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Abstract
Aliasing is quite powerful, but difficult to control. Often clients
need exclusive access to objects for some concerns, and sometimes
we see no other way than to ensure this by controlling aliasing. In-
stead, we propose to restrict what clients can do when accessing ob-
jects. To invoke methods in an object clients need tokens issued by
this object. Static type checking enforces the tokens to be available
and ensures exclusive access for specific concerns without avoiding
aliasing. We show by examples how this concept works and discuss
several possibilities to improve its flexibility.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Object-Oriented Programming, Aliasing

Keywords Types, Tokens

1. Motivation and Overview
Aliasing is like a beast causing troubles. It shows up where we do
not expect it and perverts our statements. It is slippery and escapes
when we think we have caught it.

Aliasing is also like a pet. Object-oriented programmers love
it. It opens doors to objects that seem far far away. Science fiction
authors would be surprised if they knew how easy we walk from
one object to another at a completely different part of the world.

The beast and the pet are actually the same animal. Aliasing
gives programming languages much expressive power, so much
that we easily lose control. Programming systems become weaker
whenever we cage or tame the beast. We must be careful not to
destroy flexibility: Although it is possible to develop nearly every
kind of system without the undesirable properties of aliasing (for
example, in a referentially transparent functional language) we
have to do so with considerably less flexibility in structuring the
code. Such flexibility is essential in object-oriented programming
to achieve good factorization.

In this paper we discuss an approach to annotate object refer-
ences with constraints on how to access referenced objects. This
approach fully supports aliasing; there is no cage for it as in many
other approaches [2, 3, 12, 15, 39]. However, we limit what the
beast can do by ensuring that constraints on references are pre-
served when introducing new aliases. For example, if we want a
specific method in an object to be invokable at most once, then
we annotate the only reference existing on object creation with a
corresponding constraint. After introducing further references to
the object we still have this property: There is only one reference
through which the message can be sent although we usually do not
know where to find this reference. We need not restrict aliasing by
itself; we just limit effects of aliasing.

We express what can be done through an object reference by a
set of tokens (or just names) associated with the reference. Method
specifications give semantics to tokens: A method can require spe-
cific tokens to be associated with the reference through which it

is invoked; these tokens are removed from the reference on invoc-
ation, and further tokens (specified by the method) can be added
on return. We express constraints by tokens because they are easily
understood by both programmers and tools like compilers.

This approach was introduced as part of a type system ex-
pressing synchronization to ensure linearity at the presence of ali-
asing [29]. Applications of this technique are usually related to syn-
chronization and coordination. In the above example of a single in-
vocation, all clients of an object must be coordinated such that at
most one of them invokes the specific method. Such kinds of co-
ordination are inevitably connected with constraints on single ref-
erences (as opposed to the whole referenced object) at the presence
of aliasing.

The goal of this paper is to survey how this approach works
and show by examples what can be done with it and where its
limits are. Thereby, the focus is on limiting effects of aliasing,
not synchronization and coordination. In Section 2 we give the
basics of our token-based approach, and in Section 3 we show
how to distribute tokens within a system. In Section 4 we briefly
describe static type checking. In the remaining sections we use
various concepts to add flexibility – dependences between tokens
in Section 5, relationships between values and tokens in Section 6,
type parameters in Section 7, and a dynamic concept in Section 8
– before we discuss related work in Section 9 and give concluding
remarks in Section 10.

2. Tokens to Ensure Limited Access
We show how to specify constraints by examples in a Java-like
pseudo-language. The first example gives a simplified interface of
a window, where method invocations depend on tokens (in square
brackets – tokens removed on invocation to the left and those added
on return to the right of arrows):

interface Window {
[init -> shown,ready] void initialize (...);
[ready -> ready] void update (...);
[shown -> icon] void iconify ();
[icon -> shown] void uniconify ();
[shown,ready ->] void close ();
int getCreationTime ();

}

In our pseudo-language, brackets denote token sets associated
with types and methods, they do not denote arrays. Let us as-
sume that new windows are of typeWindow[init], this is, we
have a reference to an instance ofWindow associated with a token
init. Through this reference we can invoke onlyinitialize and
getCreationTime. All other methods require tokens (as specified
to the left of->) not available in the reference; they are not in-
vokable. When we invokeinitialize the type of the reference
changes first toWindow[] (or equivalently justWindow) and on
return toWindow[shown,ready]. Further methods become invok-
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able, butinitialize cannot be invoked again. We can distribute
references to the window all over the system (see Section 3 how
to do that in a type-save way). The type checker prevents tokens
from being duplicated thereby. Maybe, we get a reference of type
Window[ready] in a client feeding the window with new data,
a reference of typeWindow[shown] in a window control panel,
and any number of references of typeWindow through which only
getCreationTime can be invoked. However, we cannot get two
references to the same window, both of typeWindow[ready], be-
cause there exists always at most one tokenready. In the control
panel we can invokeiconify anduniconify only in alternation:
Invoking iconify changes the type associated with the window
reference toWindow[icon], and invokinguniconify again to
Window[shown]. The methodclose becomes invokable only if
we rearrange the system such that all available tokens (ready and
shown) occur again in the type of a single reference. After invoking
close all tokens are gone, and onlygetCreationTime remains
invokable.

The example shows how we can easily specify nontrivial con-
straints on method invocations and how clients are forced to sat-
isfy them. This technique is expressive: We can specify all prefix-
closed trace sets [30]. Clients that hold tokens have got partial con-
trol over the corresponding object: The client holdingready is the
only one being able to invokeupdate, and the client holdingicon
or shown completely controls whether the window is iconified. Cli-
ents cannot influence each other in this respect. Moreover, a client
who holds any token of a window can preventclose ever to be
invoked. This kind of “separation of concerns” works without any
knowledge about aliases in the system. We need not know which
client has control over a concern. This client can even change dy-
namically.

To ensure limited access we usually want to have at most one
token of each name per object. Separation would be weaker if
we had several tokensready and possibly several clients invok-
ing update in the same window object. As proposed in [29] this
approach supports several tokens of the same name in order to ex-
press limited resources (that are not necessarily limited to one; for
example, buffer sizes) for the purpose of synchronization. For the
purpose of aliasing control we need no limited resources of this
kind. In this paper we implicitly assume tokens to occur at most
once per object (this is, in the types of all references to the same
object).

Explicit result types of constructors play an important role in
specifying initial object states:

class MyWindow implements Window {
MyWindow[init] () {};
...

}

An invocation ofnew MyWindow() returns a new instance with a
single tokeninit. Based on this information we can compute the
maximum of tokens for this object available in the whole system
(see Section 4). SinceMyWindow does not add tokens to those
inherited fromWindow, there can always be at most aninit, or a
ready and either ashown or anicon in the types of all references
to an instance ofMyWindow.

3. How to Distribute Tokens
In the next example we show how to handle tokens in types of
parameters and variables:

class Test {
void play (Window[ready -> ready] w) {

w.update(...);
w.update(...);

}
void blink (Window[icon -> shown] w) {

w.uniconify();
w.iconify();
w.uniconify();

}
Window[ready] win;
[unique -> unique]
Window[ready] swap (Window[ready ->] w) {

Window[ready] old = win;
win = w;
return old;

}
[unique -> unique] void condUpdate() {

if (win != null) { win.update(...); }
}
Test[unique] () { win = null; }

}

Let y be a variable of typeWindow[ready,icon] andx one of
type Test[unique]. We can invokex.play(y) sincey has the
tokenready as required in the formal parameter type to the left
of ->. On invocation the type ofy changes toWindow[icon]
(this is, ready is removed) and on return fromplay again to
Window[ready,icon] (this is, the token to the right of-> in the
formal parameter type is added). In the body ofplay the parameter
w has a tokenready on invocation as well as on return; we can
invokeupdate as often as we want to do so.

Invocations ofblink change argument types: On return from
x.blink(y) variabley will be of type Window[ready,shown].
In the body ofblink we must invokeuniconify at least once to
ensurew to have the appropriate token on return. We can invoke
x.play(y) and x.blink(y) in any ordering and even concur-
rently because the token sets required fromy (as well as the empty
token sets required fromx) do not overlap.

Parameter passing does not produce or consume tokens. Tokens
just move from the argument type to the parameter type on invoca-
tion and vice versa on return.

Whenever we introduce an alias (in this case by binding a formal
parameter to an argument) we performtype splitting:The tokens
specified in the argument type are split into two groups. Tokens
specified in the formal parameter type (to the left of the arrow)
move to the formal parameter while all other tokens remain in the
argument’s type. After return the formal parameter is no longer in
use. We combine the previously split types again; thereby tokens
(specified to the right of the arrow) move from the formal parameter
to the argument.

Assignment resembles parameter passing on method invoca-
tion: When assigning a reference to a variable where the variable
type specifies tokens, these tokens are removed from the reference;
this is, the tokens move from the assigned value to the variable. In
the body ofswap the tokenready moves from the parameterw to
the instance variablewin. Since the token finally belongs towin, it
cannot move back to the argumenty on return fromx.swap(y).

Types specifying tokens in square brackets frequently change.
For example,w in the body ofblink is of typeWindow[icon] be-
fore invokinguniconify and of typeWindow[shown] afterwards.
There is no difficulty for a type checker and usually also for a hu-
man reader to determine what is the current type of a local variable
at some position in the program. However, such type changes cause
troubles on instance variables: There can be independent accesses
of the same variable through concurrent threads as well as through
aliases. If one of the clients accessing the variable causes tokens to
be removed from the variable, others do not know about this change
and can assume the tokens still to be available; there can be an un-
expected and undesired duplication of tokens. To avoid such prob-
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lems we require tokens of instance variables to be visible only if we
can exclude simultaneous accesses through concurrent threads and
aliases. In our example we get uniqueness by requiring the token
unique onx when executingx.swap(y) andx.condUpdate().1

Static type checking ensures such variable accesses to be actually
unique (see Section 4). Furthermore, such variables must not be ac-
cessed from outside (except though getter and setter methods). Of
course, on return from methods all such variables must hold their
declared tokens.

As in all Java-like languagesnull is an appropriate instance of
each reference type. Since no method is invokable throughnull,
we can assume this special value to be associated with any token.
Tokens do not compromise the use ofnull.

If we have two references of the typesWindow[ready] and
Window[shown], then it is in general not possible to invokeclose
through any of them. However, the following method allows us to
combine the token sets:

Window[ready,shown] comb (Window[ready ->] x,
Window[shown ->] y) {

if (x == y) { return x; }
else { return null; }

}

The method is correct because in this casex andy are known to be
aliases with the common typeWindow[ready,shown]. Whenever
we know two variables (or parameters) to refer to the same object
(after comparing identity) we assume all tokens belonging to any of
the two variables to belong to both of them. The essential part is just
the conditional statement with an identity comparison as condition;
the rest of this example just gives us a setting where this statement
may be useful.

Our approach supports subtyping considering tokens. We give
just a raw idea of it (see [29, 30, 33] for more complete de-
scriptions): Subtypes specify all (relevant) tokens specified by
supertypes. Hence,MyWindow[ready,shown] is a subtype of
Window[ready], but is not related toWindow[icon] by subtyp-
ing. Methods declared in subtypes have to the left of-> at most
and to the right at least those tokens that occur to the left or right
of the arrow in the corresponding method declaration in the super-
type. Irrelevant tokens (these are tokens no method depends upon)
need not be considered. As a consequence we can invoke at least
each sequence of methods through a reference to an instance of a
subtype that we can invoke through a reference to an instance of a
corresponding supertype. Supertypes are more restrictive than (or
equal to) subtypes.

4. Static Type Checking
Static type checking in our approach is rather simple and can be
performed at a class by class basis (separate compilation). Pro-
grammers give all information the checker needs by specifying
tokens in types and together with methods. The type checker must
ensure all specified types and tokens to be consistent (which is
much simpler than inferring information about aliasing or syn-
chronization from a program). It can do so by a single walk through
the code of a class. In detail, the checker has to ensure the following
properties:

1. At any time there cannot be several tokens of the same name
for the same object.To ensure this property we apply a simple
fixed-point algorithm to compute for each class an upper bound
of token sets that can become available: Initially we have the

1 Declaringswap and condUpdate as synchronized is not sufficient be-
cause there is still the possibility of a simultaneous access through aliasing.
Requiring a unique token is a stronger condition. It ensures the absence of
any other client also invoking one of these methods.

sets of tokens specified in constructors (one set per constructor).
We construct further token sets by updating each token set
according to each method where the token set contains all
tokens occurring to the left of-> in the method; tokens to
the left of the arrow are removed and tokens to the right are
added. The algorithm terminates if no new token sets can be
constructed this way. Type checking fails if a token set contains
the same token twice. Usually the fixed point is reached quickly
because there are only few different tokens in a class. Since
new tokens can be introduced only by method invocations (as
ensured by the properties mentioned below) this fixed-point
construction is sufficient to ensure that two tokens of the same
name can never exist for any object.

2. Methods are invoked only through references associated with
all needed tokens.Initially we assume types of variables to carry
tokens as in the variable declarations, and types of parameters
as to the left of arrows in parameter declarations. While walk-
ing through the code according to the control flow we ensure
for each method invocation that the type of the reference the
method is invoked through which contains all tokens occurring
to the left of-> in the declaration of this method. Furthermore,
we update the type of the reference by removing all tokens oc-
curring to the left and adding all tokens occurring to the right
of the arrow in the method declaration. Whenever the control
flow is split (for example, in a conditional statement) we per-
form these checks for each path separately. At joins of several
paths we remove all tokens that do not occur in all correspond-
ing types constructed independently in the paths to be joined.

3. Tokens are not duplicated when introducing aliases.While
walking through the code according to the control flow we
ensure for each method invocation that types of arguments have
all tokens occurring to the left of the arrow in the corresponding
formal parameter type. These types are updated by removing all
tokens occurring to the left and adding all tokens occurring to
the right of the arrow in the formal parameter type. For each
assignment of a value to a variable we ensure that the value has
all tokens specified in the type of the variable and remove these
tokens from the value’s type. At the end of the control flow of
each method and constructor we ensure that

• each parameter has all tokens that occur to the right of the
arrow in the parameter declaration,

• and each instance variable has at least all tokens that occur
in the variable declaration.

4. Always at most one method can make use of tokens associated
with an instance variable.Such variables are not directly ac-
cessible from outside the object they belong to which. To en-
sure the absence of simultaneous accesses to each such vari-
able within an object we use the set of methods accessing the
variable and the upper bound of token sets constructed while
checking property 1: If there is no token set in the upper bound
that contains all tokens occurring to the left of the arrows of any
pair of methods in the method set, then these methods cannot
be invoked simultaneously and the variable access is unique.

For example, in classTest (in the previous section) onlyswap
and condUpdate accesses the instance variablewin. Both
methods haveunique to the left of the arrow. Each of the
four possible method pairs has two tokensunique to the left of
the arrows. The upper bound constructed fromTest contains
only a single token set with a single tokenunique. Since no
token set in the upper bound contains two tokensunique, sev-
eral concurrent or overlapping invocations are impossible. In
this case (and in many similar cases) we do not need the upper
bound to show this property because we know that no token set
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in the upper bound contains the same token twice. Sometimes
the use of upper bounds increases accuracy. For example, in
MyWindow the methodsiconify anduniconify cannot be in-
voked simultaneously because no token set in the upper bound
contains bothshown andicon.

The type system is strong and sound in the sense that methods
can be invoked only when objects are in appropriate states as spe-
cified by tokens. Essential parts of a corresponding proof can be
found in [29, 30]. To get this result we need not restrict aliasing,
and we need no knowledge of aliases (except of local information
about statements possibly introducing new aliases to ensure prop-
erty 3). This is an important difference to many seemingly similar
approaches like the Fugue protocol checker [10].

There is a (still incomplete) implementation of the type checker
for a simple language similar to the language we use in this paper.
From early experiences with this checker we see that the type
system is quite good in detecting errors where programmers get
tokens wrong. Wrong tokens in method declarations usually show
up as diverging upper bounds (as constructed to ensure property 1)
or cause methods not to be invocable. Wrong tokens in types cause
methods not to be invocable or references not to be usable as
method arguments. The type checker complains about such errors.

Concerning type safety it does not matter if tokens are lost or
hidden in the type of unused references. In such cases, clients just
do not make use of services offered by objects. To enforce clients
to make use of services we can extend the type checker as proposed
in [34] at the cost of flexibility.

5. Dependent Tokens
In this and the following sections we discuss a number of ap-
proaches to improve the expressiveness and flexibility of our tech-
nique. An important step in this direction is to make use of known
relationships between tokens that belong to different objects.

In the following example we show a possibility to specify tokens
belonging to an instance variable in dependence of tokens of the
object that contains the variable [33]:

class IconButtons {
Window[icon for down][shown for up] window;
[down -> up] void pressUp() {

window.uniconify();
}
[up -> down] void pressDown() {

window.iconify();
}
IconButtons[up] (Window[shown] w) {

window = w;
}

}

We think of IconButtons as a wrapper for the part ofWindow
dealing with icons. The variablewindow has one tokenicon for
each tokendown known to occur in the corresponding instance
of IconButtons and one tokenshown for eachup in the in-
stance. In general, we regard a set of tokens to the left offor as
available it there exists the set of tokens to the right offor. In
the body ofpressUp we know down to be available at method
invocation andup on return because of[down -> up]. Hence,
we assumewindow to have a tokenicon on invocation, and we
must ensure thatwindow has a tokenshown on return. An invoc-
ation of uniconify changes the token appropriately. Because of
[up -> down] specified forpressDown we assumewindow to
have ashown on invocation of this method, and we have to en-
sure the variable to have anicon on return. On object creation we

must initializewindow with a reference having ashown because
the new instance ofIconButtons is associated with anup.

Checking for-clauses in instance variable specifications is
straightforward because type safety follows from the construction
of this language concept. There is only a small difference to type
checking as proposed in Section 4: To ensure property 3 we have to
compute the tokens carried by variables from token specifications
in methods instead of having them declared directly.

Using classIconButtons we control both buttons in a single
class. Distributing a concern (like controlling the state of iconifica-
tion) over several classes is a much more difficult topic that occurs
in practice. In the next example we show an alternative solution to
IconButtons based on separate classes for each button:

class ButtonA {
Window[shown for activeA] window;
ButtonB[passiveB for activeA] button;
[passiveA -> activeA] void activate() {...}
[activeA -> passiveA] void press() {

window.iconify();
button.activate();

}
[initA -> activeA]
void init (Window[shown for activeA ->] w,

ButtonB[passiveB for activeA->] b) {
window = w;
button = b;

}
ButtonA[initA] () {}

}

class ButtonB {
Window[icon for activeB] window;
ButtonA[passiveA for activeB] button;
[passiveB -> activeB] void activate() {...}
[activeB -> passiveB] void press() {

window.uniconify();
button.activate();

}
[initB -> passiveB]
void init (Window[icon for activeB ->] w,

ButtonA[passiveA for activeB->] b) {
window = w;
button = b;

}
ButtonB[initB] () {}

}

The variablewindow carries a tokenshown in ButtonA (andicon
in ButtonB) when the button in active. Otherwise we do not know
any token ofwindow. After pressing the active button we activate
the other button, and the pressed button becomes passive. These
classes work essentially in the same way asIconButtons once
the objects have been initialized. On invocation ofactivate the
variableswindow in the two objects implicitly exchange the only
available token. The initialization is the tricky part: We have to tell
the two objects that they can safely assume to have the only token
shown or icon of window when they are active. InButtonA the
parameter typeWindow[shown for activeA ->] specifies that
w refers to a window carryingshown only while the button is active
(and has no tokens on return frominit); this parameter is assigned
to window of essentially the same type. To initialize the objects we
may use the following piece of code:

w = new MyWindow();
a = new ButtonA();
b = newButtonB();
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a.initialize(w,b);
b.initialize(w,a);

The variablew occurs in both invocations ofinitialize and gives
away its only token to both objects depending on the states of
the objects as specified by thefor clause in the formal parameter
type. To ensure this initialization to be correct we have to show the
following properties:

• The two objects never have the tokensactiveA andactiveB at
the same time. Because of two different objects this property is
not obvious. Using least bounds of token sets constructed for
both classes as in Section 4 we can show this property: No
token set constructed fromButtonA contains bothactiveA
and passiveA, and no token set constructed fromButtonB
containsactiveB andpassiveB. Sincebutton in ButtonA
carriespassiveB if there is a tokenactiveA, there cannot exist
a tokenactiveB at the same time, and analogously forbutton
in ButtonB. Hence,activeA andactiveB cannot exist at the
same time.

• When the other object becomes active, there exists the token on
window needed by the other object. This means,window must
carry a tokenicon (or shown) at the end of each method where
activeA (or activeB) occurs to the left of the arrow and does
not also occur to the right.

Because these checks are ad hoc and compromise separate compila-
tion, it is an open question whetherfor clauses in formal parameter
types shall be supported or not.

6. Values as Tokens and Tokens as Values
Dependent tokens are safe and (withoutfor clauses in parameter
types) easy to handle where they are appropriate. However, in many
situations we need more freedom. Especially, we want to relate the
availability of tokens to values in variables. In the next example we
show how to establish such relationships:

class SwapButton {
int state;
Window[icon if state < 0]

[shown if state > 0] window;
[unique -> unique] void press() {

if (state < 0) {
window.uniconify();
state = 1;

}
else if (state > 0) {

window.iconify();
state = -1;

}
}
SwapButton[unique] (Window[shown] w) {

window = w;
state = w == null ? 0 : 1;

}
}

The variablewindow is associated with a tokenicon if state
holds an integer value below zero, and withshown if the value is
larger than zero. There is no token for zero. Before we can make
use of these tokens we have to ensure corresponding conditions
(considering the value ofstate) to be satisfied. After changing
tokens associated withwindow we must updatestate.

This approach to relate tokens with values raises a large number
of problems:

• Tokens are allowed to depend only on side-effect-free condi-
tions that read only instance variables of the object. Such vari-

ables likestate must not be written from outside, and there
must not exist aliases of them. Otherwise it would be impossible
to keep results of evaluating the conditions synchronized with
the available tokens. In the programming language Ada we have
similar requirements on conditions inwhen clauses belonging
to protected types (Ada’s notion for monitors) [16].

• The compiler must be able to determine whether conditions
specified in square brackets correspond to other occurrences
of the same conditions in conditional statements. Usually the
compiler can determine only structural equivalence. The use of
named conditions (based on name equivalence) can be helpful
in this respect. For example, we define a parameterless boolean
function that implements the condition and invoke this function
instead of using the condition directly. This way it is easy to
determine equivalence of conditions.

• On return from a method that changes tokens of variables or
assigns new values to variables likestate we have to ensure
tokens and variable values to correspond to each other. We can
do so by checking the conditions. In general, we can perform
these checks only at run time and thereby lose static type safety.
To avoid this problem we restrict values assigned to variables
like state (where conditions depend upon) to be constant. In
this case we can perform the checks at compilation time and
keep static type safety. This restriction reduces the expressive-
ness, but tokens depending on values are still quite expressive.

Each of these problems can be solved (although the first and
the last one are serious) and dependence of tokens on values does
not compromise static type checking. However, since we need
rather heavy machinery, we may prefer to use another approach
that allows us to express more directly what we want to have:

class SwapButton2 {
Window[?] window;
[unique -> unique] void press() {

if ([icon]window) {
window.uniconify(); }

else if ([shown]window) {
window.iconify(); }

}
SwapButton2[unique] (Window[shown] w) {

window = w;
}

}

The question mark in the declaration ofwindow states that we do
not know statically which tokens will be associated with the vari-
able. The tokens associated withwindow are stored in an impli-
cit variable. An expression of the form[...]window returns true
if this implicit variable contains all tokens specified in the square
brackets. In the body ofpress we dynamically check ifwindow is
associated withicon or shown and make use of the found token.
On return from the method (as well as from the constructor) the
tokens ofwindow are automatically stored in the implicit variable.

Up to now we regarded tokens to be a purely static language
concept. The approach taken inSwapButton2 handles tokens dy-
namically. Nonetheless we can ensure static type safety without any
difficulty because types are split and updated in the same way as in
the purely static concept. By storing tokens in implicit variables
(not directly modifiable by the programmer) we avoid the diffi-
culties we have to address in the approach taken inSwapButton.

The implicit variable inSwapButton2 corresponds essentially
to state in SwapButton. These two classes differ mainly in the
syntax. In the approach ofSwapButton we can use state informa-
tion also for purposes not related to tokens, while the approach of
SwapButton2 requires less program code and is simpler to check.
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Using tokens as values as well as letting tokens depend on values
adds much flexibility to the whole language concept.

7. Type Parameters
Tokens encoded into types and changes of types cause a difficulty
together with homogeneous genericity as in Java: Each use of a
type parameter refers to the same type while we often want to refer
to types with different token sets, and we have to consider tokens
to avoid unexpected token duplication. We need some notation to
express tokens for type parameters. In the next example we show
our first approach where we use essentially the same notation as for
types:

class IconList<W extends Window> {
[i -> i] void add (String s, W[icon] w) {...}
[i -> s] void uniconifyAll () {...}
[s -> s] W[shown] delete (String s) {...}
[s -> s] W get (String s) {...}
IconList[i] () {}

}

An instance ofIconList<MyWindow> can be used as expected:
We can add objects of typeMyWindow[icon], cause all added win-
dows to become uniconified, and delete uniconified windows and
thereby get back instances ofMyWindow[shown]. An invocation
of get cannot return any token because the returned instance of
MyWindow remains in the list where the token still is needed. The
compiler would complain if we tried to return the token and at the
same time keep it in the list.

However, for types likeIconList<MyWindow[ready]> this
approach is inappropriate. The type parameterW must not carry
tokens becauseget cannot return any reference associated with
tokens as explained above. Otherwise we would implicitly duplic-
ate tokens and destroy type safety.

If we need type parameters carrying tokens, we must declare the
parameters with a question mark to make our intention clear:

class IconList<W[?] extends Window> {...}

In this variant the compiler complains about possible token duplic-
ation inget.

In Java we have no access to types substituting type parameters
at run time. Therefore, it is most natural to keep also tokens in these
types invisible. In languages with run-time support of genericity
(like C#) we regard tokens associated with type parameters as
being stored in an implicit variable. Then, we can use the boolean
expression[ready]W to dynamically determine if each instance
of W is associated with a tokenready in a similar way as we did
in SwapButton2. As a special case we can use[]W to ensure in
methods likeget no token to be associated withW.

8. Dynamic Tokens
A simple and seemingly still powerful approach to further increase
flexibility introduces a dynamic pool of tokens into each object. We
differentiate between static tokens (used so far) and dynamic tokens
stored in dynamic pools. Dynamic tokens required on invocation
(this is, dynamic tokens to the left of-> in brackets associated
with methods) are taken from the dynamic pools of the objects
the methods belongs to (not from references to them). On return
dynamic tokens are added to the pools, not to references. If a
required dynamic token is not available on invocation, then the
invocation is delayed until the token becomes available. The main
purpose of dynamic tokens is synchronization [31, 33].

In this paper we prefix dynamic tokens with$ to distinguish
them syntactically from static tokens. By replacingunique in our
SwapButton example with a dynamic token we get:

[$unique -> $unique] void press () {...}
SwapButton[$unique] (Window[shown] w) {...}

Each client can invokepress without needing a token. Several
simultaneous invocations will be synchronized and executed in any
sequential ordering. In this respect the use of dynamic tokens re-
sembles that of “synchronized” in Java. However, we consider re-
cursive invocations2 of press as erroneous while recursive syn-
chronized methods are supported. Unfortunately, there is no easy
way to statically determine indirect recursive invocations especially
together with separate compilation. We can detect erroneous re-
cursive invocations practically only at run time as deadlocks.

Dynamic tokens are not as useful in controlling aliasing as they
seem to be at a first glance. A client does not get unique access
for some concern for a sequence of invocations – just for a single
invocation. In simple cases (like ensuring unique access to a vari-
able carrying tokens) dynamic tokens give us more flexibility at the
cost of lost static safety and lost control over effects of aliasing. As
we can see from dynamic tokens there is a fundamental difference
between conventional synchronization and limiting the effects of
aliasing although these concepts are related. Synchronization is a
much weaker concept.

9. Related Work
The work presented in this paper is closely related to process types
[27, 29, 30], a type concept where we express synchronization in
types of active objects and in types of references to active objects.
Process types were developed as abstractions over expressions in
object-oriented process calculi like Actors [1] and build the formal
basis of the present work. Static type checking ensures that only ac-
ceptable messages can be sent and thereby enforces required syn-
chronization. Process types allow us to specify nearly arbitrary con-
straints on the acceptability of messages: We can specify all prefix-
closed trace sets, type equivalence is based on trace-set equival-
ence, and subtyping on trace-set inclusion [28]. A notation based
on tokens helps us to keep static type checking as well as decid-
ing type equivalence and subtyping simple [29, 30]. The process
type concept considers types to be partial behavior specifications
[19, 20] especially useful in specifying the behavior of software
components [4, 18, 25].

Recent work regards process types as a synchronization concept
in Java-like object-oriented programming languages [31, 32, 33].
This work adds a further dynamic level of synchronization while
keeping the completely static level of (required) synchronization.
To control aliasing we need mainly the static level.

There are several approaches similar to process types. Some
approaches ensure subtypes to show the same deadlock behavior
as supertypes, but do not enforce message acceptability [24, 25].
Other approaches consider dynamic changes of message accept-
ability, but do not guarantee message acceptability in all cases
[8, 9, 35]. Few approaches ensure all sent messages to be accept-
able [17, 23]. There is essentially the same idea behind the well-
known work on linear types [17] based on theπ-calculus [21] and
process types based on an Actor-like model. However, since there
is no natural notion of message acceptability in theπ-calculus as
in the Actor model, static checking of linear types has to prevent
deadlocks and (therefore) is much more restrictive than checking
of process types that can ensure message acceptability without pre-
venting deadlocks.

The Fugue protocol checker [10, 11] uses a different approach
to specify client-server protocols: Rules for using interfaces are re-
corded as declarative specifications. These rules can limit the or-

2 In general, this restriction applies to invocations of all methods that require
the same dynamic tokens, not just recursive invocations of the same method.
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der in which methods are called as well as specify pre- and post-
conditions. Tokens in this protocol checker represent typestates.
Other than in our approach, they can be used only for unique refer-
ences. Since there is no concept resembling type splitting (as in
our approach), the Fugue protocol checker cannot statically en-
sure all methods to be invoked in specified orders at the presence
of aliasing. In these cases the checker introduces pre- and post-
conditions to be executed at run time. Hence, our approach can
statically ensure type safety in many cases where the Fugue pro-
tocol checker can perform only dynamic checks. There is a number
of further similar approaches to express (abstract) object states in
types and check protocol compatibility [6, 7, 36, 37, 38].

Several programming languages [5, 13, 26] were developed
based on the Join calculus [14]. For example, in Polyphonic C# [5]
we combine methods likeput andget in a buffer to a chord to be ex-
ecuted as a single unit. Clients can see how methods in a chord are
synchronized. Since only one method in a chord is executed syn-
chronously and all other methods are asynchronous, only specific
forms of synchronization are supported. Communication in Poly-
phonic C# and similar languages resembles that of the rendezvous
concept while (dynamic versions of) process types extend monit-
ors. There is no way to constrain method invocation sequences as
with process types, and there is no obvious way to use chords in
controlling aliasing.

Synchronization with tokens has a long tradition: Petri Nets
have been explored for nearly half of a century as a basis of syn-
chronization [22]. In general, expressing object states by abstract
tokens often has clear (both practical and theoretical) advantages
over expressing them more concretely by values in instance vari-
ables: Tokens are much easier tractable than concrete states espe-
cially when used in types. Many proposals use tokens to express
abstract object states [6, 10, 37].

The major contribution of this paper is to explore process types
from the perspective of aliasing control. Different from earlier work
on process types we assume each token to occur at most once in
a system. As a consequence we get clear separation of concerns,
better error detection from static type checking, and more flexibility
in specifying tokens associated with instance variables. Dependent
tokens distributed over several classes as well as values used as
tokens and tokens depending on values have not been considered
so far in the context of process types.

10. Conclusions
The basic approach to limit effects of aliasing is simple: Objects
issue tokens, and clients need tokens to interact with objects. A cli-
ent holding a token gets exclusive access to the object that issued
the token for the concern associated with the token because there
exist only one token for this concern in the whole system. Static
type checking ensures that methods can be invoked only in spe-
cified sequences by clients holding the required tokens. We apply a
number of techniques to manage tokens in more or less complicated
situations to increase the flexibility of this approach. For example,
with dependent tokens we safely specify tokens to be available if
other tokens are available, and with specific boolean expressions
we get dynamic access to (otherwise static) tokens. We also detec-
ted some cases where this concept causes difficulties or reaches its
limits: Access to instance variables carrying tokens must be exclus-
ive, dependent tokens distributed over several objects are difficult to
handle, and dynamic tokens (which are quite useful for synchron-
ization) do not help much for our purpose. Nonetheless, we already
have a number of techniques to avoid most cases of undesirable
effects of aliasing while we need not restrict aliasing by itself.
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