
SIGGROUP Bulletin August 1999/Vol 20, No.2 1

Collaborative Process Patterns for e-Business
Prasad Jayaweera, Paul Johannesson, and Petia Wohed

Department of Computer and Systems Sciences
Stockholm University and Royal Institute of Technology

Forum 100, SE-164 40 Kista, Sweden
{prasad, pajo, petia} @dsv.su.se

ABSTRACT
The basic notions in computer supported work coordination in
e-Business are communicative, institutional, and deontic notions
such as obligation, responsibility, and trust. The Language
Action approach that has a significant impact within CSCW,
therefore, seems to be a most promising framework for
designing e-Business systems. However, the penetration of the
Language Action approach in industrial practice is still limited.
We discuss some reasons for this state of affairs by identifying a
number of problems that hinder an effective application of the
Language Action approach. We propose modeling techniques
and methodological guidelines that can contribute to the
solution of these problems. These techniques and guidelines are
based on three building blocks: a business model describing the
values exchanged in an e-Business process, a formal and
executable language based on communicating state machines,
and an automated designer assistant that guides a user from a
business model to an executable process model.

1 INTRODUCTION
The e-Business transactions are carried out in CSCW
environment. The use of computer supported systems enables
transactions to be carried out rapidly and to a low cost. As a
consequence, new ways of working, new forms of organization,
and new business models are emerging, such as virtual
enterprises, integrated supply chains, and value networks. A
common theme is that of inter-organizational co-operation and
communication. Business processes are not carried out within a
single organization but across organizational boundaries. As
noted in [Weigand98], inter-organizational processes have two
distinguishing features. Firstly, the resources needed for a
process cannot be assigned centrally as they reside in different
organizations. Secondly, the organizations involved in a process
have a certain degree of autonomy meaning that no central
authority has control over all the co-operating organizations.
These features of processes in an e-Business setting imply that in
order to build effective IT-systems, it is necessary to explicitly
model and manage communicative, institutional, and deontic
notions such as request, acknowledgement, commitment,
obligation, responsibility, and trust. Thus, the Language Action
approach to communication and information modeling seems to
be promising framework for designing e-Business systems.
However, the penetration of the Language Action approach in
industrial practice is still low although there exists a
comprehensive body of theoretical as well as applied research in
the area, [Winograd86], [Weigand98], [Goldkuhl96], [Dietz00],
and. [Johannesson01].

The limits of the applicability of the Language Action approach
have been widely discussed in academia, e.g. the
Suchman/Winograd debate, [Taylor00]. We acknowledge the
importance of the arguments put forward in these discussions,
but believe that they are less relevant in e-Business settings, as
business processes are more formalized and structured than
many intra-organizational work processes. Instead, we believe

that other factors are more important for the low penetration of
the Language Action approach. Our own experience of applying
the Language Action approach for e-Business in industrial case
studies as well as in undergraduate teaching has identified three
factors that hinder an effective use of the approach:

1. Using the Language Action approach for process modeling
easily encourages a low-level perspective where the
modeling quickly focuses on communicative acts like
requests, replies, acknowledgements, cancellations, etc.
Managers often experience this level as too detailed and
inadequate starting point for understanding the business
objectives motivating the process design.

2. The underlying notions and terminology of the Language
Action approach are unfamiliar to most users and designers.
They find it difficult to reason and communicate using the
specialized terminology of the Language Action approach.

3. There is a considerable distance between Language Action
models and executable systems. After having designed a
process model using the Language Action approach, there
is still much design and implementation work to be done
before an executable system is completed.

The purpose of this paper is to suggest methodological
guidelines and modeling techniques that can overcome these
problems and thereby facilitate the application of the Language
Action approach. The proposed guidelines and techniques are
based on three building blocks:

1. A business model describing the values exchanged in an e-
Business process.

2. A formal and executable language based on communicating
state machines used for modeling processes.

3. An automated designer assistant that guides a user from a
business model to an executable process model.

The paper is structured as follows. Section 2 briefly reviews
related research. Section 3 introduces a type of business model
built on value exchanges. Section 4 describes BML, a formal
language for process modeling. Section 5 describes an
automated designer assistant that supports the task of creating
process models. Section 6 concludes the paper and gives
directions for further research.

2 RELATED RESEARCH
One of the most well known Language Action approaches is the
Action Workflow approach, [Winograd86] [Mora92] that
considers only the communicative action. Based on this, series
of computer supported systems for work coordiation among
users have been developed. The CoordinatorTM of Action
Technology Inc. has been acknowledged for its ability to linkage
of messages within conversation. In this approach, business

2 SIGGROUP Bulletin August 1999/Vol 20, No.2

processes are modeled as loops, see Fig. 1. A loop starts by a
request from a customer, followed by a negotiation phase, which
results in the provider accepting the request and promising to
carry it out. The third step consists of the provider carrying out
the request, and the last step is the acknowledgement of the
customer that the request has been satisfied.

Fig. 1. Action Workflow Loop with four phases

In contrast, DEMO (Dynamic Essential Modeling of
Organizations), [Reijswoud99] and [Dietz00], also takes the
material action into account. In DEMO, a transaction consists of
three phases: the order phase, the execution phase, and the result
phase. In the order phase, an actagenic conversation takes place:
one actor, the initiator, requests something from another actor,
the executor, who can reject or accept. If the executor accepts,
the result phase starts and a factagenic conversation takes place.
In this conversation, the executor declares that she has
completed her task and finally the initiator accepts or rejects this
claim.

A third Language Action approach is BAT (Business Action
Theory), [Goldkuhl96]. BAT has a more limited scope than the
Action Workflow approach as it only addresses business
transactions and not works processes in general. For business
processes, BAT provides a more elaborated framework for
business transactions than Action Workflow by also
incorporating preliminary phases, such as contact search. An
important novel feature of BAT is the symmetry it introduces by
stating that both actors in a business transaction have mutual
obligations to each other. This idea exists also in other
approaches (see Section 3), and is one basic element for the
modeling guidelines proposed in this paper.

Another recognizable work can be found in [Bowers88] where
development of LAP in CSCW was addressed. In their
Configurable Structured Message Oriented Systems (COSMOS)
project for computer-mediated communication and group
working, they have argued that LAP misses locality and
situatedness of conversations.

In contrast to the approaches above and most Language Action
modeling, the approach we are proposing starts with a Business
Model of reciprocal value transactions. Then based on the
business model and identified process patterns based on
communicative acts, final executable process model is deduced
with the help of designer assistant.

3 BUSINESS MODELS
When developing an e-Business system, an important first
activity is to design a business model. The purpose of a business
model is to describe the fundamental business aspects of the
system to be built. Thus, a business model describes which
actors are involved, what the actors offer each other, and what
activities they perform, [Gordijn00]. The central concept in a
business model is that of value, and the model describes how
value is exchanged between actors [Porter98]. This can be
contrasted to a process model, which aims at describing the

procedural aspects of a process and specifies the control flow of
the activities carried out in a process.

Following Gordijn et.al., [Gordijn00b], we identify the
following basic notions of a business model:

Actor. An actor is an independent economic and/or legal entity.

Value object. A value object is a service or a thing that is of
value to one or more actors.

Value transfer. A value transfer is the transfer of a value object
from one actor to another actor.

Value exchange. A value exchange consists of two value
transfers, T1 and T2, that satisfy the following condition: if T1 is
a value transfer from actor A1 to actor A2, then T2 is a value
transfer from A2 to A1. The intuition is that a value exchange
consists of two reciprocal acts - one actor providing another
actor with something of value and receiving something of value
in return.

(Note that we have omitted several notions in the approach of
Gordijn et.al. and simplified others, as this will be sufficient for
our present purposes.)

Business model. A business model consists of three parts:

• A - a set of actor types

• VO - a set of value object types

• VE - a set of value exchange types

A business model can be expressed in a graph, see Fig. 2 for an
example. In this business model, A = {Customer, Retailer,
Importer}, VO = {Car, Money}, VE = {<<Retailer, Customer,
Car>, <Customer, Retailer, Money>>, <<Importer, Retailer,
Car>, <Retailer, Importer, Money>>} There are two value
exchanges: purchase and import. In a purchase, a retailer
provides a customer with a car in return for money. In an import,
an importer provides a retailer with a car in return for money.

Im
po

rt

CustomerCustomer RetailerRetailer ImporterImporter

Money

Car

Pu
rc

ha
se

Money

Car

Fig. 2. Business Model for Car Sale example.

4 BUSINESS MODELING LANGUAGE
This section briefly introduces a language based on
communicating state machines, BML (Business Modeling
Language), which is developed by Viewlocity, [Johannesson00]
and [Viewlocity]. The language has similarities to SDL
(Specification and Description Language), [Belina91] and
[SDL]. BML is a communication oriented process language,
which means that it focuses on describing interaction between
actors through the sending and receiving of messages. An
important advantage of BML is that it can be used for the
specification and design as well as maintenance of systems. This
means that the same language can be used in different phases of
a system’s life cycle: in feasibility analysis, in requirement
specification, in the design and implementation phases, and even

SIGGROUP Bulletin August 1999/Vol 20, No.2 3

in the operation phase. This enables different categories of
stakeholders to use the same language for different purposes.

The dynamic behaviour of a system is described by using
process models, which visualize the order in which the messages
shall be sent and received, see Fig. 3.

Fig. 3. The BML process diagram (Note that the figure
only shows the beginning of a Process.)

The process segment shown in Fig. 3. describes the situation
when Message 1 is received from Process A, Message 2 will be
sent out to the Customer. Then it waits for Message 3 from
Process B. For our work we have made two extensions to the
original BML semantics, mainly to ensure the compactness and
the clarity of targeting process models. First, receive and send
messages can be received from or be sent to more than one
process or actor, secondly, wait states also can receive message/s
prior to making the transition to the next state.

The main BML symbols are the following, see also Fig. 4:

Wait for Event and Start. The process instance is waiting in the
Wait for Event state until a message is received or a timer has
expired. A Wait for Event symbol with a name "Start" is the
starting state.

Stop. Describes the end of the flow of the process instance.

Receive Message. Describes the consumption of a message from
the input queue.

Send Message. Describes the sending of a message.

Automated Business Decision. The control flow is dynamically
changed depending on different business rules.

Human actor. Symbols of external actors.

Fig. 4. Symbols used in BML

A basic characteristic of a BML diagram is that it is designed
from one actor’s perspective; we will call this actor the base
actor. The base actor sends messages to, and receives messages
from other actors. Typically, the base actor is the organization
for whom an e-Business system is to be built.

We now introduce two process patterns in the form of BML
diagrams that correspond to the action-workflow loop. We need
two distinct process patterns due to the fact that a BML diagram
is designed from one actor’s perspective. We need one process
pattern for the case where the base actor is the requesting actor
for value object in a value transfer and another process pattern
when the base actor is the supplying actor for value object in a

value transfer. The first pattern is called an incoming diagram
and the second an outgoing diagram.

Incoming diagram (basic form)
An incoming diagram models a situation where the base actor
receives a value object from another actor, see Fig. 5.

• The first step is a directive from the base actor to another
actor, called the originator, asking for some value object.
(Send Message “dir(VT)”, where “VT” stands for value
transfer, and “dir” for directive speech act.)

• The second step is a reply from the originator. The reply
has to be interpreted and can be either a rejection or a
commitment to fulfil the request. (Receive Message
“Reply” followed by either Send Message “Rejection” or
Send Message “com(VT)”, where “com” stands for
commissive speech act.)

• In the third step, the directive is fulfilled and the originator
declares that this is the case. (Receive Message “decl(VT)”,
where “decl” stands for declarative speech act.)

• Finally, the base actor acknowledges that her original
directive has been fulfilled. (Send Message “Ack(VT)”,
where “Ack” stands for an acknowledgement.)

In these basic BML templates (basic forms) that we are
proposing, there are some explicit positions where inter diagram
communications are possible. Sending out positions are named
as OUT ports while receiving in positions are named as IN ports.
Depending on the number of interactions and required control
among them, these ports are completed by BML message
symbols visualizing the communication between different
diagrams building up a model.

Fig. 5. Incoming Diagram with marked IN and OUT
ports

Note, that here we model only the simplest possible version of
the action-workflow loop and omit, for example, negotiations,
counter offers, and breakdowns. Extensions to cover these and
other cases are left for further work. The continuation of our
work can be found in [Jayaweera01].

Outgoing diagram (basic form)
An outgoing diagram models a situation where the base actor
supplies another actor with a value object, see Fig. 6. In this
case, we follow the suggestion by James Taylor in [Taylor98]
and introduce an additional qualification step, where the base
actor acquires the means required for carrying out the requested
action. e.g. Some material needed to produce and deliver a
product.

4 SIGGROUP Bulletin August 1999/Vol 20, No.2

• The first step is a directive from an actor, called the
recipient, to the base actor asking for some value object.
(Receive Message “dir(VT)”.)

• The second step is the additional qualification step. It
consists of one or more requests to other actors to supply
the base actor with the means it needs. The step also
includes the responses from these actors. (Send Message
“Request” followed by Receive Message “Reply”.)

• In the third step, the responses are evaluated and the base
actor either rejects the directive or commits to fulfil it.
(either Send Message “Rejection” or Send Message
“com(VT)”.)

• In the fourth step, the directive is fulfilled and the base
actor declares that this is the case. (Send Message
“decl(VT)”.)

• Finally, the recipient acknowledges that her original
directive has been fulfilled. (Receive Message “Ack(VT)”.)

Fig. 6. Outgoing Diagram with marked IN and OUT
ports

Note that there is an asymmetry between the incoming and the
outgoing diagram. The reason being that the qualification step is
relevant only when the base actor has to supply a value object.
Also note that we have only introduced the basic forms of
incoming and outgoing diagrams; they may be extended with
additional symbols in order to handle their communication with
each other.

A process can be modeled by a set of incoming diagrams and
outgoing diagrams – such a set is called a process model. The
basic structure of the diagrams in a process model can be
derived simply from a business model. However, the
communication among the diagrams is not uniquely determined
by the business model, but may vary depending on the
requirements for the process. How to move from a business
model to a process model is the main topic of the next section.

The diagrams can communicate with each other by sending and
receiving messages. To specify where this can occur, we have
introduceed the notions of IN-ports and OUT-ports.

5 A DESIGNER ASSISTANT
In this section, we will show how a business model can be
transformed and extended into a process model in a systematic
way. A business model, as defined in Section 3, states what
value objects are exchanged between what actors, while a
process model, as defined in Section 4, shows the order of the
actors' activities in the form of communicative acts. Moving
from a business model to a process model is not a trivial task but
requires a large number of design decisions. In order to support

a designer in this task, we propose an automated designer
assistant that guides the designer through the task by means of a
sequence of questions (A similar designer assistant has been
proposed for the area of conceptual modeling by Wohed
[Wohed00a], [Wohed00b]). This sequence can be divided into
four phases, see Fig. 7.

Phase 1. The designer builds the business model, identifies the
base actor, i.e. the organization from whose perspective the
system is to be built, and the customer of the process to be
designed.

Phase 2. The designer establishes a (partial) order between the
value transfers of the business model.

Phase 3. The designer introduces the communicative acts
needed to handle the value transfers and establishes a (partial)
order between them.

Phase 4. From the output of phase 3, a process model is
automatically derived.

Fig. 7. Phases and Output of each phase

5.1 Phase 1 - Business Model
In the first phase, the designer builds a business model and
specifies the organization for which the e-Business system is to
be developed, and the customer of the process to be designed.
During this phase the answers to the questions in Fig. 8 are
obtained.

The questions guide the designer through the task and prompt
her to provide names for actors, value objects, value transfers,
and value exchanges. An example of a set of answers to those
questions is also found in given in Fig. 8 and the resulting
business model is shown in Fig. 2.

SIGGROUP Bulletin August 1999/Vol 20, No.2 5

Fig. 8. Questions and Answers for the Example in
Phase 1

5.2 Phase 2 - Business Order
In this phase, the designer starts to construct an order between
the activities of the process. First, the designer takes into
account only value transfers while disregarding the
communicative acts that co-ordinate the process. By considering
only the order of the value transfers in this phase, the designer
can concentrate on the main business logic and postpone until
later more detailed design decisions about the coordination of
communicative acts.

The designer first has to decide whether a value transfer must or
can be divided into parts; such a part is called a value transfer
part. A typical example is a payment (one value transfer), which
may be divided into one down payment and one final payment
(two value transfer parts). Another example is the delivery of
goods that may be divided into several parts.

After having identified and named the value transfer parts as in
the question 7) of the Fig. 9., the designer is prompted to order
them by determining the dependencies that exist between them
by filling the matrix of question 8) of Fig. 9. In an e-Business
context, we identify two main types of dependencies: trust
dependencies and flow dependencies.

A trust dependency occurs between two value transfer parts
within the same value exchange, e.g. that a product must be paid
before it can be delivered. A trust dependency expresses the
level of trust between the actors involved in a value exchange,
e.g. requesting a down payment expresses low trust.

A flow dependency, [Malone98], occurs between two value
transfer parts in different value exchanges and expresses that the
value object obtained by one of the value transfers is needed for
the other value transfer. A simple example is that a retailer has
to obtain a product from an importer before delivering it to a
customer.

An example of answers to the questions is given in Fig. 9. The
resulting partial order is the following (< means precedes):

{DownPaymentFromCustomer < CarToCustomer,
CarToCustomer < FinalPaymentFromCustomer,
DownPaymentFromCustomer < FinalPaymentFromCustomer,
CarFromImporter < PaymentToImporter,
CarFromImporter < CarToCustomer}

Such a partial order between value transfer parts is called a
business order. It expresses the order between the most
important activities in the process and abstracts from
communicative activities.

Fig. 9. Questions and Answers for the Example in
Phase 2

5.3 PHASE 3 - PROCESS ORDER
In phase 3, the designer will extend the business order from
phase 2 by specifying dependencies between communicative
acts. A starting point for this task is that for each value transfer
part, there will be one action-workflow loop (modeled by an
incoming or outgoing diagram in phase 4). The designer has to
determine the interactions between the loops given by all the
value transfer parts. The designer assistant will support this task
through a number of questions. The intuition behind several of
these questions is, roughly expressed, the following: Before an
actor does something of value to another actor, it will check
whether that actor has deserved it. By doing “something of value
to another actor” is meant to carry out a value transfer, to
commit to carry out a value transfer, or to initiate the acquisition
of means needed to carry out a value transfer. The expression
“check whether that actor has deserved it” has to do with the fact
that a value transfer from an actor A to an actor B always is
accompanied by another value transfer from B to A; recall that
these two value transfers together constitute one value exchange.
The expression states that before actor A is prepared to carry out
its value transfer (or some preparation to it) to B, it will check
that B has done its corresponding value transfer (or some
preparation). Note that this check will be done only if the
business order so prescribes. Furthermore, there are questions
for ensuring that all required means for carrying out a value
transfer have been obtained.

In order to formulate the questions, we need to distinguish
between an incoming value transfer part (VTP), where the base
actor receives a value object, and an outgoing VTP, where the
base actor supplies a value object.

If In is an incoming VTP and Out an outgoing VTP within the
same value exchange, and In < Out in the business order, ask:

9a. Do you require that In be performed before you
commit to perform Out?

9b. Do you require a commitment for In before you
commit to perform Out?

6 SIGGROUP Bulletin August 1999/Vol 20, No.2

If In is an incoming VTP and Out an outgoing VTP within the
same value exchange, and Means is an incoming VTP in another
value exchange, and In < Out, and Means < Out in the business
order, ask:

10a. Do you require that Means be performed before
you commit to perform Out?

10b. Do you require a commitment for Means before
you commit to perform Out?

10c. Do you require that In be performed before you
request Means?

An example of answers to these questions is given in Fig. 10.
These answers will result in an extension to the business order
from phase 2, which also includes ordering between
communicative acts. Such an order is called a process order. In
this case, we arrive at a process order PO:

BO ∪ {Down payment from customer < com(Car to customer),
com(Final payment from customer < com(Car to customer),
Car from importer < com(Payment to importer),
com(Car from importer) < com(Car to customer)
Down payment from customer < dir(Car from importer)}

BO is the business order derived in phase 2 for the example.

Fig. 10. Questions & Answers for the Example in
Phase 3

5.4 Phase 4 - Mapping Process Order to BML
Process Model
In the phase 4, designer assistant requires no user intervention
and generates final process model with the help of mapping
function in Fig. 11.

At the completion of phase 3, a process order will be resulted as
a set of inequalities. For each inequality in the process order,
there will be a corresponding rule in above mapping function
that completes the inter-diagram communication by connecting
an IN-port of one diagram with OUT-port of an another.

By applying this mapping function over process order the final
process model can be generated as in the Fig. 12. Explanatory
stepwise description on how to map a process order to a process
model can be found in [Jayaweera01b]. The extended detailed
work on this direction is also available in the [Tec01].

Fig. 11. Mapping Function to Generate Process Model

Fig. 12. Final BML model with inter-diagram
communications.

SIGGROUP Bulletin August 1999/Vol 20, No.2 7

6 CONCLUDING REMARKS
In the introduction, we identified three problems that hinder an
effective use of the Language Action approach. In this section,
we will show how the modeling techniques and guidelines
introduced in the paper can address these problems, and we will
suggest directions for further research.

1. Using the Language Action approach encourages a low-level
perspective.

We suggest that the design of an e-Business process be preceded
by the design of a business model that focuses on actors and
their exchange of value objects. A business model is a natural
starting point for discussions with users and managers. When the
business model has been designed, it is successively transformed
and extended into a process model based on Language Action
notions. In this way, the designer assistant helps the designer to
investigate a large number of possible design alternatives before
committing to one of them. Furthermore, it is also possible to
move backwards and from a process model track the business
objectives that motivated its design.

2. The notions and terminology of the Language Action
approach are unfamiliar.

We propose an automated designer assistant that guides the
designer through the task by means of a sequence of questions
that use only terminology familiar to the ordinary user or
manager. We have outlined the appearance of these questions
but much work remains in order to make the questions easily
understandable. Furthermore, a graphical interface showing
partial models would improve the interaction with the designer.
Another topic for future work is to identify high-level concepts
in which the questions can be formulated. Examples of such
concepts are the trust and flow dependencies introduced in
Section 5.3.

3. There is a large distance between Language Action models
and executable systems.

We suggest the use of communicating state machines, in the
form of the executable language BML, for modeling processes.
Thus, the specified process models are executable. Another
advantage of using communicating state machines is that each
state machine corresponds to an Action Workflow loop, which
makes it easy to understand. Further work is needed here to
specify the form of the contents of the messages sent between
the state machines.

In this paper, we have only covered the simplest form of a
process. Further work is, therefore, needed to handle extensions
such as negotiations, breakdowns, cancellations, etc.
Furthermore, the scope of the processes could also be extended
to handle additional phases in e-Business, like contact search as
in BAT.

REFERENCES

[Belina91] Belina F., Hogrefe D. and Amarddeo S.: “SDL with
Applications from Protocol Specification”, Carl Hanser
Verlag and Printice Hall International UK 1991.

[Bowers88] Bowers, J and Churcher, J., “Local and Global
Structuring of Computer Mediated Communication:
Developing Linguistic Perspectives on CSCW in COSMOS”,
Computer-Supported Cooperative Work (CSCW) 1988.

[Dietz00] Dietz, J.L.G.; Barjis, J.: “Petri Net expressions of
DEMO Process Models as a rigid foundation for
Requirements Engineering”, The 2nd International
Conference on Enterprise Information Systems (ICEIS'00),
2000.

[Goldkuhl96] Goldkuhl, G.: “Generic Business Frameworks and
Action Modeling”, First International Workshop on
Communications Modeling - The Language/Action
Perspective, Springer Verlag 1996.

[Gordijn00a] Gordijn J., Akkermans J. M. & Vliet J. C.:
“Business Modeling is not Process Modeling”, eCOM2000
workshop, 19th International Conference on Conceptual
Modeling 2000.

[Gordijn00b] Gordijn J., Akkermans J. M. & Vliet J. C.: “What's
in an Electronic Business Model? ”, Knowledge Engineering
and Knowledge Management - Methods, Models, and Tools,
12th International Conference, Springer-Verlag 2000.

[Jayaweera01a] Submitted, Jayaweera P., Johannesson P., &
Wohed P.: “Process Patterns to Generate e-Commerce
Systems”, 2nd International Workshop on Conceptual
Modeling Approaches for e-Business (eCOMO'2001), to be
held in conjunction with the 20th International Conference on
Conceptual Modeling Yokohama, Japan

[Jayaweera01b] Jayaweera P., Johannesson P., & Wohed P.:
“From Business Model to Process Patterns in e-commerce”,
The Sixth International Workshop on the Language-Action
Perspective on Communication Modelling 2001, Montreal,
Canada.

[Johannesson01] Johannesson P.: “A Language/action based
Approach to Information Modeling”, in Information
Modeling in the New Millennium, eds. M. Rossi and K. Siau,
IDEA Publishing, 2001.

[Johannesson00] Johannesson P. and Perjons E.: “Design
Principle for Application Integration”, 12th Conference on
Advanced Information Systems Engineering, eds. B. Wangler
and L. Bergman, Springer LNCS, 2000.

[Mora92] Raul Medina et al.: "The Action Workflow Approach
to Workflow Management Technology", Proceedings of 4th

Conference on Computer Supported Cooperative Work,
ACM Press, 1992.

[Malone98] Malone et al.: “Towards a handbook of
organizational processes”, MIT eBusiness Process Handbook
http://ccs.mit.edu/21c/mgtsci/index.htm

[Porter98] Porter M. E.: “Competitive Advantages. Creating and
Sustaining Superior Performance” The Free Press 1998.

[Reijswoud99] Reijswoud V. E. & Dietz J. L. G.: “Business
Process Re-design with DEMO”, Third International
Workshop, The Language Action Perspective on
Communication Modeling, 1999.

[SDL] SDL Standards, http://www.sdl-
forum.org/Publications/Standards.htm

[Searle69] Searle J.: “Speech Acts - An Essay in the Philosophy
of Language”, Cambridge University Press 1969.

[Taylor00] Taylor, J. R., Groleau, C., Heaton, L. and Van Every
E. J.: “The Computerization of Work : A Communication
Perspective”, Thousand Oaks CA: Sage.

[Taylor98] Taylor J.: “The Limits of Rationality in
Communication Modeling – a Semiotic Reinterpretation of
the Concept of "Speech Act"”, Third International
Workshop, The Language Action Perspective on
Communication Modeling, eds. G. Goldkuhl et.al. 1998

[Tec01] Technical Report, “Mapping Function to Generate
BML Process Model”,
url:http://www.dsv.su.se/~prasad/html/MapFun.doc

[Viewlocity] Viewlocity,
http://www.viewlocity.com/solutions/frame_index.html

http://www.sdl-forum.org/Publications/Standards.htm
http://www.sdl-forum.org/Publications/Standards.htm

8 SIGGROUP Bulletin August 1999/Vol 20, No.2

[Weigand98] Weigand H., van den Heuvel W. and Dignum F.:
“Modeling Electronic Commerce Transactions – A Layered
Approach”, Third International Workshop, The Language
Action Perspective on Communication Modeling, eds. G.
Goldkuhl et.al. 1998.

[Winograd86] Winograd, T. & Flores, F.: “Understanding
Computers and Cognition: A New Foundation for Design”,
Ablex, Norwood, N.J 1986.

[Wohed00a] Wohed, P. "Conceptual Patterns for Reuse in
Information System Analysis", 12th International Conference
on Advanced Information Systems -CaiSE 2000, LNCS 1789,
Springer, pp 157-175.

[Wohed00b] Wohed, P. "Tool Support for Reuse of Analysis
Patterns - a Case Study", 19th International Conference on
Conceptual Modeling - ER 2000, LNCS 1920, Springer, pp
196-209.

