Java™ Speech API
Programmer’s Guide

Version 1.0 — October 26, 1998

D Sun

microsystems

THE NETWORK IS THE COMPUTER"

A Sun Microsystems, Inc. Business
901 San Antonio Road

Palo Alto, CA 94303 USA
415960-1300  Fax 415 969-9131



Copyright 1997-1998 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303 U.S.A.
Allrights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions set forth in
DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The release described in this document may be protected by one or more U.S. patents, foreign patents, or pending applications. Sun
Microsystems, Inc. (SUN) hereby grants to you a fully paid, nonexclusive, nontransferable, perpetual, worldwide limited license (without the
right to sublicense) under SUN's intellectual property rights that are essential to practice this specification. This license allows and is limited to
the creation and distribution of clean-room implementations of this specification that (i) are complete implementations of this specification, (ii)
pass all test suites relating to this specification that are available from SUN, (iii) do not derive from SUN source code or binary materials, and
(iv) do not include any SUN binary materials without an appropriate and separate license from SUN.

Java, Personallava, Embeddedlava, JavaBeans, Java Foundation Classes, JavaScript, Hotlava and “Write Once, Run Anywhere” are trademarks
of Sun Microsystems, Inc. in the United States and other countries. Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun
logo, the Sun Microsystems Computer Corporation logo. UNIX® is a registered trademark in the United States and other countries, exclusively
licensed through X/Open Company, Ltd. Adobe logo™ is a trademark of Adobe Systems, Incorporated. All other product names mentioned
herein are the trademarks of their respective owners.

THISPUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT.

THISPUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY
ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION.
SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THIS PUBLICATION AT ANY TIME.

@ Please

%@ Recycle



Chapter 1
1.1
1.2

13
131

14

141
1.4.2
143
1.4.4

15
1.6

Listof Figures . . ... . ix
Listof Tables .. ........ ... . Xi
Preface . ... .. Xiii
AboutthisGuide . . ......... ... .. .. Xiii
Web Resources .. ... Xiv
Related Reading . ............ ... XV
Mailing LisStS . . . ..o XV
Revision History . . ....... ... o XVi
Contributions . ... .. . Xvii
Introduction .. ...... ... ... . 1
What is the Java Speech API? . ........................ 1
Design Goals for the Java Speech API . .................. 2
Speech-Enabled Java Applications . . . ................... 2
Speechand otherJava APIs ........................... 3
Applications of Speech Technology . . ................... 3
DESKIOD . . .ttt 4
Telephony Systems . . ... ... . 5
Personal and Embedded Devices ....................... 5
Speechandthelnternet ........ ... ... ... ... ... 5
Implementations . ........ ... 6
Requirements .. ......... . .. 7

Table of Contents



Chapter 2

2.1
211
2.1.2

2.2

221
2.2.2
2.2.3

Chapter 3
3.1
3.2

3.3

3.3.1
3.3.2
3.3.3
3.34
3.3.5
3.3.6

3.4

34.1
3.4.2
3.4.3

3.5

3.5.1
3.5.2
3.5.3

3.6

3.6.1
3.6.2
3.6.3

3.7
3.8

Speech Technology ........... ... .. ... ... ... ........ 9

Speech Synthesis . ....... ... .. ... 9
Speech Synthesis Limitations . .. ...................... 11
Speech Synthesis Assessment ........................ 12
Speech Recognition . .......... ... ... . ... ... 13
Rule Grammars . . ... e 14
Dictation Grammars . ... 15
Limitations of Speech Recognition .................... 16
Designing Effective Speech Applications .............. 19
WhentoUse Speech . ............ ... .. ... 19
DesignforSpeech....... ... ... .. .. ... . . i 21
Challenges . ........ . 23
Transience: Whatdidyousay? . ..............covo.... 23
Invisibility: Whatcanlsay? .............ccoiiinnn... 23
ASYMMEIY . .. e 24
Speech synthesisquality .. ........................... 24
Speech recognition performance ...................... 24
Recognition: flexibility vs. accuracy ................... 25
Design Issues for Speech-Only Applications ............. 26
Feedback & Latency . .......... ... .. 26
Prompting . ... 27
Handling Errors . ... e 28
Design Issues for Multi-Modal Applications . ............ 29
Feedback & Latency . .......... .. i 29
Prompting . ... 29
Handling Errors ........... ... ... ... ... ... .. .. ..., 30
Involving USers .. ... 30
Natural Dialog Studies .............................. 30
Wizard-of-Oz Studies . . ... i 31
Usability Studies . . ... 31
SUMMArY . ... 32
For More Information . . ....... ... ... ... . . ... ... 33



Chapter 4
4.1
4.2

4.3
431
4.3.2
4.3.3
43.3.1

4.4

441
4.4.2
4.4.3
444
4.45
4.4.6
4.4.7

4.5
45.1

4.6

4.6.1
4.6.2
4.6.3

Chapter 5
51
5.2
53
54
55

5.6

56.1
5.6.2
5.6.3

Speech Engines: javax.speech....................... 35
What is a Speech Engine? . ............. ... . ... .. 35
Properties of a Speech Engine ........................ 36
Locating, Selecting and Creating Engines . .............. 39
Default Engine Creation . ............. ... .. ... 39
Simple Engine Creation .................. i, 40
Advanced Engine Selection . ........... ... .. .. ..., 41
Refiningan Engine List ............ ... ... . .. 43
EngineStates . ......... ... . 44
State systems . ... 44
Allocation State System ... ....... ... . 46
Allocated States and Call Blocking . ................... 47
Pause - Resume State System . .. ...................... 49
State Sharing . . . ... . e 50
Synthesizer Pause . ............ . 50
RecognizerPause ......... ... 51
Speech Events . . ... .. e 52
Event Synchronization . ........... ... . ... ... .. ... .. 53
Other Engine Functions . ............................ 54
Runtime Engine Properties . .. ......... .. ... . . . 54
Audio Management . ............. . 55
Vocabulary Management . ............. ..., 56
Speech Synthesis: javax.speech.synthesis . ............. 57
“Hello World!” . ... 58
SynthesizerasanEngine ................. ... ... . .... 59
Speaking Text . ... 60
Speech Output QuUeUe . ... ..o eee 61
Monitoring Speech Output .. ......................... 64
Synthesizer Properties ........... .. ... ... ... ... ... .. 66
SelectingVoices . ......... ... .. . .. 67
Property ChangesinJSML . .......................... 69
Controlling Prosody . .......... . ..., 69



Chapter 6
6.1
6.2

6.3
6.3.1
6.3.2
6.3.3
6.3.3.1
6.3.3.2
6.3.3.3
6.3.4

6.4

6.4.1
6.4.2
6.4.3

6.5
6.5.1
6.5.2
6.5.3
6.5.3.1
6.5.4
6.5.5

6.6
6.6.1

6.7
6.7.1
6.7.2
6.7.3
6.7.3.1
6.7.3.2
6.7.3.3
6.7.3.4
6.7.4
6.7.5
6.7.6
6.7.6.1

Speech Recognition: javax.speech.recognition ......... 71
“HelloWorld!” . ... ... . 72
Recognizerasan Engine ............... ... .......... 75
Recognizer State Systems . . . ... ..ot 75
Inherited States . . ... ... .. . 75
Recognizer FOCUS . . ... ... 76
Recognition States .. .......... . . 79
Speech Eventsvs. OtherEvents . ...................... 80
Speech inputEventCycle .......... ... ..., 80
Non-Speech EventCycle ........ ... ... .. ... .. .. ... 82
Interactions of State Systems . ........................ 83
Recognition Grammars . . . .....oiiii it e 83
Grammar Interface ........... .. .. 84
Committing Changes ........... ... . i, 85
Grammar Activation . .. ......... ... .. 86
Rule Grammars . .. ... e 88
Rule Definitions ... .......... ... ... ... ... ... ... ... 88
IMPOItS . . e 91
Rule Classes ......... . 92
Advanced Rule Programming . ....................... 93
Dynamic Grammars . ..........uuiiiinnnnnnn.. 95
ParsSinNg ... e 96
Dictation Grammars .. ...ttt 99
Dictation Context . ........ ..., 100
Recognition Results .......... ... ... . .. .. .. . ... 101
Result Finalization ............ ... ... . .. . ... 102
Result Interface Hierarchy . ......................... 104
Result Information . .......... ... ... ... ... . . . ..., 106
ResultInterface . . ... . 106
FinalResult Interface .............................. 107
FinalDictationResult Interface . ...................... 107
FinalRuleResult Interface . ................ . ... .... 107
ResultLifeCycle ........ ... ... ... ... ... ... ...... 108
ResultListener Attachment . ......................... 109
Recognizerand Result States . ....................... 110
Updating Grammars . ..., 111

vi



6.7.7
6.7.8
6.7.9
6.7.9.1
6.7.9.2
6.7.9.3
6.7.9.4
6.7.10
6.7.10.1
6.7.10.2
6.7.11
6.7.12
6.7.13
6.7.13.1
6.7.14
6.7.15

6.8
6.9
6.10

Grammar Finalization . . ......... ... ... . . . . . ... 111

Token Finalization ............... ... .. ... 112
Finalized Rule Results . ........ ... ... . . oo, 114
Result Tokens . ...... ... . . i 114
Alternative GUESSES ... ... . 115
ReSUL TagS . .o i i 116
ResultParsing . ........ciiiii it e e 118
Finalized DictationResults . . .. ...................... 119
Alternative GUESSES .. ... ... . 119
Result Tokens . ...... ... . i 121
Result Audio . ......... .. 125
Result Correction . ...... ..., 127
Rejected Results . ......... ... ... .. .. .. .. ... .. .... 129
Rejection TIMING .. ... .ot e e 130
Result Timing . ... e 131
Storing Results . ... .. . . 132
Recognizer Properties . . . ........ .. i 133
Speaker Management . ................ ... ... ... ... 136
Recognizer Audio . .. ... 138

vii



viii



Chapter 1
Chapter 2
Chapter 3
Chapter 4

4-1
4-2

Chapter 5
5-1
Chapter 6

6-1
6-2

List of Figures

Introduction

Speech Technology

Designing Effective Speech Applications
Speech Engines: javax.speech

Engine allocation state system . ................ ... ..... 47
PAUSED and RESUMED Engine states . ................ 49

Speech Synthesis: javax.speech.synthesis
Synthesizerstates ............... ... .. ... .. ... .. .. ... 63
Speech Recognition: javax.speech.recognition

Recognizerstates ............ ... 77
Resultstates . ...... ... 109



Java Speech Application Programming Interface



Chapter 1
Chapter 2

2-1
Chapter 3

3-1
3-2
3-3

Chapter 4

4-1
4-2
4-3
4-4
4-5
4-6

Chapter 5
Chapter 6

6-1
6-2
6-3
6-4
6-5
6-6

List of Tables

Introduction
Speech Technology
Speech recognition errors and possible causes ........... 18

Designing Effective Speech Applications

When is speech input appropriate? .................... 20
When is speech output appropriate? ................... 21
Email message information ................ ... . ...... 22

Speech Engines: javax.speech

Basic engine selection properties: EngineModeDesc . . . . . .. 37
Synthesizer selection properties: SynthesizerModeDesc . ... 38
Recognizer selection properties: RecognizerModeDesc . ... 38
Speech events: javax.speech package .................. 52
Speech events: javax.speech.synthesis package .......... 53
Speech events: javax.speech.recognition package ........ 53

Speech Synthesis: javax.speech.synthesis

Speech Recognition: javax.speech.recognition

RuleGrammar methods for Rule management ........... 89
RuleGrammar import methods . ...................... 91
Ruleobjects ........ ... ... . . . 92
Matching Rule definitions and RuleParse objects ......... 96
DictationGrammar interface methods .. ............... 100
Spoken and written forms for some English tokens ... ... 123

Xi



Xii

6-7
6-8
6-9
6-10

Java Speech Application Programming Interface

Sample sequence of resulttokens .................... 124
FinalResult interface: audio methods ................. 126
FinalResult interface: correction methods . ............. 127
Run-time Properties of a Recognizer ................. 133



Preface

TheJava™ Speech API Programmer’s Guiden introduction to speech
technology and to the development of effective speech applications using the Java
Speech API. An understanding of the Java programming language and the core
Java APls is assumed. An understanding of speech technology is not required.

About this Guide

Part 1

The first three chapters of this guide provide an introduction to speech technology
and to the Java Speech API.

Chapter 1, IntroductionThis chapter introduces the Java Speech API,
reviews the design goals for JSAPI, discusses the types of applications that JSAPI
enables and discusses the requirements for using JSAPI.

Chapter 2, Speech Technoloyhis chapter is a more detailed introduction
to speech technology systems with a greater focus on technical issues. It describes
both the capabilities and limitations of speech recognition and speech synthesis
systems. An understanding of these issues is important to developers who use
speech technology in their applications.

Chapter 3, Designing Effective Speech Applicatidrgs chapter is an
introduction to the art and the science of effective user interface design with
speech technology. As with design of graphical interfaces using AWT or the Java
Foundation Classes, good user interface design with speech is important to ensure
that applications are usable. Chapter 3 also discusses how some of the limitations
of speech technology need to be considered in the design of an effective speech-
enabled user interface.

Xiii



Xiv

Java Speech Application Programming Interface

Part 2

The next three chapters of this guide describe in technical detail the three Java
software packages that comprise the Java Speech API. These chapters provide
both introductory and advanced descriptions of programming with the Java
Speech API. Where possible, code examples are included to illustrate the
principles of speech application development.

Chapter 4, Speech Engines: javax.spedatioduces the root package of
the Java Speech API. The classes and interfaces of the root package define basic
speech engine functionality.

Chapter 5, Speech Synthesis: javax.speech.syntivdsigluces the package
that supports speech synthesis capabilities. A speech synthesizer is a type of
speech engine. Thus, the speech synthesis package inherits the general speech
engine behavior from thevax.speech  package but extends it with the ability to
produce speech output.

Chapter 6, Speech Recognition: javax.speech.recognititneduces the
package that supports speech recognition capabilities. A speech recognizer is also
a type of speech engine, so the speech recognition package also extends the
general speech engine behavior, in this case, with the ability to convert incoming
audio to text.

Getting Started

Newcomers to speech technology are encouraged to read Chapter 2 and then to
consider the “Hello World!” code examples at the start of both Chapters 5 and 6.
These code examples illustrate the basics of speech synthesis and speech
recognition programming.

All developers are encouraged to read Chapter 3 on Designing Effective
Speech Applications.” Appropriate and effective use of speech input and output
makes the development of speech applications easier and faster and improves the
experience that application users will have.

Finally, as with all Java APls, the Javadoc for the three Java Speech API
packages is the master description of the functionality of the APl and documents
every API capability.

Web Resources

To obtain the latest information on the Java Speech API other Java Media APls
visit:

http://java.sun.com/products/java-media/speech/index.html



Related Reading

This document describes the software interface of the Java Speech API. For
information on related topics, refer to the following:

+ Java Speech Markup Language Specification
¢ Java Speech Grammar Format Specification

Both documents are available from the Java Speech APl home page:

http://java.sun.com/products/java-media/speech/index.html

Mailing Lists

Discussion lists have been set up for everyone interested in the Java Speech API,
the Java Speech Grammar Format specification, the Java Synthesis Markup
Language, and related technologies. jalapeech-announce  mailing list
carries important announcements about releases and updates. The
javaspeech-interest mailing list is for open discussion of the Java Speech API
and the associated specifications.

To subscribe to thgvaspeech-announce  list or thejavaspeech-interest
list, send email withsubscribe javaspeech-announce” or
“subscribe javaspeech-interest” or both in the message body to:

javamedia-request@sun.com

Thejavaspeech-announce  mailing list is moderated. It is not possible to send
email to that list. To send messages to the interest list, send email to:

javaspeech-interest@sun.com

To unsubscribe from thevaspeech-announce  list or thejavaspeech-interest
list, send email withunsubscribe javaspeech-announce” or
“unsubscribe javaspeech-interest” or both in the message body to:

javamedia-request@sun.com
Comments and proposals for enhancements should be sent to:

javaspeech-comments@sun.com

XV



Java Speech Application Programming Interface

Revision History
Version 1.0: October 26, 1998
Version 0.7: May, 1998. Revised public beta release.

Version 0.6: February 98. Initial public beta release

XVi



Contributions

Sun Microsystems, Inc. has worked in partnership with leading speech technology
companies to define the specification of the Java Speech API. These companies
brought decades of research on speech technology to the project as well as
experience in the development and use of speech applications. Sun is grateful for
the contributions of:

Apple Computer, Inc.
AT&T

Dragon Systems, Inc.

IBM Corporation

Novell, Inc.

Philips Speech Processing

* & & ¢ o o o

Texas Instruments Incorporated

XVii



XVviii



CHAPTER 1

Introduction

Speech technology, once limited to the realm of science fiction, is now available
for use in real applications. THava™ Speech APtleveloped by Sun

Microsystems in cooperation with speech technology companies, defines a
software interface that allows developers to take advantage of speech technology
for personal and enterprise computing. By leveraging the inherent strengths of the
Java platform, the Java Speech API enables developers of speech-enabled
applications to incorporate more sophisticated and natural user interfaces into
Java applications and applets that can be deployed on a wide range of platforms.

1.1 What is the Java Speech API?

The Java Speech API defines a standard, easy-to-use, cross-platform software
interface to state-of-the-art speech technology. Two core speech technologies are
supported through the Java Speech Apkeech recognitioandspeech synthesis
Speech recognition provides computers with the ability to listen to spoken
language and to determine what has been said. In other words, it processes audio
input containing speech by converting it to text. Speech synthesis provides the
reverse process of producing synthetic speech from text generated by an
application, an applet or a user. It is often referred tteasto-speeckechnology.

Enterprises and individuals can benefit from a wide range of applications of
speech technology using the Java Speech API. For instance, interactive voice
response systems are an attractive alternative to touch-tone interfaces over the
telephone; dictation systems can be considerably faster than typed input for many
users; speech technology improves accessibility to computers for many people
with physical limitations.

Speech interfaces give Java application developers the opportunity to
implement distinct and engaging personalities for their applications and to
differentiate their products. Java application developers will have access to state-
of-the-art speech technology from leading speech companies. With a standard

1



Java Speech Application Programming Interface

API for speech, users can choose the speech products which best meet their needs
and their budget.

The Java Speech APl was developed through an open development process.
With the active involvement of leading speech technology companies, with input
from application developers and with months of public review and comment, the
specification has achieved a high degree of technical excellence. As a
specification for a rapidly evolving technology, Sun will support and enhance the
Java Speech API to maintain its leading capabilities.

The Java Speech API is an extension to the Java platform. Extensions are
packages of classes written in the Java programming language (and any
associated native code) that application developers can use to extend the
functionality of the core part of the Java platform.

1.2 Design Goals for the Java Speech API

Along with the other Java Media APIs, the Java Speech API lets developers
incorporate advanced user interfaces into Java applications. The design goals for
the Java Speech API included:

+ Provide support for speech synthesizers and for both command-and-con-
trol and dictation speech recognizers.

¢ Provide arobust cross-platform, cross-vendor interface to speech synthesis
and speech recognition.

¢ Enable access to state-of-the-art speech technology.

¢ Support integration with other capabilities of the Java platform, including
the suite of Java Media APlIs.

¢ Be simple, compact and easy to learn.

1.3 Speech-Enabled Java Applications

The existing capabilities of the Java platform make it attractive for the
development of a wide range of applications. With the addition of the Java Speech
API, Java application developers can extend and complement existing user
interfaces with speech input and output. For existing developers of speech
applications, the Java platform now offers an attractive alternative with:

+ Portability: the Java programming language, APIs and virtual machine are
available for a wide variety of hardware platforms and operating systems



Introduction

and are supported by major web browsers.

+ Powerful and compact environmettte Java platform provides developers
with a powerful, object-oriented, garbage collected language which en-
ables rapid development and improved reliability.

+ Network aware and securéom its inception, the Java platform has been
network aware and has included robust security.

1.3.1 Speech and other Java APIs

The Java Speech API is one of the Java Media APIs, a suite of software interfaces
that provide cross-platform access to audio, video and other multimedia playback,
2D and 3D graphics, animation, telephony, advanced imaging, and more. The
Java Speech API, in combination with the other Java Media APls, allows
developers to enrich Java applications and applets with rich media and
communication capabilities that meet the expectations of today’s users, and can
enhance person-to-person communication.

The Java Speech API leverages the capabilities of other Java APIs. The
Internationalization features of the Java programming language plus the use of the
Unicode character set simplify the development of multi-lingual speech
applications. The classes and interfaces of the Java Speech API follow the design
patterns of JavaBeans™. Finally, Java Speech API events integrate with the event
mechanisms of AWT, JavaBeans and the Java Foundation Classes (JFC).

1.4  Applications of Speech Technology

Speech technology is becoming increasingly important in both personal and
enterprise computing as it is used to improve existing user interfaces and to
support new means of human interaction with computers. Speech technology
allows hands-free use of computers and supports access to computing capabilities
away from the desk and over the telephone. Speech recognition and speech
synthesis can improve computer accessibility for users with disabilities and can
reduce the risk of repetitive strain injury and other problems caused by current
interfaces.

The following sections describe some current and emerging uses of speech
technology. The lists of uses are far from exhaustive. New speech products are
being introduced on a weekly basis and speech technology is rapidly entering new
technical domains and new markets. The coming years should see speech input
and output truly revolutionize the way people interact with computers and present
new and unforeseen uses of speech technology.



Java Speech Application Programming Interface

1.4.1 Desktop

Speech technology can augment traditional graphical user interfaces. At its
simplest, it can be used to provide audible prompts with spMesiNo/OK”
responses that do not distract the user’s focus. But increasingly, complex
commands are enabling rapid access to features that have traditionally been
buried in sub-menus and dialogs. For example, the comthkedl2-point,

bold, Helvetica font’replaces multiple menu selections and mouse clicks.

Drawing, CAD and other hands-busy applications can be enhanced by using
speech commands in combination with mouse and keyboard actions to improve
the speed at which users can manipulate objects. For example, while dragging an
object, a speech command could be used to change its color and line type all
without moving the pointer to the menu-bar or a tool palette.

Natural language commands can provide improvements in efficiency but are
increasingly being used in desktop environments to enhance usability. For many
users it’s easier and more natural to produce spoken commands than to remember
the location of functions in menus and dialog boxes. Speech technology is
unlikely to make existing user interfaces redundant any time soon, but spoken
commands provide an elegant complement to existing interfaces.

Speech dictation systems are now affordable and widely available. Dictation
systems can provide typing rates exceeding 100 words per minute and word
accuracy over 95%. These rates substantially exceed the typing ability of most
people.

Speech synthesis can enhance applications in many ways. Speech synthesis
of text in a word processor is a reliable aid to proof-reading, as many users find it
easier to detect grammatical and stylistic problems when listening rather than
reading. Speech synthesis can provide background notification of events and
status changes, such as printer activity, without requiring a user to lose current
context. Applications which currently include speech output using pre-recorded
messages can be enhanced by using speech synthesis to reduce the storage space
by a factor of up to 1000, and by removing the restriction that the output
sentences be defined in advance.

In many situations where keyboard input is impractical and visual displays
are restricted, speech may provide the only way to interact with a computer. For
example, surgeons and other medical staff can use speech dictation to enter
reports when their hands are busy and when touching a keyboard represents a
hygiene risk. In vehicle and airline maintenance, warehousing and many other
hands-busy tasks, speech interfaces can provide practical data input and output
and can enable computer-based training.



Introduction

1.4.2 Telephony Systems

Speech technology is being used by many enterprises to handle customer calls
and internal requests for access to information, resources and services. Speech
recognition over the telephone provides a more natural and substantially more
efficient interface than touch-tone systems. For example, speech recognition can
“flatten out” the deep menu structures used in touch tone systems.

Systems are already available for telephone access to email, calendars and
other computing facilities that have previously been available only on the desktop
or with special equipment. Such systems allow convenient computer access by
telephones in hotels, airports and airplanes.

Universal messaging systems can provide a single point of access to multiple
media such as voice-mail, emalil, fax and pager messages. Such systems rely upon
speech synthesis to read out messages over the telephone. For efamiple:
have any email?* Yes, you have 7 messages including 2 high priority messages
from the production manager” “Please read me the mail from the production
manager.” “Email arrived at 12:30pm...”

1.4.3 Personal and Embedded Devices

Speech technology is being integrated into a range of small-scale and embedded
computing devices to enhance their usability and reduce their size. Such devices
include Personal Digital Assistants (PDASs), telephone handsets, toys and
consumer product controllers.

Speech technology is particularly compelling for such devices and is being
used increasingly as the computer power of these devices increases. Speech
recognition through a microphone can replace input through a much larger
keyboard. A speaker for speech synthesis output is also smaller than most
graphical displays.

PersonalJava™ and EmbeddedJava™ are the Java application environments
targeted at these same devices. PersonalJava and EmbeddedJava are designed to
operate on constrained devices with limited computing power and memory, and
with more constrained input and output mechanisms for the user interface.

As an extension to the Java platform, the Java Speech API can be provided as
an extension to PersonalJava and EmbeddedJava devices, allowing the devices to
communicate with users without the need for keyboards or other large
peripherals.

1.4.4 Speech and the Internet

The Java Speech API allows applets transmitted over the Internet or intranets to
access speech capabilities on the user's machine. This provides the ability to



Java Speech Application Programming Interface

enhance World Wide Web sites with speech and support new ways of browsing.
Speech recognition can be used to control browsers, fill out forms, control applets
and enhance the WWW/Internet experience in many other ways. Speech synthesis
can be used to bring web pages alive, inform users of the progress of applets, and
dramatically improve browsing time by reducing the amount of audio sent across
the Internet.

The Java Speech API utilizes the security features of the Java platform to
ensure that applets cannot maliciously use system resources on a client. For
example, explicit permission is required for an applet to access a dictation
recognizer since otherwise a recognizer could be used to bug a user’s workspace.

1.5 Implementations

The Java Speech API can enable access to the most important and useful state-of-
the-art speech technologies. Sun is working with speech technology companies
on implementations of the API. Already speech recognition and speech synthesis
are available through the Java Speech API on multiple computing platforms.

The following are the primary mechanisms for implementing the API.

+ Native implementationsnost existing speech technology is implemented
in C and C++ and accessed through platform-specific APIs such as the Ap-
ple Speech Managers and Microsoft's Speech API (SAPI), or via propri-
etary vendor APIs. Using the Java Native Interface (JNI) and Java software
wrappers, speech vendors can (and have) implemented the Java Speech
API on top of their existing speech software.

+ Java software implementationSpeech synthesizers and speech recogniz-
ers can be written in Java software. These implementations will benefit
from the portability of the Java platform and from the continuing improve-
ments in the execution speed of Java virtual machines.

¢ Telephony implementationBnterprise telephony applications are typical-
ly implemented with dedicated hardware to support a large number of si-
multaneous connections, for example, using DSP cards. Speech
recognition and speech synthesis capabilities on this dedicated hardware
can be wrapped with Java software to support the Java Speech APl as a spe-
cial type of native implementation.



Introduction

1.6 Requirements

To use the Java Speech API, a user must have certain minimum software and
hardware available. The following is a broad sample of requirements. The
individual requirements of speech synthesizers and speech recognizers can vary
greatly and users should check product requirements closely.

¢ Speech softwareA JSAPI-compliant speech recognizer or synthesizer is
required.

¢ System requirementmost desktop speech recognizers and some speech
synthesizers require relatively powerful computers to run effectively.
Check the minimum and recommended requirements for CPU, memory
and disk space when purchasing a speech product.

¢ Audio Hardware:Speech synthesizers require audio output. Speech recog-
nizers require audio input. Most desktop and laptop computers now sold
have satisfactory audio support. Most dictation systems perform better
with good quality sound cards.

+ Microphone:Desktop speech recognition systems get audio input through
a microphone. Some recognizers, especially dictation systems, are sensi-
tive to the microphone and most recognition products recommend particu-
lar microphones. Headset microphones usually provide best performance,
especially in noisy environments. Table-top microphones can be used in
some environments for some applications.



Java Speech Application Programming Interface



CHAPTER2

Speech TechnoIon

As an emerging technology, not all developers are familiar with speech
technology. While the basic functions of both speech synthesis and speech
recognition take only minutes to understand (after all, most people learn to speak
and listen by age two), there are subtle and powerful capabilities provided by
computerized speech that developers will want to understand and utilize.

Despite very substantial investment in speech technology research over the
last 40 years, speech synthesis and speech recognition technologies still have
significant limitations. Most importantly, speech technology does not always meet
the high expectations of users familiar with natural human-to-human speech
communication. Understanding the limitations — as well as the strengths — is
important for effective use of speech input and output in a user interface and for
understanding some of the advanced features of the Java Speech API.

An understanding of the capabilities and limitations of speech technology is
also important for developers in making decisions about whether a particular
application will benefit from the use of speech input and output. Chapter 3
expands on this issue by considering when and where speech input and output can
enhance human-to-computer communication.

2.1 Speech Synthesis

A speech synthesizer converts written text into spoken language. Speech synthesis
is also referred to aext-to-speeciTTS) conversion.
The major steps in producing speech from text are as follows:

¢ Structure analysigprocess the input text to determine where paragraphs,
sentences and other structures start and end. For most languages,
punctuation and formatting data are used in this stage.

¢ Text pre-processingnalyze the input text for special constructs of the



10

Java Speech Application Programming Interface

language. In English, special treatment is required for abbreviations,
acronyms, dates, times, numbers, currency amounts, email addresses and
many other forms. Other languages need special processing for these forms
and most languages have other specialized requirements.

The result of these first two steps is a spoken form of the written text. The
following are examples of the difference between written and spoken text.

St. Mathews hospital is on Main St.
-> “Saint Mathews hospital is on Main street”

Add $20 to account 55374.
-> “Add twenty dollars to account five five, three seven four.”

Leave at 5:30 on 5/15/99.
-> “Leave at five thirty on May fifteenth nineteen ninety nine.”

The remaining steps convert the spoken text to speech.

¢ Text-to-phoneme conversiaronvert each word tphonemesA phoneme
is a basic unit of sound in a language. US English has around 45 phonemes
including the consonant and vowel sounds. For example, “times” is spoken
as four phonemes “t ay m s”. Different languages have different sets of
sounds (different phonemes). For example, Japanese has fewer phonemes
including sounds not found in English, such as “ts” in “tsunami”.

¢ Prosody analysisprocess the sentence structure, words and phonemes to
determine appropriafgrosodyfor the sentence. Prosody includes many of
the features of speech other than the sounds of the words being spoken.
This includes the pitch (or melody), the timing (or rhythm), the pausing,
the speaking rate, the emphasis on words and many other features. Correct
prosody is important for making speech sound right and for correctly
conveying the meaning of a sentence.

¢ Waveform productiarfinally, the phonemes and prosody information are
used to produce the audio waveform for each sentence. There are many
ways in which the speech can be produced from the phoneme and prosody
information. Most current systems do it in one of two wag@catenation
of chunks of recorded human speechpomant synthesiasing signal
processing techniques based on knowledge of how phonemes sound and
how prosody affects those phonemes. The details of waveform generation
are not typically important to application developers.



Speech Technology

2.1.1 Speech Synthesis Limitations

Speech synthesizers can make errors in any of the processing steps described
above. Human ears are well-tuned to detecting these errors, so careful work by
developers can minimize errors and improve the speech output quality.

The Java Speech API and theva Speech Markup Langua@SML)
provide many ways for an application developer to improve the output quality of a
speech synthesizer. Chapter 5 describes programming techniques for controlling
a synthesis through the Java Speech API.

The Java Synthesis Markup Language defines how to markup text input to a
speech synthesizer with information that enables the synthesizer to enhance the
speech output quality. It is described in detail in the Java Synthesis Markup
Language Specification. In brief, some of its features which enhance quality
include:

¢ Ability to mark the start and end of paragraphs and sentences.

+ Ability to specify pronunciations for any word, acronym, abbreviation or
other special text representation.

¢ Explicit control of pauses, boundaries, emphasis, pitch, speaking rate and
loudness to improve the output prosody.

These features allow a developer or user to override the behavior of a speech
synthesizer to correct most of the potential errors described above. The following
is a description of some of the sources of errors and how to minimize problems.

¢ Structure analysigpunctuation and formatting do not consistently indicate
where paragraphs, sentences and other structures start and end. For
example, the final period in “U.S.A.” might be misinterpreted as the end of
a sentence.
Try: Explicitly marking paragraphs and sentences in JSML reduces the
number of structural analysis errors.

¢ Text pre-processingt is not possible for a synthesizer to know all the
abbreviations and acronyms of a language. It is not always possible for a
synthesizer to determine how to process dates and times, for example, is
“8/5" the “eighth of May” of the “fifth of August”? Should “1998” be read
as “nineteen ninety eight” (as a year), as “one thousand and ninety eight
(a regular number) or as “one nine nine eight” (part of a telephone
number). Special constructs such as email addresses are particularly
difficult to interpret, for example, should a synthesizer say
“tedwards@cat.com” as “Ted Wards”, as “T. Edwards”, as “Cat dot com”
or as “C. A. T. dot com”?

11



12

Java Speech Application Programming Interface

Try: Thesavaselement of JSML supports substitutions of text for
abbreviations, acronyms and other idiosyncratic textual forms.

¢ Text-to-phoneme conversiamost synthesizers can pronounce tens of
thousands or even hundreds of thousands of words correctly. However,
there are always new words which it must guess for (especially proper
names for people, companies, products, etc.), and words for which the
pronunciation is ambiguous (for example, “object” as “OBject” or
“obJECT", or “row” as a line or as a fight).
Try: Thesavaselement of JISML is used to provide phonetic
pronunciations for unusual and ambiguous words.

¢ Prosody analysigo correctly phrase a sentence, to produce the correct
melody for a sentence, and to correctly emphasize words ideally requires
an understanding of the meaning of languages that computers do not
possess. Instead, speech synthesizers must try to guess what a human
might produce and at times, the guess is artificial and unnatural.
Try: TheeMR BREAKandProselements of JISML can be used to indicate
preferred emphasis, pausing, and prosodic rendering respectively for text.

¢+ Waveform productiarwithout lips, mouths, lungs and the other apparatus
of human speech, a speech synthesizer will often produce speech which
sounds artificial, mechanical or otherwise different from human speech. In
some circumstances a robotic sound is desirable, but for most applications
speech that sounds as close to human as possible is easier to understand
and easier to listen to for long periods of time.
Try: The Java Speech APl and JSML do not directly address this issue.

2.1.2 Speech Synthesis Assessment

The major feature of a speech synthesizer that affects its understandability, its
acceptance by users and its usefulness to application developers is its output
quality. Knowing how to evaluate speech synthesis quality and knowing the
factors that influence the output quality are important in the deployment of speech
synthesis.

Humans are conditioned by a lifetime of listening and speaking. The human
ear (and brain) are very sensitive to small changes in speech quality. A listener
can detect changes that might indicate a user’'s emotional state, an accent, a
speech problem or many other factors. The quality of current speech synthesis
remains below that of human speech, so listeners must make more effort than
normal to understand synthesized speech and must ignore errors. For new users,
listening to a speech synthesizer for extended periods can be tiring and
unsatisfactory.



Speech Technology

The two key factors a developer must consider when assessing the quality of
a speech synthesizer areutslerstandabilityand itsnaturalness
Understandability is an indication of how reliably a listener will understand the
words and sentences spoken by the synthesizer. Naturalness is an indication of the
extent to which the synthesizer sounds like a human - a characteristic that is
desirable for most, but not all, applications.

Understandability is affected by the ability of a speech synthesizer to
perform all the processing steps described above because any error by the
synthesizer has the potential to mislead a listener. Naturalness is affected more by
the later stages of processing, particularly the processing of prosody and the
generation of the speech waveform.

Though it might seem counter-intuitive, it is possible to have an artificial-
sounding voice that is highly understandable. Similarly, it is possible to have a
voice that sounds natural but is not always easy to understand (though this is less
common).

2.2 Speech Recognition

Speech recognition is the process of converting spoken language to written text or
some similar form. The basic characteristics of a speech recognizer supporting the
Java Speech API are:

It is mono-lingual: it supports a single specified language.
It processes a single input audio stream.

It can optionally adapt to the voice of its users.

Its grammars can be dynamically updated.

* & & o o

It has a small, defined set of application-controllable properties.
The major steps of a typical speech recognizer are:

+ Grammar designrecognition grammars define the words that may be
spoken by a user and the patterns in which they may be spoken. A grammar
must be created and activated for a recognizer to know what it should listen
for in incoming audio. Grammars are described below in more detail.

¢ Signal processinganalyze the spectrum (frequency) characteristics of the
incoming audio.

+ Phoneme recognitiomompare the spectrum patterns to the patterns of the
phonemes of the language being recognized. (A brief description of

13



14

Java Speech Application Programming Interface

phonemes is provided in the “Speech Synthesis” section in the discussion
of text-to-phoneme conversion.)

+ Word recognitioncompare the sequence of likely phonemes against the
words and patterns of words specified by the active grammars.

¢ Result generatiarprovide the application with information about the
words the recognizer has detected in the incoming audio. The result
information is always provided once recognition of a single utterance
(often a sentence) is complete, but may also be provided during the
recognition process. The result always indicates the recognizer’s best guess
of what a user said, but may also indicate alternative guesses.

Most of the processes of a speech recognizer are automatic and are not controlled
by the application developer. For instance, microphone placement, background
noise, sound card quality, system training, CPU power and speaker accent all
affect recognition performance but are beyond an application’s control.

The primary way in which an application controls the activity of a recognizer
is through control of itgrammars

A grammar is an object in the Java Speech API which indicates what words a
user is expected to say and in what patterns those words may occur. Grammars are
important to speech recognizers because they constrain the recognition process.
These constraints makes recognition faster and more accurate because the
recognizer does not have to check for bizarre sentences, for example, “pink is
recognizer speech my”.

The Java Speech API supports two basic grammar typksgrammarsand
dictation grammarsThese grammar types differ in the way in which applications
set up the grammars, the types of sentences they allow, the way in which results
are provided, the amount of computational resources required, and the way in
which they are effectively used in application design. The grammar types are
describe in more detail below. The programmatic control of grammars is detailed
in Chapter 6.

Other speech recognizer controls available to a Java application include
pausing and resuming the recognition process, direction of result events and other
events relating to the recognition processes, and control of the recognizer’s
vocabulary.

2.2.1 Rule Grammars

In a rule-based speech recognition system, an application provides the recognizer
with rules that define what the user is expected to say. These rules constrain the
recognition process. Careful design of the rules, combined with careful user
interface design, will produce rules that allow users reasonable freedom of



Speech Technology

expression while still limiting the range of things that may be said so that the
recognition process is as fast and accurate as possible.

Any speech recognizer that supports the Java Speech APl must support rule
grammars.

The following is an example of a simple rule grammar. It is represented in
the Java Speech Grammar Format (JSGF) which is defined in detail in the Java
Speech Grammar Format Specification.

#JSGF V1.0;

/I Define the grammar name

grammar SimpleCommands;

// Define the rules

public <Command> = [<Polite>] <Action> <Object> (and <Object>)*;
<Action> = open | close | delete;

<Object> = the window | the file;

<Polite> = please;

Rule names are surrounded by angle brackets. Words that may be spoken are
written as plain text. This grammar defines poblic rule, <Commands that may
be spoken by users. This rule is a combination of three sub<ates;> ,
<Object> and<palite> . The square brackets around the refereneedite>
mean that it is optional. The parentheses arodintkObject> " group the word
and the rule reference together. The asterisk following the group indicates that it
may occur zero or more times.

The grammar allows a user to say commands such as “Open the window”
and “Please close the window and the file”.

The Java Speech Grammar Format Specification defines the full behavior of
rule grammars and discusses how complex grammars can be constructed by
combining smaller grammars. With JSGF application developers can reuse
grammars, can provide Javadoc-style documentation and can use the other
facilities that enable deployment of advanced speech systems.

2.2.2 Dictation Grammars

Dictation grammars impose fewer restrictions on what can be said, making them
closer to providing the ideal of free-form speech input. The cost of this greater
freedom is that they require more substantial computing resources, require higher
quality audio input and tend to make more errors.

A dictation grammar is typically larger and more complex than rule-based
grammars. Dictation grammars are typically developed by statistical training on
large collections of written text. Fortunately, developers don’t need to know any

15



16

Java Speech Application Programming Interface

of this because a speech recognizer that supports a dictation grammar through the
Java Speech API has a built-in dictation grammar. An application that needs to
use that dictation grammar simply requests a reference to it and enables it when
the user might say something matching the dictation grammar.

Dictation grammars may be optimized for particular kinds of text. Often a
dictation recognizer may be available with dictation grammars for general
purpose text, for legal text, or for various types of medical reporting. In these
different domains, different words are used, and the patterns of words also differ.

A dictation recognizer in the Java Speech API supports a single dictation
grammar for a specific domain. The application and/or user selects an appropriate
dictation grammar when the dictation recognizer is selected and created.

2.2.3 Limitations of Speech Recognition

The two primary limitations of current speech recognition technology are that it
does not yet transcribe free-form speech input, and that it makes mistakes. The
previous sections discussed how speech recognizers are constrained by grammars.
This section considers the issue of recognition errors.

Speech recognizers make mistakes. So do people. But recognizers usually
make more. Understanding why recognizers make mistakes, the factors that lead
to these mistakes, and how to train users of speech recognition to minimize errors
are all important to speech application developers.

The reliability of a speech recognizer is most often defined ygdsgnition
accuracy Accuracy is usually given as a percentage and is most often the
percentage of correctly recognized words. Because the percentage can be
measured differently and depends greatly upon the task and the testing conditions
it is not always possible to compare recognizers simply by their percentage
recognition accuracy. A developer must also consider the seriousness of
recognition errors: misrecognition of a bank account number or the command
“delete all files” may have serious consequences.

The following is a list of major factors that influence recognition accuracy.

Recognition accuracy is usually higher in a quiet environment.
Higher-quality microphones and audio hardware can improve accuracy.
Users that speak clearly (but naturally) usually achieve better accuracy.
Users with accents or atypical voices may get lower accuracy.
Applications with simpler grammars typically get better accuracy.

* & & o o o

Applications with lesgonfusablegrammars typically get better accuracy.
Similar sounding words are harder to distinguish.



Speech Technology

While these factors can all be significant, their impact can vary between
recognizers because each speech recognizer optimizes its performance by trading
off various criteria. For example, some recognizers are designed to work reliably
in high-noise environments (e.g. factories and mines) but are restricted to very
simple grammars. Dictation systems have complex grammars but require good
microphones, quieter environments, clearer speech from users and more powerful
computers. Some recognizers adapt their process to the voice of a particular user
to improve accuracy, but may require training by the user. Thus, users and
application developers often benefit by selecting an appropriate recognizer for a
specific task and environment.

Only some of these factors can be controlled programmatically. The primary
application-controlled factor that influences recognition accuracy is grammar
complexity. Recognizer performance can degrade as grammars become more
complex, and can degrade as more grammars are active simultaneously. However,
making a user interface more natural and usable sometimes requires the use of
more complex and flexible grammars. Thus, application developers often need to
consider a trade-off between increased usability with more complex grammars
and the decreased recognition accuracy this might cause. These issues are
discussed in more detail in Chapter 3 which discusses the effective design of user
interfaces with speech technology.

Most recognition errors fall into the following categories:

+ Rejectionthe user speaks but the recognizer cannot understand what was
said. The outcome is that the recognizer does not produce a successful
recognition result. In the Java Speech API, applications receive an event
that indicates the rejection of a result.

¢ Misrecognition therecognizer returns a result with words that are
different from what the user spoke. This is the most common type of
recognition error.

¢ Misfire: the user does not speak but the recognizer returns a result.

17



18

Java Speech Application Programming Interface

Table 2-1 lists some of the common causes of the three types of recognition

errors.

Table 2-1 Speech recognition errors and possible causes

Problem

Cause

Rejection or
Misrecognition

User speaks one or more words not in the vocabulary.

User’s sentence does not match any active grammar.

User speaks before system is ready to listen.

Words in active vocabularyosind alike and are confused
(e.g., “too”, “two").

User pauses too long in the middle of a sentence

User speaks with a disfluency (e.g., restarts sentence,
stumbles, “umm?”, “ah”).

User’s voice trails off at the end of the sentence.

User has an accent or cold.

User's voice is substantially different from stored
“voice models” (often a problem with children).

Computer’s audio is not configured properly.

User’'s microphone is not properly adjusted.

Misfire

Non-speech sound (e.g., cough, laugh).

Background speech triggers recognition.

User is talking with another person.

Chapter 6 describes in detail the use of speech recognition through the Java
Speech API. Ways of improving recognition accuracy and reliability are
discussed further. Chapter 3 looks at how developers should account for possible
recognition errors in application design to make the user interface more robust

and predictable.



CHAPTER3

Designing Effective Speelch
Applications

Speech applications are like conversations between the user and the computer.
Conversations are characterized by turn-taking, shifts in initiative, and verbal and
non-verbal feedback to indicate understanding.

A major benefit of incorporating speech in an application is that speech is
natural: people find speaking easy, conversation is a skill most master early in life
and then practice frequently. At a deeper level, naturalness refers to the many
subtle ways people cooperate with one another to ensure successful
communication.

An effective speech application is one that simulates some of these core
aspects of human-human conversation. Since language use is deeply ingrained in
human behavior, successful speech interfaces should be based on an
understanding of the different ways that people use language to communicate.
Speech applications should adopt language conventions that help people know
what they should say next and that avoid conversational patterns that violate
standards of polite, cooperative behavior.

This chapter discusses when a speech interface is and is not appropriate, and
then provides some concrete design ideas for creating effective speech
applications that adhere to conversational conventions.

3.1 When to Use Speech

A crucial factor in determining the success of a speech application is whether or
not there is a clear benefit to using speech. Since speech is such a natural medium
for communication, users’ expectations of a speech application tend to be
extremely high. This means speech is best used when the need is clear — for
example, when the user’s hands and eyes are busy — or when speech enables

19



20

Java Speech Application Programming Interface

something that cannot otherwise be done, such as accessing electronic mail or an
on-line calendar over the telephone.

Speech applications are most successful when users are motivated to
cooperate. For example, telephone companies have successfully used speech
recognition to automate collect calls. People making a collect call want their call
to go through, so they answer prompts carefully. People accepting collect calls are
also motivated to cooperate, since they do not want to pay for unwanted calls or
miss important calls from their friends and family. Automated collect calling
systems save the company money and benefit users. Telephone companies report
that callers prefer talking to the computer because they are sometimes
embarrassed by their need to call collect and they feel that the computer makes
the transaction more private.

Speech is well suited to some tasks, but not for others. The following tables
list characteristics that can help you determine when speech input and output are
appropriate choices.

Table 3-1 When is speech input appropriate?

Use When... Avoid When...

* No keyboard is available (e.g., | * Task requires users to talk to other
over the telephone, at a kiosk, of  people while using the
on a portable device). application.

» Task requires the user’'s hands to ¢« Users work in a very noisy
be occupied so they cannot useja environment.
keyboard or mouse (e.g.,
maintenance and repair, graphics
editing).

e Task can be accomplished more
easily using a mouse and
keyboard.

* Commands are embedded in a
deep menu structure.

e Users are unable to type or are npt
comfortable with typing.

» Users have a physical disability
(e.g., limited use of hands).




Designing Effective Speech Applications

Table 3-2 When is speech output appropriate?

Use When... Avoid When...

» Task requires the user’s eyes to hbe Large quantities of information
looking at something other than must be presented.
the screen (e.g., driving,

. . » Task requires user to compare
maintenance and repair).

data items.

 Situation requires grabbing users$

) * Information is personal or
attention.

confidential.
» Users have a physical disability
(e.g., visual impairment).

* Interface is trying to embody a
personality.

Including speech in an application because it is a novelty means it probably will
not get used. Including it because there is some compelling reason increases the
likelihood for success.

3.2 Design for Speech

After you determine that speech is an appropriate interface technique, consider
how speech will be integrated into the application. Generally, a successful speech
application is designed with speech in mind. It is rarely effective to add speech to
an existing graphical application or to translate a graphical application directly
into a speech-only one. Doing so is akin to translating a command-line-driven
program directly into a graphical user interface. The program may work, but the
most effective graphical programs are designed with the graphical environment in
mind from the outset.

Graphical applications do not translate well into speech for several reasons.
First, graphical applications do not always reflect the vocabulary, or even the
basic concepts, that people use wtadking to one another in the domain of the
application. Consider a calendar application, for example. Most graphical
calendar programs use an explicit visual representation of days, months, and
years. There is no concept of relative dates (e.g., “the day after Labor Day” or “a
week from tomorrow”) built into the interface. When people speak to each other
about scheduling, however, they make extensive use of relative dates. A speech
interface to a calendar, whether speech-only or multi-modal, is therefore more
likely to be effective if it allows users to speak about dates in both relative and

21



22

Java Speech Application Programming Interface

absolute terms. By basing the speech interface design exactly on the graphical
interface design, relative dates would not be included in the design, and the
usability of the calendar application would be compromised.

Information organization is another important consideration. Presentations
that work well in the graphical environment can fail completely in the speech
environment. Reading exactly what is displayed on the screen is rarely effective.
Likewise, users find it awkward to speak exactly what is printed on the display.

Consider the way in which many e-mail applications present message
headers. An inbox usually consists of a chronological, sometimes numbered, list
of headers containing information such as sender, subject, date, time, and size:

Table 3-3 Email message information

Sender Subject Date & Time Size
Arlene Rexford Lgarn about Java Mon Qct 28 11:23 2K

Shari Jackson RE: Boston rumors Fri Ju| 18 09:32 3K

Hilary Binda Change of address Wed Jul 16 12:59 1K

Arlene Rexford Class Openings Tue Jul 21 12:35 8K

George Fitz Re: Boston rumors Tue Jul 21 12:46 1K

You can scan this list and find a subject of interest or identify a message from a
particular person. Imagine if someone read this information out loud to you,
exactly as printed. It would take a long time! And the day, date, time, and size
information, which you can easily ignore in the graphical representation, becomes
guite prominent. It doesn’t sound very natural, either. By the time you hear the
fifth header, you may also have forgotten that there was an earlier message with
the same subiject.

An effective speech interface for an e-mail application would probably not
read the date, time, and size information from the message header unless the user
requests it. Better still would be an alternate organization scheme which groups
messages into categories, perhaps by subject or sender (e.g., “You have two
messages about ‘Boston rumors™ or “You have two messages from Arlene
Rexford”), so that the header list contains fewer individual items. Reading the
items in a more natural spoken form would also be helpful. For example, instead
of “Three. Hilary Binda. Change of address.” the system might say “Message 3
from Hilary Binda is about Change of address.”



Designing Effective Speech Applications

On the speech input side, users find speaking menu commands is often
awkward and unnatural. In one e-mail program, a menu called “Move” contains a
list of mail box names. Translating this interface to speech would force the user to
say something like “Move. Weekly Reports.” A more natural interface would
allow the user to say “File this in my Weekly Reports folder.” The natural version
is a little longer, but it is probably something the user could remember to say
without looking at the screen.

3.3 Challenges

Even if you design an application with speech in mind from the outset, you face
substantial challenges before your application is robust and easy to use.
Understanding these challenges and assessing the various trade-offs that must be
made during the design process will help to produce the most effective interface.

3.3.1 Transience: What did you say?

Speech igransient Once you hear it or say it, it's gone. By contrast, graphics are
persistentA graphical interface typically stays on the screen until the user
performs some action.

Listening to speech taxes users’ short-term memory. Because speech is
transient, users can remember only a limited number of items in a list and they
may forget important information provided at the beginning of a long sentence.
Likewise, while speaking to a dictation system, users often forget the exact words
they have just spoken.

Users’ limited ability to remember transient information has substantial
implications for the speech interface design. In general, transience means that
speech is not a good medium for delivering large amounts of information.

The transient nature of speech can also provide benefits. Because people can
look and listen at the same time, speech is ideal for grabbing attention or for
providing an alternate mechanism for feedback. Imagine receiving a notification
about the arrival of an e-mail message while working on a spreadsheet. Speech
might give the user the opportunity to ask for the sender or the subject of the
message. The information can be delivered without forcing the user to switch
contexts.

3.3.2 Invisibility: What can | say?

Speech isnvisible The lack of visibility makes it challenging to communicate the
functional boundaries of an application to the user. In a graphical application,

23



24

Java Speech Application Programming Interface

menus and other screen elements make most or all of the functionality of an
application visible to a user. By contrast, in a speech application it is much more
difficult to indicate to the user what actions they may perform, and what words
and phrases they must say to perform those actions.

3.3.3 Asymmetry

Speech imsymmetricPeople can produce speech easily and quickly, but they
cannot listen nearly as easily and quickly. This asymmetry means people can
speak faster than they can type, but listen much more slowly than they can read.

The asymmetry has design implications for what information to speak and
how much to speak. A speech interface designer must balance the need to convey
lots of instructions to users with users’ limited ability to absorb spoken
information.

3.3.4 Speech synthesis quality

Given that today’s synthesizers still do not sound entirely natural, the choice to
use synthesized output, recorded output, or no speech output is often a difficult
one. Although recorded speech is much easier and more pleasant for users to
listen to, it is difficult to use when the information being presented is dynamic.

For example, recorded speech could not be used to read people their e-mail
messages over the telephone. Using recorded speech is best for prompts that don't
change, with synthesized speech being used for dynamic text.

Mixing recorded and synthesized speech, however, is not generally a good
idea. Although users report not liking the sound of synthesized speech, they are,
in fact, able to adapt to the synthesizer better when it is not mixed with recorded
speech. Listening is considerably easier when the voice is consistent.

As a rule of thumb, use recorded speech when all the text to be spoken is
known in advance, or when it is important to convey a particular personality to the
user. Use synthesized speech when the text to be spoken is not known in advance,
or when storage space is limited. Recorded audio requires substantially more disk
space than synthesized speech.

3.3.5 Speech recognition performance

Speech recognizers are not perfect listeners. They make mistakes. A big challenge
in designing speech applications, therefore, is working with imperfect speech
recognition technology. While this technology improves constantly, it is unlikely
that, in the foreseeable future, it will approach the robustness of computers in
science fiction movies.



Designing Effective Speech Applications

An application designer should understand the types of errors that speech
recognizers make and the common causes of these errors. Refer to Table 2-1 in
the previous chapter for a list of common errors and their causes.

Unfortunately, recognition errors cause the user to form an incorrect model
of how the system works. For example, if the user says “Read the next message,”
and the recognizer hears “Repeat the message,” the application will repeat the
current message, leading the user to believe that “Read the next message” is not a
valid way to ask for the next message. If the user then says “Next,” and the
recognizer returns a rejection error, the user now eliminates “Next” as a valid
option for moving forward. Unless there is a display that lists all the valid
commands, users cannot know if the words they have spoken should work;
therefore, if they don’t work, users assume they are invalid.

Some recoghnition systems adapt to users over time, but good recognition
performance still requires cooperative users who are willing and able to adapt
their speaking patterns to the needs of the recognition system. This is why
providing users with a clear motivation to make speech work for them is essential.

3.3.6  Recognition: flexibility vs. accuracy

A flexible system allows users to speak the same commands in many different
ways. The more flexibility an application provides for user input, the more likely
errors are to occur. In designing a command-and-control style interface, therefore,
the application designer must find a balance between flexibility and recognition
accuracy. For example, a calendar application may allow the user to ask about
tomorrow’s appointments in ways such as:

What about tomorrow?
What do | have tomorrow?

.
.
¢ What's on my calendar for tomorrow?
¢ Read me tomorrow’s schedule.

.

Tell me about the appointments | have on my calendar tomorrow.

This may be quite natural in theory, but, if recognition performance is poor, users
will not accept the application. On the other hand, applications that provide a
small, fixed set of commands also may not be accepted, even if the command
phrases are designed to sound natural (e.g., Lookup tomorrow). Users tend to
forget the exact wording of fixed commands. What seems natural for one user
may feel awkward for another. Section 3.6, “Involving Users,” describes a
technique for collecting data from users in order to determine the most common

25



26

Java Speech Application Programming Interface

ways that people talk about a subject. In this way, applications can offer some
flexibility without causing recognition performance to degrade dramatically.

3.4 Design Issues for Speech-Only Applications

A speech-only system is one in which speech input and output are the only
options available to the user. Most speech-only systems operate over the
telephone.

3.4.1 Feedback & Latency

In conversations, timing is critical. People read meaning into pauses.
Unfortunately, processing delays in speech applications often cause pauses in
places where they do not naturally belong. For example, users may reply to a
prompt and then not hear an immediate response. This leads them to believe that
they were not heard, so they speak again. This results in either missing the
application’s response when it does come (because the user is speaking at the
same time) or causing a recognition error.

Giving users adequate feedback is especially important in speech-only
interfaces. Processing delays, coupled with the lack of peripheral cues to help the
user determine the state of the application, make consistent feedback a key factor
in achieving user satisfaction.

When designing feedback, recall that speech is a slow output channel. This
speed issue must be balanced with a user’s need to know several vital facts:

¢ Is the recognizer processing or waiting for input?
¢ Has the recognizer heard the user’s speech?
¢ If heard, was the user’s speech correctly interpreted?

Verification should be commensurate with the cost of performing an action.
Implicitly verify commands that present data amglicitly verifycommands that
destroy data or trigger actions. For example, it would be important to give the user
plenty of feedback before authorizing a large payment, while it would not be as
vital to ensure that a date is correct before checking a weather forecast. In the case
of the payment, the feedback should be explicit (e.g., “Do you want to make a
payment of $1,000 to Boston Electric? Say yes or no.”), The feedback for the
forecast query can be implicit (e.g., “Tomorrow’s weather forecast for Boston
is...."). In this case, the word “Tomorrow” serves as feedback that the date was
correctly (or incorrectly) recognized. If correct, the interaction moves forward
with minimal wasted time.



Designing Effective Speech Applications

3.4.2 Prompting

Well designed prompts lead users smoothly through a successful interaction with
a speech-only application. Many factors must be considered when designing
prompts, but the most important is assessing the trade-off between flexibility and
performance. The more you constrain what the user can say to an application, the
less likely they are to encounter recognition errors. On the other hand, allowing
users to enter information flexibly can often speed the interaction (if recognition
succeeds), feel more natural, and avoid forcing users to memorize commands.
Here are some tips for creating useful prompts.

+ Useexplicit promptavhen the user input must be tightly constrained. For
example, after recording a message, the prompt might be “Say cancel,
send, or review.” This sort of prompt directs the user to say just one of those
three keywords.

+ Useimplicit promptswhen the application is able to accept more flexible
input. These prompts rely on conversational conventions to constrain the
user input. For example, if the user says “Send mail to Bill,” and “Bill” is
ambiguous, the system prompt might be “Did you mean Bill Smith or Bill
Jones?” Users are likely to respond with input such as “Smith” or “I meant
Bill Jones.” While possible, conversational convention makes it less likely
that they would say “Bill Jones is the one | want.”

¢ When possibletaper prompts to make them shorter. Tapering can be ac-
complished in one of two ways. If an application is presenting a set of data
such as current quotes for a stock portfolio, drop out unnecessary words
once a pattern is established. For example:

“As of 15 minutes ago, Sun Microsystems was trading at 45 up 1/2,
Motorola was at 83 up 1/8, and
IBM was at 106 down 1/4”

Tapering can also happen over time. That is, if you need to tell the user the
same information more than once, make it shorter each time. For example,
you may wish to remind users about the correct way to record a message.
The first time they record a message in a session, the instructions might be
lengthy. The next time shorter and the third time just a quick reminder. For
example:

“Start recording after the tone. Pause for several seconds when done”

“Record after the tone, then pause.”
“Record then pause’”

27



28

Java Speech Application Programming Interface

¢ Useincremental promptto speed interaction for expert users and provide
help for less experienced users. This technique involves starting with a
short prompt. If the user does not respond within a time-out period, the ap-
plication prompts again with more detailed instructions. For example, the
initial prompt might be: “Which service?” If the user says nothing, then the
prompt could be expanded to: “Say banking, address book, or yellow pag-
es.”

3.4.3 Handling Errors

How a system handles recognition errors can dramatically affect the quality of a
user's experience. If either the application or the user detects an error, an effective
speech user interface should provide one or more mechanisms for correcting the
error. While this seems obvious, correcting a speech input error is not always
easy! If the user speaks a word or phrase again, the same error is likely to reoccur.

Techniques for handling rejection errors are somewhat different than those
for handling misrecognitions and misfires. Perhaps the most important advice
when handling rejection errors is not to repeat the same error message if the user
experiences more than one rejection error in a row. Users find repetition to be
hostile. Instead, try to provigeogressive assistancé&he first message might
simply be “What?” If another error occurs, then perhaps, “Sorry. Please rephrase”
will get the user to say something different. A third message might provide a tip
on how to speak, “Still no luck. Speak clearly, but don’t overemphasize.”

Another technique is to reprompt with a more explicit prompt (such as a yes/
no question) and switch to a more constrained grammar. If possible, provide an
alternate input modality. For example, prompt the user to press a key on the
telephone pad as an alternative to speaking.

As mentioned above, misrecognitions and misfires are harder to detect, and
therefore harder to handle. One good strategyfittdo recognition result$or
unlikely user input. For example, a scheduling application might assume that an
error has occurred if the user appears to want to schedule a meeting for 3am.

Flexible correction mechanisms that allow a user to correct a portion of the
input are helpful. For example, if the user asks for a weather forecast for Boston
for Tuesday, the system might respond “Tomorrow’s weather for Boston is...” A
flexible correction mechanism would allow the user to just correct the day: “No, |
said Tuesday.”



Designing Effective Speech Applications

3.5 Design Issues for Multi-Modal Applications

Multi-modal applications include other input and output modalities along with
speech. For example, speech integrated with a desktop application would be
multi-modal, as would speech augmenting the controls of a personal note taker or
a radio. While many of the design issues for a multi-modal application are the
same as for a speech-only one, some specific issues are unique to applications that
provide users with multiple input mechanisms, particularly graphical interfaces
driven by keyboard and mouse.

3.5.1 Feedback & Latency

As in speech-only systems, performance delays can cause confusion for users.
Fortunately, a graphic display can show the user the state of the recognizer
(processing or waiting for input) which a speech-only interface cannot. If a screen
is available, displaying the results of the recognizer makes it obvious if the
recognizer has heard and if the results were accurate.

As mentioned earlier, the transient nature of speech sometimes causes people
to forget what they just said. When dictating, particularly when dictating large
amounts of text, this problem is compounded by recognition errors. When a user
looks at dictated text and sees it is different from what they recall saying, making
a correction is not always easy since they will not necessarily remember what
they said or even what they were thinking. Access to a recording of the original
speech is extremely helpful in aiding users in the correction of dictated text.

The decision of whether or not to show unfinalized results is a problem in
continuous dictation applications. Unfinalized results are words that the
recognizer is hypothesizing that the user has said, but for which it has not yet
committed a decision. As the user says more, these words may change.
Unfinalized text can be hidden from the user, displayed in the text stream in
reverse video (or some other highlighted fashion), or shown in a separate window.
Eventually, the recognizer makes its best guess and finalizes the words. An
application designer makes a trade-off between showing users words that may
change and having a delay before the recognizer is able to provide the finalized
results. Showing the unfinalized results can be confusing, but not showing any
words can lead the user to believe that the system has not heard them.

3.5.2 Prompting

Prompts in multi-modal systems can be spoken or printed. Deciding on an
appropriate strategy depends greatly on the content and context of the application.
If privacy is an issue, it is probably better not to have the computer speak out loud.

29



30

Java Speech Application Programming Interface

On the other hand, even a little bit of spoken output can enable eyes-free
interaction and can provide the user with the sense of having a conversational
partner rather than speaking to an inanimate object.

With a screen available, explicit prompts usually involve providing the user
with a list of valid spoken commands. These lists can become cumbersome unless
they are organized hierarchically.

Another strategy is to let users speak any text they see on the screen, whether
it is menu text or button text or field names. In applications that support more than
simple spoken commands, one strategy is to list examples of what the user can
say next, rather than a complete laundry list of every possible utterance.

3.5.3 Handling Errors

Multi-modal speech systems that display recognition results make it easier for
users to detect errors. If a rejection error occurs, no text will appear in the area
where recognition results are displayed. If the recognizer makes a misrecognition
or misfire error, the user can see what the recognizer thinks was said and correct
any errors.

Even with feedback displayed, an application should not assume that users
will always catch errors. Filtering for unexpected input is still helpful, as is
allowing the user to switch to a different input modality if recognition is not
working reliably.

3.6 Involving Users

Involving users in the design process throughout the lifecycle of a speech
application is crucial. A natural, effective interface can only be achieved by
understanding how and where and why target users will interact with the
application.

3.6.1 Natural Dialog Studies

At the very early stages of design, users can help to define application
functionality and, critical to speech interface design, provide input on how
humans carry out conversations in the domain of the application. This information
can be collected by performinghatural dialog studywhich involves asking

target users to talk with each other while working through a scenario. For
example, if you are designing a telephone-based e-mail program, you might work
with pairs of study participants. Put the participants in two separate rooms. Give
one participant a telephone and a computer with an e-mail program. Give the



Designing Effective Speech Applications

other only a telephone. Have the participant with only the telephone call the
participant with the computer and ask to have his or her mail read aloud. Leave
the task open ended, but add a few guidelines such as “be sure to answer all
messages that require a response.”

In some natural dialog studies it is advantageous to include a subject matter
expert. For example, if you wish to automate a telephone-based financial service,
study participants might call up and speak with an expert customer service
representative from the financial service company.

Natural dialog studies are an effective technique for collecting vocabulary,
establishing commonly used grammatical patterns, and providing ideas for
prompt and feedback design. When a subject matter expert is involved, prompt
and feedback design can be based on phrases and responses the expert uses when
speaking with customers.

In general, natural dialog studies are quick and inexpensive. It is not
necessary to include large numbers of participants.

3.6.2 Wizard-of-Oz Studies

Once a preliminary application design is complete, but before the speech
application is implemented,veizard-of-o0z studgan help test and refine the
interface. In these studies, a humérnard— usually using software tools —
simulates the speech interface. Major usability problems are often uncovered with
these types of simulations. (The term “Wizard of Oz” comes from the classic
movie in which the wizard controls an impressive display while hidden behind a
curtain.)

Continuing the e-mail example, a wizard-of-oz study might involve bringing
in study participants and telling them that the computer is going to read them their
e-mail. When they call a telephone number, the human wizard answers, but
manipulates the computer so that a synthesized voice speaks to the participant. As
the participant asks to navigate through the mailbox, hear messages, or reply to
messages, the wizard carries out the operations and has the computer speak the
responses.

Since computer tools are usually necessary to carry out a convincing
simulation, wizard-of-o0z studies are more time-consuming and complicated to
run than natural dialog studies. If a prototype of the final application can be built
quickly, it may be more cost-effective to move directly to a usability study.

3.6.3 Usability Studies

A usability studyassesses how well users are able to carry out the primary tasks
that an application is designed to support. Conducting such a study requires at

31



32

Java Speech Application Programming Interface

least a preliminary software implementation. The application need not be
complete, but some of the core functionality must be working. Usability studies
can be conducted either in a laboratory or in the field. Study participants are
typically presented with one or more tasks that they must figure out how to
accomplish using the application.

With speech applications, usability studies are particularly important for
uncovering problems due to recognition errors, which are difficult to simulate
effectively in a wizard-of-oz study, but are a leading cause of usability problems.
The effectiveness of an application’s error recovery functionality must be tested in
the environments in which real users will use the application.

Conducting usability tests of speech applications can be a bit tricky. Two
standard techniques used in tests of graphical applications -- facilitated
discussions and speak-aloud protocols -- cannot be used effectively for speech
applications. A facilitated discussion involves having a facilitator in the room
with the study participant. Any human-human conversation, however, can
interfere with the human-computer conversation, causing recognition errors.
Speak-aloud protocols involve asking the study participant to verbalize their
thoughts as they work with the software. Obviously this is not desirable when
dealing with a speech recognizer. It is best, therefore, to have study participants
work in isolation, speaking only into a telephone or microphone. A tester should
not intervene unless the participant becomes completely stuck. A follow-up
interview can be used to collect the participant’s comments and reactions.

3.7 Summary

An effective speech application is one that uses speech to enhance a user’s
performance of a task or enable an activity that cannot be done without it.
Designing an application with speech in mind from the outset is a key success
factor. Basing the dialog design on a natural dialog study ensures that the input
grammar will match the phrasing actually used by people when speaking in the
domain of the application. A natural dialog study also assures that prompts and
feedback follow conversational conventions that users expect in a cooperative
interaction. Once an application is designed, wizard-of-oz and usability studies
provide opportunities to test interaction techniques and refine application
behavior based on feedback from prototypical users.



Designing Effective Speech Applications

3.8

For More Information

The following sources provide additional information on speech user interface
design.

¢

Fraser, N.M. and G.N. Gilbert, “Simulating Speech Systems,” Computer
Speech and Language, Vol. 5, Academic Press Limited, 1991.

Raman, T.VAuditory User Interfaces: Towards the Speaking Computer
Kluwer Academic Publishers, Boston, MA, 1997.

Roe, D.B. and N.M. Wilpon, editor&/oice Communication Between Hu-
mans and Machinedational Academy Press, Washington D.C., 1994.

Schmandt, CVoice Communication with Computers: Conversational Sys-
tems Van Nostrand Reinhold, New York, 1994,

Yankelovich, N, G.A. Levow, and M. MarxDesigning SpeechActs: Is-
sues in Speech User Interface€HI '95 Conference on Human Factors in
Computing Systems, Denver, CO, May 7-11, 1995.

33



34

Java Speech Application Programming Interface



CHAPTER I

Speech Enginés:

javax.speech

This chapter introduces thw@ax.speech  package.This package defines the
behavior of all speech engines (speech recognizers and synthesizers). The topics
covered include:

What is a Speech Engine?

Properties of a Speech Engine

Locating, Selecting and Creating Engines

Engine States

Speech Events

* & & & oo o

Other Engine Functions

4.1 What is a Speech Engine?

Thejavax.speech  package of the Java Speech API defines an abstract software
representation of speech enginéSpeech engine” is the generic term for a
system designed to deal with either speech input or speech output. Speech
synthesizers and speech recognizers are both speech engine instances. Speaker
verification systems and speaker identification systems are also speech engines
but are not currently supported through the Java Speech API.

Thejavax.speech  package defines classes and interfaces that define the
basic functionality of an engine. Th&ax.speech.synthesis package and

35



36

Java Speech Application Programming Interface

javax.speech.recognition package extend and augment the basic functionality
to define the specific capabilities of speech synthesizers and speech recognizers.
The Java Speech APl makes only one assumption about the implementation
of a JSAPI engine: that it provides a true implementation of the Java classes and
interfaces defined by the API. In supporting those classes and interfaces, an
engine may completely software-based or may be a combination of software and
hardware. The engine may be local to the client computer or remotely operating
on a server. The engine may be written entirely as Java software or may be a
combination of Java software and native code.
The basic processes for using a speech engine in an application are as
follows.

1. Identify the application’s functional requirements for an engine (e.g,
language or dictation capability).

. Locate and create an engine that meets those functional requirements.
. Allocate the resources for the engine.

. Set up the engine.

. Begin operation of the engine - technically, resume it.

. Use the engine

N O OB~ WDN

. Deallocate the resources of the engine.

Steps 4 and 6 in this process operate differently for the two types of speech engine
- recognizer or synthesizer. The other steps apply to all speech engines and are
described in the remainder of this chapter.

The “Hello World!” code example for speech synthesis (see page 58) and the
“Hello World!” code example for speech recognition (see page 72) both illustrate
the 7 steps described above. They also show that simple speech applications are
simple to write with the Java Speech API - writing your first speech application
should not be too hard.

4.2 Properties of a Speech Engine

Applications are responsible for determining their functional requirements
for a speech synthesizer and/or speech recognizer. For example, an application
might determine that it needs a dictation recognizer for the local language or a
speech synthesizer for Korean with a female voice. Applications are also
responsible for determining behavior when there is no speech engine available



Speech Engines: javax.speech

with the required features. Based on specific functional requirements, a speech
engine can be selected, created, and started. This section explains how the
features of a speech engine are used in engine selection, and how those features
are handled in Java software.

Functional requirements are handled in applicatioregie selection
properties Each installed speech synthesizer and speech recognizer is defined by
a set of properties. An installed engine may have one or maues of operatign
each defined by a unique set of properties, and encapsulatedadedescriptor
object.

The basic engine properties are defined iretig@eModeDesc class.

Additional specific properties for speech recognizers and synthesizers are defined
by theRecognizerModeDesc ~ andsynthesizerModeDesc  classes that are contained

in thejavax.speech.recognition andjavax.speech.synthesis packages
respectively.

In addition tomode descriptoobjects provided by speech engines to
describe their capabilities, an application can create its own mode descriptor
objects to indicate its functional requirements. The same Java classes are used for
both purposes. An engine-provided mode descriptor describes an actual mode of
operation whereas an application-defined mode descriptor defines a preferred or
desired mode of operatiorLdcating, Selecting and Creating Enginas page 39
describes the use of a mode descriptor.)

The basic properties defined for all speech engines are listed in Table 4-1.

Table 4-1 Basic engine selection properties: EngineModeDesc

Property Name | Description

EngineName A string that defines the name of the speech engine. e.g.,
“Acme Dictation System”.

ModeName A string that defines a specific mode of operation of the
speech engine. e.g. “Acme Spanish Dictator”.

Locale A java.util.Locale object that indicates the language
supported by the speech engine, and optionally, a country
and a variant. Theocale class uses standard ISO 639 lan-
guage codes and ISO 3166 country codes. For example,
Locale("fr", "ca") represents a Canadian French locale,
andLocale("en”, ") represents English (the language).

37



38

Java Speech Application Programming Interface

Table 4-1 Basic engine selection properties: EngineModeDesc

Property Name

Description

Running

A Boolean Objectthat isRUEfor engines which are already
running on a platform, otherwiseLse Selecting a run-
ning engine allows for sharing of resources and may also
allow for fast creation of a speech engine object.

The one additional property defined by t@thesizerModeDesc  class for speech
synthesizers is shown in Table 4-2.

Table 4-2 Synthesizer selection properties: SynthesizerModeDesc

Property Name

Description

List of voices

An array of voices that the synthesizer is capable of pro-
ducing. Each voice is defined by an instance of/the
class which encapsulates voice name, gender, age and

speaking style.

The two additional properties defined by HeeognizerModeDesc  class for
speech recognizers are shown in Table 4-3.

Table 4-3 Recognizer selection properties: RecognizerModeDesc

Property Name

Description

Dictation
supported

A Boolean Vvalue indicating whether this mode of operation
of the recognizer supports a dictation grammar.

Speaker profiles

A list of speakerProfile ~ objects for speakers who have
trained the recognizer. Recognizers that do not support

training return aull  list.




Speech Engines: javax.speech

All three mode descriptor class&sgineModeDesc , SynthesizerModeDesc ~ and
RecognizerModeDesc ~ Use the get and set property patterns for JavaBeans™. For
example, theocale property has get and set methods of the form:

Locale getLocale();
void setLocale(Locale I);

Furthermore, all the properties are defined by class objects, never by primitives
(primitives in the Java programming language inclu@&an , int etc.). With

this design, aull value always represents “don’t care” and is used by
applications to indicate that a particular property is unimportant to its
functionality. For instance,rull  value for the “dictation supported” property
indicates that dictation is not relevant to engine selection. Since that property is
represented by thmolean class, a value afRuEindicates that dictation is

required andALSE indicates explicitly that dictation should not be provided.

4.3 Locating, Selecting and Creating Engines

4.3.1 Default Engine Creation

The simplest way to create a speech engine is to request a default engine. This is
appropriate when an application wants an engine for the default locale
(specifically for the local language) and does not have any special functional
requirements for the engine. Thentral  class in thgavax.speech  package is

used for locating and creating engines. Default engine creation uses two static
methods of th&entral  class.

Synthesizer Central.createSynthesizer(EngineModeDesc mode);
Recognizer Central.createRecognizer(EngineModeDesc mode);

The following code creates a defardtognizer andsSynthesizer

import javax.speech.*;
import javax.speech.synthesis.*;
import javax.speech.recognition.*;

{
/I Get a synthesizer for the default locale
Synthesizer synth = Central.createSynthesizer(null);
/I Get a recognizer for the default locale

39



40

Java Speech Application Programming Interface

Recognizer rec = Central.createRecognizer(null);

}

For both thereateSynthesizer andcreateRecognizer ~ thenull parameters

indicate that the application doesn’t care about the properties of the synthesizer or
recognizer. However, both creation methods have an implicit selection policy.
Since the application did not specify the language of the engine, the language
from the system’s default locale returneddvy.util.Locale.getDefault() is

used. In all cases of creating a speech engine, the Java Speech API forces
language to be considered since it is fundamental to correct engine operation.

If more than one engine supports the default languagecihe then
gives preference to an engine that is running (running property is true), and then
to an engine that supports the country defined in the default locale.

If the example above is performed in the US locale, a recognizer and
synthesizer for the English language will be returned if one is available.
Furthermore, if engines are installed for both British and US English, the US
English engine would be created.

4.3.2 Simple Engine Creation

The next easiest way to create an engine is to create a mode descriptor, define
desired engine properties and pass the descriptor to the appropriate engine
creation method of theentral  class. When the mode descriptor passed to the
createSynthesizer or createRecognizer ~ methods is hon-null, an engine is
created which matches all of the properties defined in the descriptor. If no suitable
engine is available, the methods retoun .

The list of properties is described in fAmperties of a Speech Engine
section on page 36. All the propertiesifgineModeDesc and its sub-classes
RecognizerModeDesc ~ andSynthesizerModeDesc ~ default tonull  to indicate “don’t
care”.

The following code sample shows a method that creates a dictation-capable
recognizer for the default locale. It returag if no suitable engine is available.

/** Get a dictation recognizer for the default locale */

Recognizer createDictationRecognizer()

{
/I Create a mode descriptor with all required features
RecognizerModeDesc required = new RecognizerModeDesc();
required.setDictationGrammarSupported(Boolean. TRUE);
return Central.createRecognizer(required);




Speech Engines: javax.speech

Since theequired Object provided to theeateRecognizer ~ method does not
have a specified locale (it is not set, so itis ) thecentral class again enforces
a policy of selecting an engine for the language specified in the system’s default
locale. Thecentral  class will also give preference to running engines and then to
engines that support the country defined in the default locale.

In the next example we creatsyathesizer  for Spanish with a male voice.

/**

* Return a speech synthesizer for Spanish.
* Return null if no such engine is available.
*/
Synthesizer createSpanishSynthesizer()
{
/I Create a mode descriptor with all required features
/l "es" is the 1SO 639 language code for "Spanish"
SynthesizerModeDesc required = new SynthesizerModeDesc();
required.setLocale(new Locale("es", null));
required.addVoice(new Voice(
null, GENDER_MALE, AGE_DONT_CARE, null));
return Central.createSynthesizer(required);

Again, the method returmsll  if no matching synthesizer is found and the
application is responsible for determining how to handle the situation.

4.3.3 Advanced Engine Selection

This section explains more advanced mechanisms for locating and creating
speech engines. Most applications do not need to use these mechanisms. Readers
may choose to skip this section.

In addition to performing engine creation, thentral  class can provide lists
of available recognizers and synthesizers from two static methods.

EngineList availableSynthesizers(EngineModeDesc mode);
EngineList availableRecognizers(EngineModeDesc mode);

If the mode passed to either methoduis , then all known speech
recognizers or synthesizers are returned. Unlikerth@Recognizer ~ and
createSynthesizer methods, there is no policy that restricts the list to the default
locale or to running engines — in advanced selection such decisions are the
responsibility of the application.

Both availableSynthesizers andavailableRecognizers return an
EngineList ~ object, a sub-class wéctor . If there are no available engines, or no

41



42

Java Speech Application Programming Interface

engines that match the properties defined in the mode descriptor, the list is zero
length (notull ) and itsisEmpty method returnsue . Otherwise the list contains

a set ofSynthesizerModeDesc  Of RecognizerModeDesc ~ Objects each defining a

mode of operation of an engine. These mode descriptors are engine-defined so all
their features are defined (non-null) and applications can test these features to
refine the engine selection.

Because&ngineList  is a sub-class ofector , each element it contains is a
Javaobject . Thus, when accessing the elements applications need to cast the
ObjeCtS tCEngineModeDesc , SynthesizerModeDesc O RecognizerModeDesc

The following code shows how an application can obtain a list of speech
synthesizers with a female voice for German. All other parameters of the mode
descriptor remainull  for “don’t care” (engine name, mode name etc.).

import javax.speech.*;
import javax.speech.synthesis.*;

/I Define the set of required properties in a mode descriptor
SynthesizerModeDesc required = new SynthesizerModeDesc();
required.setLocale(new Locale("de", "));
required.addVoice(new Voice(

null, GENDER_FEMALE, AGE_DONT_CARE, null));

/I Get the list of matching engine modes
EngineList list = Central.availableSynthesizers(required);

/I Test whether the list is empty - any suitable synthesizers?
if (list.isEmpty()) ...

If the application specifically wanted Swiss German and a running engine it
would add the following before callingailableSynthesizers

required.setLocale(new Locale("de", "CH"));
required.setRunning(Boolean. TRUE);

To create a speech engine from a mode descriptor obtained through the
availableSynthesizers andavailableRecognizers methods, an application
simply calls therreateSynthesizer or createRecognizer ~ method. Because the
engine created the mode descriptor and because it provided values for all the
properties, it has sufficient information to create the engine directly. An example
later in this section illustrates the creation &keognizer from an engine-
provided mode descriptor.

Although applications do not normally care, engine-provided mode
descriptors are special in two other ways. First, all engine-provided mode



Speech Engines: javax.speech

descriptors are required to implement thgineCreate  interface which includes

a singlecreateEngine  method. Theentral class uses this interface to perform
the creation. Second, engine-provided mode descriptors may extend the
SynthesizerModeDesc ~ andRecognizerModeDesc ~ classes to encapsulate additional
features and information. Applications should not access that information if they
want to be portable, but engines will use that information when creating a running
Synthesizer O Recognizer .

4.3.3.1 Refining an Engine List

If more than one engine matches the required properties provided to
availableSynthesizers Or availableRecognizers then the list will have more
than one entry and the application must choose from amongst them.

In the simplest case, applications simply select the first in the list which is
obtained using thengineList.first method. For example:

EngineModeDesc required;
EngineList list = Central.availableRecognizers(required);
if (Nist.isEmpty()) {

EngineModeDesc desc = (EngineModeDesc)(list.first());
Recognizer rec = Central.createRecognizer(desc);

More sophisticated selection algorithms may test additional properties of the
available engine. For example, an application may give precedence to a
synthesizer mode that has a voice called “Victoria”.

The list manipulation methods of thegineList class are convenience
methods for advanced engine selection.

¢ anyMatch(EngineModeDesc)  returns true if at least one mode descriptor in
the list has the required properties.

4 requireMatch(EngineModeDesc) removes elements from the list that do
not match the required properties.

4 rejectMatch(EngineModeDesc) removes elements from the list that match
the specified properties.

4 orderByMatch(EngineModeDesc) moves list elements that match the prop-
erties to the head of the list.

43



44

Java Speech Application Programming Interface

The following code shows how to use these methods to obtain a Spanish
dictation recognizer with preference given to a recognizer that has been trained
for a specified speaker passed as an input parameter.

import javax.speech.*;
import javax.speech.recognition.*;
import java.util.Locale;

Recognizer getSpanishDictation(String name)

{
RecognizerModeDesc required = new RecognizerModeDesc();
required.setLocale(new Locale("es", "));
required.setDictationGrammarSupported(Boolean. TRUE);

/I Get a list of Spanish dictation recognizers
EngineList list = Central.availableRecognizers(required);

if (list.isEmpty()) return null; // nothing available

/I Create a description for an engine trained for the speaker
SpeakerProfile profile = new SpeakerProfile(null, name, null);
RecognizerModeDesc requireSpeaker = new RecognizerModeDesc();
requireSpeaker.addSpeakerProfile(profile);

/I Prune list if any recognizers have been trained for speaker
if (list.anyMatch(requireSpeaker))
list.requireMatch(requireSpeaker);

/I Now try to create the recognizer
RecognizerModeDesc first =
(RecognizerModeDesc)(list.firstElement());
try {
return Central.createRecognizer(first);
} catch (SpeechException e) {
return null;

}

4.4 Engine States

4.4.1 State systems

Thekngine interface includes a set of methods that define a generalized state
system manager. Here we consider the operation of those methods. In the
following sections we consider the two core state systems implemented by all



Speech Engines: javax.speech

speech engines: the allocation state system and the pause-resume state system. In
Chapter 5, the state system for synthesizer queue management is described. In
Chapter 6, the state systems for recognizer focus and for recognition activity are
described.

A state defines a particular mode of operation of a speech engine. For
example, the output queue moves betweemthJE_EMPTANAQUEUE_NOT_EMPTY
states. The following are the basics of state management.

ThegetEngineState  method of the&ngine interface returns the current
engine state. The engine state is representedoby avalue (64-bit value).

Specified bits of the state represent the engine being in specific states. This bit-
wise representation is used becaaisengine can be in more than one state at a
time, and usually is during normal operation.

Every speech engine must be in one and only one of the four allocation states
(described in detail in Section 4.4.2). These statesEM@ OCATEDALLOCATED
ALLOCATING_RESOURCESNADEALLOCATING_RESOURCESheALLOCATEDstate has
multiple sub-states. AnALLOCATEDeNngine must be in either theusepor the
RESUMEstate (described in detail in Section 4.4.4).

Synthesizers have a separate sub-state system for queue status. Like the
paused/resumed state system,gheuE_EMPTANAQUEUE_NOT_EMPTMtates are
both sub-states of theLocATEDstate. Furthermore, the queue status and the
paused/resumed status are independent.

Recognizers have three independent sub-state systemsaa tftaTEstate
(the PAUSEBRESUMEBYStem plus two others). TRSTENING, PROCESSINGNd
SUSPENDEtates indicate the current activity of the recognition process. The
Focus_onndrocus_orrstates indicate whether the recognizer currently has
speech focus. For a recognizer, all three sub-state systemsiofdloaTeDstate
operate independently (with some exceptions that are discussed in the recognition
chapter).

Each of these state names is represented by a static long in which a single
unique bit is set. The & and | operators of the Java programming language are
used to manipulate these state bits. For example, the state of an allocated,
resumed synthesizer with an empty speech output queue is defined by:

(Engine.ALLOCATED | Engine.RESUMED | Synthesizer. QUEUE_EMPTY)
To test whether an engine is resumed, we use the test:
if ((engine.getEngineState() & Engine.RESUMED) !=0) ...

For convenience, thengine interface defines two additional methods for
handling engine states. ThetEngineState method is passed a state value and

45



46

Java Speech Application Programming Interface

returnsirue  if all the state bits in that value are currently set for the engine.
Again, to test whether an engine is resumed, we use the test:

if (engine.testEngineState(Engine.RESUMED)) ...
Technically, thaestEngineState(state) method is equivalent to:
if ((engine.getEngineState() & state) == state)...

The final state method igitEnginestate . This method blocks the calling thread
until the engine reaches the defined state. For example, to wait until a synthesizer
stops speaking because its queue is empty we use:

engine.waitEngineState(Synthesizer. QUEUE_EMPTY);

In addition to method calls, applications can monitor state through the event
system. Every state transition is marked b¥@mheEvent being issued to each
EngineListener  attached to thengine . TheEngineEvent class is extended by the
SynthesizerEvent  andRecognizerEvent  classes for state transitions that are
specific to those engines. For example RIBEOGNIZER_PROCESSING
RecognizerEvent  indicates a transition from thesTENING state to the
PROCESSINGWhich indicates that the recognizer has detected speech and is
producing a result).

4.4.2 Allocation State System

Engine allocation is the process in which the resources required by a speech
recognizer or synthesizer are obtained. Engines are not automatically allocated
when created because speech engines can require substantial resources (CPU,
memory and disk space) and because they may need exclusive access to an audio
resource (e.g. microphone input or speaker output). Furthermore, allocation can
be a slow procedure for some engines (perhaps a few seconds or over a minute).
Theallocate method of theengine interface requests the engine to perform
allocation and is usually one of the first calls made to a created speech engine. A
newly created engine is always in EaLLOCATEState. A call to theallocate
method is, technically speaking, a request to the engine to transition to the
ALLOCATEDstate. During the transition, the engine is in a temporary
ALLOCATING_RESOURCEXate.
Thedeallocate  method of the&ngine interface requests the engine to
perform deallocation of its resources. All well-behaved applications call
deallocate  once they have finished using an engine so that its resources are freed



Speech Engines: javax.speech

up for other applications. Theallocate method returns the engine to the
DEALLOCATEstate. During the transition, the engine is in a temporary
DEALLOCATING_RESOURCEsate.

Figure 4-1 shows the state diagram for the allocation state system.

New Engine

ALLOCATING_
RESOURCES

ENGIN

ALLOCATED

ENGINE/ALLOCATING_RESOURCES

DEALLOCATED ALLOCATED

ENGINE_DEALLOCATING_RESOURCES

ENGIN

DEALLOCATED

DEALLOCATING
RESOURCES

Figure 4-1 Engine allocation state system

Each block represents a state of the engine. An engine must always be in one
of the four specified states. As the engine transitions between states, the event
labelled on the transition arc is issued toehgneListeners  attached to the
engine.

The normal operational state of an enginglisocATED The paused-resumed
state of an engine is described in the next section. The sub-state systems of
ALLOCATELsYnthesizers and recognizers are described in Chapter 5 and Chapter 6
respectively.

4.4.3 Allocated States and Call Blocking

For advanced applications, it is often desirable to start up the allocation of a
speech engine in a background thread while other parts of the application are
being initialized. This can be achieved by callingdiveate method in a

separate thread. The following code shows an example of this using an inner class
implementation of theunnable interface. To determine when the allocation

method is complete, we check later in the code for the engine being in the
ALLOCATEDState.

47



48

Java Speech Application Programming Interface

Engine engine;

{

engine = Central.createRecognizer();

new Thread(new Runnable() {
public void run() {

try {
engine.allocate();
}

catch (Exception e) {
e.printStackTrace();

}
}
}.start();

/I Do other stuff while allocation takes place

/I Now wait until allocation is complete
engine.waitEngineState(Engine.ALLOCATED);
}

A full implementation of an application that uses this approach to engine
allocation needs to consider the possibility that the allocation fails. In that case,
the allocate method throws angineException  and the engine returns to the
DEALLOCATELState.

Another issue advanced applications need to consider is class blocking. Most
methods of th&ngine , Recognizer andsynthesizer  are defined for normal
operation in theLLocATEDstate. What if they are called for an engine in another
allocation state? For most methods, the operation is defined as follows:

¢ ALLOCATEDstate: for nearly all methods normal behavior is defined for this
state. (An exception is thflocate method).

¢ ALLOCATING_RESOURCEState: most methodsockin this state. The calling
thread waits until the engine reaches sheocaTemstate. Once that state is
reached, the method behaves as normally defined.

¢ DEALLOCATEDstate: most methods are not defined for this state, sm-an
gineStateError IS thrown. (Exceptions include th#tocate  method and
certain methods listed below.)

4 DEALLOCATING_RESOURCHES$ate: most methods are not defined for this state,
SO anEngineStateError is thrown.



Speech Engines: javax.speech

A small subset of engine methods will operate correctly in all engine states. The
getEngineProperties always allows runtime engine properties to be set and
tested (although properties only take effect inath@caTenstate). The
getEngineModeDesc method can always return the mode descriptor for the engine.
Finally, the three engine state methodsyetEngineState , testEngineState and
waitEngineState ~ — always operated as defined.

4.4.4 Pause - Resume State System

All ALLocATEDspeech engines hareusebandrResUMEStates. Once an engine
reaches theLLOCATEDstate, it enters either trauseDor therResuMEstate. The
factors that affect the initislaUSEERESUMEState are described below.

ThepPAUSEBRESUMEState indicates whether the audio input or output of the
engine is on or off. A resumed recognizer is receiving audio input. A paused
recognizer is ignoring audio input. A resumed synthesizer produces audio output
as it speaks. A paused synthesizer is not producing audio output.

As part of the engine state system, the Engine interface provides several
methods to testAusERESUMEIState. The general state system is described
previously in Section 4.4 (on page 44).

An application controls an engine®@USEIRESUMEState with thepause and
resume methods. An application may pause or resume an engine indefinitely. Each
time thePAUSEBRESUMEBtate changes aiNGINE_PAUSEMI ENGINE_RESUMELype
of EngineEvent iS issued eachngineListener  attached to thengine .

Figure 4-2 shows the basic pause and resume diagram for a speech engine.
As a sub-state system of the OcATEDstate, the pause and resume states
represented within theLLocATEDstate as shown in Figure 4-1.

/ ALLOCATED \

ENGINE_RESUMED

PAUSED RESUMED

ENGINE_PAUSED

- /

Figure 4-2 PAUSED and RESUMED Engine states

49



50

Java Speech Application Programming Interface

As with Figure 4-1, Figure 4-2 represents states as labelled blocks, and the
engine events as labelled arcs between those blocks. In this diagram the large
block is theaLLocATEDstate which contains both theusebandrRESUMELStates.

4.45 State Sharing

ThePAUSEIRESUMEState of a speech engine may, in many situations, be shared
by multiple applications. Here we must make a distinction between the Java
object that representsracognizer  Or Synthesizer ~ and the underlying engine

that may have multiple Java and non-Java applications connected to it. For
example, in personal computing systems (e.g., desktops and laptops), there is
typically a single engine running and connected to microphone input or speaker/
headphone output and all application share that resource.

When arecognizer Or Synthesizer ~ (the Java software object) is paused and
resumed the shared underlying engine is paused and resumed and all applications
connected to that engine are affected.

There are three key implications from this architecture:

+ An application should pause and resume an engine only in response to a
user request (e.g., because a microphone button is pressed for a recogniz-
er). For example, it should not pause an engine before deallocating it.

¢ A Recognizer Or Synthesizer ~may be paused and resumed because of are-
quest by another application. The application will receive an
ENGINE_PAUSEI ENGINE_RESUMEBVeNt and the engine state value is up-
dated to reflect the current engine state.

¢ Because an engine could be resumed without explicitly requesting a re-
sume it should always be prepared for that resume. For example, it should
not place text on the synthesizer’s output queue unless it would expect it to
be spoken upon a resume. Similarly, the set of enabled grammars of a rec-
ognizer should always be appropriate to the application context, and the
application should be prepared to accept input results from the recognizer
if an enabled grammar is unexpectedly resumed.

4.4.6 Synthesizer Pause

For a speech synthesizer — a speech output device — pause immediately stops
the audio output of synthesized speech. Resume recommences speech output
from the point at which the pause took effect. This is analogous to pause and
resume on a tape player or CD player.



Speech Engines: javax.speech

Chapter 5 describes an additional state system of synthesizers. An
ALLOCATED Synthesizer has sub-states fQUEUE_EMPT&NAQUEUE_NOT_EMPTY
This represents whether there is text on the speech output queue of the synthesizer
that is being spoken or waiting to be spoken. The queue state and pause/resume
state are independent. It is possible, for example, kesamesynthesizer to
have an empty output queugJEUE_EmMPTState). In this case, the synthesizer is
silent because it has nothing to say. If any text is provided to be spoken, speech
output will start immediately because the synthesizREs®MED

4.4.7 Recognizer Pause

For a recognizer, pausing and resuming turns audio input off and on and is
analogous to switching the microphone off and on. When audio input is off the
audio is lost. Unlike a synthesizer, for whickesme continues speech output
from the point at which it was paused, resuming a recognizer restarts the
processing of audio input from the time at which resume is called.

Under normal circumstances, pausing a recognizer will stop the recognizer’s
internal processes that match audio against grammars. If the user was in the
middle of speaking at the instant at which the recognizer was paused, the
recognizer is forced to finalize its recognition process. This is because a
recognizer cannot assume that the audio received just before pausing is in any
way linked to the audio data that it will receive after being resumed. Technically
speaking, pausing introduces a discontinuity into the audio input stream.

One complexity for pausing and resuming a recognizer (not relevant to
synthesizers) is the role of internal buffering. For various reasons, described in
Chapter 6, a recognizer has a buffer for audio input which mediates between the
audio device and the internal component of the recognizer which perform that
match of the audio to the grammars. If recognizer is performing in real-time the
buffer is empty or nearly empty. If the recognizer is temporarily suspended or
operates slower than real-time, then the buffer may contain seconds of audio or
more.

When a recognizer is paused, the pause takes effect on the input end of the
buffer; i.e, the recognizer stops putting data into the buffer. At the other end of the
buffer — where the actual recognition is performed —the recognizer continues to
process audio data until the buffer is empty. This means that the recognizer can
continue to produce recognition results for a limited period of time even after it
has been paused. @&cognizer also provides &@rceFinalize method with an
option to flush the audio input buffer.)

Chapter 6 describes an additional state system of recognizers L ADATED
Recognizer has a separate sub-state systemi$GENING, RECOGNIZINGand
SUSPENDEDThese states indicate the current activity of the internal recognition

51



52

Java Speech Application Programming Interface

process. These states are largely decoupled fromntie=bandrRESUMEStates
except that, as described in detail in Chapter 6, a paused recognizer eventually
returns to thelSTENING state when it runs out of audio input (theTENING state
indicates that the recognizer is listening to background silence, not to speech).
ThesusPENDEtate of a&ecognizer is superficially similar to theausep
state. In thesusPENDEBtate the recognizer is not processing audio input from the
buffer, but is temporarily halted while an application updates its grammars. A key
distinction between theausenstate and theusPENDEtate is that in the
SUSPENDEBtate audio input can be still be coming into the audio input buffer.
When the recognizer leaves thespeNDEState the audio is processed. The
SUSPENDEState allows a user to continue talking to the recognizer even while the
recognizer is temporarilgusPENDEDFUrthermore, by updating grammars in the
SUSPENDEtate, an application can apply multiple grammar changes
instantaneously with respect to the audio input stream.

4.5 Speech Events

Speech engines, both recognizers and synthesizers, generate many types of
events. Applications are not required to handle all events, however, some events
are particularly important for implementing speech applications. For example,
some result events must be processed to receive recognized text from a
recognizer.

Java Speech API events follow the JavaBeans event model. Events are issued
to a listener attached to an object involved in generating that event. All the speech
events are derived from tlspeechEvent class in thgavax.speech  package.

The events of thavax.speech  package are listed in Table 4-4.

Table 4-4 Speech events: javax.speech package

Name Description

SpeechEvent Parent class of all speech events.

EngineEvent Indicates a change in speech engine state.

AudioEvent Indicates an audio input or output event.

EngineErrorEvent Sub-class oEngineEvent that indicates an asyn-
chronous problems has occurred in the engine.




Speech Engines: javax.speech

The events of thavax.speech.synthesis package are listed in Table 4-5.

Table 4-5 Speech events: javax.speech.synthesis package

Name

Description

SynthesizerEvent

Extends thengineEvent for the specialized events
of aSynthesizer

SpeakableEvent

Indicates the progress in output of synthesized text.

The events of thavax.speech.recognition package are listed in Table 4-6.

Table 4-6 Speech events: javax.speech.recognition package

Name

Description

RecognizerEvent

Extends thengineEvent for the specialized events
of aRecognizer

GrammarEvent

Indicates an update of or a status change of a recog-
nition grammar.

ResultEvent

Indicates status and data changes of recognition re-
sults.

RecognizerAudioEvent

ExtendsaudioEvent with events for start and stop of
speech and audio level updates.

4.5.1 Event Synchronization

A speech engine is required to provide all its events in synchronization with the

AWT event queue whenever possible. The reason for this constraint is that it
simplifies to integration of speech events with AWT events and the Java
Foundation Classes events (e.g., keyboard, mouse and focus events). This
constraint does not adversely affect applications that do not provide graphical

interfaces.

53



54

Java Speech Application Programming Interface

Synchronization with the AWT event queue means that the AWT event
gueue is not issuing another event when the speech event is being issued. To
implement this, speech engines need to place speech events onto the AWT event
gueue. The queue is obtained through the AWbblkit

EventQueue q = Toolkit.getDefaultToolkit().getSystemEventQueue();

TheEventQueue runs a separate thread for event dispatch. Speech engines
are not required to issue the events through that thread, but should ensure that
thread is blocked while the speech event is issued.

Note thatspeechEvent is not a sub-class @gfwTEvent, and that speech events
are not actually placed directly on the AWT event queue. Instead, a speech engine
is performing internal activities to keep its internal speech event queue
synchronized with the AWT event queue to make an application developer’s life
easier.

4.6 Other Engine Functions

4.6.1 Runtime Engine Properties

Speech engines each have a set of properties that can be changed while the engine
is running. TheengineProperties interface defined in thiavax.speech  package
is the root interface for accessing runtime properties. It is extended by the

SynthesizerProperties interface defined in thevax.speech.synthesis
package, and th®ecognizerProperties interface defined in the
javax.speech.recognition package.

For any engine, thengineProperties  is obtained by calling the
EngineProperties method defined in thengine interface. To avoid casting the
return object, th@etSynthesizerProperties method of thesynthesizer
interface and thgetRecognizerProperties method of theecognizer interface
are also provided to return the appropriate type. For example:

{

Recognizer rec = ..,;
RecognizerProperties props = rec.getRecognizerProperties();

}

TheEngineProperties  interface provides three types of functionality.

¢ The addPropertyChangeListener and removePropertyChangelListener



Speech Engines: javax.speech

methods add or remove a JavaBegmpertyChangeListener . The listen-
er receives an event notification any time a property value changes.

¢ ThegetControlcomponent  method returns an engine-provided AVEdm-
ponent Of null if one is not provided by the engine. This component can
be displayed for a user to modify the engine properties. In some cases this
component may allow customization of properties that are not program-
matically accessible.

¢ Thereset method is used to set all engine properties to default values.

ThesSynthesizerProperties andRecognizerProperties interfaces define the sets
of runtime features of those engine types. These specific properties defined by
these interfaces are described in Chapter 5 and Chapter 6 respectively.

For each property there is a get and a set method, both using the JavaBeans
property patterns. For example, the methods for handling a synthesizer’s speaking
voice are:

float getVolume()
void setVolume(float voice) throws PropertyVetoException;

The get method returns the current setting. The set method attempts to set a new
volume. A set method throws an exception if it fails. Typically, this is because the
engine rejects the set value. In the case of volume, the legal range is 0.0 to 1.0.
Values outside of this range cause an exception.

The set methods of thenthesizerProperties andRecognizerProperties
interfaces are asynchronous - they may return before the property change takes
effect. For example, a change in the voice of a synthesizer may be deferred until
the end of the current word, the current sentence or even the current document. So
that an application knows when a change occurgpartyChangeEvent IS
issued to eachropertyChangeListener attached to the properties object.

A property change event may also be issued because another application has
changed a property, because changing one property affects another (e.g., changing
a synthesizer’s voice from male to female will usually cause an increase in the
pitch setting), or because the property values have been reset.

4.6.2 Audio Management

TheAudiomanager 0of a speech engine is provided for management of the engine’s
speech input or output. For the Java Speech API Version 1.0 specification, the
AudioManager interface is minimal. As the audio streaming interfaces for the Java
platform are established, thedioManager interface will be enhanced for more
advanced functionality.

55



56

Java Speech Application Programming Interface

For this release, theudiomanager interface defines the ability to attach and
removeAudioListener  Objects. For this release, th@lioListener  interface is
simple: it is empty. However, thecognizerAudioListener interface extends the
AudioListener  interface to receive three audio event ty[®®&§CH_STARTED
SPEECH_STOPPEBNJAUDIO_LEVEL events). These events are described in detail in
Chapter 6. As a type @lidioListener , aRecognizerAudioListener is attached
and removed through th@dioManager .

4.6.3 Vocabulary Management

An engine can optionally providevacabManager for control of the pronunciation
of words and other vocabulary. This manager is obtained by calling the
getVocabManager Mmethod of a&ecognizer Or Synthesizer (it is a method of the
Engine interface). If the engine does not support vocabulary management, the
method returnsull .

The manager defines a listwérd objects. Words can be added to the
VocabManager , removed from th&ocabManager , and searched through the
VocabManager .

Theword class is defined in thiavax.speech  package. Eactvord is defined
by the following features.

¢ Written form a requiredstring  that defines how th&ord should be pre-
sented visually.

¢ Spoken forman optionaktring  that indicates how theord is spoken. For
English, the spoken form might be used for defining how acronyms are
spoken. For Japanese, the spoken form could providearepresentation
of howkaniji in the written form is pronounced.

¢ Pronunciationsan optionalstring array containing one or more phone-
mic representations of the pronunciations of #ed. The International
Phonetic Alphabet subset of Unicode is used throughout the Java Speech
API for representing pronunciations.

¢ Grammatical categoriesan optional set of or'ed grammatical categories.
Theword class defines 16 different classes of words (noun, verb, conjunc-
tion etc.). These classes do not represent a complete linguistic breakdown
of all languages. Instead they are intended to proviRk&égnizer Or Syn-
thesizer ~ with additional information about a word that may assist in cor-
rectly recognizing or correctly speaking it.



CHAPTER5

Speech Syntheéis:

javax.speech.synthesis

A speech synthesizer is a speech engine that converts text to speech. The
javax.speech.synthesis package defines ttegnthesizer  interface to support
speech synthesis plus a set of supporting classes and interfaces. The basic
functional capabilities of speech synthesizers, some of the uses of speech
synthesis and some of the limitations of speech synthesizers are described in
Section 2.1 (on page 9).

As a type of speech engine, much of the functionalitysyh@esizer is
inherited from thengine interface in thgavax.speech  package and from other
classes and interfaces in that package.jd#espeech  package and generic
speech engine functionality are described in Chapter 4

This chapter describes how to write Java applications and applets that use
speech synthesis. We begin with a simple example, and then review the speech
synthesis capabilities of the API in more detail.

+ “Hello World!": a simple example of speech synthesis
¢ Synthesizer as an Engine

¢ Speaking Text

¢ Speech Output Queue

+ Monitoring Speech Output

¢ Synthesizer Properties

57



58

Java Speech Application Programming Interface

51 “Hello World!”

The following code shows a simple use of speech synthesis to speak the string
“Hello World”.

import javax.speech.*;
import javax.speech.synthesis.*;
import java.util.Locale;

public class HellowWorld {
public static void main(String args][]) {
try {
/I Create a synthesizer for English
Synthesizer synth = Central.createSynthesizer(
new SynthesizerModeDesc(Locale.ENGLISH));

/I Get it ready to speak
synth.allocate();
synth.resume();

/I Speak the "Hello world" string
synth.speakPlainText("Hello, world!", null);

/I Wait till speaking is done
synth.waitEngineState(Synthesizer. QUEUE_EMPTY);

/I Clean up

synth.deallocate();
} catch (Exception e) {

e.printStackTrace();

}

This example illustrates the four basic steps which all speech synthesis
applications must perform. Let's examine each step in detail.

¢ Create:Thecentral class oOfavax.speech  package is used to obtain a
speech synthesizer by calling theateSynthesizer method. Thesyn-
thesizerModeDesc ~ argument provides the information needed to locate an
appropriate synthesizer. In this example a synthesizer that speaks English
is requested.

¢ Allocate and Resum@&heallocate  andresume methods prepare trsn-
thesizer  t0 produce speech by allocating all required resources and put-



Speech Synthesis: javax.speech.synthesis

ting it in therRESUMETIState.

¢ GenerateThespeakPlainText —method requests the generation of synthe-
sized speech from a string.

¢ Deallocate:ThewaitEngineState ~ method blocks the caller until tlsgn-
thesizer IS in theQUEUE_EmPTState — until it has finished speaking the
text. Thedeallocate ~method frees the synthesizer’s resources.

5.2 Synthesizer as an Engine

The basic functionality provided bysanthesizer  is speaking text, management
of a queue of text to be spoken and producing events as these functions proceed.
Thesynthesizer  interface extends thengine interface to provide this
functionality.

The following is a list of the functionality that th@ax.speech.synthesis
package inherits from thevax.speech  package and outlines some of the ways in
which that functionality is specialized.

¢ The properties of a speech engine defined byetlageModeDesc class ap-
ply to synthesizers. Th®nthesizerModeDesc  class adds information
about synthesizer voices. BathgineModeDesc andsynthesizerModeDesc
are described in Section 4.2 (on page 36).

¢ Synthesizers are searched, selected and created througgnihie class
in thejavax.speech  package as described in Section 4.3 (on page 39).
That section explains default creation of a synthesizer, synthesizer selec-
tion according to defined properties, and advanced selection and creation
mechanisms.

¢ Synthesizers inherit the basic state system of an engine froeaglhe in-
terface. The basic engine states/AreCATEDR DEALLOCATED
ALLOCATING_RESOURCEENADEALLOCATING_RESOURCHST allocation state,
andrauserandresuMEDor audio output state. ThetEngineState  meth-
od and other methods are inherited for monitoring engine statengAn
neEvent indicates state changes. The engine state systems are described in
Section 4.4 (on page 44). (TheEUE_EMPTRNAQUEUE_NOT_EMPTMates
added by synthesizers are described in Section 5.4.)

¢ Synthesizers produce all the standard engine events (see Section 4.5). The

javax.speech.synthesis package also extends th@jineListener  inter-
face assynthesizerListener to provide events that are specific to synthe-
sizers.

59



60

Java Speech Application Programming Interface

¢ Other engine functionality inherited as an engine includes the runtime
properties (see Section 4.6.1 and Section 5.6), audio management (see
Section 4.6.2) and vocabulary management (see Section 4.6.3).

5.3 Speaking Text

Thesynthesizer  interface provides four methods for submitting text to a speech
synthesizer to be spoken. These methods differ according to the formatting of the
provided text, and according to the type of object from which the text is produced.
All methods share one feature; they all allow a listener to be passed that will
receive notifications as output of the text proceeds.

The simplest method -speakPlainText ~— takes text asaring object.
This method is illustrated in thelello World!” example at the beginning of this
chapter. As the method name implies, this method treats the input text as plain
text without any of the formatting described below.

The remaining three speaking methods — all naspesk — treat the input
text as being specially formatted with the Java Speech Markup Language (JSML).
JSML is an application of XML (eXtensible Markup Language), a data format for
structured document interchange on the internet. JSML allows application
developers to annotate text with structural and presentation information to
improve the speech output quality. JSML is defined in detail in a separate
technical documentThe Java Speech Markup Language Specification.”

The threepeak methods retrieve the JSML text from different Java objects.
The three methods are:

void speak(Speakable text, SpeakableListener listener);
void speak(URL text, SpeakableListener listener);
void speak(String text, SpeakableListener listener);

The first version accepts an object that implementsdéwable interface. The
Speakable interface is a simple interface defined injtex.speech.synthesis
package that contains a single methggismLText . This method should return a
string containing text formatted with JSML.

Virtually any Java object can implement geakable interface by
implementing thegetisMLText method. For example, the cells of spread-sheet,
the text of an editing window, or extended AWT classes could all implement the
Speakable interface.

Thespeakable interface is intended to provide the spoken version of the
toString  method of thebject class. That isspeakable allows an object to
define how it should be spoken. For example:



Speech Synthesis: javax.speech.synthesis

public class MyAWTODbj extends Component implements Speakable {
public String getJSMLText() {

}
}

{
MyAWTODbj obj = new MyAWTObj();
synthesizer.speak(obj, null);

}

The second variant of theeak method allows JSML text to be loaded from a
URL to be spoken. This allows JSML text to be loaded directly from a web site
and be spoken.

The third variant of thepeak method takes a JSML string. Its use is straight-
forward.

For each of the threpeak methods that accept JSML formatted text, a
JSMLException IS thrown if any formatting errors are detected. Developers
familiar with editing HTML documents will find that XML is strict about syntax
checks. It is generally advisable to check XML documents (such as JSML) with
XML tools before publishing them.

The following sections describe the speech output onto which objects are
placed with calls to the speak methods and the mechanisms for monitoring and
managing that queue.

5.4 Speech Output Queue

Each call to thepeak andspeakPlainText —methods places an object onto the
synthesizer'speech output queu&he speech output queue is a FIFO queue:
first-in-first-out. This means that objects are spoken in the order in which they are
received.

Thetop of queudtem is the head of the queue. The top of queue item is the
item currently being spoken or is the item that will be spoken next when a paused
synthesizer is resumed.

Thesynthesizer  interface provides a number of methods for manipulating
the output queue. Th@umerateQueue Method returns aenumeration Object
containing asynthesizerQueueltem  for each object on the queue. The first object
in the enumeration is the top of queue. If the queue is empéyitierateQueue
method returnsull .

61



62

Java Speech Application Programming Interface

EachsynthesizerQueueltem  in the enumeration contains four properties.
Each property has a accessor method:

¢ getSource returns the source object for the queue item. The source is the
object passed to thgeak andspeakPlainText —method:a Speakable 0Ob-
ject, aurL or astring

¢ getText returns the text representation for the queue item. Bpéaxable
objectitis thestring returned by th@etisMLText method. For arLit is
thestring loaded from that URL. For a string source, it is that string ob-
ject.

¢ isPlainText  allows an application to distinguish between plain text and
JSML objects. If this method returns true the string returnegtbigxt is
plain text.

¢ getSpeakableListener returns the listener object to which events associat-
ed with this item will be sent. If no listener was provided in the cadbtak
andspeakPlainText  then the call returnsull .

The state of the queue is an explicit state obthesizer . ThesSynthesizer
interface defines a state systemdoeuE_EMPT&NAQUEUE_NOT_EMPTANY
Synthesizer  in theALLOCATEDstate must be in one and only one of these two
states.

TheQUEUE_EMPTANdQUEUE_NOT_EMPTMtates are parallel states to the
PAUSEDaNdRESUMEMstates. These two state systems operate independently as
shown in Figure 5-1 (an extension of Figure 4-2 on page 49).

ThesynthesizerEvent  class extends thengineEvent  class with the
QUEUE_UPDATERNJQUEUE_EMPTIERRVENtS Which indicate changes in the queue
state.

The“Hello World!” example shows one use of the queue status. It calls the
waitEngineState  method to test when the synthesizer returns taibeue_EMPTY
state. This test determines when the synthesizer has completed output of all
objects on the speech output queue.

The queue status and transitions in and out ohthecATEDstate are linked.
When asynthesizer  iS newlyALLOCATEDt always starts in theueue_EmpPTstate
since no objects have yet been placed on the queue. Before a synthesizer is
deallocated (before leaving taeLoCATEDstate) a synthesizer must return to the
QUEUE_EMPTState. If the speech output queue is not empty whetreiheate
method is called, all objects on the speech output queue are automatically
cancelled by the synthesizer. By contrast, the initial and final states@secand
RESUMERre not defined because the pause/resume state may be shared by
multiple applications.



Speech Synthesis: javax.speech.synthesis

/ ALLOCATED
QUEUE_UPDATED

QUEUE_UPDATED

( QUEUE_EMPTﬁ QUEUE_NOT_EMPT,

QUEUE_EMPTIED

ENGINE_RESUMED

PAUSED RESUMED

ENGINE_PAUSED

- /

Figure 5-1 Synthesizer states

Thesynthesizer  interface defines three cancel methods that allow an
application to request that one or more objects be removed from the speech output
queue:

void cancel();
void cancel(Object source);
void cancelAll();

The first of these three methods cancels the object at the top of the speech output
gueue. If that object is currently being spoken, the speech output is stopped and
then the object is removed from the queue. JfeekableListener  for the item
receives &PEAKABLE_CANCELLEBvent. ThesynthesizerListener receives a
QUEUE_UPDATE®VeNt, unless the item was the last one on the queue in which case
A QUEUE_EMPTIERVEN is issued.

The second cancel method requires that a source object be specified. The
object should be one of the items currently on the quepeakable , aURL, Or a
string . The actions are much the same as for the first cancel method except that if
the item is not top-of-queue, then speech output is not affected.

The final cancel method -eancelal — removes all items from the speech
output queue. Each item receivesraAKABLE_CANCELLEBvent and the

63



64

Java Speech Application Programming Interface

SynthesizerListener receives @UEUE_EMPTIERVeNt. TheSPEAKABLE_CANCELLED
events are issued to items in the order of the queue.

5.5 Monitoring Speech Output

All the speak andspeakPlainText —methods acceptspeakableListener as the
second input parameter. To request notification of events as the speech object is
spoken an application provides a non-null listener.

Unlike asynthesizerListener that receives synthesizer-level events, a
SpeakableListener ~ receives events associated with output of individual text
objects: output o$peakable 0Objects, output of URLS, output of JSML strings, or
output of plain text strings.

The mechanism for attachingspeakableListener ~ through thepeak and
speakPlainText ~ methods is slightly different from the normal attachment and
removal of listeners. There are, howewetSpeakableListener and
removeSpeakableListener methods on theynthesizer  interface. These add and
remove methods allow listeners to be provided to receive notifications of events
associated witlll objects being spoken by thgnthesizer

ThespeakableEvent class defines eight events that indicate progress of
spoken output of a text object. For each of these eight event types, there is a
matching method in th&peakableListener  interface. For convenience, a
SpeakableAdapter ~ implementation of thepeakableListener interface is
provided with trivial (empty) implementations of all eight methods.

The normal sequence of events as an object is spoken is as follows:

¢ TOP_OF_QUEUHhe object has reached to the top of the speech output queue
and is the next object to be spoken.

¢ SPEAKABLE_STARTEDAudio output has commenced for this text object.

¢ WORD_STARTE@UdIO output has reached the start of a word. The event in-
cludes information on the location of the word in the text object. This event
is issued for each word in the text object. This event is often used to high-
light words in a text document as they are spoken.

¢ MARKER_REACHERUdIO output has reached the location of/ARKERag ex-
plicitly embedded in the JSML text. The event includes the marker text
from the tag. For container JSML elementsiARKER_REACHBEVENL iS is-
sued at both the start and end of the eleme®KER_REACHEEVENtS are
not produced for plain text because formatting is required to add the mark-
ers.

¢ SPEAKABLE_ENDEDAudio output has been completed and the object has



Speech Synthesis: javax.speech.synthesis

been removed from the speech output queue.
The remaining event types are modifications to the normal event sequence.

¢ SPEAKABLE_PAUSEDthesynthesizer —has been paused so audio output of
this object is paused. This event is only issued to the text object at the top
of the speech output queue.

¢ SPEAKABLE_RESUMELhesSynthesizer has been resumed so audio output of
this object has resumed. This event is only issued to the text object at the
top of the speech output queue.

¢ SPEAKABLE_CANCELLEOhe object has been removed from the speech out-
put queue. Any or all objects in the speech output queue may be removed
by one of the cancel methods (described in Section 5.4 on page 61).

The following is an example of the use of HpeakableListener  interface to
monitor the progress of speech output. It shows how a training application could
synchronize speech synthesis with animation.

It places two JSML string objects onto the output queue and requests
notifications to itself. The speech output will be:

"First, use the mouse to open the file menu.
Then, select the save command."

At the start of the output of each string theakableStarted ~ method will be
called. By checking the source of the event we determine which text is being
spoken and so the appropriate animation code can be triggered.

public class TrainingApp extends SpeakableAdapter {

String openMenuText =
"First, use the mouse to open the file menu.";
/l The EMP element indicates emphasis of a word
String selectSaveText =
"Then, select the <EMP>save</EMP> command.";

public void sendText(Synthesizer synth) {
/I Insert the two objects into the speech queue
/I specifying self as recipient of SpeakableEvents.
synth.speak(openMenuText, this);
synth.speak(selectSaveText, this);

}

/I Override the empty method in SpeakableAdapter

65



66

Java Speech Application Programming Interface

public void speakableStarted(SpeakableEvent e) {
if (e.getSource() == openMenuText) {
/I animate the opening of the file menu

else if (e.getSource() == selectSaveText) {
/I animate the selection of 'save'

}

5.6 Synthesizer Properties

The SynthesizerProperties interface extends thengineProperties interface
described in Section 4.6.1 (on page 54). The JavaBeans property mechanisms, the
asynchronous application of property changing, and the property change event
notifications are all inherited engine behavior and are described in that section.

The SynthesizerProperties object is obtained by calling the
getEngineProperties method (inherited from thiengine interface) or the
getSynthesizerProperties method. Both methods return the same object
instance, but the latter is more convenient since it is an appropriately cast object.

The SynthesizerProperties interface defines five synthesizer properties
that can be modified during operation of a synthesizer to effect speech output.

Thevoiceproperty is used to control the speaking voice of the synthesizer.
The set of voices supported by a synthesizer can be obtaineddawtives
method of the synthesizessnthesizerModeDesc  0bject. Each voice is defined
by a voice name, gender, age and speaking style. Selection of voices is described
in more detail irSelecting Voicesn page 67.

The remaining four properties contqaiosody Prosody is a set of features of
speech including the pitch and intonation, rhythm and timing, stress and other
characteristics which affect the style of the speech. The prosodic features
controlled through theynthesizerProperties interface are:

¢ Volume:a float value that is set on a scale from 0.0 (silence) to 1.0 (loud-
est).

¢ Speaking ratea float value indicating the speech output rate in words per
minute. Higher values indicate faster speech output. Reasonable speaking
rates depend upon the synthesizer and the current voice (voices may have
different natural speeds). Also, speaking rate is also dependent upon the
language because of different conventions for what is a “word”. For En-
glish, a typical speaking rate is around 200 words per minute.



Speech Synthesis: javax.speech.synthesis

+ Pitch: the baseline pitch is a float value given in Hertz. Different voices
have different natural sounding ranges of pitch. Typical male voices are be-
tween 80 and 180 Hertz. Female pitches typically vary from 150 to 300
Hertz.

¢ Pitch range:afloat value indicating a preferred range for variation in pitch
above the baseline setting. A narrow pitch range provides monotonous out-
put while wide range provide a more lively voice. The pitch range is typi-
cally between 20% and 80% of the baseline pitch.

The following code shows how to increase the speaking rate for a synthesizer by
30 words per minute.

float increaseSpeakingRate(Synthesizer synth) {
SynthesizerProperties props = synth.getEngineProperties();
float newSpeakingRate = props.getSpeakingRate() + 30.0;
props.setSpeakingRate(newSpeakingRate);
return newSpeakingRate;

As with all engine properties, changes to synthesizer properties are not
necessarily instant. The change should take effect as soon as the synthesizer can
apply it. Depending on the underlying technology, a property change may take
effectimmediately, or at the next phoneme, word, phrase or sentence boundary, or
at the beginning of output of the next item in the synthesizer's queue.

So that an application knows when the change has actual taken effect, the
synthesizer generates a property change event for each call to a set method in the
SynthesizerProperties interface.

5.6.1 Selecting Voices

Most speech synthesizers are able to produce a number of voices. In most cases
voices attempt to sound natural and human, but some voices may be deliberately
mechanical or robotic.

Thevoice class is used to encapsulate the four features that describe each
voice: voice hame, gender, age and speaking style. The voice name and speaking
style are botlstring objects and the contents of those strings are determined by
the synthesizer. Typical voice names might be “Victor”, “Monica”, “Ahmed”,
“Jose”, “My Robot” or something completely different. Speaking styles might
include “casual”, “business”, “robotic” or “happy” (or similar words in other
languages) but the API does not impose any restrictions upon the speaking styles.
For both voice name and speaking style, synthesizers are encouraged to use

67



Java Speech Application Programming Interface

strings that are meaningful to users so that they can make sensible judgements
when selecting voices.

By contrast the gender and age are both defined by the API so that
programmatic selection is possible. The gender of a voice caElBER_FEMALE
GENDER_MALESENDER_NEUTRADI GENDER_DONT_CARMale and female are
hopefully self-explanatory. Gender neutral is intended for voices that are not
clearly male or female such as some robotic or artificial voices. The “don’t care”
values are used when selecting a voice and the feature is not relevant.

The age of a voice can l&sE_cHILD(up to 12 yearsS)AGE_TEENAGERL3-19),
AGE_YOUNGER_ADUI(20-40),AGE_MIDDLE_ADULT40-60),AGE_OLDER_ADUL{60+),
AGE_NEUTRALaNdAGE_DONT_CARE

Both gender and age are OR’able values for both applications and engines.
For example, an engine could specify a voice as:

Voice("name", GENDER_MALE, AGE_CHILD | AGE_TEENAGER, "style");

In the same way that mode descriptors are used by engines to describe
themselves and by applications to select from amongst available engines, the
voice class is used both for description and selection.dien method ofvoice
allows an application to test whether an engine-provided voice has suitable
properties.

The following code shows the use of thetch method to identify voices of a
synthesizer that are either male or female voices and that are younger or middle
adults (between 20 and 60). Th@thesizerModeDesc ~ Object may be one
obtained through theentral  class or through thgetEngineModeDesc  method of
a createdynthesizer

SynthesizerModeDesc desc = ...;
Voice][] voices = desc.getVoices();

/I Look for male or female voices that are young/middle adult
Voice myVoice = new Voice();

myVoice.setGender(GENDER_MALE | GENDER_FEMALE);
myVoice.setAge(AGE_YOUNGER_ADULT | AGE_MIDDLE_ADULT);

for (inti = 0; i < voices.length; i++)
if (voices][i].match(myVoice))
doAction(voicesi]);

Thevoice object can also be used in the selection of a speech synthesizer.
The following code illustrates how to create a synthesizer with a young female
Japanese voice.



Speech Synthesis: javax.speech.synthesis

SynthesizerModeDesc required = new SynthesizerModeDesc();
Voice voice = new Voice(null, GENDER_FEMALE,
AGE_CHILD | AGE_TEENAGER, null);

required.addVoice(voice);
required.setLocale(Locale.JAPAN);

Synthesizer synth = Central.createSynthesizer(required);

5.6.2 Property Changes in JSML

In addition to control of speech output through $fehesizerProperties

interface, all five synthesizer properties can be controlled in JSML text provided
to a synthesizer. The advantage of control through JSML text is that property
changes can be finely controlled within a text document. By contrast, control of
the synthesizer properties through fyghesizerProperties interface is not
appropriate for word-level changes but is instead useful for setting the default
configuration of the synthesizer. Control of th@thesizerProperties interface

is often presented to the user as a graphical configuration window.

Applications that generate JSML text should respect the default settings of
the user. To do this, relative settings of parameters such as pitch and speaking rate
should be used rather than absolute settings.

For example, users with vision impairments often set the speaking rate
extremely high — up to 500 words per minute — so high that most people do not
understand the synthesized speech. If a document uses an absolute speaking rate
change (to say 200 words per minute which is fast for most users), then the user
will be frustrated.

Changes made to the synthesizer properties through the
SynthesizerProperties interface are persistent: they affect all succeeding speech
output. Changes in JSML are explicitly localized (all property changes in JSML
have both start and end tags).

5.6.3 Controlling Prosody

The prosody and voice properties can be used within JSML text to substantially
improve the clarity and naturalness of the speech output. For example, one time to
change prosodic settings is when providing new, important or detailed
information. In this instance it is typical for a speaker to slow down, emphasise
more words and often add extra pauses. Putting equivalent changes into synthetic
speech will help a listener understand the message.

69



Java Speech Application Programming Interface

For example, in response to the question “How many Acme shares do |
have?”, the answer might be “You currently have 1,500 Acme shares.” The
number will spoken more slowly because it is new information. To represent this
in JSML text the<ProOS>element is used:

You currently have <PROS RATE="-20%">1500</PROS> Acme shares.
The following example illustrates how an email message header object can

implement thespeakable interface and generate JSML text with prosodic controls
to improve understandability.

public class MailHeader implements Speakable {
public String subject;
public String sender; /I sender of the message, eg John Doe
public String date;

/** getJISMLText is the only method of Speakable */
public String getJSMLText() {
StringBuffer buf = new StringBuffer();

/I Speak the sender’s name slower to be clearer
buf.append("Message from " +
"<PROS RATE=-30>" + sender + ",</PROS>");

/I Make sure the date is interpreted correctly
// But we don't need it slow - it's not so important
buf.append(" delivered " +

"<SAYAS class=\"date\">" + date + "</SAYAS>");

/I Subject slower too
buf.append(", with subject: " +

"<PROS RATE=-30>" + subject + "</PROS>");
return buf.toString();

}

public class myMailApp {

void newMessageRecieved(MailHeader header) {
synth.speakPlainText("You have new mail!");
synth.speak(header, mySpeakableListener);

70



CHAPTER6

Speech Recognition:

javax.speech.recognition

A speech recognizer is a speech engine that converts speech to text. The
javax.speech.recognition package defines tRacognizer interface to support
speech recognition plus a set of supporting classes and interfaces. The basic
functional capabilities of speech recognizers, some of the uses of speech
recognition and some of the limitations of speech recognizers are described in
Section 2.2 (on page 13).

As a type of speech engine, much of the functionalityrafcegnizer is
inherited from thengine interface in thgavax.speech  package and from other
classes and interfaces in that package.jd#espeech  package and generic
speech engine functionality are described in Chapter 4.

The Java Speech API is designed to keep simple speech applications simple
and to make advanced speech applications possible for non-specialist developers.
This chapter covers both the simple and advanced capabilities of the
javax.speech.recognition package. Where appropriate, some of the more
advanced sections are marked so that you can choose to skip them. We begin with
a simple code example, and then review the speech recognition capabilities of the
API in more detail through the following sections:

“Hello World!": a simple example of speech recognition
Recognizer as an Engine

Recognizer State Systems

Recognition Grammars

* & & o o

Rule Grammars

71



72

Java Speech Application Programming Interface

Dictation Grammars
Recognition Results
Recognizer Properties
Speaker Management

* & & o o

Recognizer Audio

6.1 “Hello World!”

The following example shows a simple application that uses speech recognition.
For this application we need to defingrammarof everything the user can say,
and we need to write the Java software that performs the recognition task.

A grammar is provided by an application to a speech recognizer to define the
words that a user can say, and the patterns in which those words can be spoken. In
this example, we define a grammar that allows a user to say “Hello World” or a
variant. The grammar is defined using the Java Speech Grammar Format. This
format is documented in thlava Speech Grammar Format Specification
(available fromnttp://java.sun.com/products/java-media/speech/ ).

Place this grammar into a file.

grammar javax.speech.demo;

public <sentence> = hello world | good morning |
hello mighty computer;

This trivial grammar has a singbeiblic rulecalled ‘sentence ". A rule defines
what may be spoken by a user. A public rule is one that magthatedfor
recognition.

The following code shows how to create a recognizer, load the grammar, and
then wait for the user to say something that matches the grammar. When it gets a
match, it deallocates the engine and exits.

import javax.speech.*;

import javax.speech.recognition.*;
import java.io.FileReader;

import java.util.Locale;

public class HelloWorld extends ResultAdapter {
static Recognizer rec;



Speech Recognition: javax.speech.recognition

/I Receives RESULT_ACCEPTED event: print it, clean up, exit

public void resultAccepted(ResultEvent e) {
Result r = (Result)(e.getSource());
ResultToken tokens[] = r.getBestTokens();

for (inti=0; i< tokens.length; i++)

System.out.print(tokens[i].getSpokenText() + " );

System.out.printin();

// Deallocate the recognizer and exit
rec.deallocate();
System.exit(0);

}

public static void main(String args[]) {
try {
/I Create a recognizer that supports English.
rec = Central.createRecognizer(

new EngineModeDesc(Locale.ENGLISH));

/I Start up the recognizer
rec.allocate();

/I Load the grammar from a file, and enable it
FileReader reader = new FileReader(args[0]);
RuleGrammar gram = rec.loadJSGF(reader);

gram.setEnabled(true);

/I Add the listener to get results
rec.addResultListener(new HelloWorld());

/I Commit the grammar
rec.commitChanges();

/I Request focus and start listening
rec.requestFocus();
rec.resume();

} catch (Exception e) {
e.printStackTrace();

}

This example illustrates the basic steps which all speech recognition applications

must perform. Let's examine each step in detail.

¢ Create:Thecentral class ofavax.speech  package is used to obtain a

73



74

Java Speech Application Programming Interface

speech recognizer by calling ttreateRecognizer = method. The
EngineModeDesc argument provides the information needed to locate an
appropriate recognizer. In this example we requested a recognizer that
understands English (since the grammar is written for English).

Allocate: Theallocate methods requests that tRecognizer allocate all
necessary resources.

Load and enable grammar$heloadiscF method reads in a JSGF
document from a reader created for the file that contains the
javax.speech.demo  grammar. (Alternatively, theadisGF method can

load a grammar from a URL.) Next, the grammaerabled Once the
recognizer receives focus (see below), an enabled grammaetivatedfor
recognition: that is, the recognizer compares incoming audio to the active
grammars and listens for speech that matches those grammars.

Attach a ResultListenemheHelloworld class extends theesultAdapter

class whichis atrivial implementation of tResultListener ~ interface. An
instance of thelelloworld  class is attached to the Recognizer to receive
result events. These events indicate progress as the recognition of speech
takes place. In this implementation, we procesKH®®LT ACCEPTED
event, which is provided when the recognizer completes recognition of
input speech that matches an active grammar.

Commit changesAny changes in grammars and the grammar enabled
status needed to lmemmittedo take effect (that includes creation of a new
grammar). The reasons for this are described in Section 6.4.2.

Request focus and resunk@r recognition of the grammar to occur, the
recognizer must be in tlEsuMESState and must have the speech focus.
TherequestFocus  andresume methods achieve this.

Process resultOnce thenain method is completed, the application waits
until the user speaks. When the user speaks something that matches the
loaded grammar, the recognizer isSUBESULT_ACCEPTERVEnNt to the

listener we attached to the recognizer. The source of this evertisia

object that contains information about what the recognizer heard. The
getBestTokens ~method returns an array RésultTokens , each of which
represents a single spoken word. These words are printed.

Deallocate:Before exiting we callieallocate  to free up the recognizer’s
resources.



Speech Recognition: javax.speech.recognition

6.2 Recognizer as an Engine

The basic functionality provided byrecognizer includes grammar management
and the production of results when a user says things that match active grammatrs.
TheRecognizer interface extends thengine interface to provide this
functionality.

The following is a list of the functionality that the
javax.speech.recognition package inherits from thevax.speech ~ package and
outlines some of the ways in which that functionality is specialized.

¢ The properties of a speech engine defined byikieeModeDesc class
apply to recognizers. ThrecognizerModeDesc  class adds information
about dictation capabilities of a recognizer and about users who have
trained the engine. BotthgineModeDesc andRecognizerModeDesc ~ are
described in Section 4.2 (on page 36).

¢ Recognizers are searched, selected and created througttlie class
in thejavax.speech  package as described in Section 4.3 (on page 39).
That section explains default creation of a recognizer, recognizer selection
according to defined properties, and advanced selection and creation
mechanisms.

+ Recognizers inherit the basic state systems of an engine framgtie
interface, including the four allocation states, the pause and resume state,
the state monitoring methods and the state update events. The engine state
systems are described in Section 4.4 (on page 44). The two state systems
added by recognizers are described in Section 6.3.

¢ Recognizers produce all the standard engine events (see Section 4.5). The
javax.speech.recognition package also extends thejineListener
interface aRecognizerListener to provide events that are specific to
recognizers.

¢ Other engine functionality inherited as an engine includes the runtime
properties (see Section 4.6.1 and Section 6.8), audio management (see
Section 4.6.2) and vocabulary management (see Section 4.6.3).

6.3 Recognizer State Systems

6.3.1 Inherited States

As mentioned above,Recognizer inherits the basic state systems defined in the
javax.speech  package, particularly through thegine interface. The basic

75



76

Java Speech Application Programming Interface

engine state systems are described in Section 4.4 (on page 44). In this section the
two state systems added for recognizers are described. These two states systems
represent the status of recognition processing of audio input against grammars,
and the recognizer focus.

As a summary, the following state system functionality is inherited from the
javax.speech  package.

¢ The basic engine state system represents the current allocation state of the
engine: whether resources have been obtained for the engine. The four
allocation states am.LOCATED DEALLOCATEPALLOCATING_RESOURCEENd
DEALLOCATING_RESOURCES

¢ ThepausebandrRESUMEIStates are sub-states of theocATEDstate. The
paused and resumed states of a recognizer indicate whether audio input is
on or off. Pausing a recognizer is analogous to turning off the input
microphone: input audio is lost. Section 4.4.7 (on page 51) describes the
effect of pausing and resuming a recognizer in more detail.

¢ ThegetEngineState  method of th&ngine interface returns lang value
representing the current engine state. The value has a bit set for each of the
current states of the recognizer. For examplesandcATerecognizer in
the REsuMEstate will have both theLLocATEDandRESUMEDItS set.

¢ ThetestEngineState andwaitEngineState ~ methods are convenience
methods for monitoring engine state. The test method tests for presence in
a specified state. The wait method blocks until a specific state is reached.

¢ AnEngineEvent isissued t&ngineListeners  eachtime anengine changes
state. The event class includes the new and old engine states.

The recognizer adds two sub-state systems taLtlecATEDState: that's in
addition to the inherited pause and resume sub-state system. The two new sub-
state systems represent the current activities of the recognizer’s internal
processing (thelSTENING, PROCESSINGANASUSPENDEIStates) and the current
recognizer focus (theocus_omandrocus_oFrstates).

These new sub-state systems are parallel statesrtaubepandrRESUMED
states and operate nearly independently as shown in Figure 6-1 (an extension of
Figure 4-2 on page 49).

6.3.2 Recognizer Focus

TheFocus_onandrocus_orrstates indicate whether this instance of the
Recognizer currently has the speech focus. Recognizer focus is a major
determining factor in grammar activation, which, in turn, determines what the



Speech Recognition: javax.speech.recognition

ALLOCATED

PROCESSING

RECOGNIZER_PROCESSING RECOGNIZER_SUSPENDED

\\

RECOGNIZER_SUSPENDED

LISTENING SUSPENDED

|

COMMITTED_CHANGES

FOCUS_LOST

FOCUS_ON FOCUS_OFF

FOCUS_GAINED

ENGINE_RESUMED

PAUSED RESUMED

ENGINE_PAUSED

- /

oo

Figure 6-1 Recognizer states

recognizer is listening for at any time. The role of recognizer focus in activation
and deactivation of grammars is described in Section 6.4.3 (on page 86).

A change in engine focus is indicated bre&ognizerEvent  (which extends
EngineEvent ) being issued tBecognizerListeners . A FOcus_Los®event
indicates a change in state fremcus_oNO FOCUS_OFFA FOCUS_GAINEevent
indicates a change in state fremcus_OFRO FOCUS_ON

When arecognizer has focus, theocus_omit is set in the engine state.
When arecognizer does not have focus, thecus_ormit is set. The following
code examples monitor engine state:

Recognizer rec;

if (rec.testEngineState(Recognizer.FOCUS_ON)) {

77



78

Java Speech Application Programming Interface

/I we have focus so release it
rec.releaseFocus();
}
/I wait until we lose it
rec.waitEngineState(Recognizer.FOCUS_OFF);

Recognizer focus is relevant to computing environments in which more than one
application is using an underlying recognition. For example, in a desktop
environment a user might be running a single speech recognition product (the
underlying engine), but have multiple applications using the speech recognizer as
a resource. These applications may be a mixture of Java and non-Java
applications. Focus is not usually relevant in a telephony environment or in other
speech application contexts in which there is only a single application processing
the audio input stream.

The recognizer’s focus should track the application to which the user is
currently talking. When a user indicates that it wants to talk to an application
(e.g., by selecting the application window, or explicitly saying “switch to
application X"), the application requests speech focus by calling the
requestFocus method of theRecognizer .

When speech focus is no longer required (e.g., the application has been
iconized) it should calkleaseFocus method to free up focus for other
applications.

Both methods are asynchronous —the methods may return before the focus
is gained or lost — since focus change may be deferred. For example, if a
recognizer is in the middle of recognizing some speech, it will typically defer the
focus change until the result is completed. The focus events and the engine state
monitoring methods can be used to determine when focus is actually gained or
lost.

The focus policy is determined by the underlying recognition engine — it is
not prescribed by th@va.speech.recognition package. In most operating
environments it is reasonable to assume a policy in which the last application to
request focus gets the focus.

Well-behaved applications adhere to the following convention to maximize
recognition performance, to minimize their impact upon other applications and to
maintain a satisfactory user interface experience. An application should only
request focus when it is confident that the user’s speech focus (attention) is
directed towards it, and it should release focus when it is not required.



Speech Recognition: javax.speech.recognition
6.3.3 Recognition States

The most important (and most complex) state system of a recognizer represents
the current recognition activity of the recognizer. ADOCATED Recognizer IS
always in one of the following three states:

4 LISTENING state: Thearecognizer is listening to incoming audio for speech
that may match an active grammar but has not detected speech yet. A
recognizer remains in this state while listening to silence and when audio
input runs out because the engine is paused.

¢ PROCESSINGtate: Therecognizer IS processing incoming speech that may
match an active grammar. While in this state, the recognizer is producing
a result.

¢ SUSPENDEBtate: Therecognizer is temporarily suspended while
grammars are updated. While suspended, audio input is buffered for
processing once the recognizer returns taENING andPROCESSING
states.

This sub-state system is shown in Figure 6-1. The typical state cycle of a
recognizer is triggered by user speech. The recognizer startSLiBTH@NG
state, moves to theroCESSINGstate while a user speaks, moves toshePENDED
state once recognition of that speech is completed and while grammars are
updates in response to user input, and finally returns tostteNING state.

In this first event cycle mesult is typically produced that represents what
the recognizer heard. Eaghsult has a state system and thesult  state system
is closely coupled to thigecognizer State system. Theesult State system is
discussed in Section 6.7 (on page 101). Many applications (includirigletie
World!” example) do not care about the recognition state but do care about the
simplerResult state system.

The other typical event cycle also starts in tiereNING state. Upon receipt
of a non-speech event (e.g., keyboard event, mouse click, timer event) the
recognizer is suspended temporarily while grammars are updated in response to
the event, and then the recognizer returns to listening.

Applications in which grammars are affected by more than speech events
need to be aware of the recognition state system.

The following sections explain these event cycles in more detail and discuss
why speech input events are different in some respects from other event types.

79



80

Java Speech Application Programming Interface

6.3.3.1 Speech Events vs. Other Events

A keyboard event, a mouse event, a timer event, a socket event are all
instantaneous in time — there is a defined instant at which they occur. The same
is not true of speech for two reasons.

Firstly, speech is a temporal activity. Speaking a sentence takes time. For
example, a short command such as “reload this web page” will take a second or
two to speak, thus, it is not instantaneous. At the start of the speech the recognizer
changes state, and as soon as possible after the end of the speech the recognizer
produces a result containing the spoken words.

Secondly, recognizers cannot always recognize words immediately when
they are spoken and cannot determine immediately when a user has stopped
speaking. The reasons for these technical constraints upon recognition are outside
the scope of this guide, but knowing about them is helpful in using a recognizer.
(Incidentally, the same principals are generally true of human perception of
speech.)

A simple example of why recognizers cannot always respond might be
listening to a currency amount. If the user says “two dollars” or says “two dollars,
fifty seconds” with a short pause after the word “dollars” the recognizer can'’t
know immediately whether the user has finished speaking after the “dollars”.
What a recognizer must do is wait a short period — usually less than a second —
to see if the user continues speaking. A second is a long time for a computer and
complications can arise if the user clicks a mouse or does something else in that
waiting period. (Section 6.8 on page 133 explains the time-out parameters that
affect this delay.)

A further complication is introduced by the input audio buffering described
in Section 6.3.

Putting all this together, there is a requirement for the recognizers to
explicitly represent internal state through tierENING, PROCESSINGNd
SUSPENDEBtates.

6.3.3.2 Speech Input Event Cycle

The typical recognition state cycle forecognizer 0ccurs as speech input
occurs. Technically speaking, this cycle represents the recognition of a single
Result . The result state system and result events are described in detail in
Section 6.7. The cycle described here is a clockwise trip throughstiEaing,
PROCESSINGANASUSPENDEStates of aaLLOCATEDrecognizer as shown in
Figure 6-1.

TheRecognizer starts in theISTENING state with a certain set of grammars
enabled and active. When incoming audio is detected that may match an active



Speech Recognition: javax.speech.recognition

grammar, th&ecognizer transitions from theISTENING state to th®ROCESSING
state with &®ECOGNIZER_PROCESSIN&vent.

TheRecognizer then creates a nemesult  object and issues a
RESULT_CREATERVeEnNt (eResultEvent ) to provide the result to the application. At
this point the result is usually empty: it does not contain any recognized words.
As recognition proceeds words are added to the result along with other useful
information.

TheRecognizer remains in th@rRocEssINGstate until it completes
recognition of the result. While in tilrrOCESSINGState theresult may be
updated with new information.

The recognizer indicates completion of recognition by issuing a
RECOGNIZER_SUSPENDEYenNt to transition from therROCESSINGstate to the
SUSPENDEBtate. Once in that state, the recognizer issues a fewlizationevent
to ResultListeners (RESULT_ACCEPTEDr RESULT_REJECTE®RVent) to indicate that
all information about the result is finalized (words, grammars, audio etc.).

TheRecognizer remains in thesusPENDEBtate until processing of the result
finalization event is completed. Applications will often make grammar changes
during the result finalization because the result causes a change in application
state or context.

In thesusPENDEIState tharecognizer buffers incoming audio. This
buffering allows a user to continue speaking without speech data being lost. Once
theRecognizer returns to theISTENING state the buffered audio is processed to
give the user the perception of real-time processing.

Once the result finalization event has been issued to all listeners, the
Recognizer automatically commits all grammar changes and issues a
CHANGES_COMMITTEEVENt to return to thesTENING state. (It also issues
GRAMMAR_CHANGES_COMMITEEBNLS taGrammarListeners ~ Of changed grammars.)
The commit applies all grammar changes made at any point up to the end of result
finalization, such as changes made in the result finalization events.

TheRecognizer is now back in theISTENING state listening for speech that
matches the new grammars.

In this event cycle the first two recognizer state transitions (marked by
RECOGNIZER_PROCESSINENORECOGNIZER_SUSPENDEYENLS) are triggered by user
actions: starting and stopping speaking. The third state transition
(CHANGES_commiITTEEVENt) is triggered programmatically some time after the
RECOGNIZER_SUSPENDEYenNt.

The sUSPENDEIState serves as a temporary state in which recognizer
configuration can be updated without loosing audio data.

81



82

Java Speech Application Programming Interface

6.3.3.3 Non-Speech Event Cycle

For applications that deal only with spoken input the state cycle described above
handles most normal speech interactions. For applications that handle other
asynchronous input, additional state transitions are possible. Other types of
asynchronous input include graphical user interface events A&/tgyent), timer
events, multi-threading events, socket events and so on.

The cycle described here is temporary transition fromLtEENING State to
thesuspPenDEm@Nd back as shown in Figure 6-1.

When a non-speech event occurs which changes the application state or
application data it may be necessary to update the recognizer's grammars. The
suspend andcommitChanges methods of &ecognizer are used to handle non-
speech asynchronous events. The typical cycle for updating grammars in response
to a non-speech asynchronous events is as follows.

Assume that theecognizer is in theLISTENING state (the user is not
currently speaking). As soon as the event is received, the application calls
suspend to indicate that it is about to change grammars. In response, the
recognizer isSUeSRECOGNIZER_SUSPENDEYenNt and transitions from the
LISTENING state to thesusPENDEBtate.

With theRecognizer in thesusPENDEtate, the application makes all
necessary changes to the grammars. (The grammar changes affected by this event
cycle and the pending commit are described in Section 6.4.2 on page 85.)

Once all grammar changes are completed the application calls the
commitChanges method. In response, the recognizer applies the new grammars
and issues aHANGES_coMMITTEvent to transition from theuspPENDEBtate back
to theLISTENING state. (It also iSSUEBRAMMAR_CHANGES_COMMITEERNLS to all
changed grammars.)

Finally, therecognizer resumes recognition of the buffered audio and then
live audio with the new grammars.

The suspend and commit process is designed to provide a number of features
to application developers which help give users the perception of a responsive
recognition system.

Because audio is buffered from the time of the asynchronous event to the
time at which thecHANGES_commiTTERCCUrS, the audio is processed as if the new
grammars were applied exactly at the time of the asynchronous event. The user
has the perception of real-time processing.

Although audio is buffered in theusPENDEState, applications should make
grammar changes and calmmitChanges as quickly as possible. This minimizes
the amount of data in the audio buffer and hence the amount of time it takes for
the recognizer to “catch up”. It also minimizes the possibility of a buffer overrun.

Technically speaking, an application is not required tosaglend prior to
calling commitChanges . If thesuspend call is committed theecognizer behaves



Speech Recognition: javax.speech.recognition

as if suspend had been called immediately prior to caltimgitChanges .

However, an application that does not eadpend risks a commit occurring
unexpectedly while it updates grammars with the effect of leaving grammars in an
inconsistent state.

6.3.4 Interactions of State Systems

The three sub-state systems of an allocated recognizer (shown in Figure 6-1)
normally operate independently. There are, however, some indirect interactions.

When a recognizer is paused, audio input is stopped. However, recognizers
have a buffer between audio input and the internal process that matches audio
against grammars, so recognition can continue temporarily after a recognizer is
paused. In other words pausebrecognizer may be in theROCESSINGState.

Eventually the audio buffer will empty. If the recognizer is in HROCESSING
state at that time then the result it is working on is immediately finalized and the
recognizer transitions to tlee)SPENDEState. Since a well-behaved application
treatsSSUSPENDEState as a temporary state, the recognizer will eventually leave
the susPENDEtate by committing grammar changes and will return to the
LISTENING State.

ThepPausSEBRESUMEBtate of an engine is shared by multiple applications, so
it is possible for a recognizer to be paused and resumed because of the actions of
another application. Thus, an application should always leave its grammars in a
state that would be appropriate forREsUMEDECOgNizer.

The focus state of a recognizer is independent afAheebandrRESUMED
states. For instance, it is possible for a pa&gseahnizer to haveFocus_oN
When the recognizer is resumed, it will have the focus and its grammars will be
activated for recognition.

The focus state of a recognizer is very loosely coupled with the recognition
state. An application that has aooBALgrammars (described in Section 6.4.3)
will not receive any recognition results unless it has recognition focus.

6.4 Recognition Grammars

A grammardefines what a recognizer should listen for in incoming speech. Any
grammar defines the set of tokens a user can say (a token is typically a single
word) and the patterns in which those words are spoken.

The Java Speech API supports two types of grammaesgrammarsand
dictation grammarsThese grammars differ in how patterns of words are defined.
They also differ in their programmatic use: a rule grammar is defined by an

83



84

Java Speech Application Programming Interface

application, whereas a dictation grammar is defined by a recognizer and is built
into the recognizer.

A rule grammar is provided by an application to a recognizer to define a set
of rules that indicates what a user may say. Rules are defined by tokens, by
references to other rules and by logical combinations of tokens and rule
references. Rule grammars can be defined to capture a wide range of spoken input
from users by the progressive combination of simple grammars and rules.

A dictation grammar is built into a recognizer. It defines a set of words
(possibly tens of thousands of words) which may be spoken in a relatively
unrestricted way. Dictation grammars are closest to the goal of unrestricted
natural speech input to computers. Although dictation grammars are more flexible
than rule grammars, recognition of rule grammars is typically faster and more
accurate.

Support for a dictation grammar is optional for a recogiaefection 4.2
(on page 36) explains, an application that requires dictation functionality can
request it when creating a recognizer.

A recognizer may have many rule grammars loaded at any time. However,
the currenkecognizer interface restricts a recognizer to a single dictation
grammar. The technical reasons for this restriction are outside the scope of this
guide.

6.4.1 Grammar Interface

Thecrammar interface is the root interface that is extended by all grammars. The
grammar functionality that is shared by all grammars is presented through this
interface.

TheRuleGrammar interface is an extension of tieeammar interface to support
rule grammars. TheictationGrammar  interface is an extension of tBeammar
interface to support dictation grammars.

The following are the capabilities presented by the grammar interface:

¢ Grammar namingEvery grammar loaded into a recognizer must have a
unique name. ThgetName method returns that name. Grammar names
allow references to be made between grammars. The grammar naming
convention is described in the Java Speech Grammar Format
Specification. Briefly, the grammar naming convention is very similar to
the class naming convention for the Java programming language. For
example, a grammar from Acme Corp. for dates might be called
“com.acme.speech.dates "

+ Enabling and disablingGrammars may be enabled or disabled using the
setEnabled method. When a grammar is enabled and when specified



Speech Recognition: javax.speech.recognition

activation conditions are met, the grammar is activated. Once a grammar is
active a recognizer will listen to incoming audio for speech that matches
that grammar. Enabling and activation are described in more detail below
(Section 6.4.3).

¢ Activation modeThis is the property of a grammar that determines which
conditions need to be met for a grammar to be activated. The activation
mode is managed through th@ActivationMode ~ andsetActivationMode
methods (described in Section 6.4.3). The three available activation modes
are defined as constants of themmar interface RECOGNIZER_FOCUYS
RECOGNIZER_MODARNJGLOBAL

¢ Activation theisActive ~ method returns eoolean Vvalue that indicates
whether asrammar is currently active for recognition.

¢ GrammarListenertheaddGrammarListener ~ andremoveGrammarListener
methods allow &rammarListener to be attached to and removed from a
Grammar. TheGrammarEvents issued to the listener indicate when grammar
changes have been committed and whenever the grammar activation state
changes.

¢ ResultListenertheaddResultListener andremoveResultListener
methods allow ®esultListener to be attached to and removed from a
Grammar. This listener receives notification of all events for any result that
matches the grammar.

¢ RecognizerthegetRecognizer ~method returns a reference to the
Recognizer that owns th&rammar.

6.4.2 Committing Changes

The Java Speech API suppaiitgiamic grammarghat is, it supports the ability
for an application to modify grammars at runtime. In the case of rule grammars
any aspect of any grammar can be changed at any time.

After making any change to a grammar throughdhenmar, RuleGrammar Or
DictationGrammar  interfaces an application musimmit the changehis
applies to changes in definitions of rules iReGrammar , to changing context for
aDictationGrammar , t0 changing the enabled state, or to changing the activation
mode. (It does not apply to adding or removirg snmarListener  Of
ResultListener  .)

Changes are committed by calling Hiemitchanges method of the
Recognizer . The commit is required for changes to affect the recognition process:
that is, the processing of incoming audio.

The commit changes mechanism has two important properties:

85



86

Java Speech Application Programming Interface

+ Updates to grammar definitions and the enabled property take effect
atomically(all changes take effect at once). There are no intermediate
states in which some, but not all, changes have been applied.

¢ Thecommitchanges method is a method &ecognizer so all changes to all
grammars are committed at once. Again, there are no intermediate states in
which some, but not all, changes have been applied.

There is one instance in which changes are committed without an explicit call to
thecommitChanges method. Whenever a recognition resufinslized
(completed), an event is issuedriBultListeners (it is either a
RESULT_ACCEPTEDI RESULT_REJECTEReVent). Once processing of that event is
completed changes are normally committed. This supports the common situation
in which changes are often made to grammars in response to something a user
says.

The event-driven commit is closely linked to the underlying state system of a
Recognizer . The state system for recognizers is described in detail in Section 6.3.

6.4.3 Grammar Activation

A grammar isactivewhen the recognizer is matching incoming audio against that
grammar to determine whether the user is saying anything that matches that
grammar. When a grammar is inactive it is not being used in the recognition
process.

Applications to do not directly activate and deactivate grammars. Instead
they provided methods for (1) enabling and disabling a grammar, (2) setting the
activation mode for each grammar, and (3) requesting and releasing the speech
focus of a recognizer (as described in Section 6.3.2.)

The enabled state of a grammar is set withstenabled method and tested
with theisenabled method. For programmers familiar with AWT or Swing,
enabling a speech grammar is similar to enabling a graphical component.

Once enabled, certain conditions must be met for a grammar to be activated.
The activation mode indicates when an application wants the grammar to be
active. There are three activation mod&s:OGNIZER_FOCYRECOGNIZER_MODAL
andGLoBAL For each mode a certain set of activation conditions must be met for
the grammar to be activated for recognition. The activation mode is managed with
the setActivationMode andgetActivationMode methods.

The enabled flag and the activation mode are both parameters of a grammar
that need to be committed to take effect. As Section 6.4.2 described, changes need
to be committed to affect the recognition processes.

Recognizer focus is a major determining factor in grammar activation and is
relevant in computing environments in which more than one application is using



Speech Recognition: javax.speech.recognition

an underlying recognition (e.g., desktop computing with multiple speech-enabled
applications). Section 6.3.2 (on page 76) describes how applications can request
and release focus and monitor focus thromgagnizerevents  and the engine

state methods.

Recognizer focus is used to turn on and off activation of grammars. The roll
of focus depends upon the activation mode. The three activation modes are
described here in order from highest priority to lowest. An application should
always use the lowest priority mode that is appropriate to its user interface
functionality.

¢ GLoBALactivation mode: if enabled, tiegammar is always active
irrespective of whether threcognizer  of this application has focus.

¢ RECOGNIZER_MODActivation mode: if enabled, tle@ammar is always
active when the applicationfscognizer has focus. Furthermore, enabling
a modal grammar deactivates any grammars in the saboagnizer with
theRECOGNIZER_Focuactivation mode. (The term “modal” is analogous to
“modal dialog boxes” in graphical programming.)

¢ RECOGNIZER_Focuactivation mode (default mode): if enabled, Biemmar
is active when theecognizer 0f this application has focus. The exception
is that if any other grammar of this application is enabled with
RECOGNIZER_MODActivation mode, then this grammar is not activated.

The current activation state of a grammar can be tested witkahiee method.
Whenever a grammar’s activation changes eitle@t/aMAR_ACTIVATEOr
GRAMMAR_DEACTIVATEEVENt is issued to each attackeeghmarListener . A

grammar activation event typically followsRacognizerevent  that indicates a
change in focusFOcus_GAINEIr FOCUS_LOS), Of aCHANGES_COMMMITTED
RecognizerEvent  that indicates that a change in the enabled setting of a grammar
has been applied to the recognition process.

An application may have zero, one or many grammars enabled at any time.
Thus, an application may have zero, one or many grammars active at any time. As
the conventions below indicate, well-behaved applications almayisnizethe
number of active grammars.

The activation and deactivation of grammars is independemiusiEband
RESUMEStates of th@ecognizer . For instance, a grammar can be active even
when a recognizer isAUSED However, when &ecognizer  is paused, audio input
to therecognizer is turned off, so speech won'’t be detected. This is useful,
however, because when the recognizer is resumed, recognition against the active
grammars immediately (and automatically) resumes.

Activating too many grammars and, in particular, activating multiple
complex grammars has an adverse impact upon a recognizer’s performance. In

87



Java Speech Application Programming Interface

general terms, increasing the number of active grammars and increasing the
complexity of those grammars can both lead to slower recognition response time,
greater CPU load and reduced recognition accuracy (i.e., more mistakes).
Well-behaved applications adhere to the following conventions to maximize
recognition performance and minimize their impact upon other applications:

+ Never apply thesLoBALactivation mode to BictationGrammar ~ (most
recognizers will throw an exception if this is attempted).

¢ Always use the default activation modecoGNIzER_Focugnless there is
a good reason to use another mode.

¢ Only use theRrecoGNIZER_MODANhen it is certain that deactivating the
RECOGNIZER_Focugrammars will not adversely affect the user interface.

¢ Minimize the complexity and the numberrafieGrammars with GLOBAL
activation mode. As a general rule, one very sirngptesaLrule grammar
should be sufficient for nearly all applications.

¢ Only enable a grammar when it is appropriate for a user to say something
matching that grammar. Otherwise disable the grammar to improve
recognition response time and recognition accuracy for other grammars.

¢ Only request focus when confident that the user’s speech focus (attention)
is directed to grammars of your application. Release focus when it is not
required.

6.5 Rule Grammars

6.5.1 Rule Definitions

A rule grammar is defined by a setrofes These rules are defined by logical
combinations of tokens to be spoken and references to other rules. The references
may refer to other rules defined in the same rule grammar or to rules imported
from other grammars.

Rule grammars follow the style and conventions of grammars in the Java
Speech Grammar Format (defined in daea Speech Grammar Format
Specificatiop Any grammar defined in the JSGF can be converted to a
RuleGrammar oObject. AnyruleGrammar Object can be printed out in JSGF. (Note
that conversion from JSGF taraleGrammar and back to JSGF will preserve the
logic of the grammar but may lose comments and may change formatting.)



Speech Recognition: javax.speech.recognition

Since theruleGrammar interface extends th@ammar interface, a
RuleGrammar inherits the basic grammar functionality described in the previous
sections (naming, enabling, activation etc.).

The easiest way to loadraleGrammar , Or set ofRuleGrammar Objects is from
a Java Speech Grammar Format file or URL. iddwsGF methods of the
Recognizer perform this task. If multiple grammars must be loaded (where a
grammar references one or more imported grammars), importing by URL is most
convenient. The application must specify the base URL and the name of the root
grammar to be loaded.

Recognizer rec;
URL base = new URL("http://www.acme.com/app”);
String grammarName = "com.acme.demo”;

Grammar gram = rec.loadURL(base, grammarName);

The recognizer converts the base URL and grammar name to a URL using the
same conventions @sassLoader (the Java platform mechanism for loading class
files). By converting the periods in the grammar name to slashes ('/'), appending a
"gram” suffix and combining with the base URL, the locatiomig://
www.acme.com/app/com/acme/demo.gram "

If the demo grammar imports sub-grammars, they will be loaded
automatically using the same location mechanism.

Alternatively, aruleGrammar can be created by calling th@vRuleGrammar
method of arecognizer . This method creates an empty grammar with a specified
grammar name.

Once aruleGrammar has been loaded, or has been created with the
newRuleGrammar method, the following methods oRaleGrammar are used to
create, modify and manage the rules of the grammar.

Table 6-1 RuleGrammar methods for Rule management

Name Description
setRule Assign arule Object to a rulename.
getRule Return therule object for a rulename.

89



Java Speech Application Programming Interface

Table 6-1 RuleGrammar methods for Rule management (cont'd)

Name Description

getRulelnternal Return a reference to the recognizer’s interogl
object for a rulename (for fast, read-only access).

listRuleNames List known rulenames.

isRulePublic Test whether a rulename is public.

deleteRule Delete a rule.

setEnabled Enable and disable thigieGrammar or rules of the
grammar.

isEnabled Test whether aulegrammar Or a specified rule is
enabled.

Any of the methods atuleGrammar that affect the grammasefRule ,
deleteRule , setEnabled etc.) take effect only after they are committed (as
described in Section 6.4.2).

The rule definitions of auleGrammar can be considered as a collection of
namedrule objects. Eackule object is referenced by its rulenamesgag ).

The different types akule object are described in Section 6.5.3.

Unlike most collections in Java, tkaleGrammar is a collection that does not
share objects with the application. This is because recognizers often need to
perform special processing of the rule objects and store additional information
internally. The implication for applications is that a cakkd®ule is required to
change any rule. The following code shows an example where changing a rule
object does not affect the grammar.

RuleGrammar gram;

/I Create a rule for the word blue

// Add the rule to the RuleGrammar and make it public
RuleToken word = new RuleToken("blue");
gram.setRule("ruleName", word, true);

/l Change the word
word.setText("green”);



Speech Recognition: javax.speech.recognition

I/l getRule returns blue (not green)
System.out.printin(gram.getRule("ruleName™));

To ensure that the changgeten” token is loaded into the grammar, the
application must caletRule again after changing the word-“tgeen”
Furthermore, for either change to take effect in the recognition process, the
changes need to be committed (see Section 6.4.2).

6.5.2 Imports

Complex systems of rules are most easily built by dividing the rules into multiple
grammars. For example, a grammar could be developed for recognizing numbers.
That grammar could then lmportedinto two separate grammars that defines
dates and currency amounts. Those two grammars could then be imported into a
travel booking application and so on. This type of hierarchical grammar
construction is similar in many respects to object oriented and shares the
advantage of easy reusage of grammars.

An import declaration in JSGF and an import RugGrammar are most
similar to the import statement of the Java programming language. Unlike a
“#include” in the C programming language, the imported grammar is not copied,
it is simply referencable. (A full specification of import semantics is provided in
the Java Speech Grammar Format specification.)

TheRruleGrammar interface defines three methods for handling imports as
shown in Table 6-2.

Table 6-2 RuleGrammar import methods

Name Description

addimport Add a grammar or rule for import.

removelmport Remove the import of a rule or grammar.

getimports Return a list of all imported grammars or all rules
imported from a specific grammar.

91



Java Speech Application Programming Interface

Theresolve method of theruleGrammar interface is useful in managing
imports. Given any rulename, th®olve method returns an object that
represents the fully-qualified rulename for the rule that it references.

6.5.3 Rule Classes

A RuleGrammar is primarily a collection of defined rules. The programmatic rule
structure used to contrekcognizers  follows exactly the definition of rules in the
Java Speech Grammar Format. Any rule is definediyeaobject. It may be any
one of therule classes described Table 6-3. The exceptions arukrarse

class, which is returned by th&se method oRuleGrammar , and therule class
which is an abstract class and the parent of all atlhierobjects.

Table 6-3 Rule objects

Name Description
Rule Abstract root object for rules.
RuleName Rule that references another defined rule.

JSGF exampleruleName>

RuleToken Rule consisting of a single speakable token (e.g. a word).
JSGF exampleslephant, “New York”

RuleSequence Rule consisting of a sequence of sub-rules.
JSGF exampl@iuy <number> shares of <company>

RuleAlternatives Rule consisting of a set of alternative sub-rules.
JSGF examp|&jreen | red | yellow

RuleCount Rule containing a sub-rule that may be spoken optionally,
zero or more times, or one or more times.
JSGF examplescolor>*, [optional]

RuleTag Rule that attaches a tag to a sub-rule.
JSGF examplgaction=open}

RuleParse Special rule object used to represent results of a parse.




Speech Recognition: javax.speech.recognition

The following is an example of a grammar in Java Speech Grammar Format.

The“Hello World!” example (page 72) shows how this JSGF grammar can be
loaded from a text file. Below we consider how to create the same grammar
programmatically.

grammar com.sun.speech.test;

public <test> = [a] test {TAG} | another <rule>;
<rule> = word,;

The following code shows the simplest way to create this grammar. It uses the
ruleForJSGF  method to convert partial JSGF text tea@e object. Partial JISGF is
defined as any legal JSGF text that may appear on the right hand side of a rule
definition — technically speaking, any legal JSGF rule expansion.

Recognizer rec;

/I Create a new grammar
RuleGrammar gram = rec.newRuleGrammar("com.sun.speech.test");

/I Create the <test> rule
Rule test = gram.ruleForJSGF("[a] test {TAG} | another <rule>");
gram.setRule("test", // rulename

test, // rule definition

true); // true -> make it public

/I Create the <rule> rule
gram.setRule("rule", gram.ruleForJSGF("word”), false);

/l Commit the grammar
rec.commitChanges();

6.5.3.1 Advanced Rule Programming

In advanced programs there is often a need to define rules using theuet of
objects described above. For these applications, using rule objects is more
efficient than creating a JSGF string and usingulbeorJsGF  method.

To create a rule by code, the detailed structure of the rule needs to be
understood. At the top level of our example grammarst#se rule is an
alternative: the user may say something that matghest (TAG}" or say
something matchingunother <rule>" . The two alternatives are each sequences
containing two items. In the first alternative, the brackets around the token

93



Java Speech Application Programming Interface

indicate it is optional. ThgTacy following the second tokentést ) attaches a
tag to the token. The second alternative is a sequence with a tokefr( )
and a reference to another ruteye>" ).

The code to construct thisammar follows (this code example is not compact
— it is written for clarity of details).

Recognizer rec;
RuleGrammar gram = rec.newRuleGrammar("com.sun.speech.test");

// Rule we are building
RuleAlternatives test;

/l Temporary rules
RuleCount r1;

RuleTag r2;
RuleSequence seql, seqz;

I/ Create "[a]"
rl = new RuleCount(new RuleToken("a"), RuleCount. OPTIONAL);

/I Create "test {TAG}" - a tagged token
r2 = new RuleTag(new RuleToken("test"), "TAG");

/l Join "[a]" and "test {TAG}" into a sequence "[a] test {TAG}"
segl = new RuleSequence(rl);
seql.append(r2);

/I Create the sequence "another <rule>";
seg2 = new RuleSequence(new RuleToken("another"));
seg2.append(new RuleName("rule"));

// Build "[a] test {TAG} | another <rule>"
test = new RuleAlternatives(seql);
test.append(seq2);

/I Add <test> to the RuleGrammar as a public rule
gram.setRule("test", test, true);

/I Provide the definition of <rule>, a non-public RuleToken
gram.setRule("rule", new RuleToken("word"), false);

/I Commit the grammar changes
rec.commitChanges();




Speech Recognition: javax.speech.recognition

6.5.4 Dynamic Grammars

Grammars may be modified and updated. The changes allow an application to
account for shifts in the application’s context, changes in the data available to it,
and so on. This flexibility allows application developers considerable freedom in
creating dynamic and natural speech interfaces.

For example, in an email application the list of known users may change
during the normal operation of the program. ¥s@demail> command,

<sendEmail> = send email to <user>;

references theuser> rule which may need to be changed as new email arrives.
This code snippet shows the update and commit of a change in users.

Recognizer rec;
RuleGrammar gram;

String names[] = {"amy", "alan", "paul'};
Rule userRule = new RuleAlternatives(names);

gram.setRule("user", userRule);

Il apply the changes
rec.commitChanges();

Committing grammar changes can, in certain cases, be a slow process. It might
take a few tenths of seconds or up to several seconds. The time to commit changes
depends on a number of factors. First, recognizers have different mechanisms for
committing changes making some recognizers faster than others. Second, the time
to commit changes may depend on the extent of the changes — more changes
may require more time to commit. Thirdly, the time to commit may depend upon
the type of changes. For example, some recognizers optimize for changes to lists
of tokens (e.g. name lists). Finally, faster computers make changes more quickly.

The other factor which influences dynamic changes is the timing of the
commit. As Section 6.4.2 describes, grammar changes are not always committed
instantaneously. For example, if the recognizer is busy recognizing speech (in the
PROCESSINGstate), then the commit of changes is deferred until the recognition of
that speech is completed.

95



96

Java Speech Application Programming Interface

6.5.5 Parsing

Parsing is the process of matching text to a grammar. Applications use parsing to
break down spoken input into a form that is more easily handled in software.
Parsing is most useful when the structure of the grammars clearly separates the
parts of spoken text that an application needs to process. Examples are given
below of this type of structuring.

The text may be in the form ofsaing or array ofsting objects (one
String  per token), or in the form offnalRuleResult  Object that represents
what a recognizer heard a user say. RieGrammar interface defines three forms
of theparse method — one for each form of text.

Theparse method returns auleParse  object (a descendent Riile ) that
represents how the text matchesrhieGrammar . The structure of thruleParse
object mirrors the structure of rules defined in Hu@&Grammar . Eachrule object
in the structure of the rule being parsed against is mirrored by a mateoking
object in the returneduleParse  Object.

The difference between the structures comes about because the text being
parsed defines a single phrase that a user has spoken whaneag@mar
defines all the phrases the user could say. Thus the text defines a single path
through the grammar and all the choices in the grammar (alternatives, and rules
that occur optionally or occur zero or more times) are resolvable.

The mapping between the objects in the rules defined irdlagrammar and
the objects in thauleParse structure is shown in Table 6-4. Note that except for
theruleCount andruleName Objects, the object in the parse tree are of the same
type as rule object being parsed against (marked with “**"), but the internal data
may differ.

Table 6-4 Matching Rule definitions and RuleParse objects

Object in definition | Matching object in RuleParse

RuleToken Maps to an identicatuleToken Object.

RuleTag Maps to aruleTag 0bject with the same tag and with the
contained rule mapped according to its rule type.

RuleSequence Maps to arulesequence Object with identical length and
with each rule in the sequence mapped according to its
rule type.




Speech Recognition: javax.speech.recognition

Table 6-4 Matching Rule definitions and RuleParse objects (cont'd)

Object in definition

Matching object in RuleParse

RuleAlternatives

Maps to aruleAlternatives object containing a single
item which is the one rule in the set of alternatives that
was spoken.

RuleCount ** Maps to arulesequence Object containing an item for
each time the rule contained by thecount object is
spoken. The sequence may have a length of zero, one or
more.

RuleName ** Maps to aruleParse Object with the name in the

RuleName Object being the fully-qualified version of the
original rulename, and with threile object contained by
theruleParse 0bject being an appropriate match of the
definition of RuleName.

As an example, take the following simple extract from a grammar. The
public rule,<command>, may be spoken in many ways. For example, “open”,
“move that door” or “close that door please”.

public <command> = <action> [<object>] [<polite>];
<action> = open {OP} | close {CL} | move {MV};
<object> = [<this_that_etc>] window | door;
<this_that_etc> = a | the | this | that | the current;
<polite> = please | kindly;

Note how the rules are defined to clearly separate the segments of spoken input
that an application must process. Specifically<Hagon> and<object> rules
indicate how an application must respond to a command. Furthermore, anything
said that matches tkeolite> rule can be safely ignored, and usually the
<this_that_etc> rule can be ignored too.

The parse for “open” againsfommand> has the following structure which
matches the structure of the grammar above.

RuleParse(<command> =

RuleSequence(

97



Java Speech Application Programming Interface

RuleParse(<action> =
RuleAlternatives(
RuleTag(
RuleToken("open™), "OP")))))

The match of thecommand> rule is represented byraleParse Object.
Because the definition etommand>is a sequence of 3 items (2 of which are
optional), the parse etommand>is a sequence. Because only one of the 3 items is
spoken (in “open”), the sequence contains a single item. That item is the parse of
the<action> rule.

The reference teaction> in the definition okcommand>is represented by a
RuleName Object in the grammar definition, and this mapsrol&arse object
when parsed. Theaction> rule is defined by a set of three alternatives
(RuleAlternatives object) which maps to anothrileAlternatives object in
the parse but with only the single spoken alternative represented. Since the phrase
spoken was “open”, the parse matches the first of the three alternatives which is a
tagged token. Therefore the parse includesiegag object which contains a
RuleToken object for “open”.

The following is the parse for “close that door please”.

RuleParse(<command> =
RuleSequence(
RuleParse(<action> =
RuleAlternatives(
RuleTag(
RuleToken("close"), "CL")))
RuleSequence(
RuleParse(<object> =
RuleSequence(
RuleSequence(
RuleParse(<this_that_etc> =
RuleAlternatives(
RuleToken("that"))))
RuleAlternatives(
RuleToken("door"))))
RuleSequence(
RuleParse(<polite> =
RuleAlternatives(
RuleToken("please™))))

)

There are three parsing issues that application developers should consider.



Speech Recognition: javax.speech.recognition

+ Parsing may fail because there is no legal match. In this instaneerthe
methods returpull .

+ There may be several legal ways to parse the text against the grammar. This
is known as ammbiguougarse. In this instance thase method will
return one of the legal parses but the application is not informed of the
ambiguity. As a general rule, most developers will want to avoid
ambiguous parses by proper grammar design. Advanced applications will
use specialized parsers if they need to handle ambiguity.

¢ IfaFinalRuleResult  is parsed against thleGrammar and the rule within
that grammar that it matched, then it should successfully parse. However,
it is not guaranteed to parse if tReleGrammar has been modified of if the
FinalRuleResult IS aREJECTEDresult. (Result rejection is described in
Section 6.7.)

6.6 Dictation Grammars

Dictation grammars come closest to the ultimate goal of a speech recognition
system that takes natural spoken input and transcribes it as text. Dictation
grammars are used for free text entry in applications such as email and word
processing.

A Recognizer that supports dictation provides a singik@ationGrammar
which is obtained from the recognizegé&bictationGrammar ~ method. A
recognizer that supports the Java Speech API is not required to provide a
DictationGrammar . Applications that require a recognizer with dictation
capability can explicitly request dictation when creating a recognizer by setting
the DictationGrammarSupported property of therecognizerModeDesc 10 true (see
Section 4.2 for details).

A DictationGrammar i more complex than a rule grammar, but fortunately, a
DictationGrammar IS often easier to use than an rule grammar. This is because the
DictationGrammar IS built into the recognizer so most of the complexity is
handled by the recognizer and hidden from the application. However, recognition
of a dictation grammar is typically more computationally expensive and less
accurate than that of simple rule grammars.

TheDictationGrammar  inherits its basic functionality from tte@ammar
interface. That functionality is detailed in Section 6.4 and includes grammar
naming, enabling, activation, committing and so on.

As with all grammars, changes t@atationGrammar  need to be committed
before they take effect. Commits are described in Section 6.4.2.

In addition to the specific functionality described belowjdationGrammar
is typically adaptive. In an adaptive system, a recognizer improves its

99



100

Java Speech Application Programming Interface

performance (accuracy and possibly speed) by adapting to the style of language
used by a speaker. The recognizer may adapt to the specific sounds of a speaker
(the way they say words). Equally importantly for dictation, a recognizer can
adapt to a user’'s normal vocabulary and to the patterns of those words. Such
adaptation (technically known as language model adaptation) is a part of the
recognizer’s implementation of tingtationGrammar  and does not affect an
application. The adaptation data for a dictation grammar is maintained as part of a
speaker profile (see Section 6.9).

TheDictationGrammar ~ extends and specializes thammar interface by
adding the following functionality:

+ Indication of the current textual context,
+ Control of word lists.

The following methods provided by the DictationGrammar interface allow
an application to manage word lists and text context.

Table 6-5 DictationGrammar interface methods

Name Description

setContext Provide the recognition engine with the preceding and
following textual context.

addword Add a word to th®ictationGrammar
removeWord Remove a word from thsctationGrammar
listAddedWords List the words that have been added to the

DictationGrammar

listRemovedWords List the words that have been removed from the
DictationGrammar

6.6.1 Dictation Context

Dictation recognizers use a range of information to improve recognition accuracy.
Learning the words a user speaks and the patterns of those words can substantially
improve accuracy.



Speech Recognition: javax.speech.recognition

Because patterns of words are importanftexts important. The context of
a word is simply the set of surrounding words. As an example, consider the
following sentencélf | have seen further it is by standing on the shoulders of
Giants” (Sir Isaac Newton). If we are editing this sentence and place the cursor
after the word $tanding” then the preceding context‘isfurther it is by
standing” and the following context ion the shoulders of Giants..”

Given this context, the recognizer is able to more reliably predict what a user
might say, and greater predictability can improve recognition accuracy. In this
example, the user might insert the wtug” but is less likely to insert the word
“‘JavaBeans”.

Through thesetContext method of theictationGrammar  interface, an
application should tell the recognizer the current textual context. Furthermore, if
the context changes (for example, due to a mouse click to move the cursor) the
application should update the context.

Different recognizers process context differently. The main consideration for
the application is the amount of context to provide to the recognizer. As a
minimum, a few words of preceding and following context should be provided.
However, some recognizers may take advantage of several paragraphs or more.

There are twagetContext methods:

void setContext(String preceding, String following);
void setContext(String preceding([], String following[]);

The first form takes plain text context strings. The second version should be used
when the result tokens returned by the recognizer are available. Internally, the
recognizer processes context according to tokens so providing tokens makes the
use of context more efficient and more reliable because it does not have to guess
the tokenization.

6.7 Recognition Results

A recognitionresultis provided by a&ecognizer to an application when the
recognizer “hears” incoming speech that matches an active grammar. The result
tells the application what words the user said and provides a range of other useful
information, including alternative guesses and audio data.

In this section, both the basic and advanced capabilities of the result system
in the Java Speech API are described. The sections relevant to basic rule
grammar-based applications are those that cover result finalization (Section 6.7.1,
page 102), the hierarchy of result interfaces (Section 6.7.2, page 104), the data

101



Java Speech Application Programming Interface

provided through those interfaces (Section 6.7.3, page 106), and common
techniques for handling finalized rule results (Section 6.7.9, page 114).

For dictation applications the relevant sections include those listed above
plus the sections covering token finalization (Section 6.7.8, page 112), handling
of finalized dictation results (Section 6.7.10, page 119) and result correction and
training (Section 6.7.12, page 127).

For more advanced applications relevant sections might include the result
life cycle (Section 6.7.4, page 108), attachment of ResultListeners (Section 6.7.5,
page 109), the relationship of recognizer and result states (Section 6.7.6,
page 110), grammar finalization (Section 6.7.7, page 111), result audio
(Section 6.7.11, page 125), rejected results (Section 6.7.13, page 129), result
timing (Section 6.7.14, page 131), and the loading and storing of vendor
formatted results (Section 6.7.15, page 132).

6.7.1 Result Finalization

The“Hello World!” example (on page 72) illustrates the simplest way to handle
results. In that example RuleGrammar was loaded, committed and enabled, and a
ResultListener was attached torecognizer to receive events associated with
every result that matched that grammar. In other wordReteListener ~ was
attached to receive information about words spoken by a user that is heard by the
recognizer.

The following is a modified extract of tHilello World!” example to
illustrate the basics of handling results. In this casessaitListener is attached
to aGrammar (instead of a&ecognizer ) and it prints out every thing the recognizer
hears that matches that grammar. (There are, in fact, three ways in which a
ResultListener ~ can be attached: see Section 6.7.5 on page 109.)

import javax.speech.*;
import javax.speech.recognition.*;

public class MyResultListener extends ResultAdapter {
/I Receives RESULT_ACCEPTED event: print it
public void resultAccepted(ResultEvent e) {
Result r = (Result)(e.getSource());
ResultToken tokens[] = r.getBestTokens();

for (inti = 0; i < tokens.length; i++)

System.out.print(tokens[i].getSpokenText() + " ");
System.out.printin();

}

/l somewhere in app, add a ResultListener to a grammar

102



Speech Recognition: javax.speech.recognition

{

RuleGrammar gram = ..;
gram.addResultListener(new MyResultListener());

The code shows theyResultListener  class which is as an extension of the
ResultAdapter ~ class. TheesultAdapter ~ class is a convenience implementation
of theResultListener interface (provided in thi@vax.speech.recognition

package). When extending tResultadapter ~ class we simply implement the
methaods for the events that we care about.

In this case, theesuLT_AccepPTEBvent is handled. This eventis issued to the
resultAccepted  method of th&esultListener and is issued when a result is
finalized Finalization of a result occurs after a recognizer completed processing
of a result. More specifically, finalization occurs when all information about a
result has been produced by the recognizer and when the recognizer can guarantee
that the information will not change. (Result finalization should not be confused
with object finalization in the Java programming language in which objects are
cleaned up before garbage collection.)

There are actually two ways to finalize a result which are signalled by the
RESULT_ACCEPTERNJRESULT_REJECTERVeNts. A result is accepted when a
recognizer is confidently that it has correctly heard the words spoken by a user
(i.e., the tokens in thresult exactly represent what a user said).

Rejection occurs whenrgcognizer is not confident that it has correctly
recognized a result: that is, the tokens and other information in the result do not
necessarily match what a user said. Many applications will ignore the
RESULT_REJECTERVent and most will ignore the detail of a result when it is
rejected. In some applicationsRasuLT_REJECTERVent is used simply to provide
users with feedback that something was heard but no action was taken, for
example, by displaying “???” or sounding an error beep. Rejected results and the
differences between accepted and rejected results are described in more detail in
Section 6.7.13 (on page 129).

An accepted result is not necessarily a correct result. As is pointed out in
Section 2.2.3 (on page 16), recognizers make errors when recognizing speech for
arange of reasons. The implication is that even for an accepted result, application
developers should consider the potential impact of a misrecognition. Where a
misrecognition could cause an action with serious consequences or could make
changes that can’t be undone (e.g., “delete all files”), the application should check
with users before performing the action. As recognition systems continue to
improve the number of errors is steadily decreasing, but as with human speech
recognition there will always be a chance of a misunderstanding.

103



104

Java Speech Application Programming Interface
6.7.2 Result Interface Hierarchy

A finalized result can include a considerable amount of information. This
information is provided through four separate interfaces and through the
implementation of these interfaces by a recognition system.

/I Result: the root result interface
interface Result;

/I FinalResult: info on all finalized results
interface FinalResult extends Result;

/I FinalRuleResult: a finalized result matching a RuleGrammar
interface FinalRuleResult extends FinalResult;

/I FinalDictationResult: a final result for a DictationGrammar
interface FinalDictationResult extends FinalResult;

/I A result implementation provided by a Recognizer
public class EngineResult
implements FinalRuleResult, FinalDictationResult;

At first sight, the result interfaces may seem complex. The reasons for providing
several interfaces are as follows:

+ The information available for a result is different in different states of the
result. Before finalization, a limited amount of information is available
through theresult interface. Once a result is finalized (accepted or
rejected), more detailed information is available throughrtheRresult
interface and either th@nalRuleResult Or FinalDictationResult
interface.

¢ The type of information available for a finalized result is different for a
result that matchesraleGrammar than for a result that matches a
DictationGrammar . The differences are explicitly represented by having
separate interfaces feihalRuleResult  andFinalDictationResult

¢ Once aresult object is created as a specific Java class it cannot change be
changed to another class. Therefore, because a result object must
eventually support the final interface it must implement them when first
created. Therefore, every result implements all three final interfaces when
it is first createdrinalResult , FinalRuleResult ~ and
FinalDictationResult

¢ When aresultis first created a recognizer does not always know whether it



Speech Recognition: javax.speech.recognition

will eventually match &uleGrammar or abictationGrammar . Therefore,
every result object implements both H@lRuleResult  and
FinalDictationResult interfaces.

¢ A call made to any method of any of the final interfaces before a result is
finalized causes ResultStateException

¢ A call made to any method of thR@alRuleResult  interface for a result
that matches RictationGrammar ~ causes &esultStateException
Similarly, a call made to any method of thelDictationResult
interface for a result that matcheBueGrammar causes a
ResultStateException

¢ All the result functionality is provided by interfaces in the
java.speech.recognition package rather than by classes. This is because
the Java Speech API can support multiple recognizers from multiple
vendors and interfaces allow the vendors greater flexibility in
implementing results.

The multitude of interfaces is, in fact, designed to simplify application
programming and to minimize the chance of introducing bugs into code by
allowing compile-time checking of result calls. The two basic principles for
calling the result interfaces are the following:

1. Ifitis safe to call the methods of a particular interface then it is safe to call
the methods of any of the parent interfaces. For example, for a finalized
result matching &uleGrammar , the methods of thenalRuleResult
interface are safe, so the methods oftin@result  andresult interfaces
are also safe. Similarly, for a finalized result matching a
DictationGrammar , the methods dfinalDictationResult , FinalResult
andresult can all be called safely.

2. Use type casting of a result object to ensure compile-time checks of method calls.
For example, in events to an unfinalized result, cast the result objectieshie
interface. For RESULT_ACCEPTEfinalization event with a result that matches a
DictationGrammar , cast the result to tt@nalDictationResult interface.

In the next section the different information available through the different

interfaces is described. In all the following sections that deal with result states and
result events, details are provided on the appropriate casting of result objects.

105



106

6.7.3

Java Speech Application Programming Interface

Result Information

As the previous section describes, different information is available for a result
depending upon the state of the result and, for finalized results, depending upon
the type of grammar it matcheauleGrammar Of DictationGrammar ).

6.7.3.1 Result Interface

The information available through tResult interface is available for any
result in any state — finalized or unfinalized — and matching any grammar.

¢

Result stateThegetResultstate method returns the current state of the
result. The three possible state values defined by static valuesradiine
interface ar@NFINALIZED, ACCEPTERNOREJECTED (Result states are
described in more detail in Section 6.7.4.)

Grammar ThegetGrammar method returns a reference to the matched
Grammar, if it is known. For amccepPTEDresult, this method will return a
RuleGrammar Of aDictationGrammar . FOr arReJECTEDresult, this method
may return a grammar, or may retutin if the recognizer could not
identify the grammar for this result. In thewFINALIZED state, this method
returnsnull  before aGRAMMAR_FINALIZEEVENt, and non-null afterwards.

Number of finalized token¥henumTokens method returns the total

number of finalized tokens for a result. For an unfinalized result this may
be zero or greater. For a finalized result this number is always greater than
zero for amaccepPTEDesult but may be zero or more foraJeCcTeDresult.

Once a result is finalized this number will not change.

Finalized tokensThegetBestToken andgetBestTokens methods return
either a specified finalized best-guess token of a result or all the finalized
best-guess tokens. TResultToken 0bject and token finalization are
described in the following sections.

Unfinalized tokendn theuUNFINALIZED state, th@etUnfinalizedTokens

method returns a list of unfinalized tokens. An unfinalized token is a
recognizer’s current guess of what a user has said, but the recognizer may
choose to change these tokens at any time and any way. For a finalized
result, theyetUnfinalizedTokens method always returnsil .

In addition to the information detailed above, Haeult interface provides the
addResultListener andremoveResultListener methods which allow a
ResultListener to be attached to and removed from an individual result.



Speech Recognition: javax.speech.recognition

ResultListener ~ attachment is described in more detail in Section 6.7.5 (on
page 109).

6.7.3.2 FinalResult Interface

The information available through tl@alresult  interface is available for
any finalized result, including results that match eith@nésrammar or
DictationGrammar

¢ Audio dataaRrecognizer may optionally provide audio data for a finalized
result. This data is provided asdiocClip  for a token, a sequence of tokens,
or for the entire result. Result audio and its management are described in
more detail in Section 6.7.11 (on page 125).

+ Training data many recognizer’s have the ability to be trained and
corrected. By training a recognizer or correcting its mistakes, a recognizer
can adapt its recognition processes so that performance (accuracy and
speed) improve over time. Several methods of the FinalResult interface
support this capability and are described in detail in Section 6.7.12 (on
page 127).

6.7.3.3 FinalDictationResult Interface

The FinalDictationResult interface contains a single method.

+ Alternative tokensThegetAlternativeTokens method allows an
application to request a set of alternative guesses for a single token or for
a sequence of tokens in that result. In dictation systems, alternative guesses
are typically used to facilitate correction of dictated text. Dictation
recognizers are designed so that when they do make a misrecognition, the
correct word sequence is usually amongst the best few alternative guesses.
Section 6.7.10 (on page 119) explains alternatives in more detail.

6.7.3.4 FinalRuleResult Interface

Like theFinalDictationResult interface, th&inalRuleResult ~ interface
provides alternative guesses. HialRuleResult  interface also provides some
additional information that is useful in processing results that match a
RuleGrammar .

+ Alternative tokensThegetAlternativeTokens method allows an
application to request a set of alternative guesses for the entire result (not

107



108

Java Speech Application Programming Interface

for tokens). TheetNumberGuesses method returns the actual number of
alternative guesses available.

+ Alternative grammarsThe alternative guesses of a result matching a
RuleGrammar do not all necessarily match the same grammar. The
getRuleGrammar method returns a reference to fw@Grammar matched
by an alternative.

¢ RulenamesWhen a result matchesRaleGrammar , it matches a specific
defined rule of thakuleGrammar . ThegetRuleName method returns the
rulename for the matched rule. Section 6.7.9 (on page 114) explains how
this additional information is useful in processmggGrammar results.

¢ Tags Atagis astring attached to a component afi@Grammar definition.
Tags are useful in simplifying the software for processing results matching
aRuleGrammar (explained in Section 6.7.9). TheTags method returns
the tags for the best guess fafiralRuleResult

6.7.4 Result Life Cycle

A Result is produced in response to a user’s speech. Unlike keyboard input,
mouse input and most other forms of user input, speech is not instantaneous (see
Section 6.3.3.1 for more detail). As a consequence, a speech recognition result is
not produced instantaneously. Insteadesalt is produced through a sequence
of events starting some time after a user starts speaking and usually finishing
some time after the user stops speaking.

Figure 6-2 shows the state system eksult and the associated
ResultEvents . AS in the recognizer state diagram (Figure 6-1), the blocks
represent states, and the labelled arcs represent transitions that are signalled by
ResultEvents

Every result starts in theNFINALIZED State when &ESULT_CREATERvenNt is
issued. While unfinalized, the recognizer provides information including finalized
and unfinalized tokens and the identity of the grammar matched by the result. As
this information is added, theESULT_UPDATERNAGRAMMAR_FINALIZEDRVENLS are
issued

Once all information associated with a result is finalized, the entire result is
finalized. As Section 6.7.1 explained, a result is finalized with either a
RESULT_ACCEPTEDI RESULT_REJECTEReVeNt placing it in either thecCcEPTEDDr
REJECTEDsState. At that point all information associated with the result becomes
available including the best guess tokens and the information provided through
the three final result interfaces (see Section 6.7.3).

Once finalized the information available through all the result interfaces is
fixed. The only exceptions are for the release of audio data and training data. If



Speech Recognition: javax.speech.recognition

/ Result * \

RESULT_ACCEPTED

ACCEPTED

RESULT_CREATED
UNFINALIZED

REJECTED
RESULT_REJECTED

++ RESULT_UPDATED / GRAMMAR_FINALIZED
\\‘ ** AUDIO_RELEASED / TRAINING_INFO_RELEASE 4//

Figure 6-2 Result states

audio data is released, appIO_RELEASEEvVENt is issued (see detail in
Section 6.7.11). If training information is releasedTRRINING_INFO_RELEASED
event is issued (see detail in Section 6.7.12).

Applications can track result states in a number of ways. Most often,
applications handle result ResultListener implementation which receives
ResultEvents ~ as recognition proceeds.

As Section 6.7.3 explains, a recognizer conveys a range of information to an
application through the stages of producing a recognition result. However, as the
example in Section 6.7.1 shows, many applications only care about the last step
and event in that process — WRESULT_ACCEPTERVENt.

The state of a result is also available throughddiBesultstate ~ method of
theresult interface. That method returns one of the three result states:
UNFINALIZED, ACCEPTELDDI REJECTED

6.7.5 ResultListener Attachment

A ResultListener can be attached in one of three places to receive events
associated with results: toc@ammar, t0 arRecognizer or to an individuaResult .

The different places of attachment give an application some flexibility in how they
handle results.

109



110

Java Speech Application Programming Interface

To supporResultListeners the Grammar, Recognizer andResult interfaces
all provide theaddResultListener andremoveResultListener methods.

Depending upon the place of attachment a listener receives events for
different results and different subsets of result events.

¢ Grammar: A ResuliListener  attached to &rammar receives all
ResultEvents  for any result that has been finalized to match that grammar.
Because the grammar is known onG&RaMMAR_FINALIZEDEVeEnNt is
produced, ®esultListener attached to &rammar receives that event and
subsequent events. Since grammars are usually defined for specific
functionality it is common for most result handling to be done in the
methods of listeners attached to each grammar.

4 Result : A ResultListener attached to &esult receives alResultEvents
starting at the time at which the listener is attached t&&seat . Note that
because a listener cannot be attached until a result has been created with
theRESULT_CREATERVenNt, it can never receive that event.

4 Recognizer : A ResultListener attached to &ecognizer receives all
ResultEvents  for all results produced by thagcognizer for all grammars.
This form of listener attachment is useful for very simple applications (e.qg.,
“Hello World!” ) and when centralized processing of results is required.
Only ResultListeners attached to &ecognizer receive the
RESULT_CREATERVeNt.

6.7.6 Recognizer and Result States

The state system of a recognizer is tied to the processing of a result. Specifically,
the LISTENING,, PROCESSINGANAdSUSPENDEState cycle described in Section 6.3.3
(on page 79) and shown in Figure 6-1 (on page 77) follows the production of an
event.

The transition of &ecognizer from theLISTENING state to th&@ROCESSING
state with &®@ECOGNIZER_PROCESSINevent indicates that a recognizer has started
to produce a result. THRECOGNIZER_PROCESSIN&vent is followed by the
RESULT_CREATE®VenNt toResultListeners

TheRESULT _UPDATEBINDGRAMMAR_FINALIZEDEVENtS are issued to
ResultListeners while the recognizer is in tlrrROCESSINGState.

As soon as the recognizer completes recognition of a result, it makes a
transition from theeROCESSINGstate to thesusPENDEState with a
RECOGNIZER_SUSPENDEYeNt. Immediately following that recognizer event, the
result finalization event (eith@ESULT_ACCEPTEDI RESULT_REJECTEpIS issued.
While the result finalization event is processed, the recognizer remains
suspended. Once result finalization event is completed, the recognizer



Speech Recognition: javax.speech.recognition

automatically transitions from thesPENDEtate back to thesTENING state
with acHANGES_commiTTEvent. Once back in thesTENING state the recognizer
resumes processing of audio input with the grammar committed with the
CHANGES_COMMITTEEVENL.

6.7.6.1 Updating Grammars

In many applications, grammar definitions and grammar activation need to be
updated in response to spoken input from a user. For example, if speech is added
to a traditional email application, the command “save this message” might result
in a window being opened in which a mail folder can be selected. While that
window is open, the grammars that control that window need to be activated.
Thus during the event processing for the “save this message” command grammars
may need be created, updated and enabled. All this would happen during
processing of theRESULT_ACCEPTERVeENt.

For any grammar changes to take effect they must be committed (see
Section 6.4.2 on page 85). Because this form of grammar update is so common
while processing thRESULT_ACCEPTERVeNt (and sometimes the
RESULT_REJECTEm®Vent), recognizers implicitly commit grammar changes after
either result finalization event has been processed.

This implicit is indicated by theHANGES_commiTTEEVENt that is issued
when a Recognizer makes a transition fromstb&PENDEState to th@ISTENING
state following result finalization and the result finalization event processing (see
Section 6.3.3 for details).

One desirable effect of this form of commit becomes useful in component
systems. If changes in multiple components are triggered by a finalized result
event, and if many of those components change grammars, then they do not each
need to call theommitChanges method. The downside of multiple calls to the
commitChanges method is that a syntax check be performed upon each. Checking
syntax can be computationally expensive and so multiple checks are undesirable.
With the implicit commit once all components have updated grammars
computational costs are reduced.

6.7.7 Grammar Finalization

At any time during processing a resultRAMMAR_FINALIZEDevent can be issued
for that result indicating therammar matched by the result has been determined.
This event is issued is issued only once. It is required forsamePTEDESUlt, but
is optional for result that is eventually rejected.

As Section 6.7.5 describes, thRAMMAR_FINALIZEDRVENt is the first event
received by ®esultListener  attached to arammar.

111



112

Java Speech Application Programming Interface

The GRAMMAR_FINALIZERRVENt behaves the same for results that match either
A RuleGrammar Or aDictationGrammar

Following theGRAMMAR_FINALIZEDRVENt, thejetGrammar method of the
Result interface returns a non-null reference to the matched grammar. By issuing
a GRAMMAR_FINALIZEEevent therRecognizer guarantees that tle@ammar will not
change.

Finally, theGRAMMAR_FINALIZEEVent does not change the result’s state. A
GRAMMAR_FINALIZERRVENt is issued only when a result is in theFINALIZED state,
and leaves the result in that state.

6.7.8 Token Finalization

A result is a dynamic object a it is being recognized. One way in which a result
can be dynamic is that tokens are updated and finalized as recognition of speech
proceeds. The result events allow a recognizer to inform an application of changes
in the either or both the finalized and unfinalized tokens of a result.

The finalized and unfinalized tokens can be updated on any of the following
result event typeRESULT_CREATEDRESULT_UPDATELRESULT_ACCEPTED
RESULT_REJECTED

Finalized tokens are accessed throughgHigestTokens andgetBestToken
methods of theesult interface. The unfinalized tokens are accessed through the
getUnfinalizedTokens method of theesult interface. (See Section 6.7.3 on
page 106 for details.)

A finalized token is &esultToken in aResult that has been recognized in
the incoming speech as matching a grammar. Furthermore, when a recognizer
finalizes a token it indicates that it will not change the token at any point in the
future. ThenumTokens method returns the number of finalized tokens.

Many recognizers do not finalize tokens until recognition of an entire result
is complete. For these recognizers, th@Tokens method returns zero for a result
in theUNFINALIZED state.

For recognizers that do finalize tokens whikesult is in theUNFINALIZED
state, the following conditions apply:

¢ Theresult object may contain zero or more finalized tokens when the
RESULT_CREATERVenNt is issued.

¢ The recognizer iSSUEBESULT_UPDATERVENtS to th&esultListener
during recognition each time one or more tokens are finalized.

¢ Tokens are finalized strictly in the order in which they are spoken (i.e., left
to right in English text).



Speech Recognition: javax.speech.recognition

A result in theUNFINALIZED state may also have unfinalized tokens. An
unfinalized token is a token that the recognizer has heard, but which it is not yet
ready to finalize. Recognizers are not required to provide unfinalized tokens, and
applications can safely choose to ignore unfinalized tokens.

For recognizers that provide unfinalized tokens, the following conditions

apply:

¢ Theresult object may contain zero or more unfinalized tokens when the
RESULT_CREATERVent is issued.

¢ The recognizer iSSUEBESULT_UPDATERVENLtS to th&esultListener
during recognition each time the unfinalized tokens change.

¢ For an unfinalized result, unfinalized tokens may be updated at any time
and in any way. Importantly, the number of unfinalized tokens may
increase, decrease or return to zero and the values of those tokens may
change in any way the recognizer chooses.

+ Unfinalized tokens always represent a guess for the speech following the
finalized tokens.

Unfinalized tokens are highly changeable, so why are they useful? Many
applications can provide users with visual feedback of unfinalized tokens —
particularly for dictation results. This feedback informs users of the progress of
the recognition and helps the user to know that something is happening. However,
because these tokens may change and are more likely than finalized tokens to be
incorrect, the applications should visually distinguish the unfinalized tokens by
using a different font, different color or even a different window.

The following is an example of finalized tokens and unfinalized tokens for
the sentence “I come from Australia”. The lines indicate the token values after the
singleRESULT_CREATERVent, the multipl&esuLT_upPDATERVents and the final
RESULT_AccEPTERVent. The finalized tokens are in bold, the unfinalized tokens
are in italics.

. RESULT_CREATED come
. RESULT_UPDATED come from
. RESULT_UPDATED comefrom

. RESULT_UPDATED come from a strange land

. RESULT_UPDATEDI come from Australia

o o1~ WN P

. RESULT_ACCEPTED come from Australia

113



114

Java Speech Application Programming Interface

Recognizers can vary in how they support finalized and unfinalized tokens in a
number of ways. For an unfinalized result, a recognizer may provide finalized
tokens, unfinalized tokens, both or neither. Furthermore, for a recognizer that does
support finalized and unfinalized tokens during recognition, the behavior may
depend upon the number of active grammars, upon whether the result is for a
RuleGrammar OF DictationGrammar , upon the length of spoken sentences, and

upon other more complex factors. Fortunately, unless there is a functional
requirement to display or otherwise process intermediate result, an application
can safely ignore all but thRESULT_ACCEPTERVENL.

6.7.9 Finalized Rule Results

The are some common design patterns for processing accepted finalized results
that match &uleGrammar . First we review what we know about these results.

¢ lItis safe to cast an accepted result that matchRes@ammar to the
FinalRuleResult interface. It is safe to call any method of the
FinalRuleResult  interface or its parentsinalResult ~ andResult .

4+ Thegetcrammar method of th&esult interface return a reference to the
matchedRuleGrammar . ThegetRuleGrammar method of the
FinalRuleResult interface returns references to tgeGrammars
matched by the alternative guesses.

¢ ThegetBestToken andgetBestTokens methods of theesult interface
return the recognizer’s best guess of what a user said.

¢ ThegetAlternativeTokens method returns alternative guesses for the
entire result.

¢ The tags for the best guess are available fromgetiiegs method of the
FinalRuleResult interface.

¢ Result audio (see Section 6.7.11) and training information (see
Section 6.7.12) are optionally available.

6.7.9.1 Result Tokens

A ResultToken in a result matching RuleGrammar contains the same information

as theruleToken object in theruleGrammar definition. This means that the
tokenization of the result follows the tokenization of the grammar definition
including compound tokens. For example, consider a grammar with the following
Java Speech Grammar Format fragment which contains four tokens:



Speech Recognition: javax.speech.recognition

<rule> = | went to "San Francisco";

If the user says “l went to New York” then the result will contain the four tokens
defined by JSGF: “I”, “went”, “to”, “San Francisco”.

TheResultToken interface defines more advanced information. Amongst
that information theetstartTime ~ andgetEndTime methods may optionally
return time-stamp values (ar if the recognizer does not provide time-alignment
information).

TheResultToken interface also defines several methods for a recognizer to
provide presentation hints. Those hints are ignoreddeGrammar results —
they are only used for dictation results (see Section 6.7.10.2).

Furthermore, th@etSpokenText andgetwrittenText — methods will return an
identical string which is equal to the string defined in the matched grammar.

6.7.9.2 Alternative Guesses

In aFinalRuleResult , alternative guesses are alternatives for the entire result, that
is, for a complete utterance spoken by a useFin@DictationResult can
provide alternatives for single tokens or sequences of tokens.) Because more than
oneRuleGrammar can be active at a time, an alternative token sequence may match
a rule in a differenkuleGrammar than the best guess tokens, or may match a
different rule in the sameuleGrammar as the best guess. Thus, when processing
alternatives for &inalRuleResult ~ , an application should use theRruleGrammar
andgetRuleName Mmethods to ensure that they analyze the alternatives correctly.
Alternatives are numbered from zero up. THeatternative is actually the

best guess for the result BBalRuleResult.getAlternativeTokens(0) returns
the same array a:sult.getBestTokens() . (The duplication is for programming
convenience.) Likewise, thinalRuleResult.getRuleGrammar(0) call will

return the same result Rssult.getGrammar()

The following code is an implementation of tultListener interface
that processes tireEsuLT_AccepTERVent. The implementation assumes that a
Result being processed matcheBuweGrammar .

class MyRuleResultListener extends ResultAdapter

{

public void resultAccepted(ResultEvent e)

{

/I Assume that the result matches a RuleGrammar.
/I Cast the result (source of event) appropriately
FinalRuleResult res = (FinalRuleResult) e.getSource();

/I Print out basic result information

115



116

Java Speech Application Programming Interface

PrintStream out = System.out;
out.printin("Number guesses : " + res.getNumberGuesses());

/I Print out the best result and all alternatives
for (int n=0; n < res.getNumberGuesses(); n++) {
/I Extract the n-best information
String gname = res.getRuleGrammar(n).getName();
String rname = res.getRuleName(n);
ResultToken[] tokens = res.getAlternativeTokens(n);

out.print"Alt"+n+"");
out.print("<" + gname + "." + rname + "> :");
for (int t=0; t < tokens.length; t++)

out.print(" " + tokens[t].getSpokenText());

out.printin();

For a grammar with commands to control a windowing system (shown below), a
result might look like:

Number guesses: 3

Alt 0: <com.acme.actions.command>: move the window to the back
Alt 1: <com.acme.actions.command>: move window to the back

Alt 2: <com.acme.actions.command>: open window to the front

If more than one grammar or more than one public rule was active, the
<grammarName.ruleName> Values could vary between the alternatives.

6.7.9.3 Result Tags

Processing commands generated froraiégGrammar becomes increasingly

difficult as the complexity of the grammar rises. With the Java Speech API,
speech recognizers provide two mechanisms to simplify the processing of results:
tags and parsing.

Atag is a label attached to an entity withiRu&Grammar . The Java Speech
Grammar Format and tiraleTag class define how tags can be attached to a
grammar. The following is a grammar for very simple control of windows which
includes tags attached to the important words in the grammatr.



Speech Recognition: javax.speech.recognition

grammar com.acme.actions;

public <command> = <action> <object> [<where>]

<action> = open {ACT_OP}| close {ACT_CL} | move {ACT_MV};
<object> = [a | an | the] (window {OBJ_WIN} | icon {OBJ_ICON});
<where> = [to the] (back {WH_BACK} | front {WH_FRONT});

This grammar allows users to speak commands such as

open window

movethe icon

movethe window to the back
move window back

The italicized words are the ones that are tagged in the grammar — these are
the words that the application cares about. For example, in the third and fourth
example commands, the spoken words are different but the tagged words are
identical. Tags allow an application to ignore trivial words such as “the” and “to”.

Thecom.acme.actions  grammar can be loaded and enabled using the code
in the“Hello World!” example (on page 72). Since the grammar has a single
public rule,<command>, the recognizer will listen for speech matching that rule,
such as the example results given above.

The tags for the best result are available throughethiegs method of the
FinalRuleResult interface. This method returns an array of tags associated with
the tokens (words) and other grammar entities matched by the result. If the best
sequence of tokens is “move the window to the front”, the list of tags is the
following string  array:

String tags[] = {"ACT_MV", "OBJ_WIN", "WH_FRONT"};

Note how the order of the tags in the result is preserved (forward in time).
These tags are easier for most applications to interpret than the original text of
what the user said.

Tags can also be used to handle synonyms — multiple ways of saying the
same thing. For example, “programmer”, “hacker”, “application developer” and
“computer dude” could all be given the same tag, say “DEV”. An application that
looks at the “DEV” tag will not care which way the user spoke the title.

Another use of tags is famternationalizationof applications. Maintaining
applications for multiple languages and locales is easier if the code is insensitive
to the language being used. In the same way that the “DEV” tag isolated an
application from different ways of saying “programmer”, tags can be used to

117



118

Java Speech Application Programming Interface

provide an application with similar input irrespective of the language being
recognized.

The following is a grammar for French with the same functionality as the
grammar for English shown above.

grammar com.acme.actions.fr;

public <command> = <action> <object> [<where>]

<action> = ouvrir {ACT_OP}| fermer {ACT_CL} | deplacer {ACT_MV};
<object> = fenetre {OBJ_WIN} | icone {OBJ_ICON};

<where> = au-dessous {WH_BACK]} | au-dessus {WH_FRONT};

For this simple grammar, there are only minor differences in the structure of
the grammar (e.g. thgo the]" tokens in thewhere> rule for English are
absent in French). However, in more complex grammars the syntactic differences
between languages become significant and tags provide a clearer improvement.

Tags do not completely solve internationalization problems. One issue to be
considered is word ordering. A simple command like “open the window” can
translate to the form “the window open” in some languages. More complex
sentences can have more complex transformations. Thus, applications need to be
aware of word ordering, and thus tag ordering when developing international
applications.

6.7.9.4 Result Parsing

More advanced applicatiopsrseresults to get even more information than is
available with tags. Parsing is the capability to analyze how a sequence of tokens
matches &uleGrammar . Parsing of text againstRaleGrammar is discussed in
Section 6.5.5 (page 96).

Parsing @&inalRuleResult ~ produces &uleParse Object. Thegettags method
of aruleParse Object provides the same tag information asgdreags method of
aFinalRuleResult . However, theinalRuleResult  provides tag information for
only the best-guess result, whereas parsing can be applied to the alternative
guesses.

An API requirement that simplifies parsing of results that match a
RuleGrammar is that for a such result to becerTeE(not rejected) it must exactly
match the grammar — technically speaking, it must be possible to parse a
FinalRuleResult ~ against th&uleGrammar it matches. This is not guaranteed,
however, if the result was rejected or if theeGrammar has been modified since
it was committed and produced the result.



Speech Recognition: javax.speech.recognition

6.7.10 Finalized Dictation Results

The are some common design patterns for processing accepted finalized results
that match @ictationGrammar . First we review what we know about these
results.

¢ lItis safe to cast an accepted result that matchesaionGrammar ~ to the
FinalDictationResult interface. It is safe to call any method of the
FinalDictationResult interface or its parentsinalResult ~ andResult .

¢ Thegetcrammar method of th&esult interface return a reference to the
matchedictationGrammar

¢ ThegetBestToken andgetBestTokens Mmethods of theesult interface
return the recognizer’s best guess of what a user said.

¢ ThegetAlternativeTokens method of the&inalDictationResult
interface returns alternative guesses for any token or sequence of tokens.

+ Result audio (see Section 6.7.11) and training information (see
Section 6.7.12) are optionally available.

TheResultTokens  provided in &inalDictationResult contain specialized
information that includes hints on textual presentation of tokens. Section 6.7.10.2
(on page 121) discusses the presentation hints in detail. In this section the
methods for obtaining and using alternative tokens are described.

6.7.10.1Alternative Guesses

Alternative tokens for a dictation result are most often used by an application for
display to users for correction of dictated text. A typical scenario is that a user
speaks some text — perhaps a few words, a few sentences, a few paragraphs or
more. The user reviews the text and detects a recognition error. This means that
the best guess token sequence is incorrect. However, very often the correct text is
one of the top alternative guesses. Thus, an application will provide a user the
ability to review a set of alternative guesses and to select one of them if it is the
correct text. Such a correction mechanism is often more efficient than typing the
correction or dictating the text again. If the correct text is not amongst the
alternatives an application must support other means of entering the text.

The getAlternativeTokens method is passed a starting and an ending
ResultToken . These tokens must have been obtained from the same result either
through a call t@etBestToken  Or getBestTokens  in theRresult interface, or
through a previous call igetAlternativeTokens

119



120

Java Speech Application Programming Interface

ResultToken[][] getAlternativeTokens(
. ResultToken fromToken,
. ResultToken toToken,
. int max);

To obtain alternatives for a single token (rather than alternatives for a
sequence), s&tToken tonull .

Theint parameter allows the application to specify the number of
alternatives it wants. The recognizer may choose to return any humber of
alternatives up to the maximum number including just one alternative (the
original token sequence). Applications can indicate in advance the number of
alternatives it may request by setting thieResultAlternatives parameter
through the recognizerigecognizerProperties object.

The two-dimensional array returned by geelternativeTokens method is
the most difficult aspect of dictation alternatives to understand. The following
example illustrates the major features of the return value.

Let's consider a dictation example where the user says “he felt alienated
today” but the recognizer hears “he felt alien ate Ted today”. The user says four
words but the recognizer hears six words. In this example, the boundaries of the
spoken words and best-guess align nicely: “alienated” aligns with “alien ate Ted”
(incorrect tokens don't always align smoothly with the correct tokens).

Users are typically better at locating and fixing recognition errors than
recognizers or applications — they provided the original speech. In this example,
the user will likely identify the words “alien ate Ted” as incorrect (tokens 2to 4 in
the best-guess result). By an application-provided method such as selection by
mouse and a pull-down menu, the user will request alternative guesses for the
three incorrect tokens. The application callsgb@iternativeTokens method of
the FinalDictationResult to obtain the recognizer’s guess at the alternatives.

/I Get 6 alternatives for for tokens 2 through 4.
FinalDictationResultr = ...;

ResultToken tok2 = r.getBestToken(2);
ResultToken tok4 = r.getBestToken(4);

String[][] alt = r.getAlternativeTokens(tok2, tok4, 6);

The return array might look like the following. Each line represents a sequence of
alternative tokens to “alien ate Ted”. Each word in each alternative sequence
represents BesultToken Object in an array.

alt[0] = alien ate Ted  // the best guess
alt[1] = alienate Ted // the 1st alternative



Speech Recognition: javax.speech.recognition

alt[2] = alienated /l the 2nd alternative
alt[3] = alien hated /l the 3rd alternative
alt[4] = a lion ate Ted // the 4th alternative

The points to note are:

¢ Thefirst alternative is the best guess. This is usually the casetiffifi@n
andfromToken Values are from the best-guess sequence. (From an user
perspective it's not really an alternative.)

+ Only five alternative sequences were returned even though six were
requested. This is because a recognizer will only return alternatives it
considers to reasonable guesses. It is legal for this call to return only the
best guess with no alternatives if can’t find any reasonable alternatives.

¢ The number of tokens is not the same in all the alternative sequences (3, 2,
1, 2, 4 tokens respectively). This return array is knownragged array
From a speech perspective is easy to see why different lengths are needed,
but application developers do need to be careful processing a ragged array.

¢ The best-guess and the alternatives do not always make sense to humans.

A complex issue to understand is that the alternatives vary according to how the
application (or user) requests them. The 1st alternative to “alien ate Ted” is
“alienate Ted”. However, the 1st alternative to “alien” might be “a lion”, the 1st
alternative to “alien ate” might be “alien eight”, and the 1st alternative to “alien
ate Ted today” might be “align ate Ted to day”.

Fortunately for application developers, users learn to select sequences that
are likely to give reasonable alternatives, and recognizers are developed to make
the alternatives as useful and accurate as possible.

6.7.10.2Result Tokens

A ResultToken Object represents a single token in a result. A token is most often a
single word, but multi-word tokens are possible (e.g., “New York”) as well as
formatting characters and language-specific constructs. Fiast@nGrammar
the set of tokens is built into the recognizer.

EachRresultToken  in @FinalDictationResult provides the following
information.

+ Thespoken fornof the token which provides a transcript of what the user
says (etSpokenText method). In a dictation system, the spoken form is

121



122

Java Speech Application Programming Interface

typically used when displaying unfinalized tokens.

¢ Thewritten formof the token which indicates how to visually present the
token getwrittenText ~ method). In a dictation system, the written form of
finalized tokens is typically placed into the text edit window after applying
the following presentation hints.

¢ A capitalization hintindicating whether the written form of the following
token should be capitalized (first letter only), all uppercase, all lowercase,
or left as-is getCapitalizationHint method).

¢ An spacing hinindicating how the written form should be spaced with the
previous and following tokens.

The presentation hints inRasultToken are important for the processing of
dictation results. Dictation results are typically displayed to the user, so using the
written form and the capitalization and spacing hints for formatting is important.
For example, when dictation is used in word processing, the user will want the
printed text to be correctly formatted.

The capitalization hint indicates how the written form of the following token
should be formatted. The capitalization hint takes one of four mutually exclusive
values.cap_FIRST indicates that the first character of the following token should
be capitalized. ThepPERCcASEINdLOWERCASEalues indicate that the following
token should be either all uppercase or loweraase.As_Is indicates that there
should be no change in capitalization of the following token.

The spacing hint deals with spacing around a token. Itiis avalue
containing three flags which are or’'ed together (using the '|' operator). If none of
the three spacing hint flags are set true, teempacingHint ~ method returns the
valuesepAarATEWhIch is the value zero.

¢ TheATTACH_PREVIOUSIt is set if the token should be attached to the
previous token: no space between this token and the previous token. In
English, some punctuation characters have this flag set true. For example,
periods, commas and colons are typically attached to the previous token.

¢ TheATTACH_FOLLOWIN®It is set if the token should be attached to the
following token: no space between this token and the following token. For
example, in English, opening quotes, opening parentheses and dollar signs
typically attach to the following token.

¢ TheATTACH_GRouBbIt is set if the token should be attached to previous or
following tokens if they also have theTACH_GROUflag set to true. In
other words, tokens in an attachment group should be attached together. In
English, a common use of the group flag is for numbers, digits and
currency amounts. For example, the sequence of four spoken-form tokens,



Speech Recognition: javax.speech.recognition

"3" "point" "1" "4" , should have the group flag set true, so the
presentation form should not have separating spaces: .

Every language has conventions for textual representation of a spoken language.
Since recognizers are language-specific and understand many of these
presentation conventions, they provide the presentation hints (written form,
capitalization hint and spacing hint) to simplify applications. However,
applications may choose to override the recognizer’s hints or may choose to do
additional processing.

Table 6-6 shows examples of tokens in which the spoken and written forms
are different:

Table 6-6 Spoken and written forms for some English tokens

Spoken Form Written Form | Capitalization | Spacing

twenty 20 CAP_AS_IS SEPARATE

new line \n' \uOODA' CAP _FIRST ATTACH_PREVIOUS &
ATTACH_FOLLOWING

new paragraph \u2029' JAP_FIRST ATTACH_PREVIOUS &
ATTACH_FOLLOWING

no space null CAP_AS_IS ATTACH_PREVIOUS &
ATTACH_FOLLOWING

Space bar " \u0020' CAP|AS_IS ATTACH_PREVIOUS &
ATTACH_FOLLOWING

Capita"ze next | null CAP_FIRST ISEPARATE
Period " \uOO2E' CAH_FIRST ATTIACH_PREVIOUS
Comma ', \u002C' CAR_AS_IS ATTIACH_PREVIOUS
Open (' \u0028" CAP AS_IS ATTCH_FOLLOWING
parentheses

Exclamation ' \u0021' CAP| FIRST ATTACH_PREVIOUS
mark

123



124

Java Speech Application Programming Interface

Table 6-6 Spoken and written forms for some English tokens (cont'd)

Spoken Form Written Form | Capitalization | Spacing

dollar sign '$' "\u0024' CAR_AS_IS ATTACH_FOLLOWING &
ATTACH_GROUP

pound sign '£' \UOOA3' CAP_AS_IS ATTACH_FOLLOWING &
ATTACH_GROUP

yen sign "¥' "\UOOAS' CAP_AS_IS ATTACH_PREVIOUS &
ATTACH_GROUP

“New line”, “new paragraph”, “space bar”, “no space” and “capitalize next”
are all examples of conversion of an implicit command (e.g. “start a new
paragraph”). For three of these, the written form is a single Unicode character.
Most programmers are familiar with the new-line character '\n' and space ', but
fewer are familiar with the Unicode character for new paragraph "\u2029'. For
convenience and consistency, HagultToken includes static variables called
NEW_LINEAQNANEW_PARAGRAPH

Some applications will treat a paragraph boundary as two new-line
characters, others will treat it differently. Each of these commands provides hints
for capitalization. For example, in English the first letter of the first word of a new
paragraph is typically capitalized.

The punctuation characters, “period”, “comma”, “open parentheses”,
“exclamation mark” and the three currency symbols convert to a single Unicode
character and have special presentation hints.

An important feature of the written form for most of the examples is that the
application does not need to deal with synonyms (multiple ways of saying the
same thing). For example, “open parentheses” may also be spoken as “open
paren” or “begin paren” but in all cases the same written form is generated.

The following is an example sequence of result tokens.

Table 6-7 Sample sequence of result tokens

Spoken Form Written Form | Capitalization | Spacing

new line "\n" CAP_FIRST IATTACH_PREVIOUS &
ATTACH_FOLLOWING




Speech Recognition: javax.speech.recognition

Table 6-7 Sample sequence of result tokens (cont'd)

Spoken Form Written Form | Capitalization | Spacing

the “the" CAP_AS_IS SEPARATE
uppercase next | null UPPERCASE SEPARATE
index “index" CAP_AS_IS $EPARATE

is "is" CAP_AS_IS SEPARATE

seven "7 CAP_AS_IS ATTACH_GROUP
dash CAP_AS_IS IATTACH_GROUP
two " CAP_AS_IS ATTACH_GROUP
period CAP_FIRST IATTACH_PREVIOUS

This sequence of tokens should be converted to the following string:

“\nThe INDEX is 7-2."

Conversion of spoken text to a written form is a complex task and is
complicated by the different conventions of different languages and often by
different conventions for the same language. The spoken form, written form and
presentation hints of thresultToken
Advanced applications should consider filtering the results to process more
complex patterns, particularly cross-token patterns. For example “nineteen twenty
eight” is typically converted to “1928” and "twenty eight dollars" to "$28" (note
the movement of the dollar sign to before the numbers).

6.7.11 Result Audio

interface handle most simple conversions.

If requested by an application, some recognizers can provide audio data for
results. Audio data has a number of uses. In dictation applications, providing
audio feedback to users aids correction of text because the audio reminds users of
what they said (it's not always easy to remember exactly what you dictate,

125



126

Java Speech Application Programming Interface

especially in long sessions). Audio data also allows storage for future evaluation
and debugging.

Audio data is provided for finalized results through the following methods of
theFinalResult  interface.

Table 6-8 FinalResult interface: audio methods

Name Description

getAudio Get anaudioclip  for a token, a sequence of
tokens or for an entire result.

isAudioAvailable Tests whether audio data is available for a result.

releaseAudio Release audio data for a result.

There are tw@etAudio methods in theinalResult  interface. One method
accepts no parameters and returnswdmclip  for an entire result ol if
audio data is not available for this result. The otfi@sudio method takes a start
and encResultToken ~ as input and returns andioClip  for the segment of the
result including the start and end tokem@r if audio data is not available.

In both forms of thgetaudio method, the recognizer will attempt to return
the specified audio data. However, it is not always possible to exactly determine
the start and end of words or even complete results. Sometimes segments are
“clipped” and sometimes surrounding audio is included imtdeclip

Not all recognizers provide access to audio for results. For recognizers that
do provide audio data, it is not necessarily provided for all results. For example, a
recognizer might only provide audio data for dictation results. Thus, applications
should always check for a null return value ayetaudio call.

The storage of audio data for results potentially requires large amounts of
memory, particularly for long sessions. Thus, result audio requires special
management. An application that wishes to use result audio should:

4 Set theresultAudioProvided parameter oRecognizerProperties to
true . Recognizers that do not support audio data ignore this call.

¢ Test the availability of audio for a result using a@dioAvailable
method of therinalResult  interface.

¢ Usethegetaudio methods to obtain audio data. These methods retiirn
if audio data is not available.



Speech Recognition: javax.speech.recognition

¢ Once the application has finished use of the audiofesu |, it should
call thereleaseAudio method ofFinalResult  to free up resources.

A recognizer may choose to release audio data for a result if it is necessary to
reclaim memory or other system resources.

When audio is released by either a calideaseAudio  or by the recognizer
AAUDIO_RELEASEDevVeENt is issued to thedioReleased method of the
ResultListener

6.7.12 Result Correction

Recognition results are not always correct. Some recognizers can be trained by
informing of the correct tokens for a result — usually when a user corrects a
result.

Recognizers are not required to support correction capabilities. If a
recognizer does support correction, it does not need to support correction for
every result. For example, some recognizers support correction only for dictation
results.

Applications are not required to provide recognizers with correction
information. However, if the information is available to an application and the
recognizer supports correction then it is good practice to inform the recognizer of
the correction so that it can improve its future recognition performance.

TherinalResult  interface provides the methods that handle correction.

Table 6-9 FinalResult interface: correction methods

Name Description

tokenCorrection Inform the recognizer of a correction in which
zero or more tokens replace a token or sequence
of tokens.

MISRECOGNITION Indicate the type of correction.

USER_CHANGE

DONT_KNOW

isTrainingInfoAvailable Tests whether the recognizer has information
available to allow it to learn from a correction.

releaseTraininginfo Release training information for a result.

127



128

Java Speech Application Programming Interface

Often, but certainly not always, a correction is triggered when a user corrects
a recognizer by selecting amongst the alternative guesses for a result. Other
instances when an application is informed of the correct result are when the user
types a correction to dictated text, or when a user corrects a misrecognized
command with a follow-up command.

Once an application has obtained the correct result text, it should inform the
recognizer. The correction information is provided by a call to the
tokenCorrection method of theinalResult  interface. This method indicates a
correction of one token sequence to another token sequence. Either token
sequence may contain one or more tokens. Furthermore, the correct token
sequence may contain zero tokens to indicate deletion of tokens.

ThetokenCorrection method acceptsaarrectionType ~ parameter that
indicates the reason for the correction. The legal values are defined by constants
of theFinalResult  interface:

¢ MISRECOGNITIONINdicates that the new tokens are known to be the tokens
actually spoken by the user: a correction of a recognition error.
Applications can be confident that a selection of an alternative token
sequence impliesMISRECOGNITIONCOrrection.

¢ USER_CHANGHdicates that the new tokens are not the tokens originally
spoken by the user but instead the user has changed his/her mind. This is a
“speako” (a spoken version of a “typo”). UsER_CHANGHay be indicated
if a user types over the recognized result, but sometimes the user may
choose to type in the correct result.

¢ DONT_KNOWhe application does not know whether the new tokens are
correcting a recognition error or indicating a change by the user.
Applications should indicate this type of correction whenever unsure of the
type of correction.

Why is it useful to tell a recognizer about$ER_CHANGERecognizers adapt to

both the sounds and the patterns of words of usasSeRA CHANGEOrrection

allows the recognizer to learn about a user’'s word pattermssmECOGNITION
correction allows the recognizer to learn about both the user’s voice and the word
patterns. In both cases, correcting the recognizer requests it to re-train itself based
on the new information.

Training information needs to be managed because it requires substantial
memory and possibly other system resources to maintain it for a result. For
example, in long dictation sessions, correction data can begin to use excessive
amounts of memory.

Recognizers maintain training information only when the recognizer’s
TrainingProvided parameter is set to true through HaeognizerProperties



Speech Recognition: javax.speech.recognition

interface. Recognizers that do not support correction will ignore calls to the
setTrainingProvided method.

If the TrainingProvided parameter is set to true, a result may include
training information when it is finalized. Once an application believes the training
information is no longer required for a specHi@lResult , it should call the
releaseTraininglnfo method ofrinalResult  to indicate the recognizer can
release the resources used to store the information.

At any time, the availability of training information for a result can be tested
by calling thesTraininginfoAvailable method.

Recognizers can choose to release training information even without a
request to do so by the application. This does not substantially affect an
application because performing correction on a result which does not have
training information is not an error.

A TRAINING_INFO_RELEASEDevent is issued to thesultListener when the
training information is released. The event is issued identically whether the
application or recognizer initiated the release.

6.7.13 Rejected Results

First, a warningignore rejected results unless you really understand them!

Like humans, recognizers don’t have perfect hearing and so they make
mistakes (recognizers still tend to make more mistakes than people). An
application should never completely trust a recognition result. In particular,
applications should treat important results carefully, for example, "delete all
files".

Recognizers try to determine whether they have made a mistake. This
process is known agjection But recognizers also make mistakes in rejection! In
short, a recognizer cannot always tell whether or not it has made a mistake.

A recognizer may reject incoming speech for a number of reasons:

+ Detected a non-speech event (e.g. cough, laughter, microphone click).

¢ Detected speech that only partially matched an active grammar (e.g. user
spoke only half a command).

¢ Speech contained "um”, "ah", or some other speaking error that the
recognizer could not ignore.

¢ Speech matched an active grammar but the recognizer was not confident
that it was an accurate match.

Rejection is controlled by theonfidenceLevel ~ parameter of
RecognizerProperties (see Section 6.8). The confidence value is a floating point

129



Java Speech Application Programming Interface

number between 0.0 and 1.0. A value of 0.0 indicates weak rejection — the
recognizer doesn’t need to be very confident to accept a result. A value of 1.0
indicates strongest rejection, implying that the recognizer will reject a result
unless it is very confident that the result is correct. A value of 0.5 is the
recognizer’s default.

6.7.13.1Rejection Timing

A result may be rejected withreESULT_REJECTERRVENt at any time while it is
UNFINALIZED: that is, any time after RESULT_CREATERvent but without a
RESULT_ACCEPTERVenNt occurring. (For a description of result events see
Section 6.7.4.)

This means that the sequence of result events that procekeEareoresult:

¢ A singleRESULT_CREATERVeNt to issue a new result in theFINALIZED
state.

¢ While in theUNFINALIZED state, zero or MOrRESULT_UPDATERVeNts may
be issued to update finalized and/or unfinalized tokens. Also, a single
optional GRAMMAR_FINALIZEBEVENnt may be issued to indicate that the
matched grammar has been identified.

¢ A singleRESULT_REJECTEmRvVeNnt moves the result to tReJECTEDState.

When aresult is rejected, there is a strong probability that the information about a

result normally provided througfesult , FinalResult , FinalRuleResult ~ and

FinalDictationResult interfaces is inaccurate, or more typically, not available.
Some possibilities that an application must consider:

¢ There are no finalized tokensufTokens returns 0).

¢ TheGRAMMAR_FINALIZEDEVENt was not issued, so teesrammar method
returnsnull . In this case, all the methods of th&lRuleResult and
FinalDictationResult interfaces throw exceptions.

+ Audio data and training information may be unavailable, even when
requested.

¢ Alltokens provided as best guesses or alternative guesses may be incorrect.
¢ If the result does matchraleGrammar , there is not a guarantee that the
tokens can be parsed successfully against the grammar.

Finally, a repeat of the warning. Only use rejected results if you really know what
you are doing!

130



Speech Recognition: javax.speech.recognition

6.7.14 Result Timing

Recognition of speech is not an instant process. There are intrinsic delays
between the time the user starts or ends speaking a word or sentence and the time
at which the corresponding result event is issued by the speech recognizer.

The most significant delay for most applications is the time between when
the user stops speaking and ®ESULT_ACCEPTEDI RESULT_REJECTEmRVent that
indicates the recognizer has finalized the result.

The minimum finalization time is determined by GwenpleteTimeout
parameter that is set through theognizerProperties interface. This time-out
indicates the period of silence after speech that the recognizer should process
before finalizing a result. If the time-out is too long, the response of the
recognizer (and the application) is unnecessarily delayed. If the time-out is too
short, the recognizer may inappropriately break up a result (e.g. finalize a result
while the user is taking a quick breath). Typically values are less than a second,
but not usually less than 0.3sec.

There is also amcompleteTimeout ~ parameter that indicates the period of
silence a recognizer should process if the user has said something that may only
partially matches an active grammar. This time-out indicates how long a
recognizer should wait before rejecting an incomplete sentence. This time-out
also indicates how long a recognizer should wait mid-sentence if a result could be
accepted, but could also be continued and accepted after more words. The
IncompleteTimeout s usually longer than the complete time-out.

Latency is the overall delay between a user finishing speaking and a result
being produced. There are many factors that can affect latency. Some effects are
temporary, others reflect the underlying design of speech recognizers. Factors that
can increase latency include:

¢ ThecompleteTimeout andincompleteTimeout  properties discussed above.

¢ Computer powe(especially CPU speed and memory): less powerful
computers may process speech slower than real-time. Most systems try to
catch up while listening to background silence (which is easier to process
than real speech).

+ Grammar complexitarger and more complex grammars tend to require
more time to process. In most cases, rule grammars are processed more
quickly than dictation grammars.

¢ Suspendingwhile a recognizer is in theusPENDEtate, it must buffer of
incoming audio. When it returns to thesTENING state it must catch up by
processing the buffered audio. The longer the recognizer is suspended, the
longer it can take to catch up to real time and the more latency increases.

131



132

Java Speech Application Programming Interface

+ Client/server latenciesn client/server architectures, communication of
the audio data, results, and other information between the client and server
can introduce delays.

6.7.15 Storing Results

Result objects can be stored for future processing. This is particularly useful for
dictation applications in which the correction information, audio data and
alternative token information is required in future sessions on the same document
because that stored information can assist document editing.

TheResult 0bject is recognizer-specific. This is because each recognizer
provides an implementation of thesult interface. The implications are that (a)
recognizers do not usually understand each other’s results, and (b) a special
mechanism is required to store and load result objects (standard Java object
serialization is not sufficient).

TheRecognizer interface defines the methodgevendorResult and
readVendorResult ~ to perform this function. These methods write to an
outputStream  and read from amputstream  respectively. If the correction
information and audio data for a result are available, then they will be stored by
this call. Applications that do not need to store this extra data should explicitly
release it before storing a result.

Recognizer rec;
OutputStream stream;
Result result;
try {
rec.writeVendorResult(stream, result);
} catch (Exception e) {
e.printStackTrace();

}
}

A limitation of storing vendor-specific results is that a compatible recognizer
must be available to read the file. Applications that need to ensure a file
containing a result can be read, even if no recognizer is available, should wrap the
result data when storing it to the file. When re-loading the file at a later time, the
application will unwrap the result data and provide it to a recognizer only if a
suitable recognizer is available. One way to perform the wrapping is to provide
thewritevendorResult method with @yteArrayOutputStream to temporarily

place the result in a byte array before storing to a file.



Speech Recognition: javax.speech.recognition

6.8 Recognizer Properties

A speech engine has both persistent and run-time adjustable properties. The
persistent properties are defined inkheognizerModeDesc  Which includes

properties inherited fromngineModeDesc  (See Section 4.2 on page 36). The
persistent properties are used in the selection and creation of a speech recognizer.
Once a recognizer has been created, the same property information is available
through theyetEngineModeDesc  method of &ecognizer  (inherited from the

Engine interface).

A recognizer also has seven run-time adjustable properties. Applications get
and set these properties throughognizerProperties which extends the
EngineProperties interface. TheRecognizerProperties for a recognizer are
provided by theyetEngineProperties method that theecognizer inherits from
theEngine interface. For convenienceyétRecognizerProperties method is also
provided in therecognizer interface to return a correctly cast object.

The get and set methodsmkineProperties andRecognizerProperties
follow the JavaBeans conventions with the form:

Type getPropertyName();
void setPropertyName(Type);

A recognizer can choose to ignore unreasonable values provided to a set method,
or can provide upper and lower bounds.

Table 6-10 Run-time Properties of a Recognizer

Property Description

ConfidenceLevel float value in the range 0.0 to 1.0. Results are
rejected if the engine is not confident that it has
correctly determined the spoken text. A value of 1.0
requires a recognizer to have maximum confidence
in every result so more results are likely to be
rejected. A value of 0.0 requires low confidence
indicating fewer rejections. 0.5 is the recognizer’s
default.

133



134

Java Speech Application Programming Interface

Table 6-10 Run-time Properties of a Recognizer (cont'd)

Property

Description

Sensitivity

float value between 0.0 and 1.0. A value of 0.5 is
the default for the recognizer. 1.0 gives maximum
sensitivity, making the recognizer sensitive to quiet
input but more sensitive to noise. 0.0 gives
minimum sensitivity, requiring the user to speak
loudly and making the recognizer less sensitive to
background noise.

Note some recognizers set the gain automatically
during use, or through a setup “Wizard”. On these
recognizers the sensitivity adjustment should be
used only in cases where the automatic settings are
not adequate.

SpeedVsAccuracy

float value between 0.0 and 1.0. 0.0 provides the
fastest response. 1.0 maximizes recognition
accuracy. 0.5 is the default value for the recognizer
which the manufacturer determines as the best
compromise between speed and accuracy.

CompleteTimeout

float Vvalue in seconds that indicates the minimum
period between when a speaker stops speaking
(silence starts) and the recognizer finalizing a result.
The complete time-out is applied when the speech
prior to the silence matches an active grammar (c.f.
IncompleteTimeout )

Along complete time-out value delays the result and
makes the response slower. A short time-out may
lead to an utterance being broken up inappropriately
(e.g. when the user takes a breath). Complete time-
out values are typically in the range of 0.3 seconds
to 1.0 seconds.




Speech Recognition: javax.speech.recognition

Table 6-10 Run-time Properties of a Recognizer (cont'd)

Property

Description

IncompleteTimeout

float value in seconds that indicates the minimum
period between when a speaker stops speaking
(silence starts) and the recognizer finalizing a result.
The incomplete time-out is applied when the speech
prior to the silence does not match an active
grammar (c.fcompleteTimeout ). In effect, this is the
period the recognizer will wait before rejecting an
incomplete utterance.

TheincompleteTimeout IS typically longer than the
CompleteTimeout

ResultNumAlternatives

integer  value indicating the preferred maximum
number of N-best alternatives in

FinalDictationResult andFinalRuleResult

objects (see Section 6.7.9). Returning alternatives
requires additional computation.

Recognizers do not always produce the maximum
number of alternatives (for example, because some
alternatives are rejected), and the number of
alternatives may vary between results and between
tokens. A value of 0 or 1 requests that no alternatives
be provided — only a best guess.

ResultAudioProvided

boolean Value indicating whether the application
wants the recognizer to audio withalResult

objects. Recognizers that do provide result audio can
ignore this call. (SeResult Audimn page 125 for
details.)

TrainingProvided

boolean Vvalue indicating whether the application
wants the recognizer to support training with
FinalResult  Objects.

135



Java Speech Application Programming Interface

6.9 Speaker Management

A Recognizer may, optionally, provide apeakerManager Object. The
SpeakerManager allows an application to manage gpeakerProfiles  of that
Recognizer . TheSpeakerManager for is obtained throughetSpeakerManager
method of therecognizer interface. Recognizers that do not maintain speaker
profiles — known as speaker-independent recognizers — returrior this
method.

A speakerProfile  0bject represents a single enrollment to a recognizer. One
user may have multiplepeakerProfiles  in a single recognizer, and one
recognizer may store the profiles of multiple users.

ThespeakerProfile  class is a reference to data stored with the recognizer. A
profile is identified by three values all of which atiéng objects:

¢ id : A unique identifier for a profile (per-recognizer unique). The string
may be automatically generated but should be printable.

¢ name: An identifier for a user. This may be an account name or any other
name that could be entered by a user.

¢ variant : The variant identifies a particular enrollment of a user and
becomes useful when one user has more than one enroliment.

ThespeakerProfile  0Object is a handle to all the stored data the recognizer has

about a speaker in a particular enroliment. Except for the three values defined

above, the speaker data stored with a profile is internal to the recognizer.
Typical data stored by a recognizer with the profile might include:

¢ Full speaker dataFull name, age, gender and so on.

¢ Speaker preferenceSettings such as those provided through the
RecognizerProperties (see Section 6.8).

Language modei¥ata about the words and word patterns of the speaker.
Word modelsData about the pronunciation of words by the speaker.
Acoustic modeldData about the speaker’s voice and speaking style.

* & & o

History: Records of previous training information and usage history

The primary role of stored profiles is in maintaining information that enables a
recognition to adapt to characteristics of the speaker. The goal of this adaptation is
to improve the performance of the speech recognizer including both recognition
accuracy and speed.

136



Speech Recognition: javax.speech.recognition

The speakerManager provides management of all the profiles stored in the
recognizer. Most often, the functionality of tegeakermanager is used as a direct
consequence of user actions, typically by providing an enrollment window to the
user. The functionality provided includes:

¢ Current speakerThegetCurrentSpeaker ~ andsetCurrentSpeaker
methods determine which speaker profile is currently being used to
recognize incoming speech.

¢ Listing profiles Thelistknownspeakers ~ method returns an array of all the
SpeakerProfiles known to the recognizer. A common procedure is to
display that list to a user to allow the user to select a profile.

+ Creation and deletianThenewSpeakerProfile ~ andnewSpeakerProfile
methods create a new profile or delete a profile in the recognizer.

¢ Read and writeThereadVendorSpeakerProfile and
writeVendorSpeakerProfile methods allow a speaker profile and all the
recognizer’s associated data to be read from or storedttesan . The data
format will typically be proprietary.

¢ Save and reverDuring normal operation, a recognizer will maintain and
update the speaker profile as new information becomes available. Some of
the events that may modify the profile include changing the
RecognizerProperties , making a correction to a result, producing any
result that allows the recognizer to adapt its models, and more many
activities. It is normal to save the updated profile at the end of any session
by callingsaveCurrentSpeakerProfile . In some cases, however, a user's
data may be corrupted (e.g., because they loaned their computer to another
user). In this case, the application may be requested by a user to revert the
profile to the last stored version by calliagertCurrentSpeaker

¢ Display componeniThegetControlComponent ~ method optionally returns
an AWT component object that can be displayed to a user. If supported, this
component should expose the vendor's speaker management capabilities
which may be more detailed than those provided bgpbskerManager
interface. The vendor functionality may also be proprietary.

An individual speaker profile may be large (perhaps several MByte) so storing,
loading, creating and otherwise manipulating these objects can be slow.

The speakerManager is one of the capabilities ofrecognizer that is
available in the deallocated state. The purpose is to allow an application to
indicate the initial speaker profile to be loaded when the recognizer is allocated.
To achieve this, thistknownSpeakers |, getCurrentSpeaker  and
setCurrentSpeaker ~ methods can be called before callingdiieate method.

137



138

Java Speech Application Programming Interface

To facilitate recognizer selection, the list of speaker profiles is also a
property of a recognizer presented throughrRtegnizerModeDesc  class. This
allows an application to select a recognizer that has already been trained by a user,
if one is available.

In most cases, Recognizer  persistently restores the last used speaker profile
when allocating a recognizer, unless asked to do otherwise.

6.10 Recognizer Audio

The current audio functionality of the Java Speech API is incompletely specified.
Once a standard mechanism is established for streaming input and output audio
on the Java platform the API will be revised to incorporate that functionality.

In this release of the API, the only established audio functionality is
provided through theecognizerAudioListener interface and the
RecognizerAudioEvent  class. Audio events issued by a recognizer are intended to
support simple feedback mechanisms for a user. The three types of
RecognizerAudioEvent  are as follows:

¢ SPEECH_STARTEBNJSPEECH_STOPPELI hese events are issued when
possible speech input is detected in the audio input stream. These events
are usually based on a crude mechanism for speech detection so a
SPEECH_STARTEBVenNt is not always followed by output of a result.
Furthermore, onePEECH_STARTEDay be followed by multiple results,
and one result might cover multideEECH_STARTERVENtS.

¢ AUDIO_LEVEL This event is issued periodically to indicate the volume of
audio input to the recognizer. The level & and varies on a scale
from 0.0 to 1.0: silence to maximum volume. The audio level is often
displayed visually as a “VU Meter” — the scale on a stereo system that
goes up and down with the volume.

All the RecognizerAudioEvents ~ are produced as audio reaches the input to the
recognizer. Because recognizers use internal buffers between audio input and the
recognition process, the audio events can run ahead of the recognition process.



	Java™ Speech API Programmer’s Guide
	List of Figures
	List of Tables
	Preface
	About this Guide
	Part 1
	Part 2
	Getting Started

	Web Resources
	Related Reading
	Mailing Lists
	Revision History
	Version 1.0: October 26, 1998
	Version 0.7: May, 1998. Revised public beta release.
	Version 0.6: February 98. Initial public beta release


	Contributions
	chapter �1
	Introduction
	1.1 What is the Java Speech API?
	1.2 Design Goals for the Java Speech API
	1.3 Speech-Enabled Java Applications
	1.3.1 Speech and other Java APIs

	1.4 Applications of Speech Technology
	1.4.1 Desktop
	1.4.2 Telephony Systems
	1.4.3 Personal and Embedded Devices
	1.4.4 Speech and the Internet

	1.5 Implementations
	1.6 Requirements

	chapter �2
	Speech Technology
	2.1 Speech Synthesis
	2.1.1 Speech Synthesis Limitations
	2.1.2 Speech Synthesis Assessment

	2.2 Speech Recognition
	2.2.1 Rule Grammars
	2.2.2 Dictation Grammars
	2.2.3 Limitations of Speech Recognition


	chapter �3
	Designing Effective Speech Applications
	3.1 When to Use Speech
	3.2 Design for Speech
	3.3 Challenges
	3.3.1 Transience: What did you say?
	3.3.2 Invisibility: What can I say?
	3.3.3 Asymmetry
	3.3.4 Speech synthesis quality
	3.3.5 Speech recognition performance
	3.3.6 Recognition: flexibility vs. accuracy

	3.4 Design Issues for Speech-Only Applications
	3.4.1 Feedback & Latency
	3.4.2 Prompting
	3.4.3 Handling Errors

	3.5 Design Issues for Multi-Modal Applications
	3.5.1 Feedback & Latency
	3.5.2 Prompting
	3.5.3 Handling Errors

	3.6 Involving Users
	3.6.1 Natural Dialog Studies
	3.6.2 Wizard-of-Oz Studies
	3.6.3 Usability Studies

	3.7 Summary
	3.8 For More Information

	chapter �4
	Speech Engines: �javax.speech
	4.1 What is a Speech Engine?
	4.2 Properties of a Speech Engine
	4.3 Locating, Selecting and Creating Engines
	4.3.1 Default Engine Creation
	4.3.2 Simple Engine Creation
	4.3.3 Advanced Engine Selection
	4.3.3.1 Refining an Engine List


	4.4 Engine States
	4.4.1 State systems
	4.4.2 Allocation State System
	4.4.3 Allocated States and Call Blocking
	4.4.4 Pause - Resume State System
	4.4.5 State Sharing
	4.4.6 Synthesizer Pause
	4.4.7 Recognizer Pause

	4.5 Speech Events
	4.5.1 Event Synchronization

	4.6 Other Engine Functions
	4.6.1 Runtime Engine Properties
	4.6.2 Audio Management
	4.6.3 Vocabulary Management


	chapter �5
	Speech Synthesis: javax.speech.synthesis
	5.1 “Hello World!”
	5.2 Synthesizer as an Engine
	5.3 Speaking Text
	5.4 Speech Output Queue
	5.5 Monitoring Speech Output
	5.6 Synthesizer Properties
	5.6.1 Selecting Voices
	5.6.2 Property Changes in JSML
	5.6.3 Controlling Prosody


	chapter �6
	Speech Recognition: javax.speech.recognition
	6.1 “Hello World!”
	6.2 Recognizer as an Engine
	6.3 Recognizer State Systems
	6.3.1 Inherited States
	6.3.2 Recognizer Focus
	6.3.3 Recognition States
	6.3.3.1 Speech Events vs. Other Events
	6.3.3.2 Speech Input Event Cycle
	6.3.3.3 Non-Speech Event Cycle

	6.3.4 Interactions of State Systems

	6.4 Recognition Grammars
	6.4.1 Grammar Interface
	6.4.2 Committing Changes
	6.4.3 Grammar Activation

	6.5 Rule Grammars
	6.5.1 Rule Definitions
	6.5.2 Imports
	6.5.3 Rule Classes
	6.5.3.1 Advanced Rule Programming

	6.5.4 Dynamic Grammars
	6.5.5 Parsing

	6.6 Dictation Grammars
	6.6.1 Dictation Context

	6.7 Recognition Results
	6.7.1 Result Finalization
	6.7.2 Result Interface Hierarchy
	6.7.3 Result Information
	6.7.3.1 Result Interface
	6.7.3.2 FinalResult Interface
	6.7.3.3 FinalDictationResult Interface
	6.7.3.4 FinalRuleResult Interface

	6.7.4 Result Life Cycle
	6.7.5 ResultListener Attachment
	6.7.6 Recognizer and Result States
	6.7.6.1 Updating Grammars

	6.7.7 Grammar Finalization
	6.7.8 Token Finalization
	6.7.9 Finalized Rule Results
	6.7.9.1 Result Tokens
	6.7.9.2 Alternative Guesses
	6.7.9.3 Result Tags
	6.7.9.4 Result Parsing

	6.7.10 Finalized Dictation Results
	6.7.10.1 Alternative Guesses
	6.7.10.2 Result Tokens

	6.7.11 Result Audio
	6.7.12 Result Correction
	6.7.13 Rejected Results
	6.7.13.1 Rejection Timing

	6.7.14 Result Timing
	6.7.15 Storing Results

	6.8 Recognizer Properties
	6.9 Speaker Management
	6.10 Recognizer Audio


