
Home Newsletter Java Training Performance
Consulting CustomerHub Contact

The Java Specialists' Newsletter
 Issue 153 2007-11-25 Category: Tips and Tricks Java version: 5+

GitHub Subscribe Free RSS Feed Print

Timeout on Console Input

by Dr. Heinz M. Kabutz
Abstract:

In this newsletter, we look at how we can read from the console input stream, timing out if we do not get a
response by some timeout.

Welcome to the 153rd issue of The Java(tm) Specialists' Newsletter. Last week I presented my first Java
Specialist Master Course (http://www.javaspecialists.eu/courses/master.jsp), so I would like to give some
feedback on what happened. It is hard to describe the feelings that I had when I was teaching it. At first I was quite
nervous about the pace, since I have never taught so much advanced information in such a short period of time.
But then, after each day, instead of being drained, I felt refreshed and excited how it was panning out. I am now
convinced that this is the most comprehensive advanced Java course you will find anywhere. Just the section on
serialization is 70 slides, without being repetitive and boring. If you are a good Java programmer, and you want to
go further, have a look at the outline.

Last week I received a rather interesting email from Maximilian Eberl, who was trying to write a simple Java
console application to receive input from nurses who look after elderly and handicapped people. I must admit that
my first suspicion was that this was a school project, so I quizzed him as to its application. Due to the proliferation
of plagiarism on the internet, I refuse to help anybody who I suspect of either asking for my assistance with their
school work (that is what tutors and teachers are supposed to be for) or when I feel that they are trying to
embellish their skill, without giving credit for my help to their bosses. However, after working out a solution, and
reading Maximilian's detailed explanation of why he was trying to do this, I was convinced that this is not school
project material. (Besides that, he has the same name as my son, so that worked in his favour as well :-) It was
thus an absolute pleasure helping him solve this interesting problem.

NEW: Please see our new "Extreme Java" course, combining concurrency, a little bit of performance and Java 8.
Extreme Java - Concurrency & Performance for Java 8.

Timeout on Console Input

The problem that Maximilian was trying to solve was to have a simple console based application that would give
users a certain time to answer the question. It would then timeout and retry a few times.

The reason this was a difficult problem to solve was that System.in blocks on the readLine() method. The thread
state is RUNNABLE when you are blocking on IO, not WAITING or TIMED_WAITING. It therefore does not respond to
interruptions. Here is some sample code that shows the thread state of the Thread:

importimport java.io.*;

public classpublic class ReadLineTest {
 public static void public static void main(String[] args) throws throws IOException {
 BufferedReader in = new new BufferedReader(
 new new InputStreamReader(System.in)
);
 in.readLine();
 }
}

The thread dump clearly shows the state (I have stripped out unnecessary lines from the stack trace):

"main" prio=10 tid=0x08059000 nid=0x2e8a runnable
 java.lang.Thread.State: RUNNABLE
 at java.io.BufferedReader.readLine(BufferedReader.java:362)
 at ReadLineTest.main(ReadLineTest.java:8)

Since blocking reads cannot be interrupted with Thread.interrupt(), we traditionally stop them by closing the
underlying stream. In our Java Specialist Master Course, one of the working examples is how to write a non-
blocking server using Java NIO. (Told you it was a comprehensive course :-)) However, since System.in is a
traditional stream, we cannot use non-blocking techniques. Also, we cannot close it, since that would close it for all

Extreme Java -
Concurrency and
Performance for Java 8

Extreme Java - Advanced
Topics for Java 8

Design Patterns

In-House Courses

http://www.javaspecialists.eu/
http://www.javaspecialists.eu/index.jsp
http://www.javaspecialists.eu/archive/archive.jsp
http://www.javaspecialists.eu/courses/inhouse.jsp
http://www.javaspecialists.eu/services/performance_consulting.jsp
http://www.javaspecialists.eu/customerhub
http://www.javaspecialists.eu/contact.jsp
http://www.javaspecialists.eu/archive/newsletters.jsp?category=Tips%20and%20Tricks&locale=en_US
https://github.com/kabutz/javaspecialists/
http://www.javaspecialists.eu/archive/subscribe.jsp
http://www.javaspecialists.eu/archive/tjsn.rss
http://www.javaspecialists.eu/courses/master.jsp
http://www.javaspecialists.eu/courses/master_outline.jsp
http://www.javaspecialists.eu/courses/xj-conc-j8.jsp
http://www.javaspecialists.eu/courses/master.jsp
http://www.javaspecialists.eu/courses/xj-conc-j8.jsp
http://www.javaspecialists.eu/courses/xj-adv.jsp
http://www.javaspecialists.eu/courses/dpc.jsp
http://www.javaspecialists.eu/courses/inhouse.jsp

readers.

One little method in the BufferedStream will be able to help us. We can call BufferedStream.ready(), which will only
return true if the readLine() method can be called without blocking. This implies that the stream not only contains
data, but also a newline character.

The first problem is therefore solved. However, if we read the input in a thread, we still need to find a way to get
the String input back to the calling thread. The ExecutorService in Java 5 will work well here. We can implement
Callable and return the String that was read. Unfortunately we need to poll until something has been entered.
Currently we sleep for 200 milliseconds between checks, but we could probably make that much shorter if we want
instant response. Since we are sleeping, thus putting the thread in the TIMED_WAITING state, we can interrupt this
task at any time. One last catch was that we do not want to accept an empty line as a valid input.

import import java.io.*;
import import java.util.concurrent.Callable;

public class public class ConsoleInputReadTask implements implements Callable<String> {
 public public String call() throws throws IOException {
 BufferedReader br = new new BufferedReader(
 new new InputStreamReader(System.in));
 System.out.println("ConsoleInputReadTask run() called.""ConsoleInputReadTask run() called.");
 String input;
 do do {
 System.out.println("Please type something: ""Please type something: ");
 try try {
 // wait until we have data to complete a readLine()
 while while (!br.ready()) {
 Thread.sleep(200);
 }
 input = br.readLine();
 } catch catch (InterruptedException e) {
 System.out.println("ConsoleInputReadTask() cancelled""ConsoleInputReadTask() cancelled");
 return nullreturn null;
 }
 } while while ("""".equals(input));
 System.out.println("Thank You for providing input!""Thank You for providing input!");
 return return input;
 }
}

The next task is to call the ConsoleInputReadTask and timeout after some time. We do that by calling get() on the
Future that is returned by the submit() method on ExecutorService.

import import java.util.concurrent.*;

public class public class ConsoleInput {
 private final int private final int tries;
 private final int private final int timeout;
 private final private final TimeUnit unit;

 public public ConsoleInput(int int tries, int int timeout, TimeUnit unit) {
 thisthis.tries = tries;
 thisthis.timeout = timeout;
 thisthis.unit = unit;
 }

 public public String readLine() throws throws InterruptedException {
 ExecutorService ex = Executors.newSingleThreadExecutor();
 String input = nullnull;
 trytry {
 // start working
 for for (int int i = 0; i < tries; i++) {
 System.out.println(String.valueOf(i + 1) + ". loop"". loop");
 Future<String> result = ex.submit(
 new new ConsoleInputReadTask());
 try try {
 input = result.get(timeout, unit);
 breakbreak;
 } catch catch (ExecutionException e) {
 e.getCause().printStackTrace();
 } catch catch (TimeoutException e) {
 System.out.println("Cancelling reading task""Cancelling reading task");
 result.cancel(truetrue);
 System.out.println(""\n\nThread cancelled. input is null"Thread cancelled. input is null");
 }
 }
 } finallyfinally {
 ex.shutdownNow();
 }
 return return input;
 }
}

We can put all this to the test with a little test class. It takes the number of tries and the timeout in seconds from
the command line and instantiates that ConsoleInput class, reading from it and displaying the String:

import import java.util.concurrent.TimeUnit;

public class public class ConsoleInputTest {
 public static void public static void main(String[] args)
 throws throws InterruptedException {
 if if (args.length != 2) {
 System.out.println(
 "Usage: java ConsoleInputTest <number of tries> ""Usage: java ConsoleInputTest <number of tries> " +
 "<timeout in seconds>""<timeout in seconds>");

 System.exit(0);
 }

 ConsoleInput con = new new ConsoleInput(
 Integer.parseInt(args[0]),
 Integer.parseInt(args[1]),
 TimeUnit.SECONDS
);

 String input = con.readLine();
 System.out.println("Done. Your input was: ""Done. Your input was: " + input);
 }
}

This seems to satisfy all the requirements that we were trying to fulfill. To be honest, when I first saw the problem, I
did not think it could be done.

There is at least one way you could potentially get this program to fail. If you call the ConsoleInput.readLine()
method from more than one thread, you run the very real risk of a data race between the ready() and readLine()
methods. You would then block on the BufferedReader.readLine() method, thus potentially never completing.

Hopefully the rest of the program will be straighforward and soon the nurses for the disabled and elderly people
will have some computer assistance, thanks to Maximilian Eberl. Good luck!

Kind regards from an airport somewhere in Europe :-)

Heinz

 Tips and Tricks Articles Related Java Course

© 2010-2016 Heinz Kabutz - All Rights
Reserved Sitemap

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. JavaSpecialists.eu is
not connected to Oracle, Inc. and is not sponsored by Oracle, Inc.

http://www.javaspecialists.eu/archive/newsletters.jsp?category=Tips%20and%20Tricks&locale=en_US
http://www.javaspecialists.eu/courses/concurrency.jsp
http://www.javaspecialists.eu/sitemap.jsp

