
Runtime Universe Type Inference

Werner Dietl
ETH Zurich, Switzerland

Werner.Dietl@inf.ethz.ch
http://www.sct.inf.ethz.ch/

Peter Müller
Microsoft Research, USA
mueller@microsoft.com

Abstract
The Universe type system is an ownership type system for object-
oriented languages that enforces the owner-as-modifier discipline.
One strength of the Universe type system is its low annotation over-
head. Still, annotating existing software is a considerable effort.

In this paper, we describe how we can analyze the execution of
programs and infer ownership modifiers from the execution. These
modifiers help to understand the organization of a system and can
also be re-inserted into the original source code. This allows a
programmer to enforce the maintenance of a specific ownership
structure. We implemented runtime Universe type inference as a
C program that traces the JVM execution, a Java application that
infers the Universe annotations, and a set of Eclipse plug-ins that
integrates the interaction with the other tools.

1. Introduction
The Universe type system [13] is an ownership type system for
object-oriented languages that enforces the owner-as-modifier dis-
cipline. The type checker and runtime support for Universe Types
are implemented in the JML tool suite [21].

At runtime, the owner of an object is either another object in
the store or the special root object. Objects that share the same
owner are grouped into a context; objects that have the root object
as owner are in the root context. Ownership builds a tree rooted at
the root object.

The owner-as-modifier discipline ensures that the owner of an
object controls all modifications of an owned object, that is, only
references to objects in the same context and to owned objects
can be used for modifications. This discipline enables the modular
verification of invariants [27].

Statically, the Universe type system uses three different owner-
ship modifiers to build this ownership structure. The modifier peer
expresses that the current object this is in the same context as the
referenced object, the modifier rep expresses that the current ob-
ject is the owner of the referenced object, and the modifier any does
not give any static information about the relationship of the two ob-
jects. References with an any modifier convey less information as
references with a peer or rep modifier with the same class and are
therefore supertypes of the two more specific types.

The owner-as-modifier discipline is enforced by forbidding field
updates and non-pure method calls through any references. An
any reference can still be used for field accesses and to call pure
methods. The method modifier pure is used to mark methods that
leave objects in the pre-state of a method call unchanged.

A distinguishing characteristic of the Universe type system is
its low annotation overhead compared to other ownership type sys-
tems. The annotation effort is further reduced by default modi-
fiers. Reference types by default have the peer ownership modifier;
only exceptions and immutable types default to any. These defaults
make the conversion from Java to Universe Types simple, as all

programs that do not directly modify caught exceptions continue
to compile. However, these defaults only provide a flat ownership
structure.

Standard techniques for static type inference [10] are not ap-
plicable. First, we do not have to check the existence of a correct
typing. Such a typing trivially exists by making all ownership mod-
ifiers peer, that is, by having a flat ownership structure. Second,
there is no notion of a best or most precise Universe typing. Usu-
ally, there are many possible typings, and it depends on the intent
of the programmer which one to prefer.

In this paper, we describe how ownership modifiers for deep
ownership structures can be found by runtime inference, that is,
by observing the execution of a program. This approach does not
require that the source code of the program is available. By using
the dominator algorithm we ensure that the result is the deepest
possible ownership structure that conforms to the Universe type
rules. A deep ownership structure maximizes encapsulation and
facilitates program verification. Nevertheless, it might not be what
the programmer intended. The solution of our program therefore
still needs to be reviewed by the programmer to ensure that it
corresponds to the intended design.

Runtime inference depends on good code coverage to produce
meaningful results. To achieve better coverage we use multiple
program traces to infer the ownership modifiers. We also combine
the results of runtime inference with our static inference tools
[29, 16] to ensure that the final solution gives valid Universe Types
for the complete program.

1.1 Related Work
Wren’s work on inferring ownership [32] provided a theoretical
basis for our work. It developed the idea of the Extended Object
Graph and how to use the dominator as a first approximation of
ownership. It builds on ownership types [8, 3, 7, 9] which uses
parametric ownership and enforces the owner-as-dominator prop-
erty. The number of ownership parameters for parametric type sys-
tems is not fixed and is usually determined by the programmer, as is
the number of type parameters for a class. Trying to automatically
infer a good number of ownership parameters makes their system
complex. No implementation is provided.

Daikon [14] is a tool to detect likely program invariants from
program traces. Invariants are only enforced at the beginning and
end of methods and therefore also snapshots are only taken at these
spots. From these snapshots we cannot infer which references were
used for reading and which were used for writing. Therefore we
could not directly use Daikon, but our tool has a similar architec-
ture. In the future we hope to apply optimizations from Daikon to
our tool.

SafeJava [7] provides intra-procedural type inference and de-
fault types to reduce the annotation overhead. Agarwal and Stoller
[1] describe a run-time technique that infers even more annotations.
AliasJava [4] uses a constraint system to infer alias annotations.

72

http://www.sct.inf.ethz.ch/

Another static analysis for ownership types resulted in a large num-
ber of ownership parameters [19]. In contrast, by using runtime in-
formation we achieve a deep ownership structure and the simplicity
of Universe Types makes the mapping to static annotations possi-
ble.

Rayside et al. [30] present a dynamic analysis that infers owner-
ship and sharing, but does not map the result back to an ownership
type system. Mitchell [26] analyzes the runtime structure of Java
programs and characterizes them by their ownership patterns. The
tool can work with heaps with 29 million objects and creates suc-
cinct graphs. The tool does not distinguish between read and write
references and the results are not mapped to an ownership type sys-
tem.

Work on the dynamic inference of abstract types [18] uses the
flow of values in a program execution to infer abstract types. Yan et
al. [33] use state machines to map implementation events to archi-
tecture events and thereby deduce architectures. Both approaches
do not seem to be applicable to infer ownership information.

1.2 Running Example
We use the classes in Fig. 1 to illustrate how the algorithm works.
This is a very simple and artificial example to illustrate all aspects
of the algorithm. The main class is Demo; the Java entry-point main
creates an instance of class Demo and calls method testA on that
instance. The argument is a boolean that depends on the number
of command line arguments. Method testA creates an A instance.
Class A stores the boolean flag and creates an instance of class B.
Class B creates a C instance and a java.lang.Object instance.
Finally, class C stores a reference to the A object it receives and
depending on the value of the mod field calls the off method on the
A instance. The execution of the main method in class Demo results
in the objects depicted in Fig. 2.

Outline. Sec. 2 describes the algorithm to infer ownership mod-
ifiers from runtime information, Sec. 3 gives implementation de-
tails, and Sec. 4 describes the Eclipse plug-ins. Finally, Sec. 5 dis-
cusses future work and concludes.

2. Runtime Universe Type Inference
The inference of Universe Types from program executions is per-
formed in the following five steps:

1. Build the representation of the object store

2. Build the dominator tree

3. Resolve conflicts with the Universe type system

4. Harmonize different instantiations of a class

5. Output Universe Types

We describe these steps in the following subsections. We discuss
static methods at the end of this section.

2.1 Build the Representation of the Object Store
From a program execution we get a sequence of modifications of
the object store. Instead of looking at only single snapshots of
the store (as in [26]), we build a cumulative representation of the
object store. This so-called Extended Object Graph (EOG) [32]
represents all objects that ever existed in the store, all references
between these objects that were ever observed, and, in particular,
which objects modified which other objects. The information about
modifications is particularly important since Universe Types do not
restrict references in general (unlike other ownership type systems),
but the modification of objects.

For each object in the EOG, we record information about its
fields as well as the parameters and results of its methods. We use

public class Demo {
public static void main(String[] args) {

new Demo().testA(args.length > 0);
}

public void testA(boolean b) {
new A(b);

}
}

class A {
boolean mod;
B b;

A(boolean m) {
mod = m;
b = new B(this);

}

void off() {
mod = false;

}
}

class B {
C c;
Object o;

B(A a) {
c = new C(a);
o = new Object();

}
}

class C {
A a;

C(A na) {
a = na;
if(a.mod) {

a.off();
}

}
}

Figure 1: Running example to illustrate our inference algorithm.

this information to infer ownership modifiers for these variables.
Local variables are treated in a subsequent step as we describe in
Sec. 2.5.

We distinguish between two types of references in the EOG:
write references and naming references. Write references are used
to update a field or call a non-pure method on an object; these ref-
erences mainly determine the ownership structure of an applica-
tion. In addition we store references that were only used for read-
ing fields and calling pure methods. These naming references are
needed to map the resulting EOG back to the source code.

For example, a call x.foo(y) introduces two edges in the EOG.
A write references from the current receiver object this to x rep-
resents that this modifies x by calling the non-pure method foo.
This reference will later influence the ownership relation between
this and x. A naming reference from x to y represents that a

73

Figure 2: The store at the end of method main in class Demo.
Objects are depicted by rectangles and are labeled with an identifier
and the class name. References are depicted by arrows.

method of x takes y as parameter. This naming reference is labeled
with the name of the formal parameter and will later be used to
infer the ownership modifier of the parameter.

To determine whether a method call constitutes a modification,
we need purity information. We require that the purity of methods
is provided as input to our tool. There are algorithms [31] to infer
method purity and we also implemented a tool [17] to help with
this task.

In our running example (Fig. 1), class A contains the statement
b = new B(this). On the bytecode level, this corresponds to two
steps, first the creation of a new object and then the update of the
field b of the current object. For an object creation, we insert a
write edge from the current receiver object to the newly created
object. In Fig. 2, this corresponds to the edge from object 2 to
object 3. This write edge ensures that the ownership modifier for
the object creation is either peer or rep, which is a requirement
of the Universe type system. For a field update, we store a write
reference from the current object to the receiver of the field update
and a naming reference from the receiver of the field update to the
object on the right-hand side. The naming reference is labeled with
the field name. All naming references for a field can later be used
to infer the correct ownership modifier for that field.

Arrays in the Universe type system use two ownership modi-
fiers, one for the relation between this and the array object, and
one for the relation between the array object and the objects stored
in the array. For arrays, we added a special kind of naming refer-
ence that stores the relationship between the array object and the
objects that are stored in the array. These references can then be
used to determine the second ownership modifier.

2.2 Build the Dominator Tree
Universe Types require that all modifications of an object are initi-
ated by its owner. For the EOG, this means that all chains of write
references from the root object to an object x must go through x’s
owner. Therefore, we can identify suitable candidates for the owner
of x by computing the dominators of x. The concept of dominators
is well-known in the compiler field [2], and efficient algorithms
have been developed [22].

Universe Types do not restrict references that are merely used
for reading. Therefore, the naming references in the EOG do not
carry information that helps us to determine ownership relations
between objects. Consequently, we ignore them when we build

the dominator graph. They are later used to find the correct static
ownership modifiers.

The result of finding the dominators for the graph from Fig. 2
is shown in Fig. 3a. Domination is depicted by rounded rectangles.
A direct dominator sits atop the rounded rectangle that groups the
objects it dominates. It is a candidate for becoming the owner of
this group of objects.

2.3 Resolve Conflicts with the Universe Type System
Domination is a good approximation of ownership, but it cannot
be directly used to infer Universe Types. The Universe type system
only allows write references within a context and from an owner
to an owned object. On the other hand, a dominator graph can have
references from an object to an object in an enclosing context. Such
write references are not permitted in the Universe type system. If
such references are found in the EOG, the involved objects are
raised to a common level until no more conflicts are present.

This problem is illustrated by the code in Fig. 1. If we observe
an execution of the constructor of class C when a.mod is false
then the off method is not called on the a reference. In this case,
the reference from object 4 to object 2 is used in a read-only
manner, that is, the EOG contains a naming reference between
object 4 and object 2. Under this assumption, the dominator graph
in Fig. 3a is a valid ownership structure in Universe Types. The
reference between object 4 and object 2 is stored in field a of class
C. This field will be annotated with an any ownership modifier.

However, if a.mod is true, the non-pure method off is called
on a. This results in a write reference from object 4 to object 2. In
this case, the dominator graph does not represent a valid ownership
structure because there is a write reference to an object in an
enclosing context. This write reference can neither be typed with
a rep nor with a peer modifier and is, therefore, not admissible in
Universe Types. To solve this problem, we flatten the ownership
structure to make the write reference from object 4 to object 2
admissible. This is done by raising the origin of the write reference
(object 4) to the context that contains the destination of the write
reference (object 2). This makes the two objects peers, and the
write reference between them is admissible as it can be typed with
modifier peer.

However, raising object 4, creates a conflict for the write refer-
ence from object 3 to object 4 since now object 4 is neither owned
by nor a peer of object 3. Therefore, we apply the same solution
again; this time, object 3 is raised to be in the same context as ob-
ject 4. The resulting dominator graph is depicted in Fig. 3b. In this
graph, all write references are from a direct dominator to an object
it dominates or between objects with the same direct dominator.
Therefore, this graph represents a valid ownership structure that
can be expressed in Universe Types.

Our example shows that conflict resolution has to be applied
repeatedly because resolving one conflict can cause others. Never-
theless, conflict resolution can be implemented efficiently without
visiting the same write reference twice. To achieve that, we use a
list of conflicting write references and process the list in a top-down
way, that is, objects higher-up in the dominator graph are processed
first. Moreover, we resolve conflicts that cross a large number of
context boundaries before conflicts that cross fewer contexts. For
details see [24].

2.4 Harmonize Different Instantiations of a Class
After conflict resolution, the EOG is consistent with the owner-as-
modifier discipline. However, it might not be possible to statically
type the EOG because different instances of a class might be in
different ownership relations. To enforce uniformity of all instances
of a class, we traverse all instances of each class and compare the
ownership properties of each variable (field or parameter). This step

74

(a) Dominator Tree (b) After conflict resolution

Figure 3: Contexts are depicted by rounded rectangles. Owner objects sit atop the context of objects they own.

has to take into account both write and naming references in the
EOG.

If for any given variable the ownership relations are the same
(for instance, they all point to peer objects), the variable can be
typed statically. If they differ, we apply a resolution that is similar
to the conflict resolution described in the previous subsection. If
at least one instance of a variable is the origin of a peer reference
and the other instances of this variable are rep references, we raise
the targets of the rep references to make them peers and type the
variable with modifier peer. If at least one instance of a variable is
the origin of a reference that is neither a peer nor a rep reference,
the variable is typed with modifier any. In this case, downcasts are
needed at the point where this variable is used for field updates and
calls to non-pure methods.

For example, imagine that method testA in class Demo is once
called with false and once with true as the argument. Then we
have two instances of class A, once with a deep ownership structure
as in Fig. 3a and once with a flat structure as in Fig. 3b. The annota-
tion for field b in class A is once rep and once peer. The algorithm
then decides to use peer as annotation for field b and raises the
non-conforming instance to a higher level. Because we raise an ob-
ject together with all peers that reference it or are referenced by it,
this step cannot create new conflicts in the ownership graph.

2.5 Output Universe Types
After the first four steps of the algorithm, we have determined
ownership modifiers for field declarations, method parameters and
results, and allocation expressions. The last step is to output these
ownership modifiers and insert them into the source code, if it is
available.

Local variables are not inferred from the EOG because that
would require monitoring every assignment of a local variable,
which would slow down the inference. As an implementation prob-
lem, Java JVMTI does not support monitoring of local variable as-
signments, and we deemed a solution using bytecode instrumenta-
tion too heavy-weight.

Inferring ownership modifiers for locals is very similar to Java’s
bytecode verification [23]. Both infer the types of local variables
based on the types of fields and method signatures. Like bytecode
verification, we symbolically execute the bytecode of a method
body to obtain the ownership modifiers of local variables. This step

might introduce downcasts when any references are used to modify
objects. These casts are not guaranteed to succeed at runtime.
Therefore, they should be reviewed by the programmer.

Fig. 4 shows the result of our inference for the example source
code from Fig. 1. The ownership modifiers are inferred after pro-
cessing program executions with and without command-line argu-
ments. This source code complies to the Universe type system. By
inserting the ownership modifiers into the source code, we ensure
that future revisions of this code will maintain the ownership struc-
ture.

2.6 Static Methods
In Universe Types, static methods are either executed in the context
in which the caller is executed or in the context owned by this. In
the former case, the target type of the call to the static method has
a peer modifier; in the latter case, it has a rep modifier. any is not
permitted.

When we monitor the execution of a program, no object exists
that corresponds to the target of the static call. In the EOG, we
create an artificial target object as the receiver of a static method
call. The relationship between the current object and the artificial
object determines the ownership modifier for the static call. To
enforce that the target of a static call does not have the anymodifier,
we always treat static method calls as non-pure. This creates a write
reference in the graph and ensures that a peer or rep modifier is
inferred.

Our treatment of static methods is illustrated by the example in
Fig. 5. Consider the call x.foo(y). The execution of foo affects
three objects in the EOG: the receiver x, the parameter y, and an
artificial target object for the call to process, say z. We add a write
edge from x to z because x calls the static method. We also add
a write reference from z to y because process calls a non-pure
method on y. Since Universe Types do not allow rep modifiers
in static methods, the latter write reference forces the parameter p
of process to have a peer modifier. The modifier of the target
type of the call to process is determined by the relation between
the current receiver x and parameter y. Since process expects a
peer parameter, y and the artificial target object z must have the
same owner. Therefore, if x owns y, then x also owns z, and the
annotated call will be rep S.process(q). If x and y are peers,
the call will be peer S.process(q). In all other cases, step 2 of

75

public class Demo {
public static void main(any any String[] args) {

new peer Demo().testA(args.length > 0);
}

public void testA(boolean b) {
new rep A(b);

}
}

class A {
boolean mod;
peer B b;

A(boolean m) {
mod = m;
b = new peer B(this);

}

void off() {
mod = false;

}
}

class B {
peer C c;
rep Object o;

B(A a) {
c = new peer C(a);
o = new rep Object();

}
}

class C {
peer A a;

C(peer A na) {
a = na;
if(a.mod) {

a.off();
}

}
}

Figure 4: Running example with inferred ownership modifiers.

the inference will automatically adapt the relation between x and y
and, thereby, the relation between x and z.

3. Implementation
Fig. 6 shows the architecture of the implementation. The tool is
split into two parts: Sec. 3.1 describes the tracing agent, which
monitors the execution of Java programs. Sec. 3.2 describes the
inference tool, which determines the ownership modifiers.

3.1 Tracing Agent
We monitor a Java Virtual Machine (JVM) execution with a Java
Virtual Machine Tooling Interface (JVMTI) agent written in C.
JVMTI is the low-level interface provided by the Java Platform
Debugger Architecture (JPDA) [20].

class S {
static T process(T p) {

p.nonpureOperation();
return p;

}

T foo(T q) {
return S.process(q);

}
}

Figure 5: Example for static methods.

The agent receives events from the virtual machine and pro-
duces a trace file that documents the execution of the program. The
trace file is in a simple XML format. Storing the execution of a
program in a trace file gives the following advantages: (1) Multiple
trace files can be generated to achieve good code coverage. In our
example, one should trace the execution of class Demo once without
any command-line arguments and once with an argument. (2) In-
teractive or long-running programs need to be traced only once for
each desired code path. This trace file can then be reused later with-
out requiring human interaction or recomputing results.

On the other hand, storing the trace files on disc and then parsing
them again in the next phase sometimes leads to a performance
overhead. In the beginning of this project, we investigated the Java
Debug Interface (JDI) as high-level alternative to the low-level
JVMTI. The JDI versions up to Java 5 did not provide enough
information to allow our Universe inference, especially the value
returned by a method was not accessible. In Java 6 the JDI API was
enhanced and we investigate adding JDI support as an alternative
source of program traces.

JVMTI does not provide the necessary events for array compo-
nent updates. Therefore we used instrumentation of the Java byte-
code to create artificial events for array updates.

3.2 Inference Tool
The main inference tool is an independent Java 5 application that
performs the steps outlined in Sec. 2. It reads (multiple) trace files
generated by the tracing agent and builds one Extended Object
Graph from the available information. Then the dominators are de-
termined, conflicts are resolved, multiple instances are harmonized,
and the output is written to an XML file. The different steps of the
algorithm are implemented as visitors that manipulate the EOG.

The application is configured by a simple XML file that deter-
mines what input and output files to use and which visitors and
observers to use. This extensible architecture allows us to support
a command line interface and the Eclipse plug-ins described in
Sec. 4, and will also allow us to add JDI as an alternative input.

The output of our inference tool is an annotation XML file that
contains the ownership modifiers for the encountered types. For this
annotation XML file, we defined an XML schema that can provide
ownership modifiers for the different types. If the source code of
the traced program is available then the annotations can be inserted
into the source code using a separate annotation tool we developed.
Producing the output in XML will allow us to support several
annotation tools, for instance, for the existing Universe syntax and
for JSR 308-style annotations.

To build the correct EOG, we need to know which methods are
pure. We use a separate annotation XML file as additional input to
the inference tool to provide this purity information. This XML
file has the same schema as the output file, which allows us to
use the annotation editor, visualizer, and insertion tool to create

76

Figure 6: Architecture of the runtime inference tools. White boxes depict components of the inference tool. Boxes in light gray depict files
and data structures that are part of the inference tool, and boxes in dark gray depict external components and files.

the input. To ease the creation of this purity information, we also
implemented a purity inference tool [31, 17].

The XML file in Fig. 7 shows the result of applying the infer-
ence algorithm (without inference of local variables) to our running
example (see Fig. 4 for the annotated source code). The Java struc-
ture is modeled in the XML structure, and the modifier attribute is
used to provide the ownership modifier for the corresponding type
or the purity for a method.

4. Eclipse Integration
To ease the usage of the command-line tools, we created a set of
Eclipse 3.2 [15] plug-ins that integrate the runtime inference into
the standard Java development environment.

4.1 Tracing
Eclipse allows one to execute Java programs directly from the IDE
using “Run As” configurations. The programmer can use these con-
figurations to set, for example, command-line arguments and the
JVM to use. We added a new “Run As” configuration that allows
one to trace program executions. The only additional information
the user has to provide is the name of the trace file. The plug-in
takes care of configuring the Java tracing agent correctly.

We provide the complete configuration information on a sepa-
rate tab. This information can be copied into a script and allows the
user to configure the tracing agent within Eclipse, but then use the
command-line tool directly.

4.2 Inference
Once the program was traced, the Universe Types can be inferred
with a separate plug-in. Similarly to the “Run As” dialog, we
provide the possibility to manage different configurations. The
main configuration tab (shown in Fig. 8) allows one to easily
configure the trace files, purity information, and output file that
should be used. Again, we provide a tab that allows one to use the
configuration from the command line.

<?xml version="1.0" encoding="UTF-8"?>
<ann:annotations
xmlns:ann="http://sct.inf.ethz.ch/annotations">
<ann:head>
<target>java</target>
<style>types</style>

</ann:head>
<ann:class name="A">
<ann:field modifier="rep" type="B" name="b"/>

</ann:class>
<ann:class name="B">
<ann:field modifier="rep" type="C" name="c"/>
<ann:field modifier="rep" type="java.lang.Object"

name="o"/>
<ann:method name="B" signature="A" modifier="">
<ann:parameter index="0" modifier="any" type="A"

name="param0"/>
</ann:method>

</ann:class>
<ann:class name="C">
<ann:field modifier="any" type="A" name="a"/>
<ann:method name="C" signature="A" modifier="">
<ann:parameter index="0" modifier="any" type="A"

name="param0"/>
</ann:method>

</ann:class>
<ann:class name="Demo"/>

</ann:annotations>

Figure 7: XML output of the inference tool.

4.3 Annotation Management
The result of the runtime inference is an XML file that contains the
inferred ownership modifiers. This XML file can be either edited
with the standard XML editor or with a special annotation editor.
The annotation editor (shown in Fig. 9) allows one to edit the
ownership information, for instance, by providing drop-down lists

77

Figure 8: Screen shot of the configuration dialog for the type inference. The user can set the tool options, for instance, which trace files to
use and what output file to generate.

of possible ownership modifiers. If the source code of the program
is available, we can automatically insert the ownership modifiers
from the XML file into the source.

4.4 Visualizer
The flexible observer architecture that we chose for the inference
tool allowed us to add a graphical visualizer to the inferer. This
visualizer (shown in Fig. 10) uses the Eclipse Graphical Editing
Framework (GEF) to display the extended object graph while it
is built up and modified during the execution. This gives a clear
understanding of how the program executes and how the inference
algorithm works.

The visualizer adds a new toolbar to Eclipse. Here the user can
set the zoom level, use automatic or manual layout of the graph,
“play” the evolution of the inference algorithm, take a single step
of the algorithm, or pause the animation. It further provides buttons
that help in the manual layout of the graph. The automatic layout
of the graph nodes is used by default. It automatically positions the
nodes and routes the edges to have a nice diagram. It uses a simplex
algorithm that tries to minimize the crossings of edges [16]. The
manual layout can be used to manipulate the graph by hand.

The objects in the graph can be shown with and without the
fields and methods that the corresponding class has. The display
of this additional information follows the UML standard for object
diagrams.

5. Conclusion and Future Work
This paper presented the current status of our work on runtime Uni-
verse type inference. We successfully used the tools in small case
studies such as linked list and tree implementations. In these exam-
ples, the overhead of tracing the execution and the calculation of
the ownership modifiers was reasonable. Even for small examples,
the support for multiple trace files was very useful to increase the
code coverage and, thus, the quality of the inferred ownership.

As future work, we plan to carry out non-trivial case studies.
Inferring ownership for major applications will not only allow us
to further evaluate and optimize our tools, but also provide insights
into the structure of real applications. We expect this information
to be valuable for further research on ownership in general.

Currently, our inference tool only works for non-generic Java.
We recently developed Generic Universe Types [12, 11] and we
will investigate whether runtime inference can be extended to
generics. The problem is that genericity in Java 5 is implemented
by erasure, that is, the type arguments are not visible to the virtual
machine. It will also be interesting to study runtime inference in
the presence of ownership transfer [28].

We plan to add JDI support to directly trace program executions
without creating trace files. The inference visualizer is under active
development and we have many ideas to make the interaction
more convenient and to improve scalability to large object graphs.
Examples include hierarchical folding of sub-trees, searching for
instances of a particular class, and visual enhancements.

78

Figure 9: Screen shot of the annotation editor. The editor gives a tree view of the ownership information contained in an annotation XML
file. Editing is simplified by drop-down lists of possible values.

Finally, we are integrating the runtime inference with our static
inference tools [16]. This allows us to propagate and check the par-
tial information that is inferred from program traces and ensures
that the resulting annotations comply with the Universe type sys-
tem.

Acknowledgments
This work builds on the Master’s and semester theses of students
at ETH Zurich: Frank Lyner [24] developed the first version of
the command-line tool, Marco Bär [5] improved and extended the
command-line tools, Marco Meyer [25] created the first annotation
tool and visualizer, Paolo Bazzi [6] created the Eclipse plug-ins
for runtime inference, David Graf [17] implemented the purity-
inference tool, and Andreas Fürer [16] improved and created the
Eclipse plug-ins and created the current version of the annotation
tool and visualizer. Peter Müller’s work was done at ETH Zurich.

References
[1] R. Agarwal and S. D. Stoller. Type Inference for Parameterized

Race-Free Java. In Verification, Model Checking, and Abstract
Interpretation (VMCAI), volume 2937 of Lecture Notes in Computer
Science, pages 149–160. Springer-Verlag, January 2004.

[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools, Second Edition. Addison-Wesley,
2007.

[3] J. Aldrich and C. Chambers. Ownership domains: Separating aliasing
policy from mechanism. In M. Odersky, editor, European Conference
on Object-Oriented Programming (ECOOP), volume 3086 of Lecture
Notes in Computer Science, pages 1–25. Springer-Verlag, 2004.

[4] J. Aldrich, V. Kostadinov, and C. Chambers. Alias annotations for
program understanding. In Object-oriented programming, systems,
languages, and applications (OOPSLA), pages 311–330. ACM Press,
2002.

[5] M. Bär. Practical Runtime Universe Type Inference. Master’s thesis,
Department of Computer Science, ETH Zurich, 2006.

[6] P. Bazzi. Integration of Universe Type System Tools into Eclipse.
Semester Project, Department of Computer Science, ETH Zurich,

Summer 2006.

[7] C. Boyapati. SafeJava: A Unified Type System for Safe Programming.
PhD thesis, MIT, 2004.

[8] D. Clarke and S. Drossopoulou. Ownership, encapsulation and the
disjointness of type and effect. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 292–310.
ACM Press, 2002.

[9] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for
flexible alias protection. In Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), volume 33(10) of ACM
SIGPLAN Notices, 1998.

[10] L. Damas and R. Milner. Principal type-schemes for functional
programs. In Principles of programming languages (POPL), pages
207–212. ACM Press, 1982.

[11] W. Dietl, S. Drossopoulou, and P. Müller. Formalization of
Generic Universe Types. Technical Report 532, ETH Zurich, 2006.
sct.inf.ethz.ch/publications.

[12] W. Dietl, S. Drossopoulou, and P. Müller. Generic Universe
Types. In E. Ernst, editor, European Conference on Object-Oriented
Programming (ECOOP), Lecture Notes in Computer Science.
Springer-Verlag, 2007. To appear.

[13] W. Dietl and P. Müller. Universes: Lightweight ownership for JML.
Journal of Object Technology (JOT), 4(8), 2005.

[14] M. D. Ernst. Dynamically Discovering Likely Program Invariants.
PhD thesis, University of Washington Department of Computer
Science and Engineering, Seattle, Washington, August 2000.

[15] The Eclipse Foundation. Eclipse — an open development platform.
www.eclipse.org/.

[16] A. Fürer. Combining Runtime and Static Universe Type Inference.
Master’s thesis, Department of Computer Science, ETH Zurich, 2007.

[17] D. Graf. Implementing Purity and Side Effect Analysis for Java
Programs. Semester Project, Department of Computer Science, ETH
Zurich, Winter 2005/06.

[18] P. J. Guo, J. H. Perkins, S. McCamant, and M. D. Ernst. Dynamic
inference of abstract types. In Lori L. Pollock and Mauro Pezzè,
editors, International Symposium on Software Testing and Analysis
(ISSTA), pages 255–265. ACM, 2006.

79

http://sct.inf.ethz.ch/projects/student_docs/Marco_Baer/
http://sct.inf.ethz.ch/projects/student_docs/Paolo_Bazzi/
sct.inf.ethz.ch/publications
www.eclipse.org/
http://sct.inf.ethz.ch/projects/student_docs/Andreas_Fuerer/
http://sct.inf.ethz.ch/projects/student_docs/David_Graf/
http://sct.inf.ethz.ch/projects/student_docs/David_Graf/

Figure 10: Screen shot of the inference visualizer. The main editor in the center shows a (zoomable) image of the EOG. The outline view on
the right helps in keeping the overview. The properties tab at the bottom gives additional information about selected elements. The status bar
outputs information about the steps of the algorithm.

[19] S. E. Moelius III and A. L. Souter. An object ownership inference
algorithm and its application. In M. T. Morazan, editor, Mid-Atlantic
Student Workshop on Programming Languages and Systems, 2004.

[20] Sun Microsystems Inc. Java Platform Debugger Architecture (JPDA).
java.sun.com/javase/technologies/core/toolsapis/
jpda/.

[21] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok,
P. Müller, and J. Kiniry. JML reference manual. Department
of Computer Science, Iowa State University. Available from www.
jmlspecs.org, 2006.

[22] T. Lengauer and R. E. Tarjan. A fast algorithm for finding
dominators in a flowgraph. ACM Transactions on Programming
Languages and Systems, 1(1):121–141, 1979. Available from
doi.acm.org/10.1145/357062.357071.

[23] X. Leroy. Java bytecode verification: An overview. In Computer
Aided Verification (CAV), volume 2102, pages 265–285, 2001.

[24] F. Lyner. Runtime Universe Type Inference. Master’s thesis,
Department of Computer Science, ETH Zurich, 2005.

[25] M. Meyer. Interaction with Ownership Graphs. Semester Project,
Department of Computer Science, ETH Zurich, Summer 2005.

[26] N. Mitchell. The runtime structure of object ownership. In
Dave Thomas, editor, European Conference on Object-Oriented
Programming (ECOOP), volume 4067 of Lecture Notes in Computer
Science, pages 74–98. Springer-Verlag, 2006.

[27] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants
for layered object structures. Science of Computer Programming,
62:253–286, 2006.

[28] P. Müller and A. Rudich. Ownership transfer in Universe Types. In
Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA), 2007. To appear.

[29] Matthias Niklaus. Static Universe Type Inference using a SAT-Solver.
Master’s thesis, Department of Computer Science, ETH Zurich, 2006.

[30] D. Rayside, L. Mendel, and D. Jackson. A dynamic analysis for
revealing object ownership and sharing. In Workshop on Dynamic
systems analysis (WODA), pages 57–64. ACM Press, 2006.

[31] A. Salcianu and M. C. Rinard. Purity and side effect analysis
for Java programs. In Verification, Model Checking, and Abstract
Interpretation (VMCAI), volume 3385 of Lecture Notes in Computer
Science, pages 199–215. Springer-Verlag, 2005.

[32] A. Wren. Inferring ownership. Master’s thesis, Department of
Computing, Imperial College, June 2003. www.cl.cam.ac.uk/
∼aw345/.

[33] H. Yan, D. Garlan, B. R. Schmerl, J. Aldrich, and R. Kazman.
DiscoTect: A system for discovering architectures from running
systems. In International Conference on Software Engineering
(ICSE), pages 470–479, 2004.

80

java.sun.com/javase/technologies/core/toolsapis/jpda/
java.sun.com/javase/technologies/core/toolsapis/jpda/
www.jmlspecs.org
www.jmlspecs.org
doi.acm.org/10.1145/357062.357071
http://sct.inf.ethz.ch/projects/student_docs/Frank_Lyner/
http://sct.inf.ethz.ch/projects/student_docs/Marco_Meyer/
http://sct.inf.ethz.ch/projects/student_docs/Matthias_Niklaus/
www.cl.cam.ac.uk/~aw345/
www.cl.cam.ac.uk/~aw345/

	Introduction
	Related Work
	Running Example

	Runtime Universe Type Inference
	Build the Representation of the Object Store
	Build the Dominator Tree
	Resolve Conflicts with the Universe Type System
	Harmonize Different Instantiations of a Class
	Output Universe Types
	Static Methods

	Implementation
	Tracing Agent
	Inference Tool

	Eclipse Integration
	Tracing
	Inference
	Annotation Management
	Visualizer

	Conclusion and Future Work

