

Summary of Contents

Introduction 1

Chapter 1: Introduction to Java Networking 11

Chapter 2: Network Basics 25

Chapter 3: Network Application Models 47

Chapter 4: Web Basics 63

Chapter 5: Java I/O 83

Chapter 6: Threads 117

Chapter 7: Java Security Model 153

Chapter 8: Internet Addressing and Naming 191

Chapter 9: TCP Programming 217

Chapter 10: UDP Programming 263

Chapter 11: Multicasting 295

Chapter 12: Java URL Handler Architecture 331

Chapter 13: Implementing an HTTP Server 381

Chapter 14: Making Network Applications More Secure 445

Chapter 15: Object Serialization 509

Chapter 16: RMI 531

Chapter 17: CORBA 563

Chapter 18: Servlets 605

Chapter 19: E-mail With JavaMail 643

Chapter 20: Messaging with JMS 689

Chapter 21: Networking in JDK 1.4 723

Appendix A: Java Network Connectivity Exceptions 763

Appendix B: Installing and Configuring Tomcat 4.0 777

Index: 785

Multicasting

This chapter will introduce the IP multicast protocol that is used to for one-to-many transmission on the
Internet. IP multicast is a network-layer protocol, unlike TCP and UDP that are transport layer
protocols. The chapter will:

❑ Outline how the multicast protocol works

❑ Explain how to control the scope of multicast transmissions

❑ Introduce the Java support for UDP/IP multicast programming

Because IP multicast is a network service, it requires support by the operating system and the local
network. Platform-specific pointers are provided and a small Java program is introduced that can be
used to check local multicast availability. The chapter concludes with an in-depth multicast example
that builds a graphical group chat application.

Why Use Multicasting?
In the previous two chapters, we have demonstrated the use of TCP and UDP for effecting
communication between two parties. This model of communication is described as one-to-one (also
known as unicast) because one specific Internet host is the recipient of every communication. Although
the one-to-one model is a good fit for many applications, it is not appropriate for others.

Consider a live Internet video service. In the one-to-one model, every video client will have to establish
a separate stream with the video server. All these streams will be carrying the same payload information
and will just differ in their destination address. As a result, multiple copies of the same information are
likely to traverse the same Internet link, en route to different destinations. It would make more sense to
send a single copy of the sampled video and deliver this to all receivers, duplicating it as necessary in
the course of the routing process. This is the one-to-many transmission model (also known as multicast).

Multicast is becoming increasingly important in a variety of applications – besides its obvious utility for
live streaming applications, multicast is being used to create dynamic systems, such as Jini federations.
The Jini technology from Sun Microsystems uses IP multicast to support automated service discovery.
Other companies are experimenting with multicast delivered software updates. Unlike the unicast
Internet protocols, IP multicast is still not universally available. It is expected that multicast will
increasingly be used within individual organization networks. Unfortunately, it is not clear when and if
IP multicast will become available as a global Internet-wide service.

Chapter 11

296

The One-to-One Model – Unicast
So far, we have identified one type of end-to-end communication, called one-to-one. In one-to-one
communications, an IP datagram originates in a single Internet host, and is marked for delivery to an IP
address identifying the unique location of another Internet host. The diagram below illustrates this one-
to-one model:

204.148.170.161 Internet 128.59.22.38

To: 128.59.22.38
Message: “Hello!”

IP Packet

The one-to-one model is appropriate for many types of applications. For example, remote access
involves a single user connecting to a specific remote service. Electronic mail is also typically a one-to-
one service, unless the message is addressed to multiple users. Web access and file transfer, two
essentially similar services, can also be considered as one-to-one applications under certain conditions.
If the content transferred, such as a web page or a file, is customized for each user then the end-to-end
model is appropriate. Even if the content is not customized for each user, if multiple requests are not
likely to coincide in time, then individual transmission may be appropriate.

As we have already seen the one-to-one model is not appropriate for many types of application. The
problem of multiple instances of identical data traveling over the same connection is illustrated below:

Router 2

Router 1

Client A

Router 3

Router 5

Client B Client C

Router 4

Stream Server

A

B

C

Messages
A

B

C

A

B

C

A
B

C

B

C

Multicasting

297

The stream server, on the left, creates a byte-stream by sampling some video source. Consider the case
when three clients need to receive the video stream. In the classic IP model, the stream server must
transmit three copies of the sampled data over a UDP/IP datagram or a TCP/IP segment – these copies
are shown as packets A, B, C in the diagram. The server network's access router (Router-1) will then
route these packets to the Internet Service Provider's network. In this example, the packets continue
traveling in the same path after the second routing step (Router-2). In the third step, the packet destined
for client A is delivered on the local network via Router-3, and the remaining two copies for clients B
and C are forwarded to Router-4 for local delivery. Router-5 is not in the path to any of the destinations
and hence no datagrams are transmitted on its links.

The One-to-Many Model – Multicasting
How can the one-to-one model be improved? The answer is to use an alternative network model
supporting one-to-many transmission. In this model, the sender generates a single datagram destined for
multiple receivers. In the one-to-many model, it is the responsibility of the network layer to create copies
of transmitted datagrams as needed, usually with the goal of optimizing bandwidth usage. Returning to the
previous example, the stream server would generate a single packet containing the sampled data. Unlike
the one-to-one case, the TCP protocol cannot be used for transport, since there is no single peer with
which to negotiate sequencing and retransmission. Hence, some type of connectionless protocol must be
used, such as UDP/IP. The one-to many model is illustrated in the diagram below:

Stream Server
Router 1

Client A

Router 2

Router 3

Router 5

Router 4

Client B Client C

M

M

M

M
Message

M

A single copy is transmitted, from Router-1 to Router-2 then to Router-3. Router-3 notices that the
packet must be sent in two outgoing links, towards client A, as well as towards clients B, C. The solution
is to copy the packet into both outgoing links. One copy is then delivered to client A, and another via
Router-4 to clients B, and C. Because Router-5 is not on the path to any of the destinations, no traffic
crosses its links.

In the above example, data originated from a single source and was sent to multiple destinations. In
other types of applications, such as group conferencing, it is desirable to support many-to-many
transmission. This model is similar to the one-to-many model with the difference that any receiver may
also transmit data to all other receivers.

Chapter 11

298

Implementing Multicast Applications
The idea of transmitting a single packet to multiple receivers may sound simple and intuitive, but its
implementation involves several challenges:

❑ Addressing: Internet addresses identify a unique location in the network (see Chapter 8).
When multiple hosts must be identified, a meaningful way for addressing the group must be
devised. A simple solution would be to include all the destination addresses in each packet.
However, this solution would not scale as the number of hosts increase. Not only would the
data portion grow disproportionately smaller, but also at some point, a single packet would
not even be able to fit all addresses (due to the limited IP packet size)! An alternative solution
would be to use a unique group identifier to represent the multiple destination hosts. In such
an approach, the network would be responsible for maintaining the mapping between the
unique group identifier and the group members. This latter approach is used in Internet one-
to-many communications. A certain range of IP addresses has been reserved to identify groups
of Internet hosts, instead of the location of a single Internet host.

❑ Membership: The use of group identifiers for addressing creates the need for a network-layer
membership mechanism. In one-to-one transmissions, it is the responsibility of the sender to
identify the location of the recipient by storing the destination address in the datagram header.
In multicast transmissions, the destination address stored in the multicast datagram no longer
identifies a location; instead it identifies a group. Therefore, the network layer must maintain
knowledge of the group's member addresses. For this purpose, applications must be provided
with a protocol for communicating their group join and leave requests to the network layer.
Membership is closely tied to routing which is discussed next.

❑ Routing: One approach to handling packets with multiple destinations is to send such packets
to every possible recipient. This approach is also known as broadcasting. All members in a
network, without distinction, receive broadcasted packets. Besides the obvious security
implications, the primary limitation of broadcasting is scalability. Broadcasting is typically
applied only in local area networks because they are usually small, and many times the
physical medium itself is shared, so every frame (link-layer packet) is broadcasted anyway. On
the Internet, broadcasting would mean that all IP hosts would receive IP packets destined to
multiple hosts. Clearly that would not be a scalable solution, as every Internet link would have
to handle the world's entire broadcast bandwidth!

The answer is to provide a multicast service. In multicasting, packets destined for multiple
addresses are only sent to router nodes that are on the path to one of the target recipients. In a
sense, multicast is like a smart broadcast in which only the routers required are involved. How
can this be accomplished? The answer is by supporting multicast routing at the network layer.
Using the information established by multicast membership protocols, routers can decide how
to handle packets destined for multiple hosts.

❑ Reliability: The TCP protocol supports reliable data transmission between two Internet hosts.
This reliable service is built on top of an unreliable network by requiring data recipients to
acknowledge packets received (positive acknowledgement). Both sides in the reliable connection
must maintain state for unacknowledged packets to permit retransmission in case of loss
detection. This mechanism could ostensibly be used in one-to-many transmissions. However,
this approach is almost never used due to its scalability limitations. Positive acknowledgement
would nullify many of the advantages of multicast since they would create a flood of
acknowledgement packets towards the sender, and would require per-receiver maintenance of
state in the sender. Scalable reliable multicasting is a difficult problem that is still the subject of
research. The current Internet multicasting protocol provides an unreliable service.

Multicasting

299

IP Multicasting
The current Internet multicasting protocol was introduced in 1991, and published as IETF RFC 966 &
RFC 988. These were superceded by RFC 1112, which is available at http://www.ietf.org/rfc/rfc1112.txt).
The IP multicast protocol takes a minimalist approach to multicast service. In terms of the four
challenges previously described (addressing, membership, routing, reliability) the IETF IP multicast
design can be described as using:

❑ IPv4 class D group addressing: Host groups are identified by class D IP addresses starting
with binary "1110", in the range 224.0.0.0–239.255.255.255. This range was allocated in
the original IP specification for this use. Unlike unicast addresses, which are uniquely assigned to
each organization, most IPv4 multicast group addresses are not allocated to particular
organizations (some exceptions to this will be covered later in the chapter). Any Internet node
can attempt to send as well as receive datagrams to any group address using any IP-based
protocol. The IP multicast layer does not provide any address allocation support; it is the
responsibility of multicast applications to coordinate temporary allocation of group addresses.

❑ Dynamic membership: Hosts may join and leave groups at any time. Group membership is
not restricted in location or size. Hosts may belong to more than one group at a given time.
Group membership is not required for datagram transmission. That is, a host can send
datagrams to a group without being a member.

❑ Multiple routing protocols: The original IP multicast specification focused on Internet host
multicast support. The specification did not state how routers communicate to maintain the
multicast service at the core of the network. Instead, the specification defined the protocol
used for communication between a multicast-enabled host and its immediately neighboring
router. As a result, multiple standard multicast routing protocols have been defined for router-
to-router multicast support.

❑ Unreliable delivery: Multicast packets are delivered with the same "best-effort" reliability as
regular unicast IP packets. A multicast datagram may be delivered to all, some, or none of the
members in a group. Multicast datagrams may arrive in different ordering at each receiver,
and receivers may see a different subset of the datagrams sent due to loss. No standard reliable
multicast transport protocol was defined.

Although the IP multicast protocol has been around for about 10 years, it has yet to become
universally available. Some people may even choose to characterize it as a failure. To be fair, the
problem of providing a scalable universal multicast service is significantly harder than that of
providing unicast service. There have been several significant roadblocks to the wide adoption of the
IP multicast protocol:

❑ Deployment: IP multicast is a network-layer service. In contrast, most Internet protocols are
transport-or application-layer services. An important difference is that network-layer services
must be deployed on all Internet nodes, while transport-and application-layer services need
only be deployed on some of the edge nodes. For example, when the WWW was first
conceived it only required the installation of an HTTP server on a host, and some
HTTP/HTML clients on one or more other hosts. This is simple, whereas to get all core
Internet service providers to install experimental software on their prized routers is a lot more
difficult. In fact it might not even be possible as most routers are dedicated proprietary
devices and not programmable by general users.

Chapter 11

300

❑ Scalability: the original multicast routing protocols were based on a flat network topology.
Because IP multicast group addresses were allocated in an arbitrary manner, the size of the
multicast routing tables increased proportionally with the number of groups. A new
generation of hierarchical multicast routing protocols was developed to address this issue but
its deployment has been slow.

❑ Unpredictability: the engineering of IP networks is a difficult task due to the lack of traffic
reservation or admission policy mechanisms, which would allow you to control the flow of
data. Every Internet host is typically free to pump as much data as its Internet access link will
allow. This creates a nightmare situation for Internet Service Providers (ISP) who would like
to assure customers that their access is not severely affected by the behavior of other
customers. For this reason, ISPs usually overprovision their backbone networks, and then limit
the bandwidth in the access points to prevent any single source from flooding the backbone.

Perversely, even though multicast was created to improve network efficiency, its deployment on ISP
backbones is currently deemed as too risky. This mostly stems from the scalability problems, and the
immaturity of cross-domain multicast protocols (discussed later). Some Internet Service Providers have
addressed this problem by creating a separate backbone dedicated to multicast transmission.

Due to the above-mentioned problems, many networks participating in the Internet do not carry
external IP multicast traffic. Even though they may not be routing IP multicast externally, most of these
networks support multicast internally. There are many advantages to using IP multicast even within a
single administrative network. Besides the typical multicast streaming applications, such as internal
conferencing and shared-whiteboard/design applications, multicast can also be useful for resource
discovery. Consider a mobile work force that moves frequently within a single administrative network
(for example, a corporate network). When users move to a new location, they would ideally like to
discover and use the local resources, such as printers, scanners, etc. If all printers would listen to a given
multicast group, then the user could multicast a request query in order to discover the locally available
resources. The Jini technology from Sun Microsystems generalizes this idea to provide dynamic
discovery of network services using multicast.

Multicast Backbone (MBONE)
To combat the seemingly insurmountable deployment problem, the IETF created a semi-permanent IP
multicast network called the MBONE (Multicast Backbone). The MBONE is a virtual network that uses
the transmission facilities of the Internet to create virtual links between nodes. Multicast datagrams
traverse virtual links by being encapsulated into unicast datagrams addressed to the virtual link end-
point. For example, consider a university whose routers support IP multicasting. We will assume that
the university is connected to the Internet via an Internet Service Provider that is not part of the
MBONE. The university can join the MBONE by creating a virtual link with another network that is
part of the MBONE. The end-points of this virtual link will be routers that are configured to wrap every
multicast datagram in a unicast datagram addressed to the other side of the link.

An example of how such a virtual topology operates is shown in the diagram below. Two networks
supporting multicast would like to exchange multicast traffic. Unfortunately, they are connected via one
or more legacy routers that do not support multicast routing. The solution is to establish a virtual link,
also known as a tunnel, between the multicast routers A and B. Multicast datagrams that must be
transmitted over this virtual link are encapsulated in a unicast datagram that is addressed to the IP
address of the other router.

Multicasting

301

Legacy Network
without multicast

support

204.148.170.2

Multicast Router B
(part of MBONE)

Client
(part of group1)

Mutlicast
Server

Multicast Router A
(part of MBONE)

128.59.1.2

128.59.1.1 204.148.170.1

Multicast tunnel virtually connecting routers A & B

To: group1
“hello”

To: 204.148.170.2

To: group1
“hello” To: group1

“hello”

To: 204.148.170.2

To: group1
“hello”

For example, the multicast server on the left sends a datagram to all members of a particular group
(called group1 for clarity; in reality it will be a class-D IP address). Upon receipt of the multicast
datagram, router A consults its multicast routing table and finds out that the packet must be sent to
router B. Because router B is connected over a tunnel, router A creates a new IP datagram destined for
router B with the complete datagram packet (IP header + data) as payload. The legacy network then
routes the unicast packet just like any other and attempts to deliver it to router B. Upon receipt, router B
looks at the packet and figures out that it is tunnel traffic, so it extracts its payload and uses the
payload's IP header to transmit the multicast datagram as if directly received from router A.

One of the biggest problems in maintaining a large virtual network, such as the MBONE, is ensuring
that the virtual links (tunnels) are created efficiently. Ideally, multiple tunnels should never be layered
over a single physical link. In practice, assuring such efficient allocation is difficult, because the physical
topology of the Internet is not fixed, and new networks are constantly added to the MBONE. A
mapping of the virtual network that made sense at creation time may no longer be efficient due to
changes in physical topology.

Although the MBONE has increased in size over the years, its members continue to be mostly research
and education organizations. Commercial organizations have not adopted the MBONE largely due to
the lack of support by major Internet Service Providers.

It is important to distinguish the IP multicast protocols from the multicast backbone
(MBONE). Due to the aforementioned problems, IP multicast is not universally routed
on the Internet today. Many corporate networks support IP multicast internally, but
do not connect to the global MBONE network. Therefore developers cannot assume
that any two Internet hosts can communicate using IP multicast.

IP Multicast Addressing
Unicast IP addresses in the range 0.0.0.0 - 223.255.255.255 uniquely identify the location of an
Internet host. In order to support scalable routing, these addresses are allocated in blocks characterized by
a shared prefix, as described in Chapter 8. Each block may be further subdivided, for example, an ISP will
divide its blocks amongst its customers, who may further subdivide them internally. Using this hierarchical
approach, backbone routers can aggregate routing information using shortest prefix summarization, with
each organization free to manage its own assigned addresses. If a host is assigned an address outside the
allotted blocks, then that host will not be reachable from outside the organization's network.

Chapter 11

302

Unlike unicast IPv4 addresses, IPv4 multicast addresses are not assigned hierarchically. Every multicast
address in the range 224.0.0.0 - 239.255.255.255 can be used as a group identifier by any
multicast-enabled application anywhere in the world. Clearly, this creates a problem in that no
application can be assured exclusive access to an IP multicast group. Because the IP multicast model
permits all hosts to join a multicast group, and even allows hosts to send multicast IP packets without
joining, every multicast transport or application-layer protocol must be able to detect "foreign" traffic.
That is, multicast applications must have a mechanism for identifying traffic conforming to their
protocol and session. The main disadvantage of having two multicast applications using the same group
address is unnecessary propagation of multicast traffic.

Session Discovery
One problem caused by this arbitrary multicast group address assignment is session discovery. If clients
are to discover the current multicast group of a well-known service, a shared directory mechanism must
be used. In the unicast Internet, this role is played by the Domain Name System service (DNS). The
DNS system, however, is not well suited for storing highly dynamic information, due to its caching
architecture. There are two IP multicast address assignment mechanisms in use on the MBONE today
static assignments and dynamic reservation.

Static Assignments

The Internet Corporation for Assigned Names and Numbers (ICANN) will assign permanent multicast
addresses to well-known protocols, long-lived multicast sessions and large companies. For example,
static addresses have been assigned to Sun Microsystems, one of which was used for the Jini multicast
discovery protocol. Jini clients can therefore be hard-coded to use that permanently assigned address. It
is the responsibility of other multicast applications not to use permanently assigned addresses.

Dynamic Reservation

For short-lived multicast sessions, a dynamic reservation mechanism was devised. Reservation
announcements are multicast to a well-known group address and are formatted using the Session
Announcement Protocol (SAP) (experimental IETF RFC 2974). Announcements can be made for
immediate or future multicast group use. Before using a multicast address, applications are supposed to
listen to a specific multicast channel for group reservation announcements. This wait period is typically
at least 10 minutes long. At the end of this period the application picks a multicast group address that
has not been reserved and starts sending its own periodic reservation messages. Clearly, this is not a fail-
proof mechanism. Group address conflicts may occur if two applications simultaneously pick the same
address, or if reservation announcements are lost. Since group address conflicts only have a
performance implication, they can be acceptable for a short period until they can be detected and the
applications attempt to switch to using another address.

Session Discovery Tools

The reservation multicast group can also be used as a broadcast schedule guide. In addition to the
multicast address used, the reservation protocol carries a user description of the session, as well as
information about the session protocol and payload encoding. A user tool called SDR can be used to
display scheduled multicast sessions to users. The SDR tool is freely available for several platforms
(including Windows, and Linux) at http://www-mice.cs.ucl.ac.uk/multimedia/software/sdr/. At the time
of writing, the latest release was version 3; two downloads are available, one for IPv4 and another for
IPv6 networks.

Multicasting

303

A sample SDRv3 session listing on an IPv4 MBONE-connected host is shown below. The main window
on the left shows a number of advertised sessions by title. The session window on the right shows details
about the "NASA TV" session, including the scheduled transmission time, multicast group address and
ports (one for audio and another for video), as well as the audio/video encoding of the transmission.
Note that if your host is not on an MBONE-connected network, only local session announcements will
be received.

IP Multicast Scoping
Some IP multicast applications may desire to limit the scope of their multicast transmissions. Possible
reasons include:

❑ Security and privacy

❑ Limiting network resources usage (bandwidth/routing load)

❑ Avoiding address conflicts

It should be noted that depending on any type of multicast scoping for security or privacy is probably
not a very good idea. Currently, there are two mechanisms for scoping multicast transmissions: Time-to-
Live scoping (TTL), and administrative scoping.

Time-to-Live Scoping
In TTL scoping the IP time-to-live field is used as the radius of a multicast transmission in terms of the
number of hops. Every time an IP packet is forwarded, its TTL value is decreased by one. If the TTL
value reaches zero before the destination has been reached, then that packet is discarded. This
mechanism was originally introduced to limit the effect of IP routing loops. These occur when packets
travel in continuous loops due to redundant links in the routing table.

Chapter 11

304

If you wanted to multicast only on the local area network, then multicast packets could be transmitted
with a TTL of one. This value would guarantee that the packet could be picked up by other hosts, but
would be discarded by the local router. Using the TTL field to control the extent of transmission
propagation can be a difficult task. For example, if one wanted to multicast to all of an organization,
then you would need to know the exact topology of the network to determine the TTL. Moreover,
unless the server was situated in the middle of the network, then no single TTL would exist that could
reach all of the organization's nodes without leaving the network. For example, in the diagram below, a
multicast source is connected to a corporate network via a departmental router. The local router is
directly connected to the marketing and accounting department routers, as well as the Internet access
router. Some departments are further connected to other routers representing internal divisions.

Marketing

local

accounting accounting
building2

multicast
source

Internet
access

New York
marketing

department

TTL=1

TTL=2

TTL=3

Ethernet

If the multicast source broadcasts a packet with TTL=1, then only the local area network hosts will
receive it, that is, it's received by the router, but then discarded because the TTL will have hit zero
before getting out "the other side". A packet with TTL=2 will be forwarded to subscribed receivers that
are one-hop off. In this case, only routers are one-hop off, so this TTL is not really useful. A TTL=3 will
send the packet to all subscribed receivers that are two-hops off. This will include hosts connected to the
marketing and accounting departments, but also hosts connected to the Internet access router (oops). In
order to reach all organization hosts, in this example, a TTL of 4 is needed, but that will also mean that
packets will leak into the Internet.

Multicasting

305

In order to reduce the guesswork involved in TTL scoping, certain arbitrary values were assigned for
specific scopes (called TTL-threshold). The table below shows these assignments:

TTL Scoping Restriction

= 0 Local host

= 1 Local subnet

<= 32 Site (organization)

<= 64 Region

<= 128 Continent

> 128 (<= 255) Unrestricted

These assignments are not foolproof as they depend on the correct configuration of the routers involved. For
example, if an organization does not configure its Internet access routers to drop multicast packets with TTL
less than 32, then these packets will be transmitted on the Internet (up to the specified TTL radius).

Administrative Scoping
The second scoping mechanism is more recent and involves the use of specially assigned IP multicast
groups. The range of IP multicast addresses has been further subdivided into blocks. Use of the
addresses from each block has implications for the scope of the multicast transmission. This type of
scoping is called Administrative Scoped IP Multicast and is defined in IETF RFC 2365
(http://www.ietf.org/rfc/rfc2365.txt). Although the use of administrative scoping may appear to be
similar to the use of TTL scoping, it is preferred because TTL scoping interacts negatively with the IP
multicast routing protocols. Basically, dropped packets due to TTL expiration interfere with the
multicast tree maintenance. To understand why this is the case requires the introduction of several
complex topics that are inappropriate here.

IP Range Scoping Restriction

224.0.0.0 – 224.0.0.255 Link-scope addresses assigned to routing protocols.
Addresses in this range are not routed and hence
remain local.

224.0.1.0 – 224.0.1.255 Individual addresses assigned to application
protocols.

224.0.2.0 – 238.255.255.255 Assigned to companies and applications (global).

239.192.0.0 – 239.251.255.255 Organization-local scope. Not routed outside an
organization and therefore can be privately used.

239.255.0.0 –239.255.255.255 Local-scope. Not routed outside the local scope
(further limited from organization-local).

Chapter 11

306

IP Multicast Routing
There are two components to IP multicast routing. The first component is the protocol used by the edge hosts
to request multicast group join and leave requests from their first-hop routers. The second component is the
IP multicast routing protocol used between routers to efficiently route multicast IP datagrams. The first
component is standard for all multicast hosts and is known as the Internet Group Management Protocol
(IGMP). The second component is non-standard and is chosen by network administrations.

IP hosts report group membership to immediately neighboring multicast routers using the Internet
Group Management Protocol (IGMP). IGMP is defined as part of the "Host Extensions for IP
Multicasting" IETF RFC 1112 (http://www.ietf.org/rfc/rfc1112.txt). All Internet hosts that support IP
multicast must implement the IGMP protocol. IGMP messages are encapsulated in IP datagrams with a
specified binary format. Operationally, there are two types of IGMP messages:

❑ Host membership query: Periodically sent by every multicast router to solicit host
membership reports (usually no more than once a minute). The query is addressed to the
special all-local-hosts multicast group (224.0.0.1) with an IP TTL of 1. Every multicast host
is supposed to listen to the 224.0.0.1 group for multicast router membership queries.

❑ Host membership report: Hosts send IGMP membership reports in response to a
membership query. A separate report is sent for every group for which a local process has
requested a join. Each IGMP report is addressed to the joined group and has an IP TTL of 1.
In order to prevent an "implosion" of reports, hosts pick a random delay in sending their
report. If another host has sent a report for a given group during this delay interval, the report
is not sent. This is acceptable since the multicast routers do not need to know how many hosts
have joined a group, just that there is at least one.

Version 1 of the IGMP protocol did not provide an explicit group leave message. Multicast routers that
have not received a membership report for a specific group after a certain number of queries will simply
drop the group from their join-list. Version 2 (IETF RFC 2236 – http://www.ietf.org/rfc/rfc2236.txt) of the
IGMP protocol added an explicit leave message in order to support faster pruning of the multicast tree.

Multicast Routing Protocols
The second component to multicast routing is the protocol used between multicast routers. There are
multiple multicast routing protocols in use today. They can be roughly divided into two categories:
dense mode and sparse mode multicast protocols. Dense mode protocols perform better when used in a
topology densely populated with group members. Their main disadvantage is that they maintain state
information for each source at every router in the network. Sparse mode protocols provide better
scalability. However, sparse protocols depend on a rendezvous point for synchronization, they typically
have a single point of failure. Sparse protocols may also generate non-optimal paths in the multicast tree
when routing from the source to the rendezvous point and then to the receivers.

The choice of IP multicast routing protocols is not in the user's control and therefore their coverage is
an advanced topic not suitable for this book. The original MBONE routing protocol was called DVMRP
(Distance Vector Multicast Routing Protocol) and was a dense mode routing protocol. Newer protocols
include PIM (Protocol Independent Multicast) which is a protocol supporting a dense mode, as well as a
sparse mode and CBT (Core Based Trees) which is a sparse mode protocol.

Multicasting

307

Multicast Port Addressing
The Internet Protocol does not support any application-level addressing. IP datagrams may only be
addressed to a particular IP address representing a location or a multicast group. For this reason,
Internet transport layer protocols such as TCP and UDP add an additional application addressing
service using 16-bit port identifiers. TCP cannot be used for multicast transmission since the protocol is
built on the assumption that there are only two parties to a streaming connection. Moreover, as
discussed in Chapter 10, applications typically do not use raw IP for transmission because it does not
detect payload corruption, does not provide application-level addressing and many times is restricted by
operating systems due to security considerations. For these reasons, Internet multicast applications
typically use the UDP protocol to send datagrams to IP multicast group addresses. In many cases, the
UDP datagrams sent contain RTP (Real Time Protocol) formatted data. The RTP protocol was
presented at the end of Chapter 10 and is used to provide sequencing and encoding information for
real-time streaming.

Multicast UDP applications use port numbers in a different way than unicast UDP applications. In
traditional UDP unicast transmissions, port numbers are used to de-multiplex incoming packets for
delivery to different applications. In multicast transmission this behavior is not as useful, since different
applications typically use different multicast group addresses to avoid sharing traffic. Another important
difference is that the semantics of multicast allow for multiple applications to send and receive multicast
packets using the same group and port number. Therefore, multiple applications may use the same UDP
port for sending and receiving multicast traffic on the same host/address! In other words, multicast UDP
ports no longer uniquely identify a single application as a recipient, in the same way that IP multicast
group addresses no longer identify a single Internet node as a recipient.

It is possible to concurrently bind multiple times to the same multicast port, either in
the same or in different processes. The behavior of the multicast protocol stack will be
to deliver a copy of each received datagram to all bound sockets. Conversely, every
socket may be used to send multicast datagrams marked as originating from the
shared port.

If multicast group addresses are typically used by a single session, why should multicast applications
need to use port numbers at all? The main reason is that the single session may transmit datagrams
using different protocols and/or different encodings. For example, earlier we showed a multicast
session announcement for "NASA TV" that advertised multicast transmission using group address
224.2.233.103 with a PCM-encoded audio stream sent using the RTP protocol to port 17262 and
an H.261-encoded video stream sent using the RTP protocol to port 52218 (PCM and H.261 are
content encoding standards like WAV and MPEG). When a multicast host joins the 224.2.233.103
group, it will receive both the video and the audio traffic. The different port numbers will enable the
client to potentially use different programs for receiving the audio and the video stream. In many
cases, a source will transmit the audio and video streams on separate group addresses to enable
receivers to join to either or both. For example, a host connected via a slow link may chose to only
join the audio multicast group.

Chapter 11

308

Java IP Multicast Programming
IP multicast is a network layer service, and as such, can potentially be used with different transport layer
protocols. Of the two popular Internet transport layer protocols, however, only the connectionless UDP
protocol is applicable, since the TCP protocol is connection-oriented and synchronizes state between
two participants. As a result, nearly all multicast traffic today uses UDP as its transport layer
encapsulation. Even real-time streaming applications using the Real Time Protocol (RTP) send data as
RTP over UDP over multicast-IP.

The Java network libraries support multicast transmission through instances of the
java.net.MulticastSocket class. The MulticastSocket class extends the UDP
java.net.DatagramSocket class with multicast-specific operations, such as joining and leaving a
multicast group. In the subsequent discussion, it will be assumed that readers are familiar with the
coverage of the DatagramPacket, and DatagramSocket classes in the preceding chapter.

java.net.MulticastSocket
A MulticastSocket is a UDP socket with extra support for the IGMP multicast group management
protocol. As a UDP extension, multicast sockets instances are also associated with UDP port numbers,
but with the different semantics discussed earlier. Most importantly, multiple MulticastSocket
instances may be bound to the same port!

Constructors
Two constructors may be used in creating MulticastSocket instances:

MulticastSocket() throws IOException

MulticastSocket(int port) throws IOException

The first is a no-argument constructor that creates a multicast socket bound to an arbitrary port. After
construction, the local port number used may be retrieved by invoking the getLocalPort() method.
Similarly to the DatagramSocket no-argument constructor, the java.io.IOException is used to
signal an error in allocating resources for the multicast socket. A SecurityException will be thrown
if the checkListen() SocketPermission has not been granted (see Chapter 7). As a runtime
exception, the SecurityException is not listed in the method's signature but has been added to the
text for clarity purposes.

The second constructor is more commonly used and allows invokers to specify the port number used for
binding. Although only one port number is typically used per multicast group address, its use must be
consistent across all members. Currently, Java does not support arrival notification for all multicast
packets destined for a particular group irrespective of the port number. The same exceptions are thrown
as in the previous constructor. Unlike the DatagramSocket(int) constructor, an IOException will
not be thrown if this or another local process has already bound to the socket, because the multicast
protocol permits such behavior.

By default, MulticastSocket instances are set to transmit datagrams with a time-
to-live value of 1. This means that multicast transmissions will be constrained to the
local area network. The default TTL value can be changed by invoking the
setTimeToLive() method as described later in this section.

Multicasting

309

Methods
The MulticastSocket class supports IGMP-based IP multicast membership via two methods. The
joinGroup() method may be used to request subscription for the specified multicast group from the
first-hop (local) router. The method takes an IP address represented as a java.net.InetAddress
instance as its only argument. The address must represent a multicast address, as defined by the
InetAddress isMulticastAddress() method, otherwise a SocketException is thrown. Due
to the nature of the IGMP protocol, the method returns immediately without indication of remote
success or failure. Only local failures can be detected, and are signaled by an IOException if the
IGMP request could not be sent at all, or a SecurityException if the "accept, connect"
SocketPermission permissions have not been granted (as a runtime exception it is not listed in the
method signature but shown here for clarity). If the local host does not support IP multicast on any of its
interfaces, a SocketException may be thrown (platform dependent; discussed later in the multicast
host configuration section).

void joinGroup(InetAddress mcastaddr) throws IOException

After the joinGroup() method has been invoked, the MulticastSocket will periodically transmit
IGMP membership reports, and respond to IGMP membership queries as prescribed by the IGMP
protocol. In general, the only way to discover that a multicast router is available is to note the receipt of
an IGMP membership query request, however, the Java multicast support does not expose this
information. As a result, all Java applications can do is to invoke the joinGroup() method and hope
that packets start arriving at some point! Note that applications are not required to join a multicast
group in order to send multicast datagrams destined for that group. However, in order to receive
multicast datagrams addressed to a group the joinGroup() method must be invoked.

MulticastSocket instances differ from DatagramSocket instances in that
datagrams addressed to multicast group addresses for which the joinGroup()
method has been invoked are also received by the transmitter. This creates a loop-
back effect. The "Host Extensions for IP Multicasting" IETF RFC 1112 requires
implementations to provide a method to disable local delivery of multicast datagrams;
however Java versions prior to JDK1.4 did not comply with this requirement.
Therefore, Multicast Java applications executed on earlier versions (including JDK
1.3) cannot disable the loop-back effect and must be prepared to receive their own
multicast datagrams.

Applications can request to leave a group by invoking the leaveGroup() method. If the application
has not previously successfully invoked joinGroup() for the same IP group address, the
java.net.BindException will be thrown. If the multicast socket has been closed the method will
throw a SocketException. The SocketException may also be thrown in response to some
underlying communications error. A SecurityException will be thrown if the "accept, connect"
SocketPermission permissions have not been granted. This security check is made to prevent an
internal denial-of-service-type attack.

void leaveGroup(InetAddress mcastaddr) throws IOException

Chapter 11

310

As we explained in Chapter 8, a host may be attached to the Internet through multiple network
interfaces, each with its own IP address. By default, the MulticastSocket constructor binds the
multicast socket to all available interfaces. The effect of this behavior is that the decision of which
interface to use is left to the operating system. In nearly all cases, this is the most appropriate
approach. In some rare cases a Java multicast program may need to have control over interface
selection. For example, a Java program running on a host connected to a corporate network as well
as the public Internet may want to restrict its multicast operations to the corporate network
interface. The setInterface() method takes as a single argument the IP address of one of the
local host's interfaces. A SocketException will be thrown if the address does not belong to a
local interface, or an error occurred while configuring the socket. Invoking the method with the
special "0.0.0.0" IP address will restore the default behavior of binding to all sockets. As we
discussed in Chapter 8, there was no method prior to JDK1.4 for discovering all interfaces in a
host. Therefore, this information would need to be supplied externally. For this reason, the
setInterface() method was rarely invoked.

void setInterface(InetAddress inf) throws SocketException;

The getInterface() method returns the address of the interface set by the last setInterface()
invocation, or the special address "0.0.0.0" marking the fact that the multicast socket is not bound to
a particular interface. The method may throw a SocketException if the multicast socket's
configuration cannot be read.

InetAddress getInterface() throws SocketException;

The IP time-to-live (TTL) field plays a special role in multicast transmission. As was explained earlier in
this chapter, the TTL field was originally used to scope the range of multicast transmissions. For
example, a TTL of 1 restricts the multicast packet to the local-area network (defined in terms of the
LAN broadcast radius), while a TTL less than 32 should restrict the transmission to the local-
organization network (depending on router configuration).

The MulticastSocket class adds a method for setting and a method for retrieving the default TTL of
a multicast socket. The setTimeToLive() method deprecates the old setTTL()and takes a TTL
value as its only argument. The method will throw an IOException if the TTL value is invalid, that is
not in the range [0..255], or an error occurred while configuring the multicast socket. The
getTimeToLive() method returns the current TTL value for the socket. The method may also throw
an IOException if the socket's configuration could not be read.

void setTimeToLive(int ttl) throws IOException;
int getTimeToLive() throws IOException;

In addition to the send() method inherited from DatagramSocket, instances of MulticastSocket
can be asked to transmit a DatagramPacket with a specific time-to-live value. This allows applications
to temporarily override the current socket TTL for one particular transmission. As in the
DatagramSocket send() method, a transmission error is signaled by an IOException and may be
caused by misconfiguration of the DatagramPacket (missing address/port), an invalid TTL, or some
internal protocol stack error. A SecurityException will be thrown if the code-base has not been
granted the "accept, connect" permissions. The security requirements are more stringent than those for
unicast UDP transmissions, where only the "connect" permission is required. The security requirements
also apply for the inherited send(DatagramPacket) method.

Multicasting

311

void send(DatagramPacket p, int ttl) throws IOException

The MulticastSocket class inherits all the methods of the DatagramSocket class. Readers should
refer to Chapter 10 for coverage of these methods.

Multicast Security Permissions
Multicast operations are security sensitive. In a normal denial of service attack, a single destination is
flooded with requests from multiple hosts. Using the multicast protocol, a rogue application can abuse
network resources in a much more effective way, flooding a large multicast group from a single host.
Using the multiplicative effect of the multicast protocol attackers can cause damage that is
disproportionate to their Internet access bandwidth. Even permission to join a group without the right to
transmit can be dangerous. An attacking application could simply subscribe to all multicast groups
possibly completely overwhelming the local network's Internet access link. Another problem with
multicast transmission is that the local security manager cannot determine which hosts will receive the
transmission. The IP multicast protocol is distributed and hence no one knows the membership of a
group. For these reasons, multicast access should be restricted to trusted applications. That is why Java
applets are typically not given multicast access.

The Java SocketPermission security model defines four types of operations; their mapping to actual
SecurityManager methods is shown below:

Operations Method

Resolving checkConnect(host, -1)

Listening checkListen(port)

Connecting checkConnect(host, port)

Accepting checkAccept(host, port)

Note: there is no checkResolve(host) method as you might expect; instead the
checkConnect()method is used with the invalid port number –1 as an argument (don't ask us why!).

The MulticastSocket adds an additional check called checkMulticast():

public void checkMulticast(InetAddress maddr)

The checkMulticast() method is invoked when joining or leaving a group, and when sending a
packet to a multicast group address (in addition to checkConnect()). You would therefore expect that
the SocketPermission class would support an explicit "multicast" permission; this is however not the
case. Instead, the checkMulticast(InetAddress) method is translated into two other calls for
checkAccept(InetAddress) and checkConnect(InetAddress).

Given the lack of an explicit "multicast" SocketPermission, how can we restrict applications from
using multicast, but still perform unicast operations? The answer is not to grant permissions to multicast
class-D IP addresses (range 224.0.0.0-239.255.255.255). Unfortunately, the current
SocketPermission class does not permit use of a network mask in the host argument. Therefore, it is
not possible to restrict applications using the default security manager. The answer will be to extend the
security manager and override the checkMulticast() method to provide the missing functionality.

Chapter 11

312

IP Multicast Host Configuration
Today, most popular computing platforms include support for IP multicast. Multicasting is supported by
the 32-bit versions of the Microsoft Windows operating systems family as well as most modern UNIX-
based operating systems (Solaris, Linux, MacOS X, AIX). Support however does not imply that
multicast will work out of the box. In some cases, some extra configuration may be required. A test
program is provided at the end of this section to verify your host's IP multicast configuration.

It will be assumed that the network your host is connected to supports IP multicast. If the network does
not support multicast there is not much you can do as a user, except contact your local systems
administrators. To find out if your network is connected to the MBONE you can either ask your systems
administrators, or download and execute the SDR utility presented earlier in this section.

Configuring Microsoft Windows (32-bit)
The Microsoft Windows 32-bit operating systems support multicast transmission over Ethernet and
other popular link-layer protocols by default. No special configuration is required for such "real"
interfaces. Unfortunately, Microsoft Windows-based operating systems currently do not support IP
multicast transmission over the loopback interface. The loopback interface is a virtual interface used
to provide local delivery of IP packets. As a result, standalone Microsoft Windows hosts cannot
execute multicast applications! A possible work-around is to install a network interface card and
configure it for some specific IP address. Note that it is not sufficient to just install a network interface
card; it must be configured as well. Mobile users who use the Dynamic Host Configuration Protocol
(DHCP) will need to manually enter an IP address when not connected to the network in order to test
multicast applications.

Configuring GNU/Linux
The Linux kernel provides optional support for IP multicast. Nearly all current GNU/Linux
distributions ship with IP multicast support. Unfortunately, some distributions, such as RedHat, do not
enable multicast support in the IP interface by default, and do not include a default multicast route. You
can check the configuration of your interfaces by using the ifconfig command as shown below. This
example was executed on a host running RedHat Linux, with one Ethernet network interface and a
loop-back interface. Users need to look for the MULTICAST flag (shown in bold).

$ /sbin/ifconfig -a
eth0 Link encap:Ethernet HWaddr 00:10:4B:C6:D3:39
 inet addr:128.59.22.27 Bcast:128.59.23.255 Mask:255.255.248.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:95096460 errors:0 dropped:0 overruns:61 frame:0
 TX packets:18386848 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 Interrupt:11 Base address:0x1400

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:8340660 errors:0 dropped:0 overruns:0 frame:0
 TX packets:8340660 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0

Multicasting

313

If the MULTICAST flag is missing, pick an interface you want to enable IP multicast transmission on,
and then execute the ifconfig utility as root:

/sbin/ifconfig eth0 multicast

You must also verify that a route exists to the multicast interface in the host's routing table. Invoke the
route utility as shown:

$ /sbin/route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
128.59.16.0 * 255.255.248.0 U 0 0 0 eth0
127.0.0.0 * 255.0.0.0 U 0 0 0 lo
224.0.0.0 * 240.0.0.0 U 0 0 0 eth0
default vortex-gw.net.c 0.0.0.0 UG 0 0 0 eth0

Look for the line listing the 224.0.0.0/240.0.0.0 route (shown in bold). If it is missing you must add it
by invoking:

>/sbin/route add –net 224.0.0.0 netmask 240.0.0.0 dev eth0

Replace eth0 with the interface you selected in the previous step.

Testing Your Configuration
The following small program may be used to test your host's multicast configuration. The program
creates a MulticastSocket bound to a specific port, and joins a multicast group belonging to the
link-local administrative scope. We further guarantee that multicast datagrams will not leave the local
network by explicitly setting the TTL to 1 (its default value).

// TestLocalMulticast.java

import java.net.*;

public class TestLocalMulticast {

 public static void main(String[] args)
 throws UnknownHostException, SocketException,
 java.io.IOException {

 int port = 5265;
 InetAddress group = InetAddress.getByName("239.255.10.10");

 System.out.println("Binding multicast socket to "
 + group.getHostAddress() + ":" + port + " ...");
 MulticastSocket msocket = new MulticastSocket(port);
 msocket.setSoTimeout(10000);
 msocket.setTimeToLive(1); // restrict to local delivery

 System.out.println("Requesting multicast group membership ...");
 msocket.joinGroup(group);

Chapter 11

314

A DatagramPacket instance is then created, and a message is addressed to the multicast group at the
specified port. After sending the datagram to the group, the program tries to receive a datagram.
Because the multicast datagrams loop-back to the sender, and we have already joined the group, we
would expect to receive the datagram that we just sent. Although the multicast service is unreliable, it is
extremely unlikely that a datagram would be lost during loop-back delivery. If the datagram is not
received within 10 seconds, the socket timeout will expire and an exception will be thrown. Note that o
error handling is performed in the program to keep the example simple.

 String outMessage = "Hello multicast world!";
 byte[] data = outMessage.getBytes();
 DatagramPacket packet = new DatagramPacket(data, data.length, group,
 port);

 System.out.println("Sending multicast message: " + outMessage);
 msocket.send(packet);

 packet.setData(new byte[512]);
 packet.setLength(512); // very important!

 System.out.println("Waiting for multicast datagram ...");
 msocket.receive(packet);

 String inMessage = new String(packet.getData(), 0, packet.getLength());
 System.out.println("Received message: " + inMessage);

 System.out.println("Leaving multicast group ...");
 msocket.leaveGroup(group);

 msocket.close();
 }

}

On a host correctly configured for at least local IP multicast delivery the above program should produce
the output shown below.

C:\Beg_Java_Networking\Ch11>javac TestLocalMulticast.java

C:\Beg_Java_Networking\Ch11>java -classpath . TestLocalMulticast
Binding multicast socket to 239.255.10.10:5265 ...
Requesting multicast group membership ...
Sending multicast message: Hello multicast world!
Waiting for multicast datagram ...
Received message: Hello multicast world!
Leaving multicast group ...

If an exception is thrown during execution, then the host has not been configured correctly for IP
multicast. For example, on a Microsoft Windows host that does not have a real IP interface, the
BindException will be thrown when attempting to join the multicast group. On GNU/Linux
platforms that have not been properly configured the binding and joining requests may succeed, but the
datagram receipt will time-out. In such cases, readers should refer to the previous platform configuration
discussion and the documentation of the operating system.

Multicasting

315

In-depth Example: A Group Chat Application
We will develop an in-depth example that will help us highlight some valuable protocol and
implementation design patterns. Our goal will be to build a simple group chat application. The
application will permit multiple users to join in a chat group and exchange simple string messages. Chat
participants will assign themselves nicknames to be used for identification during the session. To
simplify the application, no attempt will be made to guarantee uniqueness of nicknames.

Protocol Design
We will use the peer-to-peer paradigm, no single entity will be in control of the chat. As in the multicast
model, anyone may join or leave a chat session, and members may send as many messages as they like.
In fact, due to the design of the IP multicast protocol, users who have not even joined the group may
send messages. Message delivery will not be guaranteed either.

Providing scalable reliable multicast is a difficult problem. Reliable multicast is a hot
research area but as of today no single proposal has been standardized upon. In the
meanwhile, it is advised that multicast be used only for applications that can accept
datagram loss.

Our multicast chat protocol will be simple because we have matched it closely to the IP multicast
model. Had our specification required the assignment of unique names, authentication and privacy
(encryption) the protocol would have been much more complicated. As it stands, the protocol will use
the following three simple PDUs (Protocol Data Units), a.k.a. message-types:

❑ JOIN PDU: This is a datagram multicast when a user first joins; includes the user's self-
assigned username (string)

❑ LEAVE PDU: This datagram is multicast when a user leaves the group; it includes the user's
self-assigned username

❑ MESSAGE PDU: This datagram is multicast when a user finishes typing a message; it includes
the self-assigned username, and a string containing the message

Every multicast application must be capable of coexisting with another application using a different
protocol on the same multicast group and port. One simple solution is to begin every datagram sent
with a so-called magic number. The magic number can be any binary value whose length makes it
highly unlikely that the same value will be picked by two protocol authors. In the multicast chat
application we will be using a randomly chosen 64-bit value. Following the magic number, every
multicast chat datagram will contain a 32-bit integer value identifying the PDU-type (JOIN, LEAVE,
MESSAGE). This is likely overkill in terms of space, but that's what programmers probably thought when
deciding not to use a 4-byte year representation (which led to the well-known year 2000 problem).

The above pretty much describes the multicast chat application-layer protocol. No synchronization will
be provided, so chat messages may arrive at different receivers in different order. You may think that
this can simply be addressed by adding a timestamp to the message, but there is a catch. This is that the
clocks are unlikely to be closely synchronized and therefore should not be relied upon for ordering.
This is a well-known distributed programming problem that has been studied extensively. Interesting
enough, many of the algorithms developed are being replaced today by GPS-based clocks whose
synchronization can be guaranteed to an extremely small margin of error.

Chapter 11

316

Implementation
Having completed the group chat protocol design, we proceed to design the programmatic and user
interface of our application. As in the previous examples, we would like to separate the two in order to
support multiple user interfaces. The programmatic interface will consist of a Java class called
MulticastChat whose instances will encapsulate the participation in a multicast chat. Users may send
messages by invoking the sendMessage() method of this class. A group chat is a two-way process so
we must design a method for receiving incoming messages. For this purpose, we employ the Java AWT
event model by defining the MulticastChatEventListener interface. Users of MulticastChat
instances may subscribe to receive notification of incoming multicast chat events (join, leave, message)
by registering an object implementing this listener interface. The listener interface is shown below. We
have deviated a little from the AWT event model by not defining a MulticastChatEvent class in
order to keep the example manageable.

// MulticastChatEventListener.java

import java.net.InetAddress;

public interface MulticastChatEventListener
 extends java.util.EventListener {

 // Invoked when a multicast chat message has been received
 void chatMessageReceived(String username, InetAddress host, int port,
 String message);

 // Invoked when a multicast participant has joined
 void chatParticipantJoined(String username, InetAddress host, int port);

 // Invoked when a multicast participant has left
 void chatParticipantLeft(String username, InetAddress host, int port);
}

As stated, the MulticastChat class provides a simple programmatic interface to the multicast chat
protocol. The constructor takes the participant's self-selected chat identity, the address of the IP
multicast group, the port number, and a listener object as arguments. At construction time, the multicast
socket is initialized and the multicast chat JOIN message is sent. An alternative design would be to
require users to invoke a sendJoin() method, or to send the JOIN message in response to the first
sendMessage() invocation. The advantage of creating and initializing the multicast socket in the
constructor is that any exception can be propagated to the caller. Before returning, the constructor starts
a new thread that will be used to perform blocking reads from the multicast socket.

This design is similar to the one used in Chapter 10. The class attribute state requirements are predictable.
The class must store the constructor's arguments and the multicast socket instance created. This class is a
programmatic interface to a simple peer-to-peer multicast chat protocol. Instances of this class provide an
entry-point into a multicast chat characterized by a multicast group address and a port number. Users of
MulticastChat instances may send multicast chat messages (JOIN, LEAVE, MESSAGE), and subscribe
for notification of chat message receipt through the MulticastChatEventListener interface.

// MulticastChat.java

import java.io.*;
import java.net.*;
import java.util.*;

Multicasting

317

public class MulticastChat extends Thread {

 // Identifies a JOIN multicast chat PDU
 public static final int JOIN = 1;

 // Identifies a LEAVE multicast chat PDU
 public static final int LEAVE = 2;

 // Identifies a MESSAGE multicast chat PDU
 public static final int MESSAGE = 3;

 // Chat protocol magic number (preceeds all requests)
 public static final long CHAT_MAGIC_NUMBER = 4969756929653643804L;

 // Default number of milliseconds between terminations checks
 public static final int DEFAULT_SOCKET_TIMEOUT_MILLIS = 5000;

 // Multicast socket used to send and receive multicast protocol PDUs
 protected MulticastSocket msocket;

 // Chat username
 protected String username;

 // Multicast group used
 protected InetAddress group;

 // Listener for multicast chat events
 protected MulticastChatEventListener listener;

 // Controls receive thread execution
 protected boolean isActive;

The MulticastChat constructor expects the following arguments:

❑ group: This is the multicast group used for communications

❑ port: This is the port used to bind the multicast socket

❑ ttl: This defines the time to live value used in multicast transmission and hence determines
the multicast radius

❑ listener: This defines the object to receive notification of chat events

The constructor initializes the instance variables of the new object and then creates a multicast socket
bound to the port argument number and configured to join the multicast group specified in the group
argument. Once the multicast socket has been configured, the constructor starts its thread and sends the
multicast JOIN request.

 public MulticastChat(String username, InetAddress group, int port,
 int ttl,
 MulticastChatEventListener listener) throws IOException {

 this.username = username;
 this.group = group;
 this.listener = listener;

Chapter 11

318

 isActive = true;

 // create & configure multicast socket
 msocket = new MulticastSocket(port);
 msocket.setSoTimeout(DEFAULT_SOCKET_TIMEOUT_MILLIS);
 msocket.setTimeToLive(ttl);
 msocket.joinGroup(group);

 // start receive thread and send multicast join message
 start();
 sendJoin();
 }

We repeat the thread termination pattern used in the TCP and UDP chapter examples, by defining a
terminate() method. The method changes the isActive instance variable so that the next time, the
thread read loop is terminated when the socket read timeout expires, or after the next packet is
received. It also sends a multicast chat leave message.

 public void terminate() throws IOException {
 isActive = false;
 sendLeave();
 }

 // Issues an error message
 protected void error(String message) {
 System.err.println(new java.util.Date() + ": MulticastChat: "
 + message);
 }

Following are methods for sending and receiving multicast chat PDUs. The sendMessage() method is
public while the sendJoin() and sendLeave() methods are protected to assure that they will only
be called by the constructor and the terminate() method. All receive methods are protected because
they should only be invoked internally by the class instance thread. The send and receive methods are
paired to facilitate protocol verification.

PDUs are written and read using the DataOutputStream and DataInputStream I/O utilities. Their
encoding is well defined and could in principle be replicated by non-Java applications. Every send
method begins by writing the multicast chat protocol magic number, and the PDU ID. The receive
methods do not reciprocate because the magic number and PDU ID have already been read by the de-
multiplexing read loop thread.

// Sends a multicast chat JOIN PDU
 protected void sendJoin() throws IOException {
 ByteArrayOutputStream byteStream = new ByteArrayOutputStream();
 DataOutputStream dataStream = new DataOutputStream(byteStream);

 dataStream.writeLong(CHAT_MAGIC_NUMBER);
 dataStream.writeInt(JOIN);
 dataStream.writeUTF(username);
 dataStream.close();

 byte[] data = byteStream.toByteArray();
 DatagramPacket packet = new DatagramPacket(data, data.length, group,
 msocket.getLocalPort());
 msocket.send(packet);

Multicasting

319

 }

 // Processes a multicast chat JOIN PDU and notifies listeners
 protected void processJoin(DataInputStream istream, InetAddress address,
 int port) throws IOException {
 String name = istream.readUTF();

 try {
 listener.chatParticipantJoined(name, address, port);
 } catch (Throwable e) {}
 }

 // Sends a multicast chat LEAVE PDU
 protected void sendLeave() throws IOException {

 ByteArrayOutputStream byteStream = new ByteArrayOutputStream();
 DataOutputStream dataStream = new DataOutputStream(byteStream);

 dataStream.writeLong(CHAT_MAGIC_NUMBER);
 dataStream.writeInt(LEAVE);
 dataStream.writeUTF(username);
 dataStream.close();

 byte[] data = byteStream.toByteArray();
 DatagramPacket packet = new DatagramPacket(data, data.length, group,
 msocket.getLocalPort());
 msocket.send(packet);
 }

 // Processes a multicast chat LEAVE PDU and notifies listeners
 protected void processLeave(DataInputStream istream, InetAddress address,
 int port) throws IOException {
 String username = istream.readUTF();

 try {
 listener.chatParticipantLeft(username, address, port);
 } catch (Throwable e) {}
 }

 // Sends a multicast chat MESSAGE PDU
 public void sendMessage(String message) throws IOException {

 ByteArrayOutputStream byteStream = new ByteArrayOutputStream();
 DataOutputStream dataStream = new DataOutputStream(byteStream);

 dataStream.writeLong(CHAT_MAGIC_NUMBER);
 dataStream.writeInt(MESSAGE);
 dataStream.writeUTF(username);
 dataStream.writeUTF(message);
 dataStream.close();

 byte[] data = byteStream.toByteArray();
 DatagramPacket packet = new DatagramPacket(data, data.length, group,
 msocket.getLocalPort());
 msocket.send(packet);
 }

 // Processes a multicast chat MESSAGE PDU and notifies listeners
 protected void processMessage(DataInputStream istream,
 InetAddress address,

Chapter 11

320

 int port) throws IOException {
 String username = istream.readUTF();
 String message = istream.readUTF();

 try {
 listener.chatMessageReceived(username, address, port, message);
 } catch (Throwable e) {}
 }

After studying the earlier TCP and UDP examples, the main read loop should be familiar now. While a
terminate() request has not been made, the next datagram packet is read from the multicast socket.
The DataOutputStream is used to verify the multicast chat protocol magic number and determine
the PDU ID. To keep the example simple, any errors are silently ignored.

// Loops receiving and de-multiplexing chat datagrams
 public void run() {
 byte[] buffer = new byte[65508];
 DatagramPacket packet = new DatagramPacket(buffer, buffer.length);

 while (isActive) {
 try {

 // DatagramPacket instance length MUST be reset before EVERY receive
 packet.setLength(buffer.length);
 msocket.receive(packet);

 DataInputStream istream =
 new DataInputStream(new ByteArrayInputStream(packet.getData(),
 packet.getOffset(), packet.getLength()));

 long magic = istream.readLong();

 if (magic != CHAT_MAGIC_NUMBER) {
 continue;

 }
 int opCode = istream.readInt();
 switch (opCode) {
 case JOIN:
 processJoin(istream, packet.getAddress(), packet.getPort());
 break;
 case LEAVE:
 processLeave(istream, packet.getAddress(), packet.getPort());
 break;
 case MESSAGE:
 processMessage(istream, packet.getAddress(), packet.getPort());
 break;
 default:
 error("Received unexpected operation code " + opCode + " from "
 + packet.getAddress() + ":" + packet.getPort());
 }

 } catch (InterruptedIOException e) {

 /**
 * No need to do anything since the timeout is only used to
 * force a loop-back and check of the "isActive" value
 */
 } catch (Throwable e) {

Multicasting

321

 error("Processing error: " + e.getClass().getName() + ": "
 + e.getMessage());
 }
 }

 try {
 msocket.close();
 } catch (Throwable e) {}
 }
}

Our programmatic interface implementation is now complete. The advantage of using the peer-to-peer
model is that there are no separate client and server implementations!

The User Interface
The final step will be to develop a user interface for our group chat application. In the previous
chapters, we made use of simple command line interfaces. Due to the asynchronous nature of the
multicast protocol – messages can arrive while the user is typing – a console-based interface is not really
appropriate. Instead, we will develop a simple Swing-based graphical interface. We will assume that
readers are familiar with Swing-based GUI development. For those who are not, we recommend looking
at Beginning Java 2 JDK 1.3 Edition, Wrox Press, ISBN 1861003668. The next section will include complete
instructions on how to execute the client.

The user interface will consist of a window containing a large message-log area in the center, and a
small message-entry area in the bottom. The Swing JTextArea class will be used to display incoming
messages, and the JTextField will be used to support user message entry. Users may signal message
completion by pressing the ENTER key, or by clicking on a Send button provided. The
MulticastChatFrame class extends the Swing JFrame to encapsulate the graphical interface. The
nesting of the Swing components is shown in the diagram below.

MultiChatFrame extends JFrame

JTextArea
(chat log)

JLabel
(Message:)” ”

JTextField
(user message entry)

JButton
(Send)” ”

At construction time, the Swing components are initialized, but the group chat session is not initialized.
This can be achieved by invoking the join() method with the username, IP multicast group, and port
to be used. The join() method then creates a MulticastChat instance passing its own parameters
and the MulticastChatFrame object as a listener. After this initialization, all operations are
asynchronous. Either a message arrives, signaled by a MulticastChatEventListener method
invocation, or the user sends a message. Typically, the interface would provide a menu-based system for
parameter entry, but to keep the example small, we read that information from the command line and
invoke the join() method from the main() method.

Chapter 11

322

The Java Swing classes are not thread safe! Once a Swing component has been
displayed, all its methods must be invoked from within the Swing event thread. In our
application, MulticastChatEventListener methods are invoked in the
MulticastChat read() thread. Therefore, we cannot directly log messages
received by invoking methods on the JTextArea object. Instead, we use the
SwingUtilities.invokeLater() method to queue the operation on the Swing
event thread. Care must also be taken when performing blocking operations from
within the Swing event queue. If the Swing event queue blocks, then the Swing
components will "freeze". Because our application uses a non-blocking protocol for
sending, we do not have to worry about this problem. Had this not been the case, the
send JButton action would have needed to use a thread to invoke the
MulticastChat.send() method.

The code for the user interface class is shown below:

// MulticastChatFrame.java

import java.io.IOException;
import java.net.InetAddress;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.text.*;

// A swing-based user interface to a MulticastChat session

public class MulticastChatFrame extends JFrame implements ActionListener,
 WindowListener, MulticastChatEventListener {

 // The multicast chat object
 protected MulticastChat chat;

 // Text area used to log chat join, leave and chat messages received
 protected JTextArea textArea;

 // Scroll pane used for the text area (used to auto-scroll)
 protected JScrollPane textAreaScrollPane;

 // The text field used for message entry
 protected JTextField messageField;

 // Button used to transmit messageField data
 protected JButton sendButton;

 // Constructs a new swing multicast chat frame (in unconnected state)
 public MulticastChatFrame() {
 super("MulticastChat (unconnected)");

 // Construct GUI components (before session)
 textArea = new JTextArea();
 textArea.setEditable(false);
 textArea.setBorder(BorderFactory.createLoweredBevelBorder());

 textAreaScrollPane = new JScrollPane(textArea);
 getContentPane().add(textAreaScrollPane, BorderLayout.CENTER);

Multicasting

323

 JPanel messagePanel = new JPanel();
 messagePanel.setLayout(new BorderLayout());

 messagePanel.add(new JLabel("Message:"), BorderLayout.WEST);

 messageField = new JTextField();
 messageField.addActionListener(this);
 messagePanel.add(messageField, BorderLayout.CENTER);

 sendButton = new JButton("Send");
 sendButton.addActionListener(this);
 messagePanel.add(sendButton, BorderLayout.EAST);

 getContentPane().add(messagePanel, BorderLayout.SOUTH);

 // detect window closing and terminate multicast chat session
 addWindowListener(this);
 }

 // Configures the multicast chat session for this interface
 public void join(String username, InetAddress group, int port,
 int ttl) throws IOException {
 setTitle("MulticastChat " + username + "@" + group.getHostAddress()
 + ":" + port + " [TTL=" + ttl + "]");

 // create multicast chat session
 chat = new MulticastChat(username, group, port, ttl, this);
 }

The protected log method is used internally to write a message in the chat text area, and scroll the pane
to display it in a thread-safe manner (using invokeLater). This must be invoked on swing thread since
we're invoked from the action listener methods in the context of the MulticastChat receive thread.

protected void log(final String message) {
 java.util.Date date = new java.util.Date();

 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 textArea.append(message + "\n");
 textAreaScrollPane.getVerticalScrollBar()
 .setValue(textAreaScrollPane.getVerticalScrollBar().getMaximum());
 }
 });
 }

The actionPerformed method is invoked by the Swing event queue in response to asynchronous
ActionListener events. In our program, it will be invoked when the user presses ENTER in the
messageField, or presses the Send button.

 public void actionPerformed(ActionEvent e) {

 if ((e.getSource().equals(messageField)) ||
 (e.getSource().equals(sendButton))) {

 String message = messageField.getText();
 messageField.setText("");

Chapter 11

324

 try {
 chat.sendMessage(message);
 } catch (Throwable ex) {
 JOptionPane.showMessageDialog
 (this, "Error sending message: " + ex.getMessage(),
 "Chat Error", JOptionPane.ERROR_MESSAGE);
 }
 }
 }

In the constructor we subscribed to receive notification of window events. Several window-related
events may be received. Our application is interested in dealing with two of these: when the window is
first opened, and when the user clicks on the window close button. In the windowOpen event, we
request focus for the user entry messageField so that users do not have to explicitly click in the
message area to type. In the windowClosing event that is triggered when the user clicks on the
window close button, we request termination of the chat session.

// Invoked the first time a window is made visible.
 public void windowOpened(WindowEvent e) {
 messageField.requestFocus();
 }

 // On closing, terminate multicast chat
 public void windowClosing(WindowEvent e) {
 try {
 if (chat != null) {
 chat.terminate();
 }
 } catch (Throwable ex) {
 JOptionPane.showMessageDialog(this,
 "Error leaving chat: "
 + ex.getMessage(), "Chat Error",
 JOptionPane.ERROR_MESSAGE);
 }
 dispose();
 }
 public void windowClosed(WindowEvent e) {}
 public void windowIconified(WindowEvent e) {}
 public void windowDeiconified(WindowEvent e) {}
 public void windowActivated(WindowEvent e) {}
 public void windowDeactivated(WindowEvent e) {}

In order to display incoming JOIN, LEAVE and MESSAGE events we subscribed with the
MulticastChat object at construction time. The MulticastChat object will invoke one of the three
MulticastChatEventListener methods listed below. Recall that these methods will be invoked in
the MulticastChat thread. Therefore, all three implementations log the message to the text area
using the protected Swing thread-safe log() method listed earlier.

 // Invoked by the MulticastChat receive thread when a message has arrived
 public void chatMessageReceived(String username, InetAddress address,
 int port, String message) {
 log(username + ": " + message);
 }

 // Invoked by the MulticastChat receive thread when a user has joined
 public void chatParticipantJoined(String username, InetAddress address,

Multicasting

325

 int port) {
 log("+++ " + username + " has joined from " + address.getHostName()
 + ":" + port);
 }

 // Invoked by the MulticastChat receive thread when a user has left
 public void chatParticipantLeft(String username, InetAddress address,
 int port) {
 log("--- " + username + " has left from " + address.getHostName() + ":"
 + port);
 }

The main() method is responsible for parsing the command-line arguments that include the nickname
(username) used in the chat session, the multicast group address and port number, as well as an optional
time-to-live (TTL) value. In a production client these values would most likely be queried using a
graphical interface.

// Command-line invocation expecting three arguments
 public static void main(String[] args) {
 if ((args.length != 3) && (args.length != 4)) {
 System.err.println("Usage: MulticastChatFrame "
 + "<username> <group> <port> { <ttl> }");
 System.err.println(" - default time-to-live value is 1");
 System.exit(1);
 }

 String username = args[0];
 InetAddress group = null;
 int port = -1;
 int ttl = 1;

 try {
 group = InetAddress.getByName(args[1]);
 } catch (Throwable e) {
 System.err.println("Invalid multicast group address: "
 + e.getMessage());
 System.exit(1);
 }

 if (!group.isMulticastAddress()) {
 System.err.println("Group argument '" + args[1]
 + "' is not a multicast address");
 System.exit(1);
 }

 try {
 port = Integer.parseInt(args[2]);
 } catch (NumberFormatException e) {
 System.err.println("Invalid port number argument: " + args[2]);
 System.exit(1);
 }

 if (args.length >= 4) {
 try {
 ttl = Integer.parseInt(args[3]);
 } catch (NumberFormatException e) {
 System.err.println("Invalid TTL number argument: " + args[3]);
 System.exit(1);

Chapter 11

326

 }
 }

 try {
 MulticastChatFrame frame = new MulticastChatFrame();
 frame.setSize(400, 150);

 frame.addWindowListener(new WindowAdapter() {
 public void windowClosed(WindowEvent e) {
 System.exit(0);
 }
 });

 frame.show();

 frame.join(username, group, port, ttl);
 } catch (Throwable e) {
 System.err.println("Error starting frame: " + e.getClass().getName()
 + ": " + e.getMessage());
 System.exit(1);
 }
 }
}

Running the Example
The group chat example code should all be stored in the same directory. The first step will then be to
compile the Java source as shown:

C:\Beg_Java_Networking\Ch11>javac MulticastChatEventListener.java MulticastChat.java
MulticastChatFrame.java

We are going to demonstrate use of the group chat client on a single host. It will be assumed that the
host supports multicast as discussed in an earlier section. In our demonstration, we will start two
instances of the multicast chat program, one for user A. Bell and another for user T. Watson. An
arbitrary local administrative scope IP multicast address (239.255.10.11) and UDP port (4000) will
be used. In this example, benhi1 is the name of the Microsoft Windows 2000 host used.

We first start the group chat client for user A. Bell (username is "a-bell").

C:\Beg_Java_Networking\Ch11>java -classpath . MulticastChatFrame a-bell 239.255.10.11 4000

Notice how the chat group JOIN message sent by A. Bell's client is also received by and echoed on the
same client (due to the loop-back effect). Next, we start a group chat client for user T. Watson
(username is "t-watson").

Multicasting

327

C:\Beg_Java_Networking\Ch11>java -classpath . MulticastChatFrame t-watson 239.255.10.11
4000

A separate client window is started and the chat group JOIN message from T. Watson's client should
then be displayed on A. Bell's client as below:

In the next step, we type in a message on A. Bell's client as shown below, and then press the send button.
The message shown was reportedly the content of the first telephone conversation in history between
Alexander Graham Bell and his assistant Thomas Watson.

Mr. Watson come here, I want you.

Once the Send button has been clicked (or the ENTER key pressed), the message will be sent to the
multicast group and will be displayed on both clients.

Finally, we demonstrate use of the leave message by closing T. Watson's client window. The multicast
chat leave message should be shown on A. Bell's client window as seen below.

Chapter 11

328

Summary
In this chapter, we have seen that multicasting can offer important reductions in the bandwidth required
by a server and backbone networks. Internet applications may effect multicast communications using
the IP multicast protocol. Some main points to remember about IP multicasting are:

❑ In the IP multicast model any host may send a datagram to a group address.

❑ Groups of Internet hosts are identified by class-D Internet addresses in the range 224.0.0.0
– 239.255.255.255.

❑ In order to receive multicast datagrams, hosts must request to join one or more groups. The
request to join is sent to the first-hop router using the IGMP protocol.

❑ IP Multicast transmission is unreliable; multicast datagrams are routed with best effort.

❑ IP multicast transmissions may be scoped using two methods:

❑ Using the IP TTL field to restrict the radius of transmission.

❑ Administrative scoping which uses a new subdivision of the class-D address space.

Java supports IP multicast programming through the java.net.MulticastSocket class. The
MulticastSocket class extends the UDP DatagramSocket class with support for IGMP join/leave
operations, the setting of a datagram's TTL, and the binding to a particular network interface.

The Java IP multicast support is dependent on native platform multicast support. All major Java 2
platforms are IP multicast-capable, but may require appropriate configuration. Moreover, in order to
send multicast datagrams to other hosts, the network routers must support IP multicast. The chapter
concluded with an in-depth multicast example of a group chat application.

Multicasting

329

Chapter 11

330

