the type system. This
in turn would push the object down the ownership tree and remove
it from the top-level domain.

Themediator:ICanvasMediator object was introduced dur-
ing a refactoring to decouple the code [1] and mediate between the
graph and thecanvas. Finally, the object labeledwindow:Frame
merges several user interface objects representing dialogs, etc., thus
illustrating the type abstraction property.

5. Related Work
Program Visualization. There is a large body of software visual-
ization research where the emphasis is on novel kinds of visualiza-
tion using colors, shapes, 3D, etc. Our contribution in this paper is
not the visualizationper se— we’re using the simple but effective
GraphViz package — it is in having developer-specified ownership
annotations drive a sound compile-time visualization of the pro-
gram’s execution structure.

Many dynamic analyses visualize the execution structure but
ignore ownership: they instrument the running program, filter the
program traces based on various query criteria and then visualize
the summarized information in novel ways, often with a granularity
not larger than an object or a class [23, 37, 35, 17, 39, 30, 10]. On
the other hand, such analyses handle programs for which source
code is not available, do not require source code annotations or
changes to the source code to add the annotations and allow more
fine-grained user interaction in producing the visualization.

Ownership Annotation Inference.Annotation inference is an
active area of research using both static [4, 9, 24, 25] and dynamic
[41] analyses. However, a fully automated inference cannot create
multiple public domains in one object and meaningful domain pa-
rameters to represent the design intent, such as the separateModel,
View, andController in the JHotDraw case study. Existing in-
ference algorithms produce for each class a long list of domain pa-
rameters, often place each field in a separate domain, or annotate
many objects withshared or lent [4].

Dynamic Object Graph Analyses.Dynamic analyses can infer
the ownership structure of a running program based on its heap
structure. Although these techniques have the advantage of not
requiring abundant source code annotations, they can only infer the
equivalent ofowned, shared, lent andunique annotations. This
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Figure 11. Top-level Ownership Object Graph for JHotDraw. This graph was laid out automatically by GraphViz without user intervention.
The edges correspond to field references.
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Figure 12. Ownership Object Graph for HillClimber, laid out automatically by GraphVizdot without user intervention.

assumes a strict owner-as-dominator hierarchy which is not flexible
enough to represent design patterns such as the Composite pattern.

Rayside et al. [33] characterize sharing and ownership and
produce a matrix display of the ownership structure. Similarly,
Mitchell [27] uses lightweight ownership inference to examine a
single heap snapshot rather the entire program execution, and scales
the approach to large programs through extensive graph transfor-
mation and summarization. Flanagan and Freund [12] proposed
a dynamic analysis to reconstruct each intermediate heap from a
log of object allocations and field writes, then apply a sequence
of abstraction-based operations to each heap, and combine the re-
sults into a single object model that conservatively approximates all
observed heaps from the programs execution. Their tool, AARD-
VARK , has the notion of ownership and containment and uses sim-
ple heuristics to choose the most appropriate generalization. Noble
et al. [18, 28] and Potanin et al. [31] also process heap snapshots
and show both matrix and graph visualizations of ownership trees,
indicating an object’s “aliasing shadow” and “interior”.

There are several problems with dynamic analyses: first, run-
time heap information does not convey design intent. Second, a dy-
namic analysis may not be repeatable, i.e., changing the inputs or
executing different use cases might produce different results. Com-
pared to dynamic ownership analyses — which are descriptive and

show the ownership structure in a single run of a program, the Own-
ership Object Graph obtained at compile time is prescriptive and
shows ownership relations that will be invariant over all program
runs. Third, a dynamic analysis cannot be used on an incomplete
program still under development or to analyze a framework sepa-
rately from a specific instantiation. Finally, some dynamic analyses
carry a significant runtime overhead — a 10X-50X slowdown in
one case [12], which must be incurred each time the analysis is
run, whereas the main cost of adding annotations is incurred once.

Static Object Graph Analyses.Several static analyses produce
various object graphs, but they do not use ownership and do not
convey design intent. PANGEA [40] produces a flat object graph.
WOMBLE [19] uses syntactic heuristics and hard-coded heuristics
for container classes to obtain an object model including multiplici-
ties, but its analysis does not attempt to be sound and the flat object
graph it produces does not scale to large programs: in particular,
the WOMBLE visualization of the 15,000-line JHotDraw does not
fit on one readable page [2] nor does it convey the Model-View-
Controller design.

AJAX [29] uses an alias analysis to build a refined object model
as a conservative compile-time approximation of the heap graph
reachable from a given set of root objects, and simplifies it through
a series of transformations. However, AJAX does not use ownership
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and produces flat object graphs. Although AJAX has been evaluated
on a system with as many as 36,000 lines of code, the object graphs
it produces are manually post-processed to become readable, and
its heavyweight analysis does not scale to much larger programs.

Lam and Rinard [22] proposed a type system for describing
and enforcing design: developer-specified annotations guide the
abstraction by merging objects withtokensand merging methods
with subsystems, and are used to produce a flat object graph, that
was evaluated on a 1,700-line program. However, the tokens and
subsystems are statically fixed (unlike domains, all instances of a
class use the same tokens declared in the class), so they do not
model runtime hierarchy, do not describe data sharing as precisely
as ownership domains, and do not handle inheritance. In contrast,
our approach does not require additional annotations just to obtain
a visualization: ownership annotations are useful in their own right,
as demonstrated by the extensive research into ownership types
[8, 7, 4, 3, 11]. Finally, our approach handles inheritance.

Rayside et al. had proposed earlier a static object graph analysis
based on Bacon and Sweeney’s Rapid Type Analysis (RTA) [5]
but indicated that it produced unacceptable over-approximations
for most non-trivial programs [34].

6. Conclusion
Ownership domain annotations with meaningful domain names add
hierarchy to a flat object graph, precision about inter-domain alias-
ing, convey design intent, and enable an instance-based hierarchical
visualization of the execution structure of a system, to complement
views of the code structure provided by existing approaches.

Evaluating the approach on two previously annotated Java pro-
grams consisting of 15,000 lines of code each produced in both
cases a visualization that fits on one page and conveys the complex
design intent better than existing compile-time approaches that do
not rely on ownership annotations.
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