Optimized Shadows

back

Source

/* @pjs preload="light.png"; */

import java.util.Collections; 
import java.util.Comparator; 
PImage lightImage;

PImage lightBitmap;
PGraphics buffer;

int NUMBER_OF_WALLS = 4;

Rectangle[] walls;
PVector[] stageCorners;

boolean rayVisible;

// Setup the example
void setup(){
  size(640, 480);
  
  imageMode(CENTER);
  
  lightImage = loadImage("light.png");
  
  lightBitmap = createImage(width, height, RGB);
  buffer = createGraphics(width, height, JAVA2D);
  
  walls = new Rectangle[NUMBER_OF_WALLS];
  for(int i = 0; i < walls.length; i++){
    int x = i * width / walls.length + 50;
    int y = floor(random(50, height-200));
    walls[i] = new Rectangle(x, y, 100, 100);
  }
  
  // An array of the stage corners that we'll use later
  stageCorners = new PVector[]{ new PVector(0,0), new PVector(width, 0), new PVector(width, height),new PVector(0, height)};
}

// The draw() method is called every frame
void draw(){
  background(#4488cc);
  final PVector light = new PVector(mouseX, mouseY);
  
  // Ray casting!
  // Cast rays through the corners of each wall towards the stage edge.
  // Save all of the intersection points or ray end points if there was no intersection.
  ArrayList points = new ArrayList();
  PVector end = null;
  PVector intersect;
  int i;
  for(Rectangle wall : walls){
    // Create a ray from the light through each corner out to the edge of the stage.
    // This array defines points just inside of each corner to make sure we hit each one.
    // It also defines points just outside of each corner so we can see to the stage edges.
    PVector[] corners = new PVector[]{
      new PVector(wall.x + 1, wall.y + 1),
      new PVector(wall.x - 1, wall.y - 1),
      
      new PVector(wall.x + 1 + wall.width, wall.y + 1),
      new PVector(wall.x - 1 + wall.width, wall.y - 1),
      
      new PVector(wall.x + 1 + wall.width, wall.y + 1 + wall.height),
      new PVector(wall.x - 1 + wall.width, wall.y - 1 + wall.height),
      
      new PVector(wall.x + 1, wall.y + 1 + wall.height),
      new PVector(wall.x - 1, wall.y - 1 + wall.height),
    };
    
    // Calculate rays through each point to the edge of the stage
    for(i = 0; i < corners.length; i++){
      PVector c = corners[i];
      // Here comes the linear algebra.
      // The equation for a line is y = slope * x + b
      // b is where the line crosses the left edge of the stage
      float slope = (c.y - light.y) / (c.x - light.x);
      float b = light.y - slope * light.x;
      
      if(c.x == light.x){
        // Vertical lines are a special case
        if(c.y <= light.y){
          end = new PVector(light.x, 0);
        }else{
          end = new PVector(light.x, height);
        }
      }else if(c.y == light.y){
        // Horizontal lines are a special case
        if(c.x <= light.x){
          end = new PVector(0, light.y);
        }else{
          end = new PVector(width, light.y);
        }
      }else{
        // Find the point where the line crosses the stage edge
        PVector left = new PVector(0, b);
        PVector right = new PVector(width, slope * width + b);
        PVector top = new PVector(-b/slope, 0);
        PVector bottom = new PVector((height-b)/slope, height);
        
        // Get the actual intersection point
        if(c.y <= light.y && c.x >= light.x){
          if(top.x >= 0 && top.x <= width){
            end = top;
          }else{
            end = right;
          }
        }else if(c.y <= light.y && c.x <= light.x){
          if(top.x >= 0 && top.x <= width){
            end = top;
          }else{
            end = left;
          }
        }else if(c.y >= light.y && c.x >= light.x){
          if(bottom.x >= 0 && bottom.x <= width){
            end = bottom;
          }else{
            end = right;
          }
        }else if(c.y >= light.y && c.x <= light.x){
          if(bottom.x >= 0 && bottom.x <= width){
            end = bottom;
          }else{
            end = left;
          }
        }
      }
      
      // Check if the ray intersected the wall
      intersect = getWallIntersection(light, end);
      
      if(intersect != null){
        // This is the front edge of the light blocking object
        points.add(intersect);
      }else{
        // Nothing blocked the ray
        points.add(end);
      }
    }
  }
  
  // Shoot rays at each of the stage corners to see if the corner
  // of the stage is in shadow. This needs to be done so that
  // shadows don't cut the corner.
  for(i = 0; i < stageCorners.length; i++){
    intersect = getWallIntersection(light, stageCorners[i]);
    if(intersect == null){
      points.add(stageCorners[i]);
    }
  }
  
  // Now sort the points clockwise around the light
  // Sorting is required so that the points are connected in the right order.
  //
  // This sorting algorithm was copied from Stack Overflow:
  // http://stackoverflow.com/questions/6989100/sort-points-in-clockwise-order
  //
  // Here's a pseudo-code implementation if you want to code it yourself:
  // http://en.wikipedia.org/wiki/Graham_scan
  Collections.sort(points, new Comparator(){
    public int compare(PVector a, PVector b){
      if(a.x - light.x >= 0 && b.x - light.x < 0)
        return 1;
      if(a.x - light.x < 0 && b.x - light.x >= 0)
        return -1;
      if(a.x - light.x == 0 && b.x - light.x == 0){
        if(a.y - light.y >= 0 || b.y - light.y >= 0)
            return 1;
        return -1;
      }
      
      // Compute the cross product of vectors (center -> a) x (center -> b)
      float det = (a.x - light.x) * (b.y - light.y) - (b.x - light.x) * (a.y - light.y);
      if(det < 0)
        return 1;
      if(det > 0)
        return -1;
        
      // Points a and b are on the same line from the center
      // Check which point is closer to the center  
      float d1 = (a.x - light.x) * (a.x - light.x) + (a.y - light.y) * (a.y - light.y);
      float d2 = (b.x - light.x) * (b.x - light.x) + (b.y - light.y) * (b.y - light.y);
      return d1 > d2 ? 1 : 0;
    }
  });
  
  
  // Connect the dots and fill in the shape, which are cones of light,
  // with a bright white color. When multiplied with the background,
  // the white color will allow the full color of the background to
  // shine through.
  buffer.beginDraw();
  buffer.background(100);
  buffer.fill(255);
  buffer.noStroke();
  buffer.beginShape();
  for(PVector point : points){
    if(point != null)
      buffer.vertex(point.x, point.y);
  }
  buffer.endShape();
  buffer.endDraw();
  
  lightBitmap = buffer.get(0, 0, buffer.width, buffer.height);
  
  blend(lightBitmap, 0, 0, width, height, 0, 0, width, height, MULTIPLY);

  for(Rectangle wall : walls){
    wall.display();
  }
  
  image(lightImage, light.x, light.y);
  
  if(rayVisible){
    for(PVector point : points){
      stroke(255);
      line(light.x, light.y, point.x, point.y);
    }
  }
  
  text((int)frameRate + " FPS", 20, 20);
}

void mousePressed(){
  rayVisible = !rayVisible;
}

PVector getWallIntersection(PVector start, PVector end){
  float distanceToWall = MAX_FLOAT;
  PVector closestIntersection = null;
  
  for(Rectangle wall : walls){
    PVector nw, ne, se, sw, intersect;
    nw = new PVector(wall.x, wall.y);
    ne = new PVector(wall.x + wall.width, wall.y);
    sw = new PVector(wall.x, wall.y + wall.height);
    se = new PVector(wall.x + wall.width, wall.y + wall.height);
    
    /* top line */
    intersect = intersectPLines(start, end, nw, ne);
    if(intersect != null){
      float distance = dist(start.x, start.y, intersect.x, intersect.y);
      if(distance < distanceToWall){
        distanceToWall = distance;
        closestIntersection = intersect;
      }
    }
    
    /* left line */
    intersect = intersectPLines(start, end, nw, sw);
    if(intersect != null){
      float distance = dist(start.x, start.y, intersect.x, intersect.y);
      if(distance < distanceToWall){
        distanceToWall = distance;
        closestIntersection = intersect;
      }
    }
    
    /* right line */
    intersect = intersectPLines(start, end, se, ne);
    if(intersect != null){
      float distance = dist(start.x, start.y, intersect.x, intersect.y);
      if(distance < distanceToWall){
        distanceToWall = distance;
        closestIntersection = intersect;
      }
    }
    
    /* bottom line */
    intersect = intersectPLines(start, end, se, sw);
    if(intersect != null){
      float distance = dist(start.x, start.y, intersect.x, intersect.y);
      if(distance < distanceToWall){
        distanceToWall = distance;
        closestIntersection = intersect;
      }
    }
  }
  return closestIntersection;
}

PVector intersectPLines(PVector v1start, PVector v1end, PVector v2start, PVector v2end){
  return intersectLines(v1start.x, v1start.y, v1end.x, v1end.y, v2start.x, v2start.y, v2end.x, v2end.y);
}

/* From: http://processingjs.org/learning/custom/intersect/ */
PVector intersectLines(float x1, float y1, float x2, float y2, float x3, float y3, float x4, float y4){
  float a1, a2, b1, b2, c1, c2;
  float r1, r2 , r3, r4;
  float denom, offset, num;
  
  PVector ret = null;

  // Compute a1, b1, c1, where line joining points 1 and 2
  // is "a1 x + b1 y + c1 = 0".
  a1 = y2 - y1;
  b1 = x1 - x2;
  c1 = (x2 * y1) - (x1 * y2);

  // Compute r3 and r4.
  r3 = ((a1 * x3) + (b1 * y3) + c1);
  r4 = ((a1 * x4) + (b1 * y4) + c1);

  // Check signs of r3 and r4. If both point 3 and point 4 lie on
  // same side of line 1, the line segments do not intersect.
  if ((r3 != 0) && (r4 != 0) && same_sign(r3, r4)){
    return null;
  }

  // Compute a2, b2, c2
  a2 = y4 - y3;
  b2 = x3 - x4;
  c2 = (x4 * y3) - (x3 * y4);

  // Compute r1 and r2
  r1 = (a2 * x1) + (b2 * y1) + c2;
  r2 = (a2 * x2) + (b2 * y2) + c2;

  // Check signs of r1 and r2. If both point 1 and point 2 lie
  // on same side of second line segment, the line segments do
  // not intersect.
  if ((r1 != 0) && (r2 != 0) && (same_sign(r1, r2))){
    return null;
  }

  //Line segments intersect: compute intersection point.
  denom = (a1 * b2) - (a2 * b1);

  if (denom == 0) {
    return null;
  }

  if (denom < 0){ 
    offset = -denom / 2; 
  } 
  else {
    offset = denom / 2 ;
  }

  // The denom/2 is to get rounding instead of truncating. It
  // is added or subtracted to the numerator, depending upon the
  // sign of the numerator.
  num = (b1 * c2) - (b2 * c1);
  
  ret = new PVector(0,0);
  
  if (num < 0){
    ret.x = (num - offset) / denom;
  } 
  else {
    ret.x = (num + offset) / denom;
  }

  num = (a2 * c1) - (a1 * c2);
  if (num < 0){
    ret.y = ( num - offset) / denom;
  } 
  else {
    ret.y = (num + offset) / denom;
  }
  // lines_intersect
  return ret;
}


boolean same_sign(float a, float b){
  return (( a * b) >= 0);
}

class Rectangle{
  int x;
  int y;
  int width;
  int height;
  Rectangle(int x, int y, int width, int height){
    this.x = x;
    this.y = y;
    this.width = width;
    this.height = height;
  }
  void display(){
    noStroke();
    rect(x, y, width, height);
  }
  
  boolean overlap(int otherX, int otherY, int otherWidth, int otherHeight){
    return !(x + width < otherX || x > otherX+otherWidth || y + height < otherY || y > otherY+otherHeight);
  }
}

Warning: Cannot load module "http" because required module "raphf" is not loaded in Unknown on line 0