
901 San Antonio Road
Palo Alto, CA 94303 USA
415 960-1300 Fax 415 969-9131

A Sun Microsystems, Inc. Business

Java™ Speech API

Programmer’s Guide

Version 1.0 — October 26, 1998

Please

Recycle

Copyright 1997-1998 Sun Microsystems, Inc.

901 San Antonio Road, Palo Alto, California 94303 U.S.A.

All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions set forth in

DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The release described in this document may be protected by one or more U.S. patents, foreign patents, or pending applications. Sun

Microsystems, Inc. (SUN) hereby grants to you a fully paid, nonexclusive, nontransferable, perpetual, worldwide limited license (without the

right to sublicense) under SUN's intellectual property rights that are essential to practice this specification. This license allows and is limited to

the creation and distribution of clean-room implementations of this specification that (i) are complete implementations of this specification, (ii)

pass all test suites relating to this specification that are available from SUN, (iii) do not derive from SUN source code or binary materials, and

(iv) do not include any SUN binary materials without an appropriate and separate license from SUN.

Java, PersonalJava, EmbeddedJava, JavaBeans, Java Foundation Classes, JavaScript, HotJava and “Write Once, Run Anywhere” are trademarks

of Sun Microsystems, Inc. in the United States and other countries. Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun

logo, the Sun Microsystems Computer Corporation logo. UNIX® is a registered trademark in the United States and other countries, exclusively

licensed through X/Open Company, Ltd. Adobe logo™ is a trademark of Adobe Systems, Incorporated. All other product names mentioned

herein are the trademarks of their respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT

NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-

INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY

ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION.

SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)

DESCRIBED IN THIS PUBLICATION AT ANY TIME.

ix

. xi

xiii
xiii
. xiv
. .xv
.xv
xvi

ii

1

 . . 1

. . 2

. . 2
 . . 3

 . 3
. . 4
 . . 5
 . . 5
 . . 5

. . 6

. . 7
Table of Contents

 List of Figures .

 List of Tables .

 Preface .
 About this Guide .
 Web Resources .
 Related Reading .
 Mailing Lists .
 Revision History .

 Contributions . xv

Chapter 1 Introduction .

1.1 What is the Java Speech API? .

1.2 Design Goals for the Java Speech API

1.3 Speech-Enabled Java Applications .
1.3.1 Speech and other Java APIs .

1.4 Applications of Speech Technology .
1.4.1 Desktop .
1.4.2 Telephony Systems .
1.4.3 Personal and Embedded Devices .
1.4.4 Speech and the Internet .

1.5 Implementations .

1.6 Requirements .
iii

. . 9

. . . 9
 . 11
 . . 12

 . 13
 . 14
. 15
. 16

9

 . 19

 . 21

 . 23
 . 23
23

. 24
 . 24
 . 24
25

. 26
 . 26
 . 27
. 28

29
 . 29
 . 29
. 30

. 30
. 30
. 31
. 31

 . 32

33
Chapter 2 Speech Technology .

2.1 Speech Synthesis .
2.1.1 Speech Synthesis Limitations .
2.1.2 Speech Synthesis Assessment .

2.2 Speech Recognition .
2.2.1 Rule Grammars .
2.2.2 Dictation Grammars .
2.2.3 Limitations of Speech Recognition

Chapter 3 Designing Effective Speech Applications 1

3.1 When to Use Speech .

3.2 Design for Speech .

3.3 Challenges .
3.3.1 Transience: What did you say? .
3.3.2 Invisibility: What can I say? .
3.3.3 Asymmetry .
3.3.4 Speech synthesis quality .
3.3.5 Speech recognition performance .
3.3.6 Recognition: flexibility vs. accuracy

3.4 Design Issues for Speech-Only Applications
3.4.1 Feedback & Latency .
3.4.2 Prompting .
3.4.3 Handling Errors .

3.5 Design Issues for Multi-Modal Applications
3.5.1 Feedback & Latency .
3.5.2 Prompting .
3.5.3 Handling Errors .

3.6 Involving Users .
3.6.1 Natural Dialog Studies .
3.6.2 Wizard-of-Oz Studies .
3.6.3 Usability Studies .

3.7 Summary .

3.8 For More Information .
iv

35

 . 35

 . 36

. 39

. 39
 . 40
 . 41
. 43

 . 44
. . 44
. 46
. 47
 . . 49
 . 50
. . 50
. . 51

. . 52
. 53

. 54
 . 54
. 55
 . 56

57

58

. . 59

 . 60

. . 61

. 64

 . 66
 . 67
 . 69
. 69
Chapter 4 Speech Engines: javax.speech .

4.1 What is a Speech Engine? .

4.2 Properties of a Speech Engine .

4.3 Locating, Selecting and Creating Engines
4.3.1 Default Engine Creation .
4.3.2 Simple Engine Creation .
4.3.3 Advanced Engine Selection .
4.3.3.1 Refining an Engine List .

4.4 Engine States .
4.4.1 State systems .
4.4.2 Allocation State System .
4.4.3 Allocated States and Call Blocking
4.4.4 Pause - Resume State System .
4.4.5 State Sharing .
4.4.6 Synthesizer Pause .
4.4.7 Recognizer Pause .

4.5 Speech Events .
4.5.1 Event Synchronization .

4.6 Other Engine Functions .
4.6.1 Runtime Engine Properties .
4.6.2 Audio Management .
4.6.3 Vocabulary Management .

Chapter 5 Speech Synthesis: javax.speech.synthesis

5.1 “Hello World!” .

5.2 Synthesizer as an Engine .

5.3 Speaking Text .

5.4 Speech Output Queue .

5.5 Monitoring Speech Output .

5.6 Synthesizer Properties .
5.6.1 Selecting Voices .
5.6.2 Property Changes in JSML .
5.6.3 Controlling Prosody .
v

1

72

 . 75

. . 75
 . 75
 . 76
 . 79
. . 80
 . 80
 . 82
 . 83

. 83
 . 84
 . 85
. 86

 . 88
. 88
 . 91
. . 92
 . 93
 . 95
 . 96

. 99
100

101
102
104
106
106
107
107
107
108
109
. 110
111
Chapter 6 Speech Recognition: javax.speech.recognition 7

6.1 “Hello World!” .

6.2 Recognizer as an Engine .

6.3 Recognizer State Systems .
6.3.1 Inherited States .
6.3.2 Recognizer Focus .
6.3.3 Recognition States .
6.3.3.1 Speech Events vs. Other Events .
6.3.3.2 Speech Input Event Cycle .
6.3.3.3 Non-Speech Event Cycle .
6.3.4 Interactions of State Systems .

6.4 Recognition Grammars .
6.4.1 Grammar Interface .
6.4.2 Committing Changes .
6.4.3 Grammar Activation .

6.5 Rule Grammars .
6.5.1 Rule Definitions .
6.5.2 Imports .
6.5.3 Rule Classes .
6.5.3.1 Advanced Rule Programming .
6.5.4 Dynamic Grammars .
6.5.5 Parsing .

6.6 Dictation Grammars .
6.6.1 Dictation Context .

6.7 Recognition Results .
6.7.1 Result Finalization .
6.7.2 Result Interface Hierarchy .
6.7.3 Result Information .
6.7.3.1 Result Interface .
6.7.3.2 FinalResult Interface .
6.7.3.3 FinalDictationResult Interface .
6.7.3.4 FinalRuleResult Interface .
6.7.4 Result Life Cycle .
6.7.5 ResultListener Attachment .
6.7.6 Recognizer and Result States .
6.7.6.1 Updating Grammars .
vi

111
112
114
114

. 115

. 116

. 118
119

. 119

. 121
125
127

. 129
130
131
132

133

136

138
6.7.7 Grammar Finalization .
6.7.8 Token Finalization .
6.7.9 Finalized Rule Results .
6.7.9.1 Result Tokens .
6.7.9.2 Alternative Guesses .
6.7.9.3 Result Tags .
6.7.9.4 Result Parsing .
6.7.10 Finalized Dictation Results .
6.7.10.1 Alternative Guesses .
6.7.10.2 Result Tokens .
6.7.11 Result Audio .
6.7.12 Result Correction .
6.7.13 Rejected Results .
6.7.13.1 Rejection Timing .
6.7.14 Result Timing .
6.7.15 Storing Results .

6.8 Recognizer Properties .

6.9 Speaker Management .

6.10 Recognizer Audio .
vii

viii

. .47
 .49

 . .63

 . .77
 .109
List of Figures

Chapter 1 Introduction

Chapter 2 Speech Technology

Chapter 3 Designing Effective Speech Applications

Chapter 4 Speech Engines: javax.speech

4-1 Engine allocation state system .
4-2 PAUSED and RESUMED Engine states

Chapter 5 Speech Synthesis: javax.speech.synthesis

5-1 Synthesizer states .

Chapter 6 Speech Recognition: javax.speech.recognition

6-1 Recognizer states .
6-2 Result states .
ix

Java Speech Application Programming Interface

x

 . 18

. 20

. 21
22

. 37
. 38
. 38
. . 52
. . 53
 . 53

. 89
91

. 92
96

100
123
List of Tables

Chapter 1 Introduction

Chapter 2 Speech Technology

2-1 Speech recognition errors and possible causes

Chapter 3 Designing Effective Speech Applications

3-1 When is speech input appropriate?
3-2 When is speech output appropriate?
3-3 Email message information .

Chapter 4 Speech Engines: javax.speech

4-1 Basic engine selection properties: EngineModeDesc
4-2 Synthesizer selection properties: SynthesizerModeDesc . . .
4-3 Recognizer selection properties: RecognizerModeDesc . . .
4-4 Speech events: javax.speech package
4-5 Speech events: javax.speech.synthesis package
4-6 Speech events: javax.speech.recognition package

Chapter 5 Speech Synthesis: javax.speech.synthesis

Chapter 6 Speech Recognition: javax.speech.recognition

6-1 RuleGrammar methods for Rule management
6-2 RuleGrammar import methods .
6-3 Rule objects .
6-4 Matching Rule definitions and RuleParse objects
6-5 DictationGrammar interface methods
6-6 Spoken and written forms for some English tokens
xi

Java Speech Application Programming Interface

xii

124
126
127
133
6-7 Sample sequence of result tokens .
6-8 FinalResult interface: audio methods
6-9 FinalResult interface: correction methods

6-10 Run-time Properties of a Recognizer

Java
ore
d.

logy

API

ribes
sis

se

ava
sure

tions
ech-
Preface

TheJava™ Speech API Programmer’s Guide is an introduction to speech
technology and to the development of effective speech applications using the
Speech API. An understanding of the Java programming language and the c
Java APIs is assumed. An understanding of speech technology is not require

About this Guide

Part 1

The first three chapters of this guide provide an introduction to speech techno
and to the Java Speech API.

Chapter 1, Introduction: This chapter introduces the Java Speech API,
reviews the design goals for JSAPI, discusses the types of applications that JS
enables and discusses the requirements for using JSAPI.

Chapter 2, Speech Technology: This chapter is a more detailed introduction
to speech technology systems with a greater focus on technical issues. It desc
both the capabilities and limitations of speech recognition and speech synthe
systems. An understanding of these issues is important to developers who u
speech technology in their applications.

Chapter 3, Designing Effective Speech Applications: This chapter is an
introduction to the art and the science of effective user interface design with
speech technology. As with design of graphical interfaces using AWT or the J
Foundation Classes, good user interface design with speech is important to en
that applications are usable. Chapter 3 also discusses how some of the limita
of speech technology need to be considered in the design of an effective spe
enabled user interface.
xiii

Java Speech Application Programming Interface

xiv

va
ide

 basic

f
ech

s also
e
ing

en to
d 6.

put
es the

I
ents

PIs
Part 2

The next three chapters of this guide describe in technical detail the three Ja
software packages that comprise the Java Speech API. These chapters prov
both introductory and advanced descriptions of programming with the Java
Speech API. Where possible, code examples are included to illustrate the
principles of speech application development.

Chapter 4, Speech Engines: javax.speech: introduces the root package of
the Java Speech API. The classes and interfaces of the root package define
speech engine functionality.

Chapter 5, Speech Synthesis: javax.speech.synthesis:introduces the package
that supports speech synthesis capabilities. A speech synthesizer is a type o
speech engine. Thus, the speech synthesis package inherits the general spe
engine behavior from thejavax.speech package but extends it with the ability to
produce speech output.

Chapter 6, Speech Recognition: javax.speech.recognition: introduces the
package that supports speech recognition capabilities. A speech recognizer i
a type of speech engine, so the speech recognition package also extends th
general speech engine behavior, in this case, with the ability to convert incom
audio to text.

Getting Started

Newcomers to speech technology are encouraged to read Chapter 2 and th
consider the “Hello World!” code examples at the start of both Chapters 5 an
These code examples illustrate the basics of speech synthesis and speech
recognition programming.

All developers are encouraged to read Chapter 3 on Designing Effective
Speech Applications.” Appropriate and effective use of speech input and out
makes the development of speech applications easier and faster and improv
experience that application users will have.

Finally, as with all Java APIs, the Javadoc for the three Java Speech AP
packages is the master description of the functionality of the API and docum
every API capability.

Web Resources

To obtain the latest information on the Java Speech API other Java Media A
visit:

http://java.sun.com/products/java-media/speech/index.html

 API,

I

Related Reading

This document describes the software interface of the Java Speech API. For
information on related topics, refer to the following:

♦ Java Speech Markup Language Specification

♦ Java Speech Grammar Format Specification

Both documents are available from the Java Speech API home page:

http://java.sun.com/products/java-media/speech/index.html

Mailing Lists

Discussion lists have been set up for everyone interested in the Java Speech
the Java Speech Grammar Format specification, the Java Synthesis Markup
Language, and related technologies. Thejavaspeech-announce mailing list
carries important announcements about releases and updates. The
javaspeech-interest mailing list is for open discussion of the Java Speech AP
and the associated specifications.

To subscribe to thejavaspeech-announce list or thejavaspeech-interest

list, send email with“subscribe javaspeech-announce” or
“subscribe javaspeech-interest” or both in the message body to:

javamedia-request@sun.com

The javaspeech-announce mailing list is moderated. It is not possible to send
email to that list. To send messages to the interest list, send email to:

javaspeech-interest@sun.com

To unsubscribe from thejavaspeech-announce list or thejavaspeech-interest

list, send email with“unsubscribe javaspeech-announce” or
“unsubscribe javaspeech-interest” or both in the message body to:

javamedia-request@sun.com

Comments and proposals for enhancements should be sent to:

javaspeech-comments@sun.com
xv

Java Speech Application Programming Interface

xvi
Revision History

Version 1.0: October 26, 1998

Version 0.7: May, 1998. Revised public beta release.

Version 0.6: February 98. Initial public beta release

logy
nies

ul for
Contributions

Sun Microsystems, Inc. has worked in partnership with leading speech techno
companies to define the specification of the Java Speech API. These compa
brought decades of research on speech technology to the project as well as
experience in the development and use of speech applications. Sun is gratef
the contributions of:

♦ Apple Computer, Inc.

♦ AT&T

♦ Dragon Systems, Inc.

♦ IBM Corporation

♦ Novell, Inc.

♦ Philips Speech Processing

♦ Texas Instruments Incorporated
xvii

xviii

C H A P T E R 1
ble

logy
f the

o
rms.

re
s are

audio
e

 of
e
he
any
le

tate-
rd
Introduction

Speech technology, once limited to the realm of science fiction, is now availa
for use in real applications. TheJava™ Speech API, developed by Sun
Microsystems in cooperation with speech technology companies, defines a
software interface that allows developers to take advantage of speech techno
for personal and enterprise computing. By leveraging the inherent strengths o
Java platform, the Java Speech API enables developers of speech-enabled
applications to incorporate more sophisticated and natural user interfaces int
Java applications and applets that can be deployed on a wide range of platfo

1.1 What is the Java Speech API?

The Java Speech API defines a standard, easy-to-use, cross-platform softwa
interface to state-of-the-art speech technology. Two core speech technologie
supported through the Java Speech API:speech recognitionandspeech synthesis.
Speech recognition provides computers with the ability to listen to spoken
language and to determine what has been said. In other words, it processes
input containing speech by converting it to text. Speech synthesis provides th
reverse process of producing synthetic speech from text generated by an
application, an applet or a user. It is often referred to astext-to-speechtechnology.

Enterprises and individuals can benefit from a wide range of applications
speech technology using the Java Speech API. For instance, interactive voic
response systems are an attractive alternative to touch-tone interfaces over t
telephone; dictation systems can be considerably faster than typed input for m
users; speech technology improves accessibility to computers for many peop
with physical limitations.

Speech interfaces give Java application developers the opportunity to
implement distinct and engaging personalities for their applications and to
differentiate their products. Java application developers will have access to s
of-the-art speech technology from leading speech companies. With a standa
1

Java Speech Application Programming Interface

2

needs

cess.
put
 the

the

re

ls for

con-

hesis

ing

ech

are
ms
API for speech, users can choose the speech products which best meet their
and their budget.

The Java Speech API was developed through an open development pro
With the active involvement of leading speech technology companies, with in
from application developers and with months of public review and comment,
specification has achieved a high degree of technical excellence. As a
specification for a rapidly evolving technology, Sun will support and enhance
Java Speech API to maintain its leading capabilities.

The Java Speech API is an extension to the Java platform. Extensions a
packages of classes written in the Java programming language (and any
associated native code) that application developers can use to extend the
functionality of the core part of the Java platform.

1.2 Design Goals for the Java Speech API

Along with the other Java Media APIs, the Java Speech API lets developers
incorporate advanced user interfaces into Java applications. The design goa
the Java Speech API included:

♦ Provide support for speech synthesizers and for both command-and-
trol and dictation speech recognizers.

♦ Provide a robust cross-platform, cross-vendor interface to speech synt
and speech recognition.

♦ Enable access to state-of-the-art speech technology.

♦ Support integration with other capabilities of the Java platform, includ
the suite of Java Media APIs.

♦ Be simple, compact and easy to learn.

1.3 Speech-Enabled Java Applications

The existing capabilities of the Java platform make it attractive for the
development of a wide range of applications. With the addition of the Java Spe
API, Java application developers can extend and complement existing user
interfaces with speech input and output. For existing developers of speech
applications, the Java platform now offers an attractive alternative with:

♦ Portability: the Java programming language, APIs and virtual machine
available for a wide variety of hardware platforms and operating syste

Introduction

s
en-

n

aces
ack,
e

can

f the

sign
vent

y
ilities

an
nt

ech
are
new
nput
ent
and are supported by major web browsers.

♦ Powerful and compact environment:the Java platform provides developer
with a powerful, object-oriented, garbage collected language which
ables rapid development and improved reliability.

♦ Network aware and secure:from its inception, the Java platform has bee
network aware and has included robust security.

1.3.1 Speech and other Java APIs

The Java Speech API is one of the Java Media APIs, a suite of software interf
that provide cross-platform access to audio, video and other multimedia playb
2D and 3D graphics, animation, telephony, advanced imaging, and more. Th
Java Speech API, in combination with the other Java Media APIs, allows
developers to enrich Java applications and applets with rich media and
communication capabilities that meet the expectations of today’s users, and
enhance person-to-person communication.

The Java Speech API leverages the capabilities of other Java APIs. The
Internationalization features of the Java programming language plus the use o
Unicode character set simplify the development of multi-lingual speech
applications. The classes and interfaces of the Java Speech API follow the de
patterns of JavaBeans™. Finally, Java Speech API events integrate with the e
mechanisms of AWT, JavaBeans and the Java Foundation Classes (JFC).

1.4 Applications of Speech Technology

Speech technology is becoming increasingly important in both personal and
enterprise computing as it is used to improve existing user interfaces and to
support new means of human interaction with computers. Speech technolog
allows hands-free use of computers and supports access to computing capab
away from the desk and over the telephone. Speech recognition and speech
synthesis can improve computer accessibility for users with disabilities and c
reduce the risk of repetitive strain injury and other problems caused by curre
interfaces.

The following sections describe some current and emerging uses of spe
technology. The lists of uses are far from exhaustive. New speech products
being introduced on a weekly basis and speech technology is rapidly entering
technical domains and new markets. The coming years should see speech i
and output truly revolutionize the way people interact with computers and pres
new and unforeseen uses of speech technology.
3

Java Speech Application Programming Interface

4

sing
ove
ng an
ll

are
any
mber

n

tion

st

thesis
d it

n
d
nt
ed
e space

ys
For
r
s a
er
tput
1.4.1 Desktop

Speech technology can augment traditional graphical user interfaces. At its
simplest, it can be used to provide audible prompts with spoken“Yes/No/OK”
responses that do not distract the user’s focus. But increasingly, complex
commands are enabling rapid access to features that have traditionally been
buried in sub-menus and dialogs. For example, the command“Use 12-point,
bold, Helvetica font” replaces multiple menu selections and mouse clicks.

Drawing, CAD and other hands-busy applications can be enhanced by u
speech commands in combination with mouse and keyboard actions to impr
the speed at which users can manipulate objects. For example, while draggi
object, a speech command could be used to change its color and line type a
without moving the pointer to the menu-bar or a tool palette.

Natural language commands can provide improvements in efficiency but
increasingly being used in desktop environments to enhance usability. For m
users it’s easier and more natural to produce spoken commands than to reme
the location of functions in menus and dialog boxes. Speech technology is
unlikely to make existing user interfaces redundant any time soon, but spoke
commands provide an elegant complement to existing interfaces.

Speech dictation systems are now affordable and widely available. Dicta
systems can provide typing rates exceeding 100 words per minute and word
accuracy over 95%. These rates substantially exceed the typing ability of mo
people.

Speech synthesis can enhance applications in many ways. Speech syn
of text in a word processor is a reliable aid to proof-reading, as many users fin
easier to detect grammatical and stylistic problems when listening rather tha
reading. Speech synthesis can provide background notification of events an
status changes, such as printer activity, without requiring a user to lose curre
context. Applications which currently include speech output using pre-record
messages can be enhanced by using speech synthesis to reduce the storag
by a factor of up to 1000, and by removing the restriction that the output
sentences be defined in advance.

In many situations where keyboard input is impractical and visual displa
are restricted, speech may provide the only way to interact with a computer.
example, surgeons and other medical staff can use speech dictation to ente
reports when their hands are busy and when touching a keyboard represent
hygiene risk. In vehicle and airline maintenance, warehousing and many oth
hands-busy tasks, speech interfaces can provide practical data input and ou
and can enable computer-based training.

Introduction

alls
ech
re
 can

 and
top

 by

tiple
upon

ges

dded
ices

ing
h

ments
ned to
nd

d as
ices to

ts to
1.4.2 Telephony Systems

Speech technology is being used by many enterprises to handle customer c
and internal requests for access to information, resources and services. Spe
recognition over the telephone provides a more natural and substantially mo
efficient interface than touch-tone systems. For example, speech recognition
“flatten out” the deep menu structures used in touch tone systems.

Systems are already available for telephone access to email, calendars
other computing facilities that have previously been available only on the desk
or with special equipment. Such systems allow convenient computer access
telephones in hotels, airports and airplanes.

Universal messaging systems can provide a single point of access to mul
media such as voice-mail, email, fax and pager messages. Such systems rely
speech synthesis to read out messages over the telephone. For example:“Do I
have any email?” “Yes, you have 7 messages including 2 high priority messa
from the production manager.” “Please read me the mail from the production
manager.” “Email arrived at 12:30pm...”.

1.4.3 Personal and Embedded Devices

Speech technology is being integrated into a range of small-scale and embe
computing devices to enhance their usability and reduce their size. Such dev
include Personal Digital Assistants (PDAs), telephone handsets, toys and
consumer product controllers.

Speech technology is particularly compelling for such devices and is be
used increasingly as the computer power of these devices increases. Speec
recognition through a microphone can replace input through a much larger
keyboard. A speaker for speech synthesis output is also smaller than most
graphical displays.

PersonalJava™ and EmbeddedJava™ are the Java application environ
targeted at these same devices. PersonalJava and EmbeddedJava are desig
operate on constrained devices with limited computing power and memory, a
with more constrained input and output mechanisms for the user interface.

As an extension to the Java platform, the Java Speech API can be provide
an extension to PersonalJava and EmbeddedJava devices, allowing the dev
communicate with users without the need for keyboards or other large
peripherals.

1.4.4 Speech and the Internet

The Java Speech API allows applets transmitted over the Internet or intrane
access speech capabilities on the user’s machine. This provides the ability to
5

Java Speech Application Programming Interface

6

ing.
lets
hesis
, and
oss

to
r

pace.

ate-of-
ies
esis

ed
Ap-

pri-
are

peech

iz-
efit
e-

l-
f si-
ech

ware
a spe-
enhance World Wide Web sites with speech and support new ways of brows
Speech recognition can be used to control browsers, fill out forms, control app
and enhance the WWW/Internet experience in many other ways. Speech synt
can be used to bring web pages alive, inform users of the progress of applets
dramatically improve browsing time by reducing the amount of audio sent acr
the Internet.

The Java Speech API utilizes the security features of the Java platform
ensure that applets cannot maliciously use system resources on a client. Fo
example, explicit permission is required for an applet to access a dictation
recognizer since otherwise a recognizer could be used to bug a user’s works

1.5 Implementations

The Java Speech API can enable access to the most important and useful st
the-art speech technologies. Sun is working with speech technology compan
on implementations of the API. Already speech recognition and speech synth
are available through the Java Speech API on multiple computing platforms.

The following are the primary mechanisms for implementing the API.

♦ Native implementations:most existing speech technology is implement
in C and C++ and accessed through platform-specific APIs such as the
ple Speech Managers and Microsoft’s Speech API (SAPI), or via pro
etary vendor APIs. Using the Java Native Interface (JNI) and Java softw
wrappers, speech vendors can (and have) implemented the Java S
API on top of their existing speech software.

♦ Java software implementations:Speech synthesizers and speech recogn
ers can be written in Java software. These implementations will ben
from the portability of the Java platform and from the continuing improv
ments in the execution speed of Java virtual machines.

♦ Telephony implementations:Enterprise telephony applications are typica
ly implemented with dedicated hardware to support a large number o
multaneous connections, for example, using DSP cards. Spe
recognition and speech synthesis capabilities on this dedicated hard
can be wrapped with Java software to support the Java Speech API as
cial type of native implementation.

Introduction

d

 vary

is

ech
ly.
ory

og-
sold
tter

ugh
ensi-
ticu-
nce,
d in
1.6 Requirements

To use the Java Speech API, a user must have certain minimum software an
hardware available. The following is a broad sample of requirements. The
individual requirements of speech synthesizers and speech recognizers can
greatly and users should check product requirements closely.

♦ Speech software:A JSAPI-compliant speech recognizer or synthesizer
required.

♦ System requirements:most desktop speech recognizers and some spe
synthesizers require relatively powerful computers to run effective
Check the minimum and recommended requirements for CPU, mem
and disk space when purchasing a speech product.

♦ Audio Hardware:Speech synthesizers require audio output. Speech rec
nizers require audio input. Most desktop and laptop computers now
have satisfactory audio support. Most dictation systems perform be
with good quality sound cards.

♦ Microphone:Desktop speech recognition systems get audio input thro
a microphone. Some recognizers, especially dictation systems, are s
tive to the microphone and most recognition products recommend par
lar microphones. Headset microphones usually provide best performa
especially in noisy environments. Table-top microphones can be use
some environments for some applications.
7

Java Speech Application Programming Interface

8

C H A P T E R 2

y

peak

 the
e
eet

is
 for

y is

t can

hesis

s,
Speech Technolog

As an emerging technology, not all developers are familiar with speech
technology. While the basic functions of both speech synthesis and speech
recognition take only minutes to understand (after all, most people learn to s
and listen by age two), there are subtle and powerful capabilities provided by
computerized speech that developers will want to understand and utilize.

Despite very substantial investment in speech technology research over
last 40 years, speech synthesis and speech recognition technologies still hav
significant limitations. Most importantly, speech technology does not always m
the high expectations of users familiar with natural human-to-human speech
communication. Understanding the limitations — as well as the strengths —
important for effective use of speech input and output in a user interface and
understanding some of the advanced features of the Java Speech API.

An understanding of the capabilities and limitations of speech technolog
also important for developers in making decisions about whether a particular
application will benefit from the use of speech input and output. Chapter 3
expands on this issue by considering when and where speech input and outpu
enhance human-to-computer communication.

2.1 Speech Synthesis

A speech synthesizer converts written text into spoken language. Speech synt
is also referred to astext-to-speech (TTS) conversion.

The major steps in producing speech from text are as follows:

♦ Structure analysis: process the input text to determine where paragraph
sentences and other structures start and end. For most languages,
punctuation and formatting data are used in this stage.

♦ Text pre-processing: analyze the input text for special constructs of the
9

Java Speech Application Programming Interface

10

s and
orms

mes
ken
of
emes

s to
f
en.
g,
rrect

re
any
sody

 and
tion
language. In English, special treatment is required for abbreviations,
acronyms, dates, times, numbers, currency amounts, email addresse
many other forms. Other languages need special processing for these f
and most languages have other specialized requirements.

The result of these first two steps is a spoken form of the written text. The
following are examples of the difference between written and spoken text.

St. Mathews hospital is on Main St.
-> “Saint Mathews hospital is on Main street”

Add $20 to account 55374.
-> “Add twenty dollars to account five five, three seven four.”

Leave at 5:30 on 5/15/99.
-> “Leave at five thirty on May fifteenth nineteen ninety nine.”

The remaining steps convert the spoken text to speech.

♦ Text-to-phoneme conversion: convert each word tophonemes. A phoneme
is a basic unit of sound in a language. US English has around 45 phone
including the consonant and vowel sounds. For example, “times” is spo
as four phonemes “t ay m s”. Different languages have different sets
sounds (different phonemes). For example, Japanese has fewer phon
including sounds not found in English, such as “ts” in “tsunami”.

♦ Prosody analysis: process the sentence structure, words and phoneme
determine appropriateprosodyfor the sentence. Prosody includes many o
the features of speech other than the sounds of the words being spok
This includes the pitch (or melody), the timing (or rhythm), the pausin
the speaking rate, the emphasis on words and many other features. Co
prosody is important for making speech sound right and for correctly
conveying the meaning of a sentence.

♦ Waveform production: finally, the phonemes and prosody information a
used to produce the audio waveform for each sentence. There are m
ways in which the speech can be produced from the phoneme and pro
information. Most current systems do it in one of two ways:concatenation
of chunks of recorded human speech, orformant synthesis using signal
processing techniques based on knowledge of how phonemes sound
how prosody affects those phonemes. The details of waveform genera
are not typically important to application developers.

Speech Technology

ed
 by

f a
lling

 to a
 the

or

and

h
ing

ms.

te

of

e

or a
e, is

ght”

”

2.1.1 Speech Synthesis Limitations

Speech synthesizers can make errors in any of the processing steps describ
above. Human ears are well-tuned to detecting these errors, so careful work
developers can minimize errors and improve the speech output quality.

The Java Speech API and theJava Speech Markup Language (JSML)
provide many ways for an application developer to improve the output quality o
speech synthesizer. Chapter 5 describes programming techniques for contro
a synthesis through the Java Speech API.

The Java Synthesis Markup Language defines how to markup text input
speech synthesizer with information that enables the synthesizer to enhance
speech output quality. It is described in detail in the Java Synthesis Markup
Language Specification. In brief, some of its features which enhance quality
include:

♦ Ability to mark the start and end of paragraphs and sentences.

♦ Ability to specify pronunciations for any word, acronym, abbreviation
other special text representation.

♦ Explicit control of pauses, boundaries, emphasis, pitch, speaking rate
loudness to improve the output prosody.

These features allow a developer or user to override the behavior of a speec
synthesizer to correct most of the potential errors described above. The follow
is a description of some of the sources of errors and how to minimize proble

♦ Structure analysis: punctuation and formatting do not consistently indica
where paragraphs, sentences and other structures start and end. For
example, the final period in “U.S.A.” might be misinterpreted as the end
a sentence.
Try: Explicitly marking paragraphs and sentences in JSML reduces th
number of structural analysis errors.

♦ Text pre-processing: it is not possible for a synthesizer to know all the
abbreviations and acronyms of a language. It is not always possible f
synthesizer to determine how to process dates and times, for exampl
“8/5” the “eighth of May” of the “fifth of August”? Should “1998” be read
as “nineteen ninety eight” (as a year), as “one thousand and ninety ei
(a regular number) or as “one nine nine eight” (part of a telephone
number). Special constructs such as email addresses are particularly
difficult to interpret, for example, should a synthesizer say
“tedwards@cat.com” as “Ted Wards”, as “T. Edwards”, as “Cat dot com
or as “C. A. T. dot com”?
11

Java Speech Application Programming Interface

12

r,
r
e

t
ires

an

 text.

s
ich
. In
ions
tand

e.

its
t

ech

an
er

sis
n
sers,
Try: TheSAYAS element of JSML supports substitutions of text for
abbreviations, acronyms and other idiosyncratic textual forms.

♦ Text-to-phoneme conversion: most synthesizers can pronounce tens of
thousands or even hundreds of thousands of words correctly. Howeve
there are always new words which it must guess for (especially prope
names for people, companies, products, etc.), and words for which th
pronunciation is ambiguous (for example, “object” as “OBject” or
“obJECT”, or “row” as a line or as a fight).
Try: TheSAYAS element of JSML is used to provide phonetic
pronunciations for unusual and ambiguous words.

♦ Prosody analysis: to correctly phrase a sentence, to produce the correc
melody for a sentence, and to correctly emphasize words ideally requ
an understanding of the meaning of languages that computers do not
possess. Instead, speech synthesizers must try to guess what a hum
might produce and at times, the guess is artificial and unnatural.
Try: TheEMP, BREAK andPROS elements of JSML can be used to indicate
preferred emphasis, pausing, and prosodic rendering respectively for

♦ Waveform production: without lips, mouths, lungs and the other apparatu
of human speech, a speech synthesizer will often produce speech wh
sounds artificial, mechanical or otherwise different from human speech
some circumstances a robotic sound is desirable, but for most applicat
speech that sounds as close to human as possible is easier to unders
and easier to listen to for long periods of time.
Try: The Java Speech API and JSML do not directly address this issu

2.1.2 Speech Synthesis Assessment

The major feature of a speech synthesizer that affects its understandability,
acceptance by users and its usefulness to application developers is its outpu
quality. Knowing how to evaluate speech synthesis quality and knowing the
factors that influence the output quality are important in the deployment of spe
synthesis.

Humans are conditioned by a lifetime of listening and speaking. The hum
ear (and brain) are very sensitive to small changes in speech quality. A listen
can detect changes that might indicate a user’s emotional state, an accent, a
speech problem or many other factors. The quality of current speech synthe
remains below that of human speech, so listeners must make more effort tha
normal to understand synthesized speech and must ignore errors. For new u
listening to a speech synthesizer for extended periods can be tiring and
unsatisfactory.

Speech Technology

ty of

e
of the

re by

-
 a
s less

xt or
g the

mar
ten

he

he
The two key factors a developer must consider when assessing the quali
a speech synthesizer are itsunderstandability and itsnaturalness.
Understandability is an indication of how reliably a listener will understand th
words and sentences spoken by the synthesizer. Naturalness is an indication
extent to which the synthesizer sounds like a human - a characteristic that is
desirable for most, but not all, applications.

Understandability is affected by the ability of a speech synthesizer to
perform all the processing steps described above because any error by the
synthesizer has the potential to mislead a listener. Naturalness is affected mo
the later stages of processing, particularly the processing of prosody and the
generation of the speech waveform.

Though it might seem counter-intuitive, it is possible to have an artificial
sounding voice that is highly understandable. Similarly, it is possible to have
voice that sounds natural but is not always easy to understand (though this i
common).

2.2 Speech Recognition

Speech recognition is the process of converting spoken language to written te
some similar form. The basic characteristics of a speech recognizer supportin
Java Speech API are:

♦ It is mono-lingual: it supports a single specified language.

♦ It processes a single input audio stream.

♦ It can optionally adapt to the voice of its users.

♦ Its grammars can be dynamically updated.

♦ It has a small, defined set of application-controllable properties.

The major steps of a typical speech recognizer are:

♦ Grammar design: recognition grammars define the words that may be
spoken by a user and the patterns in which they may be spoken. A gram
must be created and activated for a recognizer to know what it should lis
for in incoming audio. Grammars are described below in more detail.

♦ Signal processing: analyze the spectrum (frequency) characteristics of t
incoming audio.

♦ Phoneme recognition: compare the spectrum patterns to the patterns of t
phonemes of the language being recognized. (A brief description of
13

Java Speech Application Programming Interface

14

sion

e

uess

rolled
nd
ll

er

s a
rs are
ess.

is

s
ults

in

iled

other

nizer
 the
phonemes is provided in the “Speech Synthesis” section in the discus
of text-to-phoneme conversion.)

♦ Word recognition: compare the sequence of likely phonemes against th
words and patterns of words specified by the active grammars.

♦ Result generation: provide the application with information about the
words the recognizer has detected in the incoming audio. The result
information is always provided once recognition of a single utterance
(often a sentence) is complete, but may also be provided during the
recognition process. The result always indicates the recognizer’s best g
of what a user said, but may also indicate alternative guesses.

Most of the processes of a speech recognizer are automatic and are not cont
by the application developer. For instance, microphone placement, backgrou
noise, sound card quality, system training, CPU power and speaker accent a
affect recognition performance but are beyond an application’s control.

The primary way in which an application controls the activity of a recogniz
is through control of itsgrammars.

A grammar is an object in the Java Speech API which indicates what word
user is expected to say and in what patterns those words may occur. Gramma
important to speech recognizers because they constrain the recognition proc
These constraints makes recognition faster and more accurate because the
recognizer does not have to check for bizarre sentences, for example, “pink
recognizer speech my”.

The Java Speech API supports two basic grammar types:rule grammarsand
dictation grammars. These grammar types differ in the way in which application
set up the grammars, the types of sentences they allow, the way in which res
are provided, the amount of computational resources required, and the way
which they are effectively used in application design. The grammar types are
describe in more detail below. The programmatic control of grammars is deta
in Chapter 6.

Other speech recognizer controls available to a Java application include
pausing and resuming the recognition process, direction of result events and
events relating to the recognition processes, and control of the recognizer’s
vocabulary.

2.2.1 Rule Grammars

In a rule-based speech recognition system, an application provides the recog
with rules that define what the user is expected to say. These rules constrain
recognition process. Careful design of the rules, combined with careful user
interface design, will produce rules that allow users reasonable freedom of

Speech Technology

t rule

in
ava

n are

at it

w”

or of
y

hem
er
gher

d
 on
ny
expression while still limiting the range of things that may be said so that the
recognition process is as fast and accurate as possible.

Any speech recognizer that supports the Java Speech API must suppor
grammars.

The following is an example of a simple rule grammar. It is represented
the Java Speech Grammar Format (JSGF) which is defined in detail in the J
Speech Grammar Format Specification.

#JSGF V1.0;
// Define the grammar name
grammar SimpleCommands;
// Define the rules
public <Command> = [<Polite>] <Action> <Object> (and <Object>)*;
<Action> = open | close | delete;
<Object> = the window | the file;
<Polite> = please;

Rule names are surrounded by angle brackets. Words that may be spoke
written as plain text. This grammar defines onepublic rule,<Command>, that may
be spoken by users. This rule is a combination of three sub-rules,<Action> ,
<Object> and<Polite> . The square brackets around the reference to<Polite>

mean that it is optional. The parentheses around “and <Object> ” group the word
and the rule reference together. The asterisk following the group indicates th
may occur zero or more times.

The grammar allows a user to say commands such as “Open the windo
and “Please close the window and the file”.

The Java Speech Grammar Format Specification defines the full behavi
rule grammars and discusses how complex grammars can be constructed b
combining smaller grammars. With JSGF application developers can reuse
grammars, can provide Javadoc-style documentation and can use the other
facilities that enable deployment of advanced speech systems.

2.2.2 Dictation Grammars

Dictation grammars impose fewer restrictions on what can be said, making t
closer to providing the ideal of free-form speech input. The cost of this great
freedom is that they require more substantial computing resources, require hi
quality audio input and tend to make more errors.

A dictation grammar is typically larger and more complex than rule-base
grammars. Dictation grammars are typically developed by statistical training
large collections of written text. Fortunately, developers don’t need to know a
15

Java Speech Application Programming Interface

16

h the
 to
hen

a

iffer.
n
riate

t it
he
mars.

ally
 lead
rrors

itions

d

y.

y.

y.

.

of this because a speech recognizer that supports a dictation grammar throug
Java Speech API has a built-in dictation grammar. An application that needs
use that dictation grammar simply requests a reference to it and enables it w
the user might say something matching the dictation grammar.

Dictation grammars may be optimized for particular kinds of text. Often
dictation recognizer may be available with dictation grammars for general
purpose text, for legal text, or for various types of medical reporting. In these
different domains, different words are used, and the patterns of words also d

A dictation recognizer in the Java Speech API supports a single dictatio
grammar for a specific domain. The application and/or user selects an approp
dictation grammar when the dictation recognizer is selected and created.

2.2.3 Limitations of Speech Recognition

The two primary limitations of current speech recognition technology are tha
does not yet transcribe free-form speech input, and that it makes mistakes. T
previous sections discussed how speech recognizers are constrained by gram
This section considers the issue of recognition errors.

Speech recognizers make mistakes. So do people. But recognizers usu
make more. Understanding why recognizers make mistakes, the factors that
to these mistakes, and how to train users of speech recognition to minimize e
are all important to speech application developers.

The reliability of a speech recognizer is most often defined by itsrecognition
accuracy. Accuracy is usually given as a percentage and is most often the
percentage of correctly recognized words. Because the percentage can be
measured differently and depends greatly upon the task and the testing cond
it is not always possible to compare recognizers simply by their percentage
recognition accuracy. A developer must also consider the seriousness of
recognition errors: misrecognition of a bank account number or the comman
“delete all files” may have serious consequences.

The following is a list of major factors that influence recognition accurac

♦ Recognition accuracy is usually higher in a quiet environment.

♦ Higher-quality microphones and audio hardware can improve accurac

♦ Users that speak clearly (but naturally) usually achieve better accurac

♦ Users with accents or atypical voices may get lower accuracy.

♦ Applications with simpler grammars typically get better accuracy.

♦ Applications with lessconfusablegrammars typically get better accuracy
Similar sounding words are harder to distinguish.

Speech Technology

ading
ably
ry
od
erful

r user

or a

ary

re
ever,

e of
ed to
rs

user

was
ful
ent

f

While these factors can all be significant, their impact can vary between
recognizers because each speech recognizer optimizes its performance by tr
off various criteria. For example, some recognizers are designed to work reli
in high-noise environments (e.g. factories and mines) but are restricted to ve
simple grammars. Dictation systems have complex grammars but require go
microphones, quieter environments, clearer speech from users and more pow
computers. Some recognizers adapt their process to the voice of a particula
to improve accuracy, but may require training by the user. Thus, users and
application developers often benefit by selecting an appropriate recognizer f
specific task and environment.

Only some of these factors can be controlled programmatically. The prim
application-controlled factor that influences recognition accuracy is grammar
complexity. Recognizer performance can degrade as grammars become mo
complex, and can degrade as more grammars are active simultaneously. How
making a user interface more natural and usable sometimes requires the us
more complex and flexible grammars. Thus, application developers often ne
consider a trade-off between increased usability with more complex gramma
and the decreased recognition accuracy this might cause. These issues are
discussed in more detail in Chapter 3 which discusses the effective design of
interfaces with speech technology.

Most recognition errors fall into the following categories:

♦ Rejection: the user speaks but the recognizer cannot understand what
said. The outcome is that the recognizer does not produce a success
recognition result. In the Java Speech API, applications receive an ev
that indicates the rejection of a result.

♦ Misrecognition: therecognizer returns a result with words that are
different from what the user spoke. This is the most common type o
recognition error.

♦ Misfire: the user does not speak but the recognizer returns a result.
17

Java Speech Application Programming Interface

18

 Java

sible
st

.

,

Table 2-1 lists some of the common causes of the three types of recognition
errors.

Chapter 6 describes in detail the use of speech recognition through the
Speech API. Ways of improving recognition accuracy and reliability are
discussed further. Chapter 3 looks at how developers should account for pos
recognition errors in application design to make the user interface more robu
and predictable.

Table 2-1 Speech recognition errors and possible causes

Problem Cause

Rejection or
Misrecognition

User speaks one or more words not in the vocabulary

User’s sentence does not match any active grammar.

User speaks before system is ready to listen.

Words in active vocabulary sound alike and are confused
(e.g., “too”, “two”).

User pauses too long in the middle of a sentence.

User speaks with a disfluency (e.g., restarts sentence
stumbles, “umm”, “ah”).

User’s voice trails off at the end of the sentence.

User has an accent or cold.

User's voice is substantially different from stored
“voice models” (often a problem with children).

Computer’s audio is not configured properly.

User’s microphone is not properly adjusted.

Misfire

Non-speech sound (e.g., cough, laugh).

Background speech triggers recognition.

User is talking with another person.

C H A P T E R 3

h

ter.
and

is
life
y

ed in

e.
ow

, and

r or
dium

r
les
Designing Effective Speec
Applications

Speech applications are like conversations between the user and the compu
Conversations are characterized by turn-taking, shifts in initiative, and verbal
non-verbal feedback to indicate understanding.

A major benefit of incorporating speech in an application is that speech
natural: people find speaking easy, conversation is a skill most master early in
and then practice frequently. At a deeper level, naturalness refers to the man
subtle ways people cooperate with one another to ensure successful
communication.

An effective speech application is one that simulates some of these core
aspects of human-human conversation. Since language use is deeply ingrain
human behavior, successful speech interfaces should be based on an
understanding of the different ways that people use language to communicat
Speech applications should adopt language conventions that help people kn
what they should say next and that avoid conversational patterns that violate
standards of polite, cooperative behavior.

This chapter discusses when a speech interface is and is not appropriate
then provides some concrete design ideas for creating effective speech
applications that adhere to conversational conventions.

3.1 When to Use Speech

A crucial factor in determining the success of a speech application is whethe
not there is a clear benefit to using speech. Since speech is such a natural me
for communication, users’ expectations of a speech application tend to be
extremely high. This means speech is best used when the need is clear — fo
example, when the user’s hands and eyes are busy — or when speech enab
19

Java Speech Application Programming Interface

20

l or an

ch
call
are

s or

 report

kes

bles
t are
something that cannot otherwise be done, such as accessing electronic mai
on-line calendar over the telephone.

Speech applications are most successful when users are motivated to
cooperate. For example, telephone companies have successfully used spee
recognition to automate collect calls. People making a collect call want their
to go through, so they answer prompts carefully. People accepting collect calls
also motivated to cooperate, since they do not want to pay for unwanted call
miss important calls from their friends and family. Automated collect calling
systems save the company money and benefit users. Telephone companies
that callers prefer talking to the computer because they are sometimes
embarrassed by their need to call collect and they feel that the computer ma
the transaction more private.

Speech is well suited to some tasks, but not for others. The following ta
list characteristics that can help you determine when speech input and outpu
appropriate choices.

Table 3-1 When is speech input appropriate?

Use When... Avoid When...

• No keyboard is available (e.g.,
over the telephone, at a kiosk, or
on a portable device).

• Task requires the user’s hands to
be occupied so they cannot use a
keyboard or mouse (e.g.,
maintenance and repair, graphics
editing).

• Commands are embedded in a
deep menu structure.

• Users are unable to type or are not
comfortable with typing.

• Users have a physical disability
(e.g., limited use of hands).

• Task requires users to talk to other
people while using the
application.

• Users work in a very noisy
environment.

• Task can be accomplished more
easily using a mouse and
keyboard.

Designing Effective Speech Applications

will
s the

der
eech
h to
ly
n
the
nt in

ons.

d
r “a

her
ech
re
d

Including speech in an application because it is a novelty means it probably
not get used. Including it because there is some compelling reason increase
likelihood for success.

3.2 Design for Speech

After you determine that speech is an appropriate interface technique, consi
how speech will be integrated into the application. Generally, a successful sp
application is designed with speech in mind. It is rarely effective to add speec
an existing graphical application or to translate a graphical application direct
into a speech-only one. Doing so is akin to translating a command-line-drive
program directly into a graphical user interface. The program may work, but
most effective graphical programs are designed with the graphical environme
mind from the outset.

Graphical applications do not translate well into speech for several reas
First, graphical applications do not always reflect the vocabulary, or even the
basic concepts, that people use whentalking to one another in the domain of the
application. Consider a calendar application, for example. Most graphical
calendar programs use an explicit visual representation of days, months, an
years. There is no concept of relative dates (e.g., “the day after Labor Day” o
week from tomorrow”) built into the interface. When people speak to each ot
about scheduling, however, they make extensive use of relative dates. A spe
interface to a calendar, whether speech-only or multi-modal, is therefore mo
likely to be effective if it allows users to speak about dates in both relative an

Table 3-2 When is speech output appropriate?

Use When... Avoid When...

• Task requires the user’s eyes to be
looking at something other than
the screen (e.g., driving,
maintenance and repair).

• Situation requires grabbing users’
attention.

• Users have a physical disability
(e.g., visual impairment).

• Interface is trying to embody a
personality.

• Large quantities of information
must be presented.

• Task requires user to compare
data items.

• Information is personal or
confidential.
21

Java Speech Application Programming Interface

22

cal

ns

tive.
y.

, list
ize:

 a

e
mes
e
with

ot
user

ups

e
tead
 3
absolute terms. By basing the speech interface design exactly on the graphi
interface design, relative dates would not be included in the design, and the
usability of the calendar application would be compromised.

Information organization is another important consideration. Presentatio
that work well in the graphical environment can fail completely in the speech
environment. Reading exactly what is displayed on the screen is rarely effec
Likewise, users find it awkward to speak exactly what is printed on the displa

Consider the way in which many e-mail applications present message
headers. An inbox usually consists of a chronological, sometimes numbered
of headers containing information such as sender, subject, date, time, and s

You can scan this list and find a subject of interest or identify a message from
particular person. Imagine if someone read this information out loud to you,
exactly as printed. It would take a long time! And the day, date, time, and siz
information, which you can easily ignore in the graphical representation, beco
quite prominent. It doesn’t sound very natural, either. By the time you hear th
fifth header, you may also have forgotten that there was an earlier message
the same subject.

An effective speech interface for an e-mail application would probably n
read the date, time, and size information from the message header unless the
requests it. Better still would be an alternate organization scheme which gro
messages into categories, perhaps by subject or sender (e.g., “You have two
messages about ‘Boston rumors’” or “You have two messages from Arlene
Rexford”), so that the header list contains fewer individual items. Reading th
items in a more natural spoken form would also be helpful. For example, ins
of “Three. Hilary Binda. Change of address.” the system might say “Message
from Hilary Binda is about Change of address.”

Table 3-3 Email message information

Sender Subject Date & Time Size

Arlene Rexford Learn about Java Mon Oct 28 11:23 2K

Shari Jackson Re: Boston rumors Fri Jul 18 09:32 3K

Hilary Binda Change of address Wed Jul 16 12:59 1K

Arlene Rexford Class Openings Tue Jul 21 12:35 8K

George Fitz Re: Boston rumors Tue Jul 21 12:46 1K

Designing Effective Speech Applications

s a
r to

on

ce

ust be
ace.

re

ey
e.
rds

at

e can

tion
ech

e
,

On the speech input side, users find speaking menu commands is often
awkward and unnatural. In one e-mail program, a menu called “Move” contain
list of mail box names. Translating this interface to speech would force the use
say something like “Move. Weekly Reports.” A more natural interface would
allow the user to say “File this in my Weekly Reports folder.” The natural versi
is a little longer, but it is probably something the user could remember to say
without looking at the screen.

3.3 Challenges

Even if you design an application with speech in mind from the outset, you fa
substantial challenges before your application is robust and easy to use.
Understanding these challenges and assessing the various trade-offs that m
made during the design process will help to produce the most effective interf

3.3.1 Transience: What did you say?

Speech istransient. Once you hear it or say it, it’s gone. By contrast, graphics a
persistent. A graphical interface typically stays on the screen until the user
performs some action.

Listening to speech taxes users’ short-term memory. Because speech is
transient, users can remember only a limited number of items in a list and th
may forget important information provided at the beginning of a long sentenc
Likewise, while speaking to a dictation system, users often forget the exact wo
they have just spoken.

Users’ limited ability to remember transient information has substantial
implications for the speech interface design. In general, transience means th
speech is not a good medium for delivering large amounts of information.

The transient nature of speech can also provide benefits. Because peopl
look and listen at the same time, speech is ideal for grabbing attention or for
providing an alternate mechanism for feedback. Imagine receiving a notifica
about the arrival of an e-mail message while working on a spreadsheet. Spe
might give the user the opportunity to ask for the sender or the subject of the
message. The information can be delivered without forcing the user to switch
contexts.

3.3.2 Invisibility: What can I say?

Speech isinvisible. The lack of visibility makes it challenging to communicate th
functional boundaries of an application to the user. In a graphical application
23

Java Speech Application Programming Interface

24

ore
s

n
ead.
nd
nvey

 to
ult
to
.

t don’t

od
 are,
ded

 is
the
ance,
disk

lenge

ly
n

menus and other screen elements make most or all of the functionality of an
application visible to a user. By contrast, in a speech application it is much m
difficult to indicate to the user what actions they may perform, and what word
and phrases they must say to perform those actions.

3.3.3 Asymmetry

Speech isasymmetric. People can produce speech easily and quickly, but they
cannot listen nearly as easily and quickly. This asymmetry means people ca
speak faster than they can type, but listen much more slowly than they can r

The asymmetry has design implications for what information to speak a
how much to speak. A speech interface designer must balance the need to co
lots of instructions to users with users’ limited ability to absorb spoken
information.

3.3.4 Speech synthesis quality

Given that today’s synthesizers still do not sound entirely natural, the choice
use synthesized output, recorded output, or no speech output is often a diffic
one. Although recorded speech is much easier and more pleasant for users
listen to, it is difficult to use when the information being presented is dynamic
For example, recorded speech could not be used to read people their e-mail
messages over the telephone. Using recorded speech is best for prompts tha
change, with synthesized speech being used for dynamic text.

Mixing recorded and synthesized speech, however, is not generally a go
idea. Although users report not liking the sound of synthesized speech, they
in fact, able to adapt to the synthesizer better when it is not mixed with recor
speech. Listening is considerably easier when the voice is consistent.

As a rule of thumb, use recorded speech when all the text to be spoken
known in advance, or when it is important to convey a particular personality to
user. Use synthesized speech when the text to be spoken is not known in adv
or when storage space is limited. Recorded audio requires substantially more
space than synthesized speech.

3.3.5 Speech recognition performance

Speech recognizers are not perfect listeners. They make mistakes. A big chal
in designing speech applications, therefore, is working with imperfect speech
recognition technology. While this technology improves constantly, it is unlike
that, in the foreseeable future, it will approach the robustness of computers i
science fiction movies.

Designing Effective Speech Applications

ch
1 in

del
age,”
he
not a

n
t

tial.

nt
ely
fore,
on
ut

ers

d
to
er

on
An application designer should understand the types of errors that spee
recognizers make and the common causes of these errors. Refer to Table 2-
the previous chapter for a list of common errors and their causes.

Unfortunately, recognition errors cause the user to form an incorrect mo
of how the system works. For example, if the user says “Read the next mess
and the recognizer hears “Repeat the message,” the application will repeat t
current message, leading the user to believe that “Read the next message” is
valid way to ask for the next message. If the user then says “Next,” and the
recognizer returns a rejection error, the user now eliminates “Next” as a valid
option for moving forward. Unless there is a display that lists all the valid
commands, users cannot know if the words they have spoken should work;
therefore, if they don’t work, users assume they are invalid.

Some recognition systems adapt to users over time, but good recognitio
performance still requires cooperative users who are willing and able to adap
their speaking patterns to the needs of the recognition system. This is why
providing users with a clear motivation to make speech work for them is essen

3.3.6 Recognition: flexibility vs. accuracy

A flexible system allows users to speak the same commands in many differe
ways. The more flexibility an application provides for user input, the more lik
errors are to occur. In designing a command-and-control style interface, there
the application designer must find a balance between flexibility and recogniti
accuracy. For example, a calendar application may allow the user to ask abo
tomorrow’s appointments in ways such as:

♦ What about tomorrow?

♦ What do I have tomorrow?

♦ What’s on my calendar for tomorrow?

♦ Read me tomorrow’s schedule.

♦ Tell me about the appointments I have on my calendar tomorrow.

This may be quite natural in theory, but, if recognition performance is poor, us
will not accept the application. On the other hand, applications that provide a
small, fixed set of commands also may not be accepted, even if the comman
phrases are designed to sound natural (e.g., Lookup tomorrow). Users tend
forget the exact wording of fixed commands. What seems natural for one us
may feel awkward for another. Section 3.6, “Involving Users,” describes a
technique for collecting data from users in order to determine the most comm
25

Java Speech Application Programming Interface

26

e

 in
a
e that

the

the
actor

his

on.

ser
as
case
a

as
ways that people talk about a subject. In this way, applications can offer som
flexibility without causing recognition performance to degrade dramatically.

3.4 Design Issues for Speech-Only Applications

A speech-only system is one in which speech input and output are the only
options available to the user. Most speech-only systems operate over the
telephone.

3.4.1 Feedback & Latency

In conversations, timing is critical. People read meaning into pauses.
Unfortunately, processing delays in speech applications often cause pauses
places where they do not naturally belong. For example, users may reply to
prompt and then not hear an immediate response. This leads them to believ
they were not heard, so they speak again. This results in either missing the
application’s response when it does come (because the user is speaking at
same time) or causing a recognition error.

Giving users adequate feedback is especially important in speech-only
interfaces. Processing delays, coupled with the lack of peripheral cues to help
user determine the state of the application, make consistent feedback a key f
in achieving user satisfaction.

When designing feedback, recall that speech is a slow output channel. T
speed issue must be balanced with a user’s need to know several vital facts:

♦ Is the recognizer processing or waiting for input?

♦ Has the recognizer heard the user’s speech?

♦ If heard, was the user’s speech correctly interpreted?

Verification should be commensurate with the cost of performing an acti
Implicitly verify commands that present data andexplicitly verify commands that
destroy data or trigger actions. For example, it would be important to give the u
plenty of feedback before authorizing a large payment, while it would not be
vital to ensure that a date is correct before checking a weather forecast. In the
of the payment, the feedback should be explicit (e.g., “Do you want to make
payment of $1,000 to Boston Electric? Say yes or no.”), The feedback for the
forecast query can be implicit (e.g., “Tomorrow’s weather forecast for Boston
is....”). In this case, the word “Tomorrow” serves as feedback that the date w
correctly (or incorrectly) recognized. If correct, the interaction moves forward
with minimal wasted time.

Designing Effective Speech Applications

 with

 and
, the

ing
ion
s.

or
cel,
ose

le
the

is
ill

ant
ely

c-
ata
ords

,

r the
ple,
age.
ht be
For

.”
3.4.2 Prompting

Well designed prompts lead users smoothly through a successful interaction
a speech-only application. Many factors must be considered when designing
prompts, but the most important is assessing the trade-off between flexibility
performance. The more you constrain what the user can say to an application
less likely they are to encounter recognition errors. On the other hand, allow
users to enter information flexibly can often speed the interaction (if recognit
succeeds), feel more natural, and avoid forcing users to memorize command
Here are some tips for creating useful prompts.

♦ Useexplicit promptswhen the user input must be tightly constrained. F
example, after recording a message, the prompt might be “Say can
send, or review.” This sort of prompt directs the user to say just one of th
three keywords.

♦ Useimplicit promptswhen the application is able to accept more flexib
input. These prompts rely on conversational conventions to constrain
user input. For example, if the user says “Send mail to Bill,” and “Bill”
ambiguous, the system prompt might be “Did you mean Bill Smith or B
Jones?” Users are likely to respond with input such as “Smith” or “I me
Bill Jones.” While possible, conversational convention makes it less lik
that they would say “Bill Jones is the one I want.”

♦ When possible,taperprompts to make them shorter. Tapering can be a
complished in one of two ways. If an application is presenting a set of d
such as current quotes for a stock portfolio, drop out unnecessary w
once a pattern is established. For example:

“As of 15 minutes ago, Sun Microsystems was trading at 45 up 1/2
Motorola was at 83 up 1/8, and
IBM was at 106 down 1/4”

Tapering can also happen over time. That is, if you need to tell the use
same information more than once, make it shorter each time. For exam
you may wish to remind users about the correct way to record a mess
The first time they record a message in a session, the instructions mig
lengthy. The next time shorter and the third time just a quick reminder.
example:

“Start recording after the tone. Pause for several seconds when done
“Record after the tone, then pause.”
“Record then pause.”
27

Java Speech Application Programming Interface

28

de
th a
ap-
the
he
ag-

of a
ctive
g the
s
ccur.
se
e
 user
e

ase”
 tip

es/
 an

 and

t an
.

the
ton
 A
, I
♦ Useincremental promptsto speed interaction for expert users and provi
help for less experienced users. This technique involves starting wi
short prompt. If the user does not respond within a time-out period, the
plication prompts again with more detailed instructions. For example,
initial prompt might be: “Which service?” If the user says nothing, then t
prompt could be expanded to: “Say banking, address book, or yellow p
es.”

3.4.3 Handling Errors

How a system handles recognition errors can dramatically affect the quality
user’s experience. If either the application or the user detects an error, an effe
speech user interface should provide one or more mechanisms for correctin
error. While this seems obvious, correcting a speech input error is not alway
easy! If the user speaks a word or phrase again, the same error is likely to reo

Techniques for handling rejection errors are somewhat different than tho
for handling misrecognitions and misfires. Perhaps the most important advic
when handling rejection errors is not to repeat the same error message if the
experiences more than one rejection error in a row. Users find repetition to b
hostile. Instead, try to provideprogressive assistance. The first message might
simply be “What?” If another error occurs, then perhaps, “Sorry. Please rephr
will get the user to say something different. A third message might provide a
on how to speak, “Still no luck. Speak clearly, but don’t overemphasize.”

Another technique is to reprompt with a more explicit prompt (such as a y
no question) and switch to a more constrained grammar. If possible, provide
alternate input modality. For example, prompt the user to press a key on the
telephone pad as an alternative to speaking.

As mentioned above, misrecognitions and misfires are harder to detect,
therefore harder to handle. One good strategy is tofilter recognition results for
unlikely user input. For example, a scheduling application might assume tha
error has occurred if the user appears to want to schedule a meeting for 3am

Flexible correction mechanisms that allow a user to correct a portion of
input are helpful. For example, if the user asks for a weather forecast for Bos
for Tuesday, the system might respond “Tomorrow’s weather for Boston is...”
flexible correction mechanism would allow the user to just correct the day: “No
said Tuesday.”

Designing Effective Speech Applications

er or
e
s that
s

rs.

een

eople

user
ing
t
al

in

t

dow.

ay
zed
ny

tion.
ud.
3.5 Design Issues for Multi-Modal Applications

Multi-modal applications include other input and output modalities along with
speech. For example, speech integrated with a desktop application would be
multi-modal, as would speech augmenting the controls of a personal note tak
a radio. While many of the design issues for a multi-modal application are th
same as for a speech-only one, some specific issues are unique to application
provide users with multiple input mechanisms, particularly graphical interface
driven by keyboard and mouse.

3.5.1 Feedback & Latency

As in speech-only systems, performance delays can cause confusion for use
Fortunately, a graphic display can show the user the state of the recognizer
(processing or waiting for input) which a speech-only interface cannot. If a scr
is available, displaying the results of the recognizer makes it obvious if the
recognizer has heard and if the results were accurate.

As mentioned earlier, the transient nature of speech sometimes causes p
to forget what they just said. When dictating, particularly when dictating large
amounts of text, this problem is compounded by recognition errors. When a
looks at dictated text and sees it is different from what they recall saying, mak
a correction is not always easy since they will not necessarily remember wha
they said or even what they were thinking. Access to a recording of the origin
speech is extremely helpful in aiding users in the correction of dictated text.

The decision of whether or not to show unfinalized results is a problem
continuous dictation applications. Unfinalized results are words that the
recognizer is hypothesizing that the user has said, but for which it has not ye
committed a decision. As the user says more, these words may change.
Unfinalized text can be hidden from the user, displayed in the text stream in
reverse video (or some other highlighted fashion), or shown in a separate win
Eventually, the recognizer makes its best guess and finalizes the words. An
application designer makes a trade-off between showing users words that m
change and having a delay before the recognizer is able to provide the finali
results. Showing the unfinalized results can be confusing, but not showing a
words can lead the user to believe that the system has not heard them.

3.5.2 Prompting

Prompts in multi-modal systems can be spoken or printed. Deciding on an
appropriate strategy depends greatly on the content and context of the applica
If privacy is an issue, it is probably better not to have the computer speak out lo
29

Java Speech Application Programming Interface

30

al

er
nless

ether
han
can

r
ea
ition
rrect

ers

tion

ork
ive

e

On the other hand, even a little bit of spoken output can enable eyes-free
interaction and can provide the user with the sense of having a conversation
partner rather than speaking to an inanimate object.

With a screen available, explicit prompts usually involve providing the us
with a list of valid spoken commands. These lists can become cumbersome u
they are organized hierarchically.

Another strategy is to let users speak any text they see on the screen, wh
it is menu text or button text or field names. In applications that support more t
simple spoken commands, one strategy is to list examples of what the user
say next, rather than a complete laundry list of every possible utterance.

3.5.3 Handling Errors

Multi-modal speech systems that display recognition results make it easier fo
users to detect errors. If a rejection error occurs, no text will appear in the ar
where recognition results are displayed. If the recognizer makes a misrecogn
or misfire error, the user can see what the recognizer thinks was said and co
any errors.

Even with feedback displayed, an application should not assume that us
will always catch errors. Filtering for unexpected input is still helpful, as is
allowing the user to switch to a different input modality if recognition is not
working reliably.

3.6 Involving Users

Involving users in the design process throughout the lifecycle of a speech
application is crucial. A natural, effective interface can only be achieved by
understanding how and where and why target users will interact with the
application.

3.6.1 Natural Dialog Studies

At the very early stages of design, users can help to define application
functionality and, critical to speech interface design, provide input on how
humans carry out conversations in the domain of the application. This informa
can be collected by performing anatural dialog study, which involves asking
target users to talk with each other while working through a scenario. For
example, if you are designing a telephone-based e-mail program, you might w
with pairs of study participants. Put the participants in two separate rooms. G
one participant a telephone and a computer with an e-mail program. Give th

Designing Effective Speech Applications

ve
ll

atter
vice,

ry,

pt
s when

with

d a

g
heir

nt. As
y to
k the

o
uilt

sks
 at
other only a telephone. Have the participant with only the telephone call the
participant with the computer and ask to have his or her mail read aloud. Lea
the task open ended, but add a few guidelines such as “be sure to answer a
messages that require a response.”

In some natural dialog studies it is advantageous to include a subject m
expert. For example, if you wish to automate a telephone-based financial ser
study participants might call up and speak with an expert customer service
representative from the financial service company.

Natural dialog studies are an effective technique for collecting vocabula
establishing commonly used grammatical patterns, and providing ideas for
prompt and feedback design. When a subject matter expert is involved, prom
and feedback design can be based on phrases and responses the expert use
speaking with customers.

In general, natural dialog studies are quick and inexpensive. It is not
necessary to include large numbers of participants.

3.6.2 Wizard-of-Oz Studies

Once a preliminary application design is complete, but before the speech
application is implemented, awizard-of-oz studycan help test and refine the
interface. In these studies, a humanwizard — usually using software tools —
simulates the speech interface. Major usability problems are often uncovered
these types of simulations. (The term “Wizard of Oz” comes from the classic
movie in which the wizard controls an impressive display while hidden behin
curtain.)

Continuing the e-mail example, a wizard-of-oz study might involve bringin
in study participants and telling them that the computer is going to read them t
e-mail. When they call a telephone number, the human wizard answers, but
manipulates the computer so that a synthesized voice speaks to the participa
the participant asks to navigate through the mailbox, hear messages, or repl
messages, the wizard carries out the operations and has the computer spea
responses.

Since computer tools are usually necessary to carry out a convincing
simulation, wizard-of-oz studies are more time-consuming and complicated t
run than natural dialog studies. If a prototype of the final application can be b
quickly, it may be more cost-effective to move directly to a usability study.

3.6.3 Usability Studies

A usability studyassesses how well users are able to carry out the primary ta
that an application is designed to support. Conducting such a study requires
31

Java Speech Application Programming Interface

32

es

ms.
d in

ch

nts
uld

ss
put
the
nd
e
es
least a preliminary software implementation. The application need not be
complete, but some of the core functionality must be working. Usability studi
can be conducted either in a laboratory or in the field. Study participants are
typically presented with one or more tasks that they must figure out how to
accomplish using the application.

With speech applications, usability studies are particularly important for
uncovering problems due to recognition errors, which are difficult to simulate
effectively in a wizard-of-oz study, but are a leading cause of usability proble
The effectiveness of an application’s error recovery functionality must be teste
the environments in which real users will use the application.

Conducting usability tests of speech applications can be a bit tricky. Two
standard techniques used in tests of graphical applications -- facilitated
discussions and speak-aloud protocols -- cannot be used effectively for spee
applications. A facilitated discussion involves having a facilitator in the room
with the study participant. Any human-human conversation, however, can
interfere with the human-computer conversation, causing recognition errors.
Speak-aloud protocols involve asking the study participant to verbalize their
thoughts as they work with the software. Obviously this is not desirable when
dealing with a speech recognizer. It is best, therefore, to have study participa
work in isolation, speaking only into a telephone or microphone. A tester sho
not intervene unless the participant becomes completely stuck. A follow-up
interview can be used to collect the participant’s comments and reactions.

3.7 Summary

An effective speech application is one that uses speech to enhance a user’s
performance of a task or enable an activity that cannot be done without it.
Designing an application with speech in mind from the outset is a key succe
factor. Basing the dialog design on a natural dialog study ensures that the in
grammar will match the phrasing actually used by people when speaking in
domain of the application. A natural dialog study also assures that prompts a
feedback follow conversational conventions that users expect in a cooperativ
interaction. Once an application is designed, wizard-of-oz and usability studi
provide opportunities to test interaction techniques and refine application
behavior based on feedback from prototypical users.

Designing Effective Speech Applications

e

ter

er

-

ys-

n

3.8 For More Information

The following sources provide additional information on speech user interfac
design.

♦ Fraser, N.M. and G.N. Gilbert, “Simulating Speech Systems,” Compu
Speech and Language, Vol. 5, Academic Press Limited, 1991.

♦ Raman, T.V.Auditory User Interfaces: Towards the Speaking Comput.
Kluwer Academic Publishers, Boston, MA, 1997.

♦ Roe, D.B. and N.M. Wilpon, editors.Voice Communication Between Hu
mans and Machines. National Academy Press, Washington D.C., 1994.

♦ Schmandt, C.Voice Communication with Computers: Conversational S
tems. Van Nostrand Reinhold, New York, 1994.

♦ Yankelovich, N, G.A. Levow, and M. Marx,“Designing SpeechActs: Is-
sues in Speech User Interfaces,”CHI '95 Conference on Human Factors i
Computing Systems, Denver, CO, May 7-11, 1995.
33

Java Speech Application Programming Interface

34

C H A P T E R 4

:

opics

re

aker
nes
Speech Engines

javax.speech

This chapter introduces thejavax.speech package.This package defines the
behavior of all speech engines (speech recognizers and synthesizers). The t
covered include:

♦ What is a Speech Engine?

♦ Properties of a Speech Engine

♦ Locating, Selecting and Creating Engines

♦ Engine States

♦ Speech Events

♦ Other Engine Functions

4.1 What is a Speech Engine?

The javax.speech package of the Java Speech API defines an abstract softwa
representation of aspeech engine. “Speech engine” is the generic term for a
system designed to deal with either speech input or speech output. Speech
synthesizers and speech recognizers are both speech engine instances. Spe
verification systems and speaker identification systems are also speech engi
but are not currently supported through the Java Speech API.

The javax.speech package defines classes and interfaces that define the
basic functionality of an engine. Thejavax.speech.synthesis package and
35

Java Speech Application Programming Interface

36

ity
izers.
ation
 and

 and
ting
a

.g,

ts.

gine
 are

the
ate
s are
n

ts
tion
 a

le
javax.speech.recognition package extend and augment the basic functional
to define the specific capabilities of speech synthesizers and speech recogn

The Java Speech API makes only one assumption about the implement
of a JSAPI engine: that it provides a true implementation of the Java classes
interfaces defined by the API. In supporting those classes and interfaces, an
engine may completely software-based or may be a combination of software
hardware. The engine may be local to the client computer or remotely opera
on a server. The engine may be written entirely as Java software or may be
combination of Java software and native code.

The basic processes for using a speech engine in an application are as
follows.

1. Identify the application’s functional requirements for an engine (e
language or dictation capability).

2. Locate and create an engine that meets those functional requiremen

3. Allocate the resources for the engine.

4. Set up the engine.

5. Begin operation of the engine - technically, resume it.

6. Use the engine

7. Deallocate the resources of the engine.

Steps 4 and 6 in this process operate differently for the two types of speech en
- recognizer or synthesizer. The other steps apply to all speech engines and
described in the remainder of this chapter.

The “Hello World!” code example for speech synthesis (see page 58) and
“Hello World!” code example for speech recognition (see page 72) both illustr
the 7 steps described above. They also show that simple speech application
simple to write with the Java Speech API - writing your first speech applicatio
should not be too hard.

4.2 Properties of a Speech Engine

Applications are responsible for determining their functional requiremen
for a speech synthesizer and/or speech recognizer. For example, an applica
might determine that it needs a dictation recognizer for the local language or
speech synthesizer for Korean with a female voice. Applications are also
responsible for determining behavior when there is no speech engine availab

Speech Engines: javax.speech

ch

tures

d by

fined

ed for
de of
d or

-1.

.,

y

,

with the required features. Based on specific functional requirements, a spee
engine can be selected, created, and started. This section explains how the
features of a speech engine are used in engine selection, and how those fea
are handled in Java software.

Functional requirements are handled in applications asengine selection
properties. Each installed speech synthesizer and speech recognizer is define
a set of properties. An installed engine may have one or manymodes of operation,
each defined by a unique set of properties, and encapsulated in amode descriptor
object.

The basic engine properties are defined in theEngineModeDesc class.
Additional specific properties for speech recognizers and synthesizers are de
by theRecognizerModeDesc andSynthesizerModeDesc classes that are contained
in the javax.speech.recognition andjavax.speech.synthesis packages
respectively.

In addition tomode descriptor objects provided by speech engines to
describe their capabilities, an application can create its own mode descriptor
objects to indicate its functional requirements. The same Java classes are us
both purposes. An engine-provided mode descriptor describes an actual mo
operation whereas an application-defined mode descriptor defines a preferre
desired mode of operation. (Locating, Selecting and Creating Engineson page 39
describes the use of a mode descriptor.)

The basic properties defined for all speech engines are listed in Table 4

Table 4-1 Basic engine selection properties: EngineModeDesc

Property Name Description

EngineName A String that defines the name of the speech engine. e.g
“Acme Dictation System”.

ModeName A String that defines a specific mode of operation of the
speech engine. e.g. “Acme Spanish Dictator”.

Locale A java.util.Locale object that indicates the language
supported by the speech engine, and optionally, a countr
and a variant. TheLocale class uses standard ISO 639 lan-
guage codes and ISO 3166 country codes. For example
Locale("fr", "ca") represents a Canadian French locale,
andLocale("en", "") represents English (the language).
37

Java Speech Application Programming Interface

38

o

The one additional property defined by theSynthesizerModeDesc class for speech
synthesizers is shown in Table 4-2.

The two additional properties defined by theRecognizerModeDesc class for
speech recognizers are shown in Table 4-3.

Running A Boolean object that isTRUEfor engines which are already
running on a platform, otherwiseFALSE. Selecting a run-
ning engine allows for sharing of resources and may als
allow for fast creation of a speech engine object.

Table 4-2 Synthesizer selection properties: SynthesizerModeDesc

Property Name Description

List of voices An array of voices that the synthesizer is capable of pro-
ducing. Each voice is defined by an instance of theVoice

class which encapsulates voice name, gender, age and
speaking style.

Table 4-3 Recognizer selection properties: RecognizerModeDesc

Property Name Description

Dictation
supported

A Boolean value indicating whether this mode of operation
of the recognizer supports a dictation grammar.

Speaker profiles A list of SpeakerProfile objects for speakers who have
trained the recognizer. Recognizers that do not support
training return anull list.

Table 4-1 Basic engine selection properties: EngineModeDesc

Property Name Description

Speech Engines: javax.speech

or

es

y is

his is

l

tic
All three mode descriptor classes,EngineModeDesc , SynthesizerModeDesc and
RecognizerModeDesc use the get and set property patterns for JavaBeans™. F
example, theLocale property has get and set methods of the form:

Locale getLocale();
void setLocale(Locale l);

Furthermore, all the properties are defined by class objects, never by primitiv
(primitives in the Java programming language includeboolean , int etc.). With
this design, anull value always represents “don’t care” and is used by
applications to indicate that a particular property is unimportant to its
functionality. For instance, anull value for the “dictation supported” property
indicates that dictation is not relevant to engine selection. Since that propert
represented by theBoolean class, a value ofTRUE indicates that dictation is
required andFALSE indicates explicitly that dictation should not be provided.

4.3 Locating, Selecting and Creating Engines

4.3.1 Default Engine Creation

The simplest way to create a speech engine is to request a default engine. T
appropriate when an application wants an engine for the default locale
(specifically for the local language) and does not have any special functiona
requirements for the engine. TheCentral class in thejavax.speech package is
used for locating and creating engines. Default engine creation uses two sta
methods of theCentral class.

Synthesizer Central.createSynthesizer(EngineModeDesc mode);
Recognizer Central.createRecognizer(EngineModeDesc mode);

The following code creates a defaultRecognizer andSynthesizer .

import javax.speech.*;
import javax.speech.synthesis.*;
import javax.speech.recognition.*;

{
// Get a synthesizer for the default locale
Synthesizer synth = Central.createSynthesizer(null);
// Get a recognizer for the default locale
39

Java Speech Application Programming Interface

40

er or
.
e

n.

then

ne

able

able
Recognizer rec = Central.createRecognizer(null);
}

For both thecreateSynthesizer andcreateRecognizer thenull parameters
indicate that the application doesn’t care about the properties of the synthesiz
recognizer. However, both creation methods have an implicit selection policy
Since the application did not specify the language of the engine, the languag
from the system’s default locale returned byjava.util.Locale.getDefault() is
used. In all cases of creating a speech engine, the Java Speech API forces
language to be considered since it is fundamental to correct engine operatio

If more than one engine supports the default language, theCentral then
gives preference to an engine that is running (running property is true), and
to an engine that supports the country defined in the default locale.

If the example above is performed in the US locale, a recognizer and
synthesizer for the English language will be returned if one is available.
Furthermore, if engines are installed for both British and US English, the US
English engine would be created.

4.3.2 Simple Engine Creation

The next easiest way to create an engine is to create a mode descriptor, defi
desired engine properties and pass the descriptor to the appropriate engine
creation method of theCentral class. When the mode descriptor passed to the
createSynthesizer or createRecognizer methods is non-null, an engine is
created which matches all of the properties defined in the descriptor. If no suit
engine is available, the methods returnnull .

The list of properties is described in theProperties of a Speech Engine
section on page 36. All the properties inEngineModeDesc and its sub-classes
RecognizerModeDesc andSynthesizerModeDesc default tonull to indicate “don’t
care”.

The following code sample shows a method that creates a dictation-cap
recognizer for the default locale. It returnsnull if no suitable engine is available.

/** Get a dictation recognizer for the default locale */
Recognizer createDictationRecognizer()
{

// Create a mode descriptor with all required features
RecognizerModeDesc required = new RecognizerModeDesc();
required.setDictationGrammarSupported(Boolean.TRUE);
return Central.createRecognizer(required);

}

Speech Engines: javax.speech

ault
to

eaders

ult
Since therequired object provided to thecreateRecognizer method does not
have a specified locale (it is not set, so it isnull) theCentral class again enforces
a policy of selecting an engine for the language specified in the system’s def
locale. TheCentral class will also give preference to running engines and then
engines that support the country defined in the default locale.

In the next example we create aSynthesizer for Spanish with a male voice.

/**
* Return a speech synthesizer for Spanish.
* Return null if no such engine is available.
*/

Synthesizer createSpanishSynthesizer()
{

// Create a mode descriptor with all required features
// "es" is the ISO 639 language code for "Spanish"
SynthesizerModeDesc required = new SynthesizerModeDesc();
required.setLocale(new Locale("es", null));
required.addVoice(new Voice(

null, GENDER_MALE, AGE_DONT_CARE, null));
return Central.createSynthesizer(required);

}

Again, the method returnsnull if no matching synthesizer is found and the
application is responsible for determining how to handle the situation.

4.3.3 Advanced Engine Selection

This section explains more advanced mechanisms for locating and creating
speech engines. Most applications do not need to use these mechanisms. R
may choose to skip this section.

In addition to performing engine creation, theCentral class can provide lists
of available recognizers and synthesizers from two static methods.

EngineList availableSynthesizers(EngineModeDesc mode);
EngineList availableRecognizers(EngineModeDesc mode);

If the mode passed to either method isnull , then all known speech
recognizers or synthesizers are returned. Unlike thecreateRecognizer and
createSynthesizer methods, there is no policy that restricts the list to the defa
locale or to running engines — in advanced selection such decisions are the
responsibility of the application.

Both availableSynthesizers andavailableRecognizers return an
EngineList object, a sub-class ofVector . If there are no available engines, or no
41

Java Speech Application Programming Interface

42

ero

so all
 to

e

de

e
ple
engines that match the properties defined in the mode descriptor, the list is z
length (notnull) and itsisEmpty method returnstrue . Otherwise the list contains
a set ofSynthesizerModeDesc or RecognizerModeDesc objects each defining a
mode of operation of an engine. These mode descriptors are engine-defined
their features are defined (non-null) and applications can test these features
refine the engine selection.

BecauseEngineList is a sub-class ofVector , each element it contains is a
JavaObject . Thus, when accessing the elements applications need to cast th
objects toEngineModeDesc , SynthesizerModeDesc or RecognizerModeDesc .

The following code shows how an application can obtain a list of speech
synthesizers with a female voice for German. All other parameters of the mo
descriptor remainnull for “don’t care” (engine name, mode name etc.).

import javax.speech.*;
import javax.speech.synthesis.*;

// Define the set of required properties in a mode descriptor
SynthesizerModeDesc required = new SynthesizerModeDesc();
required.setLocale(new Locale("de", ""));
required.addVoice(new Voice(

null, GENDER_FEMALE, AGE_DONT_CARE, null));

// Get the list of matching engine modes
EngineList list = Central.availableSynthesizers(required);

// Test whether the list is empty - any suitable synthesizers?
if (list.isEmpty()) ...

If the application specifically wanted Swiss German and a running engine it
would add the following before callingavailableSynthesizers :

required.setLocale(new Locale("de", "CH"));
required.setRunning(Boolean.TRUE);

To create a speech engine from a mode descriptor obtained through the
availableSynthesizers andavailableRecognizers methods, an application
simply calls thecreateSynthesizer or createRecognizer method. Because the
engine created the mode descriptor and because it provided values for all th
properties, it has sufficient information to create the engine directly. An exam
later in this section illustrates the creation of aRecognizer from an engine-
provided mode descriptor.

Although applications do not normally care, engine-provided mode
descriptors are special in two other ways. First, all engine-provided mode

Speech Engines: javax.speech

l
hey
ing

is

the

in

o

h

-

descriptors are required to implement theEngineCreate interface which includes
a singlecreateEngine method. TheCentral class uses this interface to perform
the creation. Second, engine-provided mode descriptors may extend the
SynthesizerModeDesc andRecognizerModeDesc classes to encapsulate additiona
features and information. Applications should not access that information if t
want to be portable, but engines will use that information when creating a runn
Synthesizer or Recognizer .

4.3.3.1 Refining an Engine List

If more than one engine matches the required properties provided to
availableSynthesizers or availableRecognizers then the list will have more
than one entry and the application must choose from amongst them.

In the simplest case, applications simply select the first in the list which
obtained using theEngineList.first method. For example:

EngineModeDesc required;
...
EngineList list = Central.availableRecognizers(required);

if (!list.isEmpty()) {
EngineModeDesc desc = (EngineModeDesc)(list.first());
Recognizer rec = Central.createRecognizer(desc);

}

More sophisticated selection algorithms may test additional properties of
available engine. For example, an application may give precedence to a
synthesizer mode that has a voice called “Victoria”.

The list manipulation methods of theEngineList class are convenience
methods for advanced engine selection.

♦ anyMatch(EngineModeDesc) returns true if at least one mode descriptor
the list has the required properties.

♦ requireMatch(EngineModeDesc) removes elements from the list that d
not match the required properties.

♦ rejectMatch(EngineModeDesc) removes elements from the list that matc
the specified properties.

♦ orderByMatch(EngineModeDesc) moves list elements that match the prop
erties to the head of the list.
43

Java Speech Application Programming Interface

44

h
ed

e

ll
The following code shows how to use these methods to obtain a Spanis
dictation recognizer with preference given to a recognizer that has been train
for a specified speaker passed as an input parameter.

import javax.speech.*;
import javax.speech.recognition.*;
import java.util.Locale;

Recognizer getSpanishDictation(String name)
{

RecognizerModeDesc required = new RecognizerModeDesc();
required.setLocale(new Locale("es", ""));
required.setDictationGrammarSupported(Boolean.TRUE);

// Get a list of Spanish dictation recognizers
EngineList list = Central.availableRecognizers(required);

if (list.isEmpty()) return null; // nothing available

// Create a description for an engine trained for the speaker
SpeakerProfile profile = new SpeakerProfile(null, name, null);
RecognizerModeDesc requireSpeaker = new RecognizerModeDesc();
requireSpeaker.addSpeakerProfile(profile);

// Prune list if any recognizers have been trained for speaker
if (list.anyMatch(requireSpeaker))

list.requireMatch(requireSpeaker);

// Now try to create the recognizer
RecognizerModeDesc first =

(RecognizerModeDesc)(list.firstElement());
try {

return Central.createRecognizer(first);
} catch (SpeechException e) {

return null;
}

}

4.4 Engine States

4.4.1 State systems

TheEngine interface includes a set of methods that define a generalized stat
system manager. Here we consider the operation of those methods. In the
following sections we consider the two core state systems implemented by a

Speech Engines: javax.speech

tem. In
. In
 are

bit-
a

ates

e

ition

gle
re

d

speech engines: the allocation state system and the pause-resume state sys
Chapter 5, the state system for synthesizer queue management is described
Chapter 6, the state systems for recognizer focus and for recognition activity
described.

A state defines a particular mode of operation of a speech engine. For
example, the output queue moves between theQUEUE_EMPTYandQUEUE_NOT_EMPTY

states. The following are the basics of state management.
ThegetEngineState method of theEngine interface returns the current

engine state. The engine state is represented by along value (64-bit value).
Specified bits of the state represent the engine being in specific states. This
wise representation is used becausean engine can be in more than one state at
time, and usually is during normal operation.

Every speech engine must be in one and only one of the four allocation st
(described in detail in Section 4.4.2). These states areDEALLOCATED, ALLOCATED,
ALLOCATING_RESOURCES andDEALLOCATING_RESOURCES. TheALLOCATED state has
multiple sub-states. AnyALLOCATED engine must be in either thePAUSED or the
RESUMED state (described in detail in Section 4.4.4).

Synthesizers have a separate sub-state system for queue status. Like th
paused/resumed state system, theQUEUE_EMPTY andQUEUE_NOT_EMPTY states are
both sub-states of theALLOCATED state. Furthermore, the queue status and the
paused/resumed status are independent.

Recognizers have three independent sub-state systems to theALLOCATEDstate
(thePAUSED/RESUMED system plus two others). TheLISTENING , PROCESSING and
SUSPENDED states indicate the current activity of the recognition process. The
FOCUS_ON andFOCUS_OFF states indicate whether the recognizer currently has
speech focus. For a recognizer, all three sub-state systems of theALLOCATED state
operate independently (with some exceptions that are discussed in the recogn
chapter).

Each of these state names is represented by a static long in which a sin
unique bit is set. The & and | operators of the Java programming language a
used to manipulate these state bits. For example, the state of an allocated,
resumed synthesizer with an empty speech output queue is defined by:

(Engine.ALLOCATED | Engine.RESUMED | Synthesizer.QUEUE_EMPTY)

To test whether an engine is resumed, we use the test:

if ((engine.getEngineState() & Engine.RESUMED) != 0) ...

For convenience, theEngine interface defines two additional methods for
handling engine states. ThetestEngineState method is passed a state value an
45

Java Speech Application Programming Interface

46

sizer

ted
PU,
audio
can
ute).

ne. A

reed
returnstrue if all the state bits in that value are currently set for the engine.
Again, to test whether an engine is resumed, we use the test:

if (engine.testEngineState(Engine.RESUMED)) ...

Technically, thetestEngineState(state) method is equivalent to:

if ((engine.getEngineState() & state) == state)...

The final state method iswaitEngineState . This method blocks the calling thread
until the engine reaches the defined state. For example, to wait until a synthe
stops speaking because its queue is empty we use:

engine.waitEngineState(Synthesizer.QUEUE_EMPTY);

In addition to method calls, applications can monitor state through the event
system. Every state transition is marked by anEngineEvent being issued to each
EngineListener attached to theEngine . TheEngineEvent class is extended by the
SynthesizerEvent andRecognizerEvent classes for state transitions that are
specific to those engines. For example, theRECOGNIZER_PROCESSING

RecognizerEvent indicates a transition from theLISTENING state to the
PROCESSING (which indicates that the recognizer has detected speech and is
producing a result).

4.4.2 Allocation State System

Engine allocation is the process in which the resources required by a speech
recognizer or synthesizer are obtained. Engines are not automatically alloca
when created because speech engines can require substantial resources (C
memory and disk space) and because they may need exclusive access to an
resource (e.g. microphone input or speaker output). Furthermore, allocation
be a slow procedure for some engines (perhaps a few seconds or over a min

Theallocate method of theEngine interface requests the engine to perform
allocation and is usually one of the first calls made to a created speech engi
newly created engine is always in theDEALLOCATED state. A call to theallocate

method is, technically speaking, a request to the engine to transition to the
ALLOCATED state. During the transition, the engine is in a temporary
ALLOCATING_RESOURCES state.

Thedeallocate method of theEngine interface requests the engine to
perform deallocation of its resources. All well-behaved applications call
deallocate once they have finished using an engine so that its resources are f

Speech Engines: javax.speech

one
ent

ter 6

e

class
up for other applications. Thedeallocate method returns the engine to the
DEALLOCATED state. During the transition, the engine is in a temporary
DEALLOCATING_RESOURCES state.

Figure 4-1 shows the state diagram for the allocation state system.

Each block represents a state of the engine. An engine must always be in
of the four specified states. As the engine transitions between states, the ev
labelled on the transition arc is issued to theEngineListeners attached to the
engine.

The normal operational state of an engine isALLOCATED. The paused-resumed
state of an engine is described in the next section. The sub-state systems of
ALLOCATEDsynthesizers and recognizers are described in Chapter 5 and Chap
respectively.

4.4.3 Allocated States and Call Blocking

For advanced applications, it is often desirable to start up the allocation of a
speech engine in a background thread while other parts of the application ar
being initialized. This can be achieved by calling theallocate method in a
separate thread. The following code shows an example of this using an inner
implementation of theRunnable interface. To determine when the allocation
method is complete, we check later in the code for the engine being in the
ALLOCATED state.

DEALLOCATED

ENGINE_ALLOCATED

ENGINE_DEALLOCATED

New Engine

Figure 4-1 Engine allocation state system

ALLOCATING_
RESOURCES

DEALLOCATING_
RESOURCES

ALLOCATED

ENGINE_DEALLOCATING_RESOURCES

ENGINE_ALLOCATING_RESOURCES
47

Java Speech Application Programming Interface

48

se,

ost

er

his

te,
Engine engine;
{

engine = Central.createRecognizer();

new Thread(new Runnable() {
public void run() {

try {
engine.allocate();

}
catch (Exception e) {

e.printStackTrace();
}

}
}).start();

// Do other stuff while allocation takes place
...

// Now wait until allocation is complete
engine.waitEngineState(Engine.ALLOCATED);
}

}

A full implementation of an application that uses this approach to engine
allocation needs to consider the possibility that the allocation fails. In that ca
the allocate method throws anEngineException and the engine returns to the
DEALLOCATED state.

Another issue advanced applications need to consider is class blocking. M
methods of theEngine , Recognizer andSynthesizer are defined for normal
operation in theALLOCATED state. What if they are called for an engine in anoth
allocation state? For most methods, the operation is defined as follows:

♦ ALLOCATEDstate: for nearly all methods normal behavior is defined for t
state. (An exception is theallocate method).

♦ ALLOCATING_RESOURCESstate: most methodsblockin this state. The calling
thread waits until the engine reaches theALLOCATEDstate. Once that state is
reached, the method behaves as normally defined.

♦ DEALLOCATEDstate: most methods are not defined for this state, so anEn-

gineStateError is thrown. (Exceptions include theallocate method and
certain methods listed below.)

♦ DEALLOCATING_RESOURCESstate: most methods are not defined for this sta
so anEngineStateError is thrown.

Speech Engines: javax.speech

The

ne.

e

tput

l

ach

gine.
A small subset of engine methods will operate correctly in all engine states.
getEngineProperties always allows runtime engine properties to be set and
tested (although properties only take effect in theALLOCATED state). The
getEngineModeDesc method can always return the mode descriptor for the engi
Finally, the three engine state methods —getEngineState , testEngineState and
waitEngineState — always operated as defined.

4.4.4 Pause - Resume State System

All ALLOCATED speech engines havePAUSED andRESUMED states. Once an engine
reaches theALLOCATED state, it enters either thePAUSED or theRESUMED state. The
factors that affect the initialPAUSED/RESUMED state are described below.

ThePAUSED/RESUMED state indicates whether the audio input or output of th
engine is on or off. A resumed recognizer is receiving audio input. A paused
recognizer is ignoring audio input. A resumed synthesizer produces audio ou
as it speaks. A paused synthesizer is not producing audio output.

As part of the engine state system, the Engine interface provides severa
methods to testPAUSED/RESUMED state. The general state system is described
previously in Section 4.4 (on page 44).

An application controls an engine’sPAUSED/RESUMEDstate with thepause and
resume methods. An application may pause or resume an engine indefinitely. E
time thePAUSED/RESUMEDstate changes anENGINE_PAUSEDor ENGINE_RESUMEDtype
of EngineEvent is issued eachEngineListener attached to theEngine .

Figure 4-2 shows the basic pause and resume diagram for a speech en
As a sub-state system of theALLOCATED state, the pause and resume states
represented within theALLOCATED state as shown in Figure 4-1.

ALLOCATED

PAUSED

ENGINE_PAUSED

ENGINE_RESUMED

Figure 4-2 PAUSED and RESUMED Engine states

RESUMED
49

Java Speech Application Programming Interface

50

 the
ge

red

 is
ker/

d
ations

to a
gniz-

.

re-
an
p-

re-
ould
it to
rec-
the
izer

tops
ut

d

As with Figure 4-1, Figure 4-2 represents states as labelled blocks, and
engine events as labelled arcs between those blocks. In this diagram the lar
block is theALLOCATED state which contains both thePAUSED andRESUMED states.

4.4.5 State Sharing

ThePAUSED/RESUMED state of a speech engine may, in many situations, be sha
by multiple applications. Here we must make a distinction between the Java
object that represents aRecognizer or Synthesizer and the underlying engine
that may have multiple Java and non-Java applications connected to it. For
example, in personal computing systems (e.g., desktops and laptops), there
typically a single engine running and connected to microphone input or spea
headphone output and all application share that resource.

When aRecognizer or Synthesizer (the Java software object) is paused an
resumed the shared underlying engine is paused and resumed and all applic
connected to that engine are affected.

There are three key implications from this architecture:

♦ An application should pause and resume an engine only in response
user request (e.g., because a microphone button is pressed for a reco
er). For example, it should not pause an engine before deallocating it

♦ A Recognizer or Synthesizer may be paused and resumed because of a
quest by another application. The application will receive
ENGINE_PAUSEDor ENGINE_RESUMEDevent and the engine state value is u
dated to reflect the current engine state.

♦ Because an engine could be resumed without explicitly requesting a
sume it should always be prepared for that resume. For example, it sh
not place text on the synthesizer’s output queue unless it would expect
be spoken upon a resume. Similarly, the set of enabled grammars of a
ognizer should always be appropriate to the application context, and
application should be prepared to accept input results from the recogn
if an enabled grammar is unexpectedly resumed.

4.4.6 Synthesizer Pause

For a speech synthesizer — a speech output device — pause immediately s
the audio output of synthesized speech. Resume recommences speech outp
from the point at which the pause took effect. This is analogous to pause an
resume on a tape player or CD player.

Speech Engines: javax.speech

esizer
ume

ech

e

er’s

ny
lly

 in
 the
t
he
r
 or

f the
the
s to
can
 it

n

Chapter 5 describes an additional state system of synthesizers. An
ALLOCATED Synthesizer has sub-states forQUEUE_EMPTY andQUEUE_NOT_EMPTY.
This represents whether there is text on the speech output queue of the synth
that is being spoken or waiting to be spoken. The queue state and pause/res
state are independent. It is possible, for example, for aRESUMED synthesizer to
have an empty output queue (QUEUE_EMPTY state). In this case, the synthesizer is
silent because it has nothing to say. If any text is provided to be spoken, spe
output will start immediately because the synthesizer isRESUMED.

4.4.7 Recognizer Pause

For a recognizer, pausing and resuming turns audio input off and on and is
analogous to switching the microphone off and on. When audio input is off th
audio is lost. Unlike a synthesizer, for which aresume continues speech output
from the point at which it was paused, resuming a recognizer restarts the
processing of audio input from the time at which resume is called.

Under normal circumstances, pausing a recognizer will stop the recogniz
internal processes that match audio against grammars. If the user was in the
middle of speaking at the instant at which the recognizer was paused, the
recognizer is forced to finalize its recognition process. This is because a
recognizer cannot assume that the audio received just before pausing is in a
way linked to the audio data that it will receive after being resumed. Technica
speaking, pausing introduces a discontinuity into the audio input stream.

One complexity for pausing and resuming a recognizer (not relevant to
synthesizers) is the role of internal buffering. For various reasons, described
Chapter 6, a recognizer has a buffer for audio input which mediates between
audio device and the internal component of the recognizer which perform tha
match of the audio to the grammars. If recognizer is performing in real-time t
buffer is empty or nearly empty. If the recognizer is temporarily suspended o
operates slower than real-time, then the buffer may contain seconds of audio
more.

When a recognizer is paused, the pause takes effect on the input end o
buffer; i.e, the recognizer stops putting data into the buffer. At the other end of
buffer — where the actual recognition is performed —the recognizer continue
process audio data until the buffer is empty. This means that the recognizer
continue to produce recognition results for a limited period of time even after
has been paused. (ARecognizer also provides aforceFinalize method with an
option to flush the audio input buffer.)

Chapter 6 describes an additional state system of recognizers. AnALLOCATED

Recognizer has a separate sub-state system forLISTENING , RECOGNIZING and
SUSPENDED. These states indicate the current activity of the internal recognitio
51

Java Speech Application Programming Interface

52

ally

h).

he
key

the

f
ents
,

sued
ech
process. These states are largely decoupled from thePAUSED andRESUMED states
except that, as described in detail in Chapter 6, a paused recognizer eventu
returns to theLISTENING state when it runs out of audio input (theLISTENING state
indicates that the recognizer is listening to background silence, not to speec

TheSUSPENDED state of aRecognizer is superficially similar to thePAUSED

state. In theSUSPENDEDstate the recognizer is not processing audio input from t
buffer, but is temporarily halted while an application updates its grammars. A
distinction between thePAUSED state and theSUSPENDED state is that in the
SUSPENDED state audio input can be still be coming into the audio input buffer.
When the recognizer leaves theSUSPENDED state the audio is processed. The
SUSPENDEDstate allows a user to continue talking to the recognizer even while
recognizer is temporarilySUSPENDED. Furthermore, by updating grammars in the
SUSPENDED state, an application can apply multiple grammar changes
instantaneously with respect to the audio input stream.

4.5 Speech Events

Speech engines, both recognizers and synthesizers, generate many types o
events. Applications are not required to handle all events, however, some ev
are particularly important for implementing speech applications. For example
some result events must be processed to receive recognized text from a
recognizer.

Java Speech API events follow the JavaBeans event model. Events are is
to a listener attached to an object involved in generating that event. All the spe
events are derived from theSpeechEvent class in thejavax.speech package.

The events of thejavax.speech package are listed in Table 4-4.

Table 4-4 Speech events: javax.speech package

Name Description

SpeechEvent Parent class of all speech events.

EngineEvent Indicates a change in speech engine state.

AudioEvent Indicates an audio input or output event.

EngineErrorEvent Sub-class ofEngineEvent that indicates an asyn-
chronous problems has occurred in the engine.

Speech Engines: javax.speech

the

l

t.

g-

-

The events of thejavax.speech.synthesis package are listed in Table 4-5.

The events of thejavax.speech.recognition package are listed in Table 4-6.

4.5.1 Event Synchronization

A speech engine is required to provide all its events in synchronization with
AWT event queue whenever possible. The reason for this constraint is that it
simplifies to integration of speech events with AWT events and the Java
Foundation Classes events (e.g., keyboard, mouse and focus events). This
constraint does not adversely affect applications that do not provide graphica
interfaces.

Table 4-5 Speech events: javax.speech.synthesis package

Name Description

SynthesizerEvent Extends theEngineEvent for the specialized events
of aSynthesizer .

SpeakableEvent Indicates the progress in output of synthesized tex

Table 4-6 Speech events: javax.speech.recognition package

Name Description

RecognizerEvent Extends theEngineEvent for the specialized events
of aRecognizer .

GrammarEvent Indicates an update of or a status change of a reco
nition grammar.

ResultEvent Indicates status and data changes of recognition re
sults.

RecognizerAudioEvent ExtendsAudioEvent with events for start and stop of
speech and audio level updates.
53

Java Speech Application Programming Interface

54

o
event

es
hat

gine

life

ngine
Synchronization with the AWT event queue means that the AWT event
queue is not issuing another event when the speech event is being issued. T
implement this, speech engines need to place speech events onto the AWT
queue. The queue is obtained through the AWTToolkit :

EventQueue q = Toolkit.getDefaultToolkit().getSystemEventQueue();

TheEventQueue runs a separate thread for event dispatch. Speech engin
are not required to issue the events through that thread, but should ensure t
thread is blocked while the speech event is issued.

Note thatSpeechEvent is not a sub-class ofAWTEvent, and that speech events
are not actually placed directly on the AWT event queue. Instead, a speech en
is performing internal activities to keep its internal speech event queue
synchronized with the AWT event queue to make an application developer’s
easier.

4.6 Other Engine Functions

4.6.1 Runtime Engine Properties

Speech engines each have a set of properties that can be changed while the e
is running. TheEngineProperties interface defined in thejavax.speech package
is the root interface for accessing runtime properties. It is extended by the
SynthesizerProperties interface defined in thejavax.speech.synthesis

package, and theRecognizerProperties interface defined in the
javax.speech.recognition package.

For any engine, theEngineProperties is obtained by calling the
EngineProperties method defined in theEngine interface. To avoid casting the
return object, thegetSynthesizerProperties method of theSynthesizer

interface and thegetRecognizerProperties method of theRecognizer interface
are also provided to return the appropriate type. For example:

{
Recognizer rec = ...;
RecognizerProperties props = rec.getRecognizerProperties();

}

TheEngineProperties interface provides three types of functionality.

♦ The addPropertyChangeListener and removePropertyChangeListener

Speech Engines: javax.speech

an
this

am-

.

by

eans
king

 new
the
.0.

kes
until
t. So

n has
nging
e

e’s
e
va
methods add or remove a JavaBeansPropertyChangeListener . The listen-
er receives an event notification any time a property value changes.

♦ ThegetControlComponent method returns an engine-provided AWTCom-

ponent or null if one is not provided by the engine. This component c
be displayed for a user to modify the engine properties. In some cases
component may allow customization of properties that are not progr
matically accessible.

♦ The reset method is used to set all engine properties to default values

TheSynthesizerProperties andRecognizerProperties interfaces define the sets
of runtime features of those engine types. These specific properties defined
these interfaces are described in Chapter 5 and Chapter 6 respectively.

For each property there is a get and a set method, both using the JavaB
property patterns. For example, the methods for handling a synthesizer’s spea
voice are:

float getVolume()
void setVolume(float voice) throws PropertyVetoException;

The get method returns the current setting. The set method attempts to set a
volume. A set method throws an exception if it fails. Typically, this is because
engine rejects the set value. In the case of volume, the legal range is 0.0 to 1
Values outside of this range cause an exception.

The set methods of theSynthesizerProperties andRecognizerProperties

interfaces are asynchronous - they may return before the property change ta
effect. For example, a change in the voice of a synthesizer may be deferred
the end of the current word, the current sentence or even the current documen
that an application knows when a change occurs, aPropertyChangeEvent is
issued to eachPropertyChangeListener attached to the properties object.

A property change event may also be issued because another applicatio
changed a property, because changing one property affects another (e.g., cha
a synthesizer’s voice from male to female will usually cause an increase in th
pitch setting), or because the property values have been reset.

4.6.2 Audio Management

TheAudioManager of a speech engine is provided for management of the engin
speech input or output. For the Java Speech API Version 1.0 specification, th
AudioManager interface is minimal. As the audio streaming interfaces for the Ja
platform are established, theAudioManager interface will be enhanced for more
advanced functionality.
55

Java Speech Application Programming Interface

56

l in

e

are

-

eech

s.
nc-
own

r-
For this release, theAudioManager interface defines the ability to attach and
removeAudioListener objects. For this release, theAudioListener interface is
simple: it is empty. However, theRecognizerAudioListener interface extends the
AudioListener interface to receive three audio event types (SPEECH_STARTED,
SPEECH_STOPPED andAUDIO_LEVEL events). These events are described in detai
Chapter 6. As a type ofAudioListener , aRecognizerAudioListener is attached
and removed through theAudioManager .

4.6.3 Vocabulary Management

An engine can optionally provide aVocabManager for control of the pronunciation
of words and other vocabulary. This manager is obtained by calling the
getVocabManager method of aRecognizer or Synthesizer (it is a method of the
Engine interface). If the engine does not support vocabulary management, th
method returnsnull .

The manager defines a list ofWord objects. Words can be added to the
VocabManager , removed from theVocabManager , and searched through the
VocabManager .

TheWord class is defined in thejavax.speech package. EachWord is defined
by the following features.

♦ Written form: a requiredString that defines how theWord should be pre-
sented visually.

♦ Spoken form: an optionalString that indicates how theWord is spoken. For
English, the spoken form might be used for defining how acronyms
spoken. For Japanese, the spoken form could provide akanarepresentation
of howkanji in the written form is pronounced.

♦ Pronunciations: an optionalString array containing one or more phone
mic representations of the pronunciations of theWord. The International
Phonetic Alphabet subset of Unicode is used throughout the Java Sp
API for representing pronunciations.

♦ Grammatical categories: an optional set of or’ed grammatical categorie
TheWord class defines 16 different classes of words (noun, verb, conju
tion etc.). These classes do not represent a complete linguistic breakd
of all languages. Instead they are intended to provide aRecognizer or Syn-

thesizer with additional information about a word that may assist in co
rectly recognizing or correctly speaking it.

C H A P T E R 5

:

is

n

se
ch
Speech Synthesis

javax.speech.synthes

A speech synthesizer is a speech engine that converts text to speech. The
javax.speech.synthesis package defines theSynthesizer interface to support
speech synthesis plus a set of supporting classes and interfaces. The basic
functional capabilities of speech synthesizers, some of the uses of speech
synthesis and some of the limitations of speech synthesizers are described i
Section 2.1 (on page 9).

As a type of speech engine, much of the functionality of aSynthesizer is
inherited from theEngine interface in thejavax.speech package and from other
classes and interfaces in that package. Thejavax.speech package and generic
speech engine functionality are described in Chapter 4.

This chapter describes how to write Java applications and applets that u
speech synthesis. We begin with a simple example, and then review the spee
synthesis capabilities of the API in more detail.

♦ “Hello World!”: a simple example of speech synthesis

♦ Synthesizer as an Engine

♦ Speaking Text

♦ Speech Output Queue

♦ Monitoring Speech Output

♦ Synthesizer Properties
57

Java Speech Application Programming Interface

58

ing

an
glish

ut-
5.1 “Hello World!”

The following code shows a simple use of speech synthesis to speak the str
“Hello World”.

import javax.speech.*;
import javax.speech.synthesis.*;
import java.util.Locale;

public class HelloWorld {
public static void main(String args[]) {

try {
// Create a synthesizer for English
Synthesizer synth = Central.createSynthesizer(

new SynthesizerModeDesc(Locale.ENGLISH));

// Get it ready to speak
synth.allocate();
synth.resume();

// Speak the "Hello world" string
synth.speakPlainText("Hello, world!", null);

// Wait till speaking is done
synth.waitEngineState(Synthesizer.QUEUE_EMPTY);

// Clean up
synth.deallocate();

} catch (Exception e) {
e.printStackTrace();

}
}

}

This example illustrates the four basic steps which all speech synthesis
applications must perform. Let's examine each step in detail.

♦ Create: TheCentral class ofjavax.speech package is used to obtain a
speech synthesizer by calling thecreateSynthesizer method. TheSyn-

thesizerModeDesc argument provides the information needed to locate
appropriate synthesizer. In this example a synthesizer that speaks En
is requested.

♦ Allocate and Resume:Theallocate andresume methods prepare theSyn-

thesizer to produce speech by allocating all required resources and p

Speech Synthesis: javax.speech.synthesis

e-

t
ceed.

n

lec-
tion

ed in

. The

e-
ting it in theRESUMED state.

♦ Generate:ThespeakPlainText method requests the generation of synth
sized speech from a string.

♦ Deallocate: ThewaitEngineState method blocks the caller until theSyn-

thesizer is in theQUEUE_EMPTY state — until it has finished speaking the
text. Thedeallocate method frees the synthesizer’s resources.

5.2 Synthesizer as an Engine

The basic functionality provided by aSynthesizer is speaking text, managemen
of a queue of text to be spoken and producing events as these functions pro
TheSynthesizer interface extends theEngine interface to provide this
functionality.

The following is a list of the functionality that thejavax.speech.synthesis

package inherits from thejavax.speech package and outlines some of the ways i
which that functionality is specialized.

♦ The properties of a speech engine defined by theEngineModeDesc class ap-
ply to synthesizers. TheSynthesizerModeDesc class adds information
about synthesizer voices. BothEngineModeDesc andSynthesizerModeDesc

are described in Section 4.2 (on page 36).

♦ Synthesizers are searched, selected and created through theCentral class
in the javax.speech package as described in Section 4.3 (on page 39).
That section explains default creation of a synthesizer, synthesizer se
tion according to defined properties, and advanced selection and crea
mechanisms.

♦ Synthesizers inherit the basic state system of an engine from theEngine in-
terface. The basic engine states areALLOCATED, DEALLOCATED,
ALLOCATING_RESOURCESandDEALLOCATING_RESOURCESfor allocation state,
andPAUSEDandRESUMEDfor audio output state. ThegetEngineState meth-
od and other methods are inherited for monitoring engine state. AnEngi-

neEvent indicates state changes. The engine state systems are describ
Section 4.4 (on page 44). (TheQUEUE_EMPTY andQUEUE_NOT_EMPTY states
added by synthesizers are described in Section 5.4.)

♦ Synthesizers produce all the standard engine events (see Section 4.5)
javax.speech.synthesis package also extends theEngineListener inter-
face asSynthesizerListener to provide events that are specific to synth
sizers.
59

Java Speech Application Programming Interface

60

ee

ch
f the
ed.

in

ML).
for

ts.

,
the
♦ Other engine functionality inherited as an engine includes the runtime
properties (see Section 4.6.1 and Section 5.6), audio management (s
Section 4.6.2) and vocabulary management (see Section 4.6.3).

5.3 Speaking Text

TheSynthesizer interface provides four methods for submitting text to a spee
synthesizer to be spoken. These methods differ according to the formatting o
provided text, and according to the type of object from which the text is produc
All methods share one feature; they all allow a listener to be passed that will
receive notifications as output of the text proceeds.

The simplest method —speakPlainText — takes text as aString object.
This method is illustrated in the“Hello World!” example at the beginning of this
chapter. As the method name implies, this method treats the input text as pla
text without any of the formatting described below.

The remaining three speaking methods — all namedspeak — treat the input
text as being specially formatted with the Java Speech Markup Language (JS
JSML is an application of XML (eXtensible Markup Language), a data format
structured document interchange on the internet. JSML allows application
developers to annotate text with structural and presentation information to
improve the speech output quality. JSML is defined in detail in a separate
technical document,“The Java Speech Markup Language Specification.”

The threespeak methods retrieve the JSML text from different Java objec
The three methods are:

void speak(Speakable text, SpeakableListener listener);
void speak(URL text, SpeakableListener listener);
void speak(String text, SpeakableListener listener);

The first version accepts an object that implements theSpeakable interface. The
Speakable interface is a simple interface defined in thejavax.speech.synthesis

package that contains a single method:getJSMLText . This method should return a
String containing text formatted with JSML.

Virtually any Java object can implement theSpeakable interface by
implementing thegetJSMLText method. For example, the cells of spread-sheet
the text of an editing window, or extended AWT classes could all implement
Speakable interface.

TheSpeakable interface is intended to provide the spoken version of the
toString method of theObject class. That is,Speakable allows an object to
define how it should be spoken. For example:

Speech Synthesis: javax.speech.synthesis

ite

t-

ith

re
nd

are

the
sed

g

t

public class MyAWTObj extends Component implements Speakable {
...
public String getJSMLText() {

...
}

}

{
MyAWTObj obj = new MyAWTObj();
synthesizer.speak(obj, null);

}

The second variant of thespeak method allows JSML text to be loaded from a
URL to be spoken. This allows JSML text to be loaded directly from a web s
and be spoken.

The third variant of thespeak method takes a JSML string. Its use is straigh
forward.

For each of the threespeak methods that accept JSML formatted text, a
JSMLException is thrown if any formatting errors are detected. Developers
familiar with editing HTML documents will find that XML is strict about syntax
checks. It is generally advisable to check XML documents (such as JSML) w
XML tools before publishing them.

The following sections describe the speech output onto which objects a
placed with calls to the speak methods and the mechanisms for monitoring a
managing that queue.

5.4 Speech Output Queue

Each call to thespeak andspeakPlainText methods places an object onto the
synthesizer'sspeech output queue. The speech output queue is a FIFO queue:
first-in-first-out. This means that objects are spoken in the order in which they
received.

Thetop of queue item is the head of the queue. The top of queue item is
item currently being spoken or is the item that will be spoken next when a pau
synthesizer is resumed.

TheSynthesizer interface provides a number of methods for manipulatin
the output queue. TheenumerateQueue method returns anEnumeration object
containing aSynthesizerQueueItem for each object on the queue. The first objec
in the enumeration is the top of queue. If the queue is empty theenumerateQueue

method returnsnull .
61

Java Speech Application Programming Interface

62

 the

b-

d

at-

s

the

l

EachSynthesizerQueueItem in the enumeration contains four properties.
Each property has a accessor method:

♦ getSource returns the source object for the queue item. The source is
object passed to thespeak andspeakPlainText method:a Speakable ob-
ject, aURL or aString .

♦ getText returns the text representation for the queue item. For aSpeakable

object it is theString returned by thegetJSMLText method. For aURL it is
theString loaded from that URL. For a string source, it is that string o
ject.

♦ isPlainText allows an application to distinguish between plain text an
JSML objects. If this method returns true the string returned bygetText is
plain text.

♦ getSpeakableListener returns the listener object to which events associ
ed with this item will be sent. If no listener was provided in the call tospeak

andspeakPlainText then the call returnsnull .

The state of the queue is an explicit state of theSynthesizer . TheSynthesizer

interface defines a state system forQUEUE_EMPTY andQUEUE_NOT_EMPTY. Any
Synthesizer in theALLOCATED state must be in one and only one of these two
states.

TheQUEUE_EMPTY andQUEUE_NOT_EMPTY states are parallel states to the
PAUSEDandRESUMED states. These two state systems operate independently a
shown in Figure 5-1 (an extension of Figure 4-2 on page 49).

TheSynthesizerEvent class extends theEngineEvent class with the
QUEUE_UPDATED andQUEUE_EMPTIED events which indicate changes in the queue
state.

The“Hello World!” example shows one use of the queue status. It calls
waitEngineState method to test when the synthesizer returns to theQUEUE_EMPTY

state. This test determines when the synthesizer has completed output of al
objects on the speech output queue.

The queue status and transitions in and out of theALLOCATEDstate are linked.
When aSynthesizer is newlyALLOCATEDit always starts in theQUEUE_EMPTYstate
since no objects have yet been placed on the queue. Before a synthesizer is
deallocated (before leaving theALLOCATED state) a synthesizer must return to the
QUEUE_EMPTY state. If the speech output queue is not empty when thedeallocate

method is called, all objects on the speech output queue are automatically
cancelled by the synthesizer. By contrast, the initial and final states forPAUSEDand
RESUMED are not defined because the pause/resume state may be shared by
multiple applications.

Speech Synthesis: javax.speech.synthesis

utput

utput
 and

ase

he

at if
TheSynthesizer interface defines three cancel methods that allow an
application to request that one or more objects be removed from the speech o
queue:

void cancel();
void cancel(Object source);
void cancelAll();

The first of these three methods cancels the object at the top of the speech o
queue. If that object is currently being spoken, the speech output is stopped
then the object is removed from the queue. TheSpeakableListener for the item
receives aSPEAKABLE_CANCELLED event. TheSynthesizerListener receives a
QUEUE_UPDATEDevent, unless the item was the last one on the queue in which c
a QUEUE_EMPTIED event is issued.

The second cancel method requires that a source object be specified. T
object should be one of the items currently on the queue: aSpeakable , aURL, or a
String . The actions are much the same as for the first cancel method except th
the item is not top-of-queue, then speech output is not affected.

The final cancel method —cancelAll — removes all items from the speech
output queue. Each item receives aSPEAKABLE_CANCELLED event and the

ALLOCATED

PAUSED

ENGINE_PAUSED

ENGINE_RESUMED

Figure 5-1 Synthesizer states

RESUMED

QUEUE_EMPTY

QUEUE_EMPTIED

QUEUE_UPDATED

QUEUE_NOT_EMPTY

QUEUE_UPDATED
63

Java Speech Application Programming Interface

64

ct is

r

nts

eue

t in-
nt

igh-

t

ark-
SynthesizerListener receives aQUEUE_EMPTIEDevent. TheSPEAKABLE_CANCELLED

events are issued to items in the order of the queue.

5.5 Monitoring Speech Output

All the speak andspeakPlainText methods accept aSpeakableListener as the
second input parameter. To request notification of events as the speech obje
spoken an application provides a non-null listener.

Unlike aSynthesizerListener that receives synthesizer-level events, a
SpeakableListener receives events associated with output of individual text
objects: output ofSpeakable objects, output of URLs, output of JSML strings, o
output of plain text strings.

The mechanism for attaching aSpeakableListener through thespeak and
speakPlainText methods is slightly different from the normal attachment and
removal of listeners. There are, however,addSpeakableListener and
removeSpeakableListener methods on theSynthesizer interface. These add and
remove methods allow listeners to be provided to receive notifications of eve
associated withall objects being spoken by theSynthesizer .

TheSpeakableEvent class defines eight events that indicate progress of
spoken output of a text object. For each of these eight event types, there is a
matching method in theSpeakableListener interface. For convenience, a
SpeakableAdapter implementation of theSpeakableListener interface is
provided with trivial (empty) implementations of all eight methods.

The normal sequence of events as an object is spoken is as follows:

♦ TOP_OF_QUEUE: the object has reached to the top of the speech output qu
and is the next object to be spoken.

♦ SPEAKABLE_STARTED: audio output has commenced for this text object.

♦ WORD_STARTED: audio output has reached the start of a word. The even
cludes information on the location of the word in the text object. This eve
is issued for each word in the text object. This event is often used to h
light words in a text document as they are spoken.

♦ MARKER_REACHED: audio output has reached the location of aMARKERtag ex-
plicitly embedded in the JSML text. The event includes the marker tex
from the tag. For container JSML elements, aMARKER_REACHED event is is-
sued at both the start and end of the element.MARKER_REACHED events are
not produced for plain text because formatting is required to add the m
ers.

♦ SPEAKABLE_ENDED: audio output has been completed and the object has

Speech Synthesis: javax.speech.synthesis

f
top

f
t the

ut-
ved

uld
been removed from the speech output queue.

The remaining event types are modifications to the normal event sequence.

♦ SPEAKABLE_PAUSED: theSynthesizer has been paused so audio output o
this object is paused. This event is only issued to the text object at the
of the speech output queue.

♦ SPEAKABLE_RESUMED: theSynthesizer has been resumed so audio output o
this object has resumed. This event is only issued to the text object a
top of the speech output queue.

♦ SPEAKABLE_CANCELLED: the object has been removed from the speech o
put queue. Any or all objects in the speech output queue may be remo
by one of the cancel methods (described in Section 5.4 on page 61).

The following is an example of the use of theSpeakableListener interface to
monitor the progress of speech output. It shows how a training application co
synchronize speech synthesis with animation.

It places two JSML string objects onto the output queue and requests
notifications to itself. The speech output will be:

"First, use the mouse to open the file menu.
Then, select the save command."

At the start of the output of each string thespeakableStarted method will be
called. By checking the source of the event we determine which text is being
spoken and so the appropriate animation code can be triggered.

public class TrainingApp extends SpeakableAdapter {

String openMenuText =
"First, use the mouse to open the file menu.";

// The EMP element indicates emphasis of a word
String selectSaveText =

"Then, select the <EMP>save</EMP> command.";

public void sendText(Synthesizer synth) {
// Insert the two objects into the speech queue
// specifying self as recipient of SpeakableEvents.
synth.speak(openMenuText, this);
synth.speak(selectSaveText, this);

}

// Override the empty method in SpeakableAdapter
65

Java Speech Application Programming Interface

66

s, the
nt
n.

ject.

t.
er.

cribed

er

ud-

er
king
have
 the
n-
public void speakableStarted(SpeakableEvent e) {
if (e.getSource() == openMenuText) {

// animate the opening of the file menu
}
else if (e.getSource() == selectSaveText) {

// animate the selection of 'save'
}

}
}

5.6 Synthesizer Properties

TheSynthesizerProperties interface extends theEngineProperties interface
described in Section 4.6.1 (on page 54). The JavaBeans property mechanism
asynchronous application of property changing, and the property change eve
notifications are all inherited engine behavior and are described in that sectio

TheSynthesizerProperties object is obtained by calling the
getEngineProperties method (inherited from theEngine interface) or the
getSynthesizerProperties method. Both methods return the same object
instance, but the latter is more convenient since it is an appropriately cast ob

TheSynthesizerProperties interface defines five synthesizer properties
that can be modified during operation of a synthesizer to effect speech outpu

Thevoice property is used to control the speaking voice of the synthesiz
The set of voices supported by a synthesizer can be obtained by thegetVoices

method of the synthesizer’sSynthesizerModeDesc object. Each voice is defined
by a voice name, gender, age and speaking style. Selection of voices is des
in more detail inSelecting Voices on page 67.

The remaining four properties controlprosody. Prosody is a set of features of
speech including the pitch and intonation, rhythm and timing, stress and oth
characteristics which affect the style of the speech. The prosodic features
controlled through theSynthesizerProperties interface are:

♦ Volume: a float value that is set on a scale from 0.0 (silence) to 1.0 (lo
est).

♦ Speaking rate:a float value indicating the speech output rate in words p
minute. Higher values indicate faster speech output. Reasonable spea
rates depend upon the synthesizer and the current voice (voices may
different natural speeds). Also, speaking rate is also dependent upon
language because of different conventions for what is a “word”. For E
glish, a typical speaking rate is around 200 words per minute.

Speech Synthesis: javax.speech.synthesis

s
be-
0

h
out-
pi-

r by

r can
ke
ry, or

he
 in the

ases
ately

ch
aking
 by

tyles.
e

♦ Pitch: the baseline pitch is a float value given in Hertz. Different voice
have different natural sounding ranges of pitch. Typical male voices are
tween 80 and 180 Hertz. Female pitches typically vary from 150 to 30
Hertz.

♦ Pitch range:a float value indicating a preferred range for variation in pitc
above the baseline setting. A narrow pitch range provides monotonous
put while wide range provide a more lively voice. The pitch range is ty
cally between 20% and 80% of the baseline pitch.

The following code shows how to increase the speaking rate for a synthesize
30 words per minute.

float increaseSpeakingRate(Synthesizer synth) {
SynthesizerProperties props = synth.getEngineProperties();
float newSpeakingRate = props.getSpeakingRate() + 30.0;
props.setSpeakingRate(newSpeakingRate);
return newSpeakingRate;

}

As with all engine properties, changes to synthesizer properties are not
necessarily instant. The change should take effect as soon as the synthesize
apply it. Depending on the underlying technology, a property change may ta
effect immediately, or at the next phoneme, word, phrase or sentence bounda
at the beginning of output of the next item in the synthesizer's queue.

So that an application knows when the change has actual taken effect, t
synthesizer generates a property change event for each call to a set method
SynthesizerProperties interface.

5.6.1 Selecting Voices

Most speech synthesizers are able to produce a number of voices. In most c
voices attempt to sound natural and human, but some voices may be deliber
mechanical or robotic.

TheVoice class is used to encapsulate the four features that describe ea
voice: voice name, gender, age and speaking style. The voice name and spe
style are bothString objects and the contents of those strings are determined
the synthesizer. Typical voice names might be “Victor”, “Monica”, “Ahmed”,
“Jose”, “My Robot” or something completely different. Speaking styles might
include “casual”, “business”, “robotic” or “happy” (or similar words in other
languages) but the API does not impose any restrictions upon the speaking s
For both voice name and speaking style, synthesizers are encouraged to us
67

Java Speech Application Programming Interface

68

nts

re”

nes.

e

ddle

er.
le
strings that are meaningful to users so that they can make sensible judgeme
when selecting voices.

By contrast the gender and age are both defined by the API so that
programmatic selection is possible. The gender of a voice can beGENDER_FEMALE,
GENDER_MALE, GENDER_NEUTRAL or GENDER_DONT_CARE. Male and female are
hopefully self-explanatory. Gender neutral is intended for voices that are not
clearly male or female such as some robotic or artificial voices. The “don’t ca
values are used when selecting a voice and the feature is not relevant.

The age of a voice can beAGE_CHILD(up to 12 years),AGE_TEENAGER(13-19),
AGE_YOUNGER_ADULT(20-40),AGE_MIDDLE_ADULT(40-60),AGE_OLDER_ADULT(60+),
AGE_NEUTRAL, andAGE_DONT_CARE.

Both gender and age are OR’able values for both applications and engi
For example, an engine could specify a voice as:

Voice("name", GENDER_MALE, AGE_CHILD | AGE_TEENAGER, "style");

In the same way that mode descriptors are used by engines to describe
themselves and by applications to select from amongst available engines, th
Voice class is used both for description and selection. Thematch method ofVoice

allows an application to test whether an engine-provided voice has suitable
properties.

The following code shows the use of thematch method to identify voices of a
synthesizer that are either male or female voices and that are younger or mi
adults (between 20 and 60). TheSynthesizerModeDesc object may be one
obtained through theCentral class or through thegetEngineModeDesc method of
a createdSynthesizer .

SynthesizerModeDesc desc = ...;
Voice[] voices = desc.getVoices();

// Look for male or female voices that are young/middle adult
Voice myVoice = new Voice();
myVoice.setGender(GENDER_MALE | GENDER_FEMALE);
myVoice.setAge(AGE_YOUNGER_ADULT | AGE_MIDDLE_ADULT);

for (int i = 0; i < voices.length; i++)
if (voices[i].match(myVoice))

doAction(voices[i]);

TheVoice object can also be used in the selection of a speech synthesiz
The following code illustrates how to create a synthesizer with a young fema
Japanese voice.

Speech Synthesis: javax.speech.synthesis

ed

 of

lt

 of
g rate

not
g rate

user

ch
L

ally
e to

se
thetic
SynthesizerModeDesc required = new SynthesizerModeDesc();
Voice voice = new Voice(null, GENDER_FEMALE,

AGE_CHILD | AGE_TEENAGER, null);

required.addVoice(voice);
required.setLocale(Locale.JAPAN);

Synthesizer synth = Central.createSynthesizer(required);

5.6.2 Property Changes in JSML

In addition to control of speech output through theSynthesizerProperties

interface, all five synthesizer properties can be controlled in JSML text provid
to a synthesizer. The advantage of control through JSML text is that property
changes can be finely controlled within a text document. By contrast, control
the synthesizer properties through theSynthesizerProperties interface is not
appropriate for word-level changes but is instead useful for setting the defau
configuration of the synthesizer. Control of theSynthesizerProperties interface
is often presented to the user as a graphical configuration window.

Applications that generate JSML text should respect the default settings
the user. To do this, relative settings of parameters such as pitch and speakin
should be used rather than absolute settings.

For example, users with vision impairments often set the speaking rate
extremely high — up to 500 words per minute — so high that most people do
understand the synthesized speech. If a document uses an absolute speakin
change (to say 200 words per minute which is fast for most users), then the
will be frustrated.

Changes made to the synthesizer properties through the
SynthesizerProperties interface are persistent: they affect all succeeding spee
output. Changes in JSML are explicitly localized (all property changes in JSM
have both start and end tags).

5.6.3 Controlling Prosody

The prosody and voice properties can be used within JSML text to substanti
improve the clarity and naturalness of the speech output. For example, one tim
change prosodic settings is when providing new, important or detailed
information. In this instance it is typical for a speaker to slow down, emphasi
more words and often add extra pauses. Putting equivalent changes into syn
speech will help a listener understand the message.
69

Java Speech Application Programming Interface

70

this

ls
For example, in response to the question “How many Acme shares do I
have?”, the answer might be “You currently have 1,500 Acme shares.” The
number will spoken more slowly because it is new information. To represent
in JSML text the<PROS> element is used:

You currently have <PROS RATE=”-20%”>1500</PROS> Acme shares.

The following example illustrates how an email message header object can
implement theSpeakable interface and generate JSML text with prosodic contro
to improve understandability.

public class MailHeader implements Speakable {
public String subject;
public String sender; // sender of the message, eg John Doe
public String date;

/** getJSMLText is the only method of Speakable */
public String getJSMLText() {

StringBuffer buf = new StringBuffer();

// Speak the sender’s name slower to be clearer
buf.append("Message from " +

"<PROS RATE=-30>" + sender + ",</PROS>");

// Make sure the date is interpreted correctly
// But we don’t need it slow - it’s not so important
buf.append(" delivered " +

"<SAYAS class=\"date\">" + date + "</SAYAS>");

// Subject slower too
buf.append(", with subject: " +

"<PROS RATE=-30>" + subject + "</PROS>");

return buf.toString();
}

}

public class myMailApp {
...
void newMessageRecieved(MailHeader header) {

synth.speakPlainText("You have new mail!");
synth.speak(header, mySpeakableListener);

}
}

C H A P T E R 6

:

n

in

ple
pers.

with
f the
Speech Recognition

javax.speech.recognitio

A speech recognizer is a speech engine that converts speech to text. The
javax.speech.recognition package defines theRecognizer interface to support
speech recognition plus a set of supporting classes and interfaces. The basic
functional capabilities of speech recognizers, some of the uses of speech
recognition and some of the limitations of speech recognizers are described
Section 2.2 (on page 13).

As a type of speech engine, much of the functionality of aRecognizer is
inherited from theEngine interface in thejavax.speech package and from other
classes and interfaces in that package. Thejavax.speech package and generic
speech engine functionality are described in Chapter 4.

The Java Speech API is designed to keep simple speech applications sim
and to make advanced speech applications possible for non-specialist develo
This chapter covers both the simple and advanced capabilities of the
javax.speech.recognition package. Where appropriate, some of the more
advanced sections are marked so that you can choose to skip them. We begin
a simple code example, and then review the speech recognition capabilities o
API in more detail through the following sections:

♦ “Hello World!”: a simple example of speech recognition

♦ Recognizer as an Engine

♦ Recognizer State Systems

♦ Recognition Grammars

♦ Rule Grammars
71

Java Speech Application Programming Interface

72

tion.

the
en. In
 a
his

and
ets a
♦ Dictation Grammars

♦ Recognition Results

♦ Recognizer Properties

♦ Speaker Management

♦ Recognizer Audio

6.1 “Hello World!”

The following example shows a simple application that uses speech recogni
For this application we need to define agrammar of everything the user can say,
and we need to write the Java software that performs the recognition task.

A grammar is provided by an application to a speech recognizer to define
words that a user can say, and the patterns in which those words can be spok
this example, we define a grammar that allows a user to say “Hello World” or
variant. The grammar is defined using the Java Speech Grammar Format. T
format is documented in theJava Speech Grammar Format Specification
(available fromhttp://java.sun.com/products/java-media/speech/).

Place this grammar into a file.

grammar javax.speech.demo;

public <sentence> = hello world | good morning |
hello mighty computer;

This trivial grammar has a singlepublic rule called “sentence ”. A rule defines
what may be spoken by a user. A public rule is one that may beactivated for
recognition.

The following code shows how to create a recognizer, load the grammar,
then wait for the user to say something that matches the grammar. When it g
match, it deallocates the engine and exits.

import javax.speech.*;
import javax.speech.recognition.*;
import java.io.FileReader;
import java.util.Locale;

public class HelloWorld extends ResultAdapter {
static Recognizer rec;

Speech Recognition: javax.speech.recognition

tions
// Receives RESULT_ACCEPTED event: print it, clean up, exit
public void resultAccepted(ResultEvent e) {

Result r = (Result)(e.getSource());
ResultToken tokens[] = r.getBestTokens();

for (int i = 0; i < tokens.length; i++)
System.out.print(tokens[i].getSpokenText() + " ");

System.out.println();

// Deallocate the recognizer and exit
rec.deallocate();
System.exit(0);

}

public static void main(String args[]) {
try {

// Create a recognizer that supports English.
rec = Central.createRecognizer(

new EngineModeDesc(Locale.ENGLISH));

// Start up the recognizer
rec.allocate();

// Load the grammar from a file, and enable it
FileReader reader = new FileReader(args[0]);
RuleGrammar gram = rec.loadJSGF(reader);
gram.setEnabled(true);

// Add the listener to get results
rec.addResultListener(new HelloWorld());

// Commit the grammar
rec.commitChanges();

// Request focus and start listening
rec.requestFocus();
rec.resume();

} catch (Exception e) {
e.printStackTrace();

}
}

}

This example illustrates the basic steps which all speech recognition applica
must perform. Let's examine each step in detail.

♦ Create: TheCentral class ofjavax.speech package is used to obtain a
73

Java Speech Application Programming Interface

74

n
at

tive

e
eech

f

.

s
 the
speech recognizer by calling thecreateRecognizer method. The
EngineModeDesc argument provides the information needed to locate a
appropriate recognizer. In this example we requested a recognizer th
understands English (since the grammar is written for English).

♦ Allocate:Theallocate methods requests that theRecognizer allocate all
necessary resources.

♦ Load and enable grammars: The loadJSGF method reads in a JSGF
document from a reader created for the file that contains the
javax.speech.demo grammar. (Alternatively, theloadJSGF method can
load a grammar from a URL.) Next, the grammar isenabled. Once the
recognizer receives focus (see below), an enabled grammar isactivatedfor
recognition: that is, the recognizer compares incoming audio to the ac
grammars and listens for speech that matches those grammars.

♦ Attach a ResultListener:TheHelloWorld class extends theResultAdapter

class which is a trivial implementation of theResultListener interface. An
instance of theHelloWorld class is attached to the Recognizer to receiv
result events. These events indicate progress as the recognition of sp
takes place. In this implementation, we process theRESULT_ACCEPTED

event, which is provided when the recognizer completes recognition o
input speech that matches an active grammar.

♦ Commit changes: Any changes in grammars and the grammar enabled
status needed to becommittedto take effect (that includes creation of a new
grammar). The reasons for this are described in Section 6.4.2.

♦ Request focus and resume: For recognition of the grammar to occur, the
recognizer must be in theRESUMED state and must have the speech focus
The requestFocus andresume methods achieve this.

♦ Process result: Once themain method is completed, the application wait
until the user speaks. When the user speaks something that matches
loaded grammar, the recognizer issues aRESULT_ACCEPTED event to the
listener we attached to the recognizer. The source of this event is aResult

object that contains information about what the recognizer heard. The
getBestTokens method returns an array ofResultTokens , each of which
represents a single spoken word. These words are printed.

♦ Deallocate:Before exiting we calldeallocate to free up the recognizer’s
resources.

Speech Recognition: javax.speech.recognition

t
ars.

tion

tate,
state
tems

. The

ee

e

6.2 Recognizer as an Engine

The basic functionality provided by aRecognizer includes grammar managemen
and the production of results when a user says things that match active gramm
TheRecognizer interface extends theEngine interface to provide this
functionality.

The following is a list of the functionality that the
javax.speech.recognition package inherits from thejavax.speech package and
outlines some of the ways in which that functionality is specialized.

♦ The properties of a speech engine defined by theEngineModeDesc class
apply to recognizers. TheRecognizerModeDesc class adds information
about dictation capabilities of a recognizer and about users who have
trained the engine. BothEngineModeDesc andRecognizerModeDesc are
described in Section 4.2 (on page 36).

♦ Recognizers are searched, selected and created through theCentral class
in the javax.speech package as described in Section 4.3 (on page 39).
That section explains default creation of a recognizer, recognizer selec
according to defined properties, and advanced selection and creation
mechanisms.

♦ Recognizers inherit the basic state systems of an engine from theEngine

interface, including the four allocation states, the pause and resume s
the state monitoring methods and the state update events. The engine
systems are described in Section 4.4 (on page 44). The two state sys
added by recognizers are described in Section 6.3.

♦ Recognizers produce all the standard engine events (see Section 4.5)
javax.speech.recognition package also extends theEngineListener

interface asRecognizerListener to provide events that are specific to
recognizers.

♦ Other engine functionality inherited as an engine includes the runtime
properties (see Section 4.6.1 and Section 6.8), audio management (s
Section 4.6.2) and vocabulary management (see Section 4.6.3).

6.3 Recognizer State Systems

6.3.1 Inherited States

As mentioned above, aRecognizer inherits the basic state systems defined in th
javax.speech package, particularly through theEngine interface. The basic
75

Java Speech Application Programming Interface

76

n the
stems
ars,

he

f the
ur

ut is

 the

f the

ce in
hed.

s

ub-

n of
engine state systems are described in Section 4.4 (on page 44). In this sectio
two state systems added for recognizers are described. These two states sy
represent the status of recognition processing of audio input against gramm
and the recognizer focus.

As a summary, the following state system functionality is inherited from t
javax.speech package.

♦ The basic engine state system represents the current allocation state o
engine: whether resources have been obtained for the engine. The fo
allocation states areALLOCATED, DEALLOCATED, ALLOCATING_RESOURCESand
DEALLOCATING_RESOURCES.

♦ ThePAUSED andRESUMED states are sub-states of theALLOCATED state. The
paused and resumed states of a recognizer indicate whether audio inp
on or off. Pausing a recognizer is analogous to turning off the input
microphone: input audio is lost. Section 4.4.7 (on page 51) describes
effect of pausing and resuming a recognizer in more detail.

♦ ThegetEngineState method of theEngine interface returns along value
representing the current engine state. The value has a bit set for each o
current states of the recognizer. For example andALLOCATEDrecognizer in
theRESUMED state will have both theALLOCATED andRESUMED bits set.

♦ The testEngineState andwaitEngineState methods are convenience
methods for monitoring engine state. The test method tests for presen
a specified state. The wait method blocks until a specific state is reac

♦ An EngineEvent is issued toEngineListeners each time an engine change
state. The event class includes the new and old engine states.

The recognizer adds two sub-state systems to theALLOCATED state: that’s in
addition to the inherited pause and resume sub-state system. The two new s
state systems represent the current activities of the recognizer’s internal
processing (theLISTENING , PROCESSING andSUSPENDED states) and the current
recognizer focus (theFOCUS_ON andFOCUS_OFF states).

These new sub-state systems are parallel states to thePAUSEDandRESUMED

states and operate nearly independently as shown in Figure 6-1 (an extensio
Figure 4-2 on page 49).

6.3.2 Recognizer Focus

TheFOCUS_ON andFOCUS_OFF states indicate whether this instance of the
Recognizer currently has the speech focus. Recognizer focus is a major
determining factor in grammar activation, which, in turn, determines what the

Speech Recognition: javax.speech.recognition

on
recognizer is listening for at any time. The role of recognizer focus in activati
and deactivation of grammars is described in Section 6.4.3 (on page 86).

A change in engine focus is indicated by aRecognizerEvent (which extends
EngineEvent) being issued toRecognizerListeners . A FOCUS_LOST event
indicates a change in state fromFOCUS_ON to FOCUS_OFF. A FOCUS_GAINED event
indicates a change in state fromFOCUS_OFF to FOCUS_ON.

When aRecognizer has focus, theFOCUS_ON bit is set in the engine state.
When aRecognizer does not have focus, theFOCUS_OFF bit is set. The following
code examples monitor engine state:

Recognizer rec;

if (rec.testEngineState(Recognizer.FOCUS_ON)) {

ALLOCATED

PAUSED

ENGINE_PAUSED

ENGINE_RESUMED

Figure 6-1 Recognizer states

RESUMED

FOCUS_ON

FOCUS_GAINED

FOCUS_LOST

FOCUS_OFF

LISTENING

COMMITTED_CHANGES

RECOGNIZER_SUSPENDED

SUSPENDED

PROCESSING

RECOGNIZER_PROCESSING RECOGNIZER_SUSPENDED
77

Java Speech Application Programming Interface

78

 one

e
r as

ther
sing

ocus

he
state
 or

t is

n to

ze
d to
// we have focus so release it
rec.releaseFocus();

}
// wait until we lose it
rec.waitEngineState(Recognizer.FOCUS_OFF);

Recognizer focus is relevant to computing environments in which more than
application is using an underlying recognition. For example, in a desktop
environment a user might be running a single speech recognition product (th
underlying engine), but have multiple applications using the speech recognize
a resource. These applications may be a mixture of Java and non-Java
applications. Focus is not usually relevant in a telephony environment or in o
speech application contexts in which there is only a single application proces
the audio input stream.

The recognizer’s focus should track the application to which the user is
currently talking. When a user indicates that it wants to talk to an application
(e.g., by selecting the application window, or explicitly saying “switch to
application X”), the application requests speech focus by calling the
requestFocus method of theRecognizer .

When speech focus is no longer required (e.g., the application has been
iconized) it should callreleaseFocus method to free up focus for other
applications.

Both methods are asynchronous —the methods may return before the f
is gained or lost — since focus change may be deferred. For example, if a
recognizer is in the middle of recognizing some speech, it will typically defer t
focus change until the result is completed. The focus events and the engine
monitoring methods can be used to determine when focus is actually gained
lost.

The focus policy is determined by the underlying recognition engine — i
not prescribed by thejava.speech.recognition package. In most operating
environments it is reasonable to assume a policy in which the last applicatio
request focus gets the focus.

Well-behaved applications adhere to the following convention to maximi
recognition performance, to minimize their impact upon other applications an
maintain a satisfactory user interface experience. An application should only
request focus when it is confident that the user’s speech focus (attention) is
directed towards it, and it should release focus when it is not required.

Speech Recognition: javax.speech.recognition

ents

A
dio

y
ing

he

e to

ts

cuss
es.
6.3.3 Recognition States

The most important (and most complex) state system of a recognizer repres
the current recognition activity of the recognizer. AnALLOCATED Recognizer is
always in one of the following three states:

♦ LISTENING state: TheRecognizer is listening to incoming audio for speech
that may match an active grammar but has not detected speech yet.
recognizer remains in this state while listening to silence and when au
input runs out because the engine is paused.

♦ PROCESSINGstate: TheRecognizer is processing incoming speech that ma
match an active grammar. While in this state, the recognizer is produc
a result.

♦ SUSPENDED state: TheRecognizer is temporarily suspended while
grammars are updated. While suspended, audio input is buffered for
processing once the recognizer returns to theLISTENING andPROCESSING

states.

This sub-state system is shown in Figure 6-1. The typical state cycle of a
recognizer is triggered by user speech. The recognizer starts in theLISTENING

state, moves to thePROCESSINGstate while a user speaks, moves to theSUSPENDED

state once recognition of that speech is completed and while grammars are
updates in response to user input, and finally returns to theLISTENING state.

In this first event cycle aResult is typically produced that represents what
the recognizer heard. EachResult has a state system and theResult state system
is closely coupled to thisRecognizer state system. TheResult state system is
discussed in Section 6.7 (on page 101). Many applications (including the“Hello
World!” example) do not care about the recognition state but do care about t
simplerResult state system.

The other typical event cycle also starts in theLISTENING state. Upon receipt
of a non-speech event (e.g., keyboard event, mouse click, timer event) the
recognizer is suspended temporarily while grammars are updated in respons
the event, and then the recognizer returns to listening.

Applications in which grammars are affected by more than speech even
need to be aware of the recognition state system.

The following sections explain these event cycles in more detail and dis
why speech input events are different in some respects from other event typ
79

Java Speech Application Programming Interface

80

ame

or
d or
nizer
gnizer

n
d
tside

zer.

rs,

d —
r and
 that
at

ed

e

tive
6.3.3.1 Speech Events vs. Other Events

A keyboard event, a mouse event, a timer event, a socket event are all
instantaneous in time — there is a defined instant at which they occur. The s
is not true of speech for two reasons.

Firstly, speech is a temporal activity. Speaking a sentence takes time. F
example, a short command such as “reload this web page” will take a secon
two to speak, thus, it is not instantaneous. At the start of the speech the recog
changes state, and as soon as possible after the end of the speech the reco
produces a result containing the spoken words.

Secondly, recognizers cannot always recognize words immediately whe
they are spoken and cannot determine immediately when a user has stoppe
speaking. The reasons for these technical constraints upon recognition are ou
the scope of this guide, but knowing about them is helpful in using a recogni
(Incidentally, the same principals are generally true of human perception of
speech.)

A simple example of why recognizers cannot always respond might be
listening to a currency amount. If the user says “two dollars” or says “two dolla
fifty seconds” with a short pause after the word “dollars” the recognizer can’t
know immediately whether the user has finished speaking after the “dollars”.
What a recognizer must do is wait a short period — usually less than a secon
to see if the user continues speaking. A second is a long time for a compute
complications can arise if the user clicks a mouse or does something else in
waiting period. (Section 6.8 on page 133 explains the time-out parameters th
affect this delay.)

A further complication is introduced by the input audio buffering describ
in Section 6.3.

Putting all this together, there is a requirement for the recognizers to
explicitly represent internal state through theLISTENING , PROCESSING and
SUSPENDED states.

6.3.3.2 Speech Input Event Cycle

The typical recognition state cycle for aRecognizer occurs as speech input
occurs. Technically speaking, this cycle represents the recognition of a singl
Result . The result state system and result events are described in detail in
Section 6.7. The cycle described here is a clockwise trip through theLISTENING ,
PROCESSING andSUSPENDED states of anALLOCATED recognizer as shown in
Figure 6-1.

TheRecognizer starts in theLISTENING state with a certain set of grammars
enabled and active. When incoming audio is detected that may match an ac

Speech Recognition: javax.speech.recognition

s.
ul

es
on

nce
o

esult
grammar, theRecognizer transitions from theLISTENING state to thePROCESSING

state with aRECOGNIZER_PROCESSING event.
TheRecognizer then creates a newResult object and issues a

RESULT_CREATEDevent (aResultEvent) to provide the result to the application. At
this point the result is usually empty: it does not contain any recognized word
As recognition proceeds words are added to the result along with other usef
information.

TheRecognizer remains in thePROCESSING state until it completes
recognition of the result. While in thePROCESSING state theResult may be
updated with new information.

The recognizer indicates completion of recognition by issuing a
RECOGNIZER_SUSPENDED event to transition from thePROCESSING state to the
SUSPENDEDstate. Once in that state, the recognizer issues a resultfinalizationevent
to ResultListeners (RESULT_ACCEPTEDor RESULT_REJECTEDevent) to indicate that
all information about the result is finalized (words, grammars, audio etc.).

TheRecognizer remains in theSUSPENDEDstate until processing of the result
finalization event is completed. Applications will often make grammar chang
during the result finalization because the result causes a change in applicati
state or context.

In theSUSPENDED state theRecognizer buffers incoming audio. This
buffering allows a user to continue speaking without speech data being lost. O
theRecognizer returns to theLISTENING state the buffered audio is processed t
give the user the perception of real-time processing.

Once the result finalization event has been issued to all listeners, the
Recognizer automatically commits all grammar changes and issues a
CHANGES_COMMITTED event to return to theLISTENING state. (It also issues
GRAMMAR_CHANGES_COMMITTEDevents toGrammarListeners of changed grammars.)
The commit applies all grammar changes made at any point up to the end of r
finalization, such as changes made in the result finalization events.

TheRecognizer is now back in theLISTENING state listening for speech that
matches the new grammars.

In this event cycle the first two recognizer state transitions (marked by
RECOGNIZER_PROCESSINGandRECOGNIZER_SUSPENDEDevents) are triggered by user
actions: starting and stopping speaking. The third state transition
(CHANGES_COMMITTED event) is triggered programmatically some time after the
RECOGNIZER_SUSPENDED event.

TheSUSPENDED state serves as a temporary state in which recognizer
configuration can be updated without loosing audio data.
81

Java Speech Application Programming Interface

82

ove

r
he

onse

event

rs

n

tures
ve

e
w
ser

 for
un.
6.3.3.3 Non-Speech Event Cycle

For applications that deal only with spoken input the state cycle described ab
handles most normal speech interactions. For applications that handle other
asynchronous input, additional state transitions are possible. Other types of
asynchronous input include graphical user interface events (e.g.,AWTEvent), timer
events, multi-threading events, socket events and so on.

The cycle described here is temporary transition from theLISTENING state to
theSUSPENDED and back as shown in Figure 6-1.

When a non-speech event occurs which changes the application state o
application data it may be necessary to update the recognizer’s grammars. T
suspend andcommitChanges methods of aRecognizer are used to handle non-
speech asynchronous events. The typical cycle for updating grammars in resp
to a non-speech asynchronous events is as follows.

Assume that theRecognizer is in theLISTENING state (the user is not
currently speaking). As soon as the event is received, the application calls
suspend to indicate that it is about to change grammars. In response, the
recognizer issues aRECOGNIZER_SUSPENDED event and transitions from the
LISTENING state to theSUSPENDED state.

With theRecognizer in theSUSPENDED state, the application makes all
necessary changes to the grammars. (The grammar changes affected by this
cycle and the pending commit are described in Section 6.4.2 on page 85.)

Once all grammar changes are completed the application calls the
commitChanges method. In response, the recognizer applies the new gramma
and issues aCHANGES_COMMITTEDevent to transition from theSUSPENDEDstate back
to theLISTENING state. (It also issuesGRAMMAR_CHANGES_COMMITTED events to all
changed grammars.)

Finally, theRecognizer resumes recognition of the buffered audio and the
live audio with the new grammars.

The suspend and commit process is designed to provide a number of fea
to application developers which help give users the perception of a responsi
recognition system.

Because audio is buffered from the time of the asynchronous event to th
time at which theCHANGES_COMMITTEDoccurs, the audio is processed as if the ne
grammars were applied exactly at the time of the asynchronous event. The u
has the perception of real-time processing.

Although audio is buffered in theSUSPENDEDstate, applications should make
grammar changes and callcommitChanges as quickly as possible. This minimizes
the amount of data in the audio buffer and hence the amount of time it takes
the recognizer to “catch up”. It also minimizes the possibility of a buffer overr

Technically speaking, an application is not required to callsuspend prior to
calling commitChanges . If thesuspend call is committed theRecognizer behaves

Speech Recognition: javax.speech.recognition

an

)
ns.

zers
io
r is

the

e

so
ons of
in a

 be

ion

ny
le

d.
as if suspend had been called immediately prior to callingcommitChanges .
However, an application that does not callsuspend risks a commit occurring
unexpectedly while it updates grammars with the effect of leaving grammars in
inconsistent state.

6.3.4 Interactions of State Systems

The three sub-state systems of an allocated recognizer (shown in Figure 6-1
normally operate independently. There are, however, some indirect interactio

When a recognizer is paused, audio input is stopped. However, recogni
have a buffer between audio input and the internal process that matches aud
against grammars, so recognition can continue temporarily after a recognize
paused. In other words, aPAUSED recognizer may be in thePROCESSING state.

Eventually the audio buffer will empty. If the recognizer is in thePROCESSING

state at that time then the result it is working on is immediately finalized and
recognizer transitions to theSUSPENDED state. Since a well-behaved application
treatsSUSPENDED state as a temporary state, the recognizer will eventually leav
theSUSPENDED state by committing grammar changes and will return to the
LISTENING state.

ThePAUSED/RESUMEDstate of an engine is shared by multiple applications,
it is possible for a recognizer to be paused and resumed because of the acti
another application. Thus, an application should always leave its grammars
state that would be appropriate for aRESUMED recognizer.

The focus state of a recognizer is independent of thePAUSED andRESUMED

states. For instance, it is possible for a pausedRecognizer to haveFOCUS_ON.
When the recognizer is resumed, it will have the focus and its grammars will
activated for recognition.

The focus state of a recognizer is very loosely coupled with the recognit
state. An application that has noGLOBAL grammars (described in Section 6.4.3)
will not receive any recognition results unless it has recognition focus.

6.4 Recognition Grammars

A grammar defines what a recognizer should listen for in incoming speech. A
grammar defines the set of tokens a user can say (a token is typically a sing
word) and the patterns in which those words are spoken.

The Java Speech API supports two types of grammars:rule grammars and
dictation grammars. These grammars differ in how patterns of words are define
They also differ in their programmatic use: a rule grammar is defined by an
83

Java Speech Application Programming Interface

84

uilt

 set

input

ible
e

er,

his

he
is

 a

ng

to
r

he
application, whereas a dictation grammar is defined by a recognizer and is b
into the recognizer.

A rule grammar is provided by an application to a recognizer to define a
of rules that indicates what a user may say. Rules are defined by tokens, by
references to other rules and by logical combinations of tokens and rule
references. Rule grammars can be defined to capture a wide range of spoken
from users by the progressive combination of simple grammars and rules.

A dictation grammar is built into a recognizer. It defines a set of words
(possibly tens of thousands of words) which may be spoken in a relatively
unrestricted way. Dictation grammars are closest to the goal of unrestricted
natural speech input to computers. Although dictation grammars are more flex
than rule grammars, recognition of rule grammars is typically faster and mor
accurate.

Support for a dictation grammar is optional for a recognizer. As Section 4.2
(on page 36) explains, an application that requires dictation functionality can
request it when creating a recognizer.

A recognizer may have many rule grammars loaded at any time. Howev
the currentRecognizer interface restricts a recognizer to a single dictation
grammar. The technical reasons for this restriction are outside the scope of t
guide.

6.4.1 Grammar Interface

TheGrammar interface is the root interface that is extended by all grammars. T
grammar functionality that is shared by all grammars is presented through th
interface.

TheRuleGrammar interface is an extension of theGrammar interface to support
rule grammars. TheDictationGrammar interface is an extension of theGrammar

interface to support dictation grammars.
The following are the capabilities presented by the grammar interface:

♦ Grammar naming: Every grammar loaded into a recognizer must have
unique name. ThegetName method returns that name. Grammar names
allow references to be made between grammars. The grammar nami
convention is described in the Java Speech Grammar Format
Specification. Briefly, the grammar naming convention is very similar
the class naming convention for the Java programming language. Fo
example, a grammar from Acme Corp. for dates might be called
“com.acme.speech.dates ”.

♦ Enabling and disabling: Grammars may be enabled or disabled using t
setEnabled method. When a grammar is enabled and when specified

Speech Recognition: javax.speech.recognition

ar is
es
low

h
on

des

r
state

at

rs

ion

ss:
activation conditions are met, the grammar is activated. Once a gramm
active a recognizer will listen to incoming audio for speech that match
that grammar. Enabling and activation are described in more detail be
(Section 6.4.3).

♦ Activation mode: This is the property of a grammar that determines whic
conditions need to be met for a grammar to be activated. The activati
mode is managed through thegetActivationMode andsetActivationMode

methods (described in Section 6.4.3). The three available activation mo
are defined as constants of theGrammar interface:RECOGNIZER_FOCUS,
RECOGNIZER_MODAL andGLOBAL.

♦ Activation: the isActive method returns aboolean value that indicates
whether aGrammar is currently active for recognition.

♦ GrammarListener: theaddGrammarListener andremoveGrammarListener

methods allow aGrammarListener to be attached to and removed from a
Grammar. TheGrammarEvents issued to the listener indicate when gramma
changes have been committed and whenever the grammar activation
changes.

♦ ResultListener: theaddResultListener andremoveResultListener

methods allow aResultListener to be attached to and removed from a
Grammar. This listener receives notification of all events for any result th
matches the grammar.

♦ Recognizer: thegetRecognizer method returns a reference to the
Recognizer that owns theGrammar.

6.4.2 Committing Changes

The Java Speech API supportsdynamic grammars; that is, it supports the ability
for an application to modify grammars at runtime. In the case of rule gramma
any aspect of any grammar can be changed at any time.

After making any change to a grammar through theGrammar, RuleGrammar or
DictationGrammar interfaces an application mustcommit the changes. This
applies to changes in definitions of rules in aRuleGrammar , to changing context for
a DictationGrammar , to changing the enabled state, or to changing the activat
mode. (It does not apply to adding or removing aGrammarListener or
ResultListener .)

Changes are committed by calling thecommitChanges method of the
Recognizer . The commit is required for changes to affect the recognition proce
that is, the processing of incoming audio.

The commit changes mechanism has two important properties:
85

Java Speech Application Programming Interface

86

es in

ll to

ation
ser

f a
6.3.

at
t

d
the
ech

ted.

 for
with

mar
need

d is
ing
♦ Updates to grammar definitions and the enabled property take effect
atomically (all changes take effect at once). There are no intermediate
states in which some, but not all, changes have been applied.

♦ ThecommitChanges method is a method ofRecognizer so all changes to all
grammars are committed at once. Again, there are no intermediate stat
which some, but not all, changes have been applied.

There is one instance in which changes are committed without an explicit ca
thecommitChanges method. Whenever a recognition result isfinalized
(completed), an event is issued toResultListeners (it is either a
RESULT_ACCEPTED or RESULT_REJECTED event). Once processing of that event is
completed changes are normally committed. This supports the common situ
in which changes are often made to grammars in response to something a u
says.

The event-driven commit is closely linked to the underlying state system o
Recognizer . The state system for recognizers is described in detail in Section

6.4.3 Grammar Activation

A grammar isactivewhen the recognizer is matching incoming audio against th
grammar to determine whether the user is saying anything that matches tha
grammar. When a grammar is inactive it is not being used in the recognition
process.

Applications to do not directly activate and deactivate grammars. Instea
they provided methods for (1) enabling and disabling a grammar, (2) setting
activation mode for each grammar, and (3) requesting and releasing the spe
focus of a recognizer (as described in Section 6.3.2.)

The enabled state of a grammar is set with thesetEnabled method and tested
with the isEnabled method. For programmers familiar with AWT or Swing,
enabling a speech grammar is similar to enabling a graphical component.

Once enabled, certain conditions must be met for a grammar to be activa
The activation mode indicates when an application wants the grammar to be
active. There are three activation modes:RECOGNIZER_FOCUS, RECOGNIZER_MODAL

andGLOBAL. For each mode a certain set of activation conditions must be met
the grammar to be activated for recognition. The activation mode is managed
thesetActivationMode andgetActivationMode methods.

The enabled flag and the activation mode are both parameters of a gram
that need to be committed to take effect. As Section 6.4.2 described, changes
to be committed to affect the recognition processes.

Recognizer focus is a major determining factor in grammar activation an
relevant in computing environments in which more than one application is us

Speech Recognition: javax.speech.recognition

led
uest

 roll

o

ar

me.
. As

ctive

. In
an underlying recognition (e.g., desktop computing with multiple speech-enab
applications). Section 6.3.2 (on page 76) describes how applications can req
and release focus and monitor focus throughRecognizerEvents and the engine
state methods.

Recognizer focus is used to turn on and off activation of grammars. The
of focus depends upon the activation mode. The three activation modes are
described here in order from highest priority to lowest. An application should
always use the lowest priority mode that is appropriate to its user interface
functionality.

♦ GLOBAL activation mode: if enabled, theGrammar is always active
irrespective of whether theRecognizer of this application has focus.

♦ RECOGNIZER_MODAL activation mode: if enabled, theGrammar is always
active when the application’sRecognizer has focus. Furthermore, enabling
a modal grammar deactivates any grammars in the sameRecognizer with
theRECOGNIZER_FOCUSactivation mode. (The term “modal” is analogous t
“modal dialog boxes” in graphical programming.)

♦ RECOGNIZER_FOCUSactivation mode (default mode): if enabled, theGrammar

is active when theRecognizer of this application has focus. The exception
is that if any other grammar of this application is enabled with
RECOGNIZER_MODAL activation mode, then this grammar is not activated.

The current activation state of a grammar can be tested with theisActive method.
Whenever a grammar’s activation changes either aGRAMMAR_ACTIVATED or
GRAMMAR_DEACTIVATED event is issued to each attachedGrammarListener . A
grammar activation event typically follows aRecognizerEvent that indicates a
change in focus (FOCUS_GAINED or FOCUS_LOST), or aCHANGES_COMMMITTED

RecognizerEvent that indicates that a change in the enabled setting of a gramm
has been applied to the recognition process.

An application may have zero, one or many grammars enabled at any ti
Thus, an application may have zero, one or many grammars active at any time
the conventions below indicate, well-behaved applications alwaysminimize the
number of active grammars.

The activation and deactivation of grammars is independent ofPAUSED and
RESUMED states of theRecognizer . For instance, a grammar can be active even
when a recognizer isPAUSED. However, when aRecognizer is paused, audio input
to theRecognizer is turned off, so speech won’t be detected. This is useful,
however, because when the recognizer is resumed, recognition against the a
grammars immediately (and automatically) resumes.

Activating too many grammars and, in particular, activating multiple
complex grammars has an adverse impact upon a recognizer’s performance
87

Java Speech Application Programming Interface

88

ime,

ize

.

ing

rs.

tion)
not

nces
d

a

general terms, increasing the number of active grammars and increasing the
complexity of those grammars can both lead to slower recognition response t
greater CPU load and reduced recognition accuracy (i.e., more mistakes).

Well-behaved applications adhere to the following conventions to maxim
recognition performance and minimize their impact upon other applications:

♦ Never apply theGLOBAL activation mode to aDictationGrammar (most
recognizers will throw an exception if this is attempted).

♦ Always use the default activation modeRECOGNIZER_FOCUSunless there is
a good reason to use another mode.

♦ Only use theRECOGNIZER_MODAL when it is certain that deactivating the
RECOGNIZER_FOCUS grammars will not adversely affect the user interface

♦ Minimize the complexity and the number ofRuleGrammars with GLOBAL

activation mode. As a general rule, one very simpleGLOBAL rule grammar
should be sufficient for nearly all applications.

♦ Only enable a grammar when it is appropriate for a user to say someth
matching that grammar. Otherwise disable the grammar to improve
recognition response time and recognition accuracy for other gramma

♦ Only request focus when confident that the user’s speech focus (atten
is directed to grammars of your application. Release focus when it is
required.

6.5 Rule Grammars

6.5.1 Rule Definitions

A rule grammar is defined by a set ofrules. These rules are defined by logical
combinations of tokens to be spoken and references to other rules. The refere
may refer to other rules defined in the same rule grammar or to rules importe
from other grammars.

Rule grammars follow the style and conventions of grammars in the Jav
Speech Grammar Format (defined in theJava Speech Grammar Format
Specification). Any grammar defined in the JSGF can be converted to a
RuleGrammar object. AnyRuleGrammar object can be printed out in JSGF. (Note
that conversion from JSGF to aRuleGrammar and back to JSGF will preserve the
logic of the grammar but may lose comments and may change formatting.)

Speech Recognition: javax.speech.recognition

s

ost
 root

he
s
ing a

ed
Since theRuleGrammar interface extends theGrammar interface, a
RuleGrammar inherits the basic grammar functionality described in the previou
sections (naming, enabling, activation etc.).

The easiest way to load aRuleGrammar , or set ofRuleGrammar objects is from
a Java Speech Grammar Format file or URL. TheloadJSGF methods of the
Recognizer perform this task. If multiple grammars must be loaded (where a
grammar references one or more imported grammars), importing by URL is m
convenient. The application must specify the base URL and the name of the
grammar to be loaded.

Recognizer rec;
URL base = new URL("http://www.acme.com/app”);
String grammarName = "com.acme.demo";

Grammar gram = rec.loadURL(base, grammarName);

The recognizer converts the base URL and grammar name to a URL using t
same conventions asClassLoader (the Java platform mechanism for loading clas
files). By converting the periods in the grammar name to slashes ('/'), append
".gram" suffix and combining with the base URL, the location is “http://

www.acme.com/app/com/acme/demo.gram ”.
If the demo grammar imports sub-grammars, they will be loaded

automatically using the same location mechanism.
Alternatively, aRuleGrammar can be created by calling thenewRuleGrammar

method of aRecognizer . This method creates an empty grammar with a specifi
grammar name.

Once aRuleGrammar has been loaded, or has been created with the
newRuleGrammar method, the following methods of aRuleGrammar are used to
create, modify and manage the rules of the grammar.

Table 6-1 RuleGrammar methods for Rule management

Name Description

setRule Assign aRule object to a rulename.

getRule Return theRule object for a rulename.
89

Java Speech Application Programming Interface

90

n

le
Any of the methods ofRuleGrammar that affect the grammar (setRule ,
deleteRule , setEnabled etc.) take effect only after they are committed (as
described in Section 6.4.2).

The rule definitions of aRuleGrammar can be considered as a collection of
namedRule objects. EachRule object is referenced by its rulename (aString).
The different types ofRule object are described in Section 6.5.3.

Unlike most collections in Java, theRuleGrammar is a collection that does not
share objects with the application. This is because recognizers often need to
perform special processing of the rule objects and store additional informatio
internally. The implication for applications is that a call tosetRule is required to
change any rule. The following code shows an example where changing a ru
object does not affect the grammar.

RuleGrammar gram;

// Create a rule for the word blue
// Add the rule to the RuleGrammar and make it public
RuleToken word = new RuleToken("blue");
gram.setRule("ruleName", word, true);

// Change the word
word.setText("green");

getRuleInternal Return a reference to the recognizer’s internalRule

object for a rulename (for fast, read-only access).

listRuleNames List known rulenames.

isRulePublic Test whether a rulename is public.

deleteRule Delete a rule.

setEnabled Enable and disable thisRuleGrammar or rules of the
grammar.

isEnabled Test whether aRuleGrammar or a specified rule is
enabled.

Table 6-1 RuleGrammar methods for Rule management (cont’d)

Name Description

Speech Recognition: javax.speech.recognition

le
bers.

nto a

ied,
in
// getRule returns blue (not green)
System.out.println(gram.getRule("ruleName"));

To ensure that the changed“green” token is loaded into the grammar, the
application must callsetRule again after changing the word to“green” .
Furthermore, for either change to take effect in the recognition process, the
changes need to be committed (see Section 6.4.2).

6.5.2 Imports

Complex systems of rules are most easily built by dividing the rules into multip
grammars. For example, a grammar could be developed for recognizing num
That grammar could then beimported into two separate grammars that defines
dates and currency amounts. Those two grammars could then be imported i
travel booking application and so on. This type of hierarchical grammar
construction is similar in many respects to object oriented and shares the
advantage of easy reusage of grammars.

An import declaration in JSGF and an import in aRuleGrammar are most
similar to the import statement of the Java programming language. Unlike a
“#include” in the C programming language, the imported grammar is not cop
it is simply referencable. (A full specification of import semantics is provided
the Java Speech Grammar Format specification.)

TheRuleGrammar interface defines three methods for handling imports as
shown in Table 6-2.

Table 6-2 RuleGrammar import methods

Name Description

addImport Add a grammar or rule for import.

removeImport Remove the import of a rule or grammar.

getImports Return a list of all imported grammars or all rules
imported from a specific grammar.
91

Java Speech Application Programming Interface

92

e

).

,

The resolve method of theRuleGrammar interface is useful in managing
imports. Given any rulename, theresolve method returns an object that
represents the fully-qualified rulename for the rule that it references.

6.5.3 Rule Classes

A RuleGrammar is primarily a collection of defined rules. The programmatic rul
structure used to controlRecognizers follows exactly the definition of rules in the
Java Speech Grammar Format. Any rule is defined by aRule object. It may be any
one of theRule classes described Table 6-3. The exceptions are theRuleParse

class, which is returned by theparse method ofRuleGrammar , and theRule class
which is an abstract class and the parent of all otherRule objects.

Table 6-3 Rule objects

Name Description

Rule Abstract root object for rules.

RuleName Rule that references another defined rule.
JSGF example:<ruleName>

RuleToken Rule consisting of a single speakable token (e.g. a word
JSGF examples:elephant, “New York”

RuleSequence Rule consisting of a sequence of sub-rules.
JSGF example:buy <number> shares of <company>

RuleAlternatives Rule consisting of a set of alternative sub-rules.
JSGF example:green | red | yellow

RuleCount Rule containing a sub-rule that may be spoken optionally
zero or more times, or one or more times.
JSGF examples:<color>*, [optional]

RuleTag Rule that attaches a tag to a sub-rule.
JSGF example:{action=open}

RuleParse Special rule object used to represent results of a parse.

Speech Recognition: javax.speech.recognition

at.
e

e

ule

es
The following is an example of a grammar in Java Speech Grammar Form
The“Hello World!” example (page 72) shows how this JSGF grammar can b
loaded from a text file. Below we consider how to create the same grammar
programmatically.

grammar com.sun.speech.test;

public <test> = [a] test {TAG} | another <rule>;
<rule> = word;

The following code shows the simplest way to create this grammar. It uses th
ruleForJSGF method to convert partial JSGF text to aRule object. Partial JSGF is
defined as any legal JSGF text that may appear on the right hand side of a r
definition — technically speaking, any legal JSGF rule expansion.

Recognizer rec;

// Create a new grammar
RuleGrammar gram = rec.newRuleGrammar("com.sun.speech.test");

// Create the <test> rule
Rule test = gram.ruleForJSGF("[a] test {TAG} | another <rule>");
gram.setRule("test", // rulename

test, // rule definition
true); // true -> make it public

// Create the <rule> rule
gram.setRule("rule", gram.ruleForJSGF("word”), false);

// Commit the grammar
rec.commitChanges();

6.5.3.1 Advanced Rule Programming

In advanced programs there is often a need to define rules using the set ofRule

objects described above. For these applications, using rule objects is more
efficient than creating a JSGF string and using theruleForJSGF method.

To create a rule by code, the detailed structure of the rule needs to be
understood. At the top level of our example grammar, the<test> rule is an
alternative: the user may say something that matches"[a] test {TAG}" or say
something matching"another <rule>" . The two alternatives are each sequenc
containing two items. In the first alternative, the brackets around the token"a"
93

Java Speech Application Programming Interface

94

t

indicate it is optional. The"{TAG}" following the second token ("test") attaches a
tag to the token. The second alternative is a sequence with a token ("another")
and a reference to another rule ("<rule>").

The code to construct thisGrammar follows (this code example is not compac
— it is written for clarity of details).

Recognizer rec;

RuleGrammar gram = rec.newRuleGrammar("com.sun.speech.test");

// Rule we are building
RuleAlternatives test;

// Temporary rules
RuleCount r1;
RuleTag r2;
RuleSequence seq1, seq2;

// Create "[a]"
r1 = new RuleCount(new RuleToken("a"), RuleCount.OPTIONAL);

// Create "test {TAG}" - a tagged token
r2 = new RuleTag(new RuleToken("test"), "TAG");

// Join "[a]" and "test {TAG}" into a sequence "[a] test {TAG}"
seq1 = new RuleSequence(r1);
seq1.append(r2);

// Create the sequence "another <rule>";
seq2 = new RuleSequence(new RuleToken("another"));
seq2.append(new RuleName("rule"));

// Build "[a] test {TAG} | another <rule>"
test = new RuleAlternatives(seq1);
test.append(seq2);

// Add <test> to the RuleGrammar as a public rule
gram.setRule("test", test, true);

// Provide the definition of <rule>, a non-public RuleToken
gram.setRule("rule", new RuleToken("word"), false);

// Commit the grammar changes
rec.commitChanges();

Speech Recognition: javax.speech.recognition

 to
o it,
 in

s.

ight
nges
s for
time
es

pon
 lists

ickly.

itted
the
of
6.5.4 Dynamic Grammars

Grammars may be modified and updated. The changes allow an application
account for shifts in the application’s context, changes in the data available t
and so on. This flexibility allows application developers considerable freedom
creating dynamic and natural speech interfaces.

For example, in an email application the list of known users may change
during the normal operation of the program. The<sendEmail> command,

<sendEmail> = send email to <user>;

references the<user> rule which may need to be changed as new email arrive
This code snippet shows the update and commit of a change in users.

Recognizer rec;
RuleGrammar gram;

String names[] = {"amy", "alan", "paul"};
Rule userRule = new RuleAlternatives(names);

gram.setRule("user", userRule);

// apply the changes
rec.commitChanges();

Committing grammar changes can, in certain cases, be a slow process. It m
take a few tenths of seconds or up to several seconds. The time to commit cha
depends on a number of factors. First, recognizers have different mechanism
committing changes making some recognizers faster than others. Second, the
to commit changes may depend on the extent of the changes — more chang
may require more time to commit. Thirdly, the time to commit may depend u
the type of changes. For example, some recognizers optimize for changes to
of tokens (e.g. name lists). Finally, faster computers make changes more qu

The other factor which influences dynamic changes is the timing of the
commit. As Section 6.4.2 describes, grammar changes are not always comm
instantaneously. For example, if the recognizer is busy recognizing speech (in
PROCESSINGstate), then the commit of changes is deferred until the recognition
that speech is completed.
95

Java Speech Application Programming Interface

96

ng to

 the
n

ing

h
ules

r
e
ata

its
6.5.5 Parsing

Parsing is the process of matching text to a grammar. Applications use parsi
break down spoken input into a form that is more easily handled in software.
Parsing is most useful when the structure of the grammars clearly separates
parts of spoken text that an application needs to process. Examples are give
below of this type of structuring.

The text may be in the form of aString or array ofString objects (one
String per token), or in the form of aFinalRuleResult object that represents
what a recognizer heard a user say. TheRuleGrammar interface defines three forms
of theparse method — one for each form of text.

Theparse method returns aRuleParse object (a descendent ofRule) that
represents how the text matches theRuleGrammar . The structure of theRuleParse

object mirrors the structure of rules defined in theRuleGrammar . EachRule object
in the structure of the rule being parsed against is mirrored by a matchingRule

object in the returnedRuleParse object.
The difference between the structures comes about because the text be

parsed defines a single phrase that a user has spoken whereas aRuleGrammar

defines all the phrases the user could say. Thus the text defines a single pat
through the grammar and all the choices in the grammar (alternatives, and r
that occur optionally or occur zero or more times) are resolvable.

The mapping between the objects in the rules defined in theRuleGrammar and
the objects in theRuleParse structure is shown in Table 6-4. Note that except fo
theRuleCount andRuleName objects, the object in the parse tree are of the sam
type as rule object being parsed against (marked with “**”), but the internal d
may differ.

Table 6-4 Matching Rule definitions and RuleParse objects

Object in definition Matching object in RuleParse

RuleToken Maps to an identicalRuleToken object.

RuleTag Maps to aRuleTag object with the same tag and with the
contained rule mapped according to its rule type.

RuleSequence Maps to aRuleSequence object with identical length and
with each rule in the sequence mapped according to
rule type.

Speech Recognition: javax.speech.recognition

nput

hing

t

or
As an example, take the following simple extract from a grammar. The
public rule,<command>, may be spoken in many ways. For example, “open”,
“move that door” or “close that door please”.

public <command> = <action> [<object>] [<polite>];
<action> = open {OP} | close {CL} | move {MV};
<object> = [<this_that_etc>] window | door;
<this_that_etc> = a | the | this | that | the current;
<polite> = please | kindly;

Note how the rules are defined to clearly separate the segments of spoken i
that an application must process. Specifically, the<action> and<object> rules
indicate how an application must respond to a command. Furthermore, anyt
said that matches the<polite> rule can be safely ignored, and usually the
<this_that_etc> rule can be ignored too.

The parse for “open” against<command> has the following structure which
matches the structure of the grammar above.

RuleParse(<command> =
RuleSequence(

RuleAlternatives Maps to aRuleAlternatives object containing a single
item which is the one rule in the set of alternatives tha
was spoken.

RuleCount ** Maps to aRuleSequence object containing an item for
each time the rule contained by theRuleCOunt object is
spoken. The sequence may have a length of zero, one
more.

RuleName ** Maps to aRuleParse object with the name in the
RuleName object being the fully-qualified version of the
original rulename, and with theRule object contained by
theRuleParse object being an appropriate match of the
definition ofRuleName.

Table 6-4 Matching Rule definitions and RuleParse objects (cont’d)

Object in definition Matching object in RuleParse
97

Java Speech Application Programming Interface

98

is
se of

hrase
is a
RuleParse(<action> =
RuleAlternatives(

RuleTag(
RuleToken("open"), "OP")))))

The match of the<command> rule is represented by aRuleParse object.
Because the definition of<command> is a sequence of 3 items (2 of which are
optional), the parse of<command> is a sequence. Because only one of the 3 items
spoken (in “open”), the sequence contains a single item. That item is the par
the<action> rule.

The reference to<action> in the definition of<command> is represented by a
RuleName object in the grammar definition, and this maps to aRuleParse object
when parsed. The<action> rule is defined by a set of three alternatives
(RuleAlternatives object) which maps to anotherRuleAlternatives object in
the parse but with only the single spoken alternative represented. Since the p
spoken was “open”, the parse matches the first of the three alternatives which
tagged token. Therefore the parse includes aRuleTag object which contains a
RuleToken object for “open”.

The following is the parse for “close that door please”.

RuleParse(<command> =
RuleSequence(

RuleParse(<action> =
RuleAlternatives(

RuleTag(
RuleToken("close"), "CL")))

RuleSequence(
RuleParse(<object> =

RuleSequence(
RuleSequence(

RuleParse(<this_that_etc> =
RuleAlternatives(

RuleToken("that"))))
RuleAlternatives(

RuleToken("door"))))
RuleSequence(

RuleParse(<polite> =
RuleAlternatives(

RuleToken("please"))))
))

There are three parsing issues that application developers should consider.

Speech Recognition: javax.speech.recognition

This

e

will

ver,

n

ng

a
the

tion
♦ Parsing may fail because there is no legal match. In this instance theparse

methods returnnull .

♦ There may be several legal ways to parse the text against the grammar.
is known as anambiguous parse. In this instance theparse method will
return one of the legal parses but the application is not informed of th
ambiguity. As a general rule, most developers will want to avoid
ambiguous parses by proper grammar design. Advanced applications
use specialized parsers if they need to handle ambiguity.

♦ If a FinalRuleResult is parsed against theRuleGrammar and the rule within
that grammar that it matched, then it should successfully parse. Howe
it is not guaranteed to parse if theRuleGrammar has been modified of if the
FinalRuleResult is aREJECTED result. (Result rejection is described in
Section 6.7.)

6.6 Dictation Grammars

Dictation grammars come closest to the ultimate goal of a speech recognitio
system that takes natural spoken input and transcribes it as text. Dictation
grammars are used for free text entry in applications such as email and word
processing.

A Recognizer that supports dictation provides a singleDictationGrammar

which is obtained from the recognizer’sgetDictationGrammar method. A
recognizer that supports the Java Speech API is not required to provide a
DictationGrammar . Applications that require a recognizer with dictation
capability can explicitly request dictation when creating a recognizer by setti
theDictationGrammarSupported property of theRecognizerModeDesc to true (see
Section 4.2 for details).

A DictationGrammar is more complex than a rule grammar, but fortunately,
DictationGrammar is often easier to use than an rule grammar. This is because
DictationGrammar is built into the recognizer so most of the complexity is
handled by the recognizer and hidden from the application. However, recogni
of a dictation grammar is typically more computationally expensive and less
accurate than that of simple rule grammars.

TheDictationGrammar inherits its basic functionality from theGrammar

interface. That functionality is detailed in Section 6.4 and includes grammar
naming, enabling, activation, committing and so on.

As with all grammars, changes to aDictationGrammar need to be committed
before they take effect. Commits are described in Section 6.4.2.

In addition to the specific functionality described below, aDictationGrammar

is typically adaptive. In an adaptive system, a recognizer improves its
99

Java Speech Application Programming Interface

100

age
eaker

h

of a

acy.
ntially
performance (accuracy and possibly speed) by adapting to the style of langu
used by a speaker. The recognizer may adapt to the specific sounds of a sp
(the way they say words). Equally importantly for dictation, a recognizer can
adapt to a user’s normal vocabulary and to the patterns of those words. Suc
adaptation (technically known as language model adaptation) is a part of the
recognizer’s implementation of theDictationGrammar and does not affect an
application. The adaptation data for a dictation grammar is maintained as part
speaker profile (see Section 6.9).

TheDictationGrammar extends and specializes theGrammar interface by
adding the following functionality:

♦ Indication of the current textual context,

♦ Control of word lists.

The following methods provided by the DictationGrammar interface allow
an application to manage word lists and text context.

6.6.1 Dictation Context

Dictation recognizers use a range of information to improve recognition accur
Learning the words a user speaks and the patterns of those words can substa
improve accuracy.

Table 6-5 DictationGrammar interface methods

Name Description

setContext Provide the recognition engine with the preceding and
following textual context.

addWord Add a word to theDictationGrammar .

removeWord Remove a word from theDictationGrammar .

listAddedWords List the words that have been added to the
DictationGrammar .

listRemovedWords List the words that have been removed from the
DictationGrammar .

Speech Recognition: javax.speech.recognition

sor

ser
s

e, if
the

for

d.
ore.

sed
e
s the
uess

sult
seful

stem

.7.1,
ata
Because patterns of words are important,contextis important. The context of
a word is simply the set of surrounding words. As an example, consider the
following sentence“If I have seen further it is by standing on the shoulders of
Giants” (Sir Isaac Newton). If we are editing this sentence and place the cur
after the word “standing” then the preceding context is“...further it is by
standing” and the following context is“on the shoulders of Giants...”.

Given this context, the recognizer is able to more reliably predict what a u
might say, and greater predictability can improve recognition accuracy. In thi
example, the user might insert the word“up” but is less likely to insert the word
“JavaBeans”.

Through thesetContext method of theDictationGrammar interface, an
application should tell the recognizer the current textual context. Furthermor
the context changes (for example, due to a mouse click to move the cursor)
application should update the context.

Different recognizers process context differently. The main consideration
the application is the amount of context to provide to the recognizer. As a
minimum, a few words of preceding and following context should be provide
However, some recognizers may take advantage of several paragraphs or m

There are twosetContext methods:

void setContext(String preceding, String following);
void setContext(String preceding[], String following[]);

The first form takes plain text context strings. The second version should be u
when the result tokens returned by the recognizer are available. Internally, th
recognizer processes context according to tokens so providing tokens make
use of context more efficient and more reliable because it does not have to g
the tokenization.

6.7 Recognition Results

A recognitionresult is provided by aRecognizer to an application when the
recognizer “hears” incoming speech that matches an active grammar. The re
tells the application what words the user said and provides a range of other u
information, including alternative guesses and audio data.

In this section, both the basic and advanced capabilities of the result sy
in the Java Speech API are described. The sections relevant to basic rule
grammar-based applications are those that cover result finalization (Section 6
page 102), the hierarchy of result interfaces (Section 6.7.2, page 104), the d
101

Java Speech Application Programming Interface

102

e
ling
and

ult
.7.5,

lt

le
a

y the

r

provided through those interfaces (Section 6.7.3, page 106), and common
techniques for handling finalized rule results (Section 6.7.9, page 114).

For dictation applications the relevant sections include those listed abov
plus the sections covering token finalization (Section 6.7.8, page 112), hand
of finalized dictation results (Section 6.7.10, page 119) and result correction
training (Section 6.7.12, page 127).

For more advanced applications relevant sections might include the res
life cycle (Section 6.7.4, page 108), attachment of ResultListeners (Section 6
page 109), the relationship of recognizer and result states (Section 6.7.6,
page 110), grammar finalization (Section 6.7.7, page 111), result audio
(Section 6.7.11, page 125), rejected results (Section 6.7.13, page 129), resu
timing (Section 6.7.14, page 131), and the loading and storing of vendor
formatted results (Section 6.7.15, page 132).

6.7.1 Result Finalization

The“Hello World!” example (on page 72) illustrates the simplest way to hand
results. In that example, aRuleGrammar was loaded, committed and enabled, and
ResultListener was attached to aRecognizer to receive events associated with
every result that matched that grammar. In other words, theResultListener was
attached to receive information about words spoken by a user that is heard b
recognizer.

The following is a modified extract of the“Hello World!” example to
illustrate the basics of handling results. In this case, aResultListener is attached
to aGrammar (instead of aRecognizer) and it prints out every thing the recognize
hears that matches that grammar. (There are, in fact, three ways in which a
ResultListener can be attached: see Section 6.7.5 on page 109.)

import javax.speech.*;
import javax.speech.recognition.*;

public class MyResultListener extends ResultAdapter {
// Receives RESULT_ACCEPTED event: print it
public void resultAccepted(ResultEvent e) {

Result r = (Result)(e.getSource());
ResultToken tokens[] = r.getBestTokens();

for (int i = 0; i < tokens.length; i++)
System.out.print(tokens[i].getSpokenText() + " ");

System.out.println();
}

// somewhere in app, add a ResultListener to a grammar

Speech Recognition: javax.speech.recognition

e

ing

rantee
ed
re

e

er

not

d the
tail in

n
h for

ation
a
ake
eck

ch
{
RuleGrammar gram = ...;
gram.addResultListener(new MyResultListener());

}
}

The code shows theMyResultListener class which is as an extension of the
ResultAdapter class. TheResultAdapter class is a convenience implementation
of theResultListener interface (provided in thejavax.speech.recognition

package). When extending theResultAdapter class we simply implement the
methods for the events that we care about.

In this case, theRESULT_ACCEPTEDevent is handled. This event is issued to th
resultAccepted method of theResultListener and is issued when a result is
finalized. Finalization of a result occurs after a recognizer completed process
of a result. More specifically, finalization occurs when all information about a
result has been produced by the recognizer and when the recognizer can gua
that the information will not change. (Result finalization should not be confus
with object finalization in the Java programming language in which objects a
cleaned up before garbage collection.)

There are actually two ways to finalize a result which are signalled by th
RESULT_ACCEPTED andRESULT_REJECTED events. A result is accepted when a
recognizer is confidently that it has correctly heard the words spoken by a us
(i.e., the tokens in theResult exactly represent what a user said).

Rejection occurs when aRecognizer is not confident that it has correctly
recognized a result: that is, the tokens and other information in the result do
necessarily match what a user said. Many applications will ignore the
RESULT_REJECTED event and most will ignore the detail of a result when it is
rejected. In some applications, aRESULT_REJECTEDevent is used simply to provide
users with feedback that something was heard but no action was taken, for
example, by displaying “???” or sounding an error beep. Rejected results an
differences between accepted and rejected results are described in more de
Section 6.7.13 (on page 129).

An accepted result is not necessarily a correct result. As is pointed out i
Section 2.2.3 (on page 16), recognizers make errors when recognizing speec
a range of reasons. The implication is that even for an accepted result, applic
developers should consider the potential impact of a misrecognition. Where
misrecognition could cause an action with serious consequences or could m
changes that can’t be undone (e.g., “delete all files”), the application should ch
with users before performing the action. As recognition systems continue to
improve the number of errors is steadily decreasing, but as with human spee
recognition there will always be a chance of a misunderstanding.
103

Java Speech Application Programming Interface

104

ing

e

ge be

st
hen

er it
6.7.2 Result Interface Hierarchy

A finalized result can include a considerable amount of information. This
information is provided through four separate interfaces and through the
implementation of these interfaces by a recognition system.

// Result: the root result interface
interface Result;

// FinalResult: info on all finalized results
interface FinalResult extends Result;

// FinalRuleResult: a finalized result matching a RuleGrammar
interface FinalRuleResult extends FinalResult;

// FinalDictationResult: a final result for a DictationGrammar
interface FinalDictationResult extends FinalResult;

// A result implementation provided by a Recognizer
public class EngineResult

implements FinalRuleResult, FinalDictationResult;

At first sight, the result interfaces may seem complex. The reasons for provid
several interfaces are as follows:

♦ The information available for a result is different in different states of th
result. Before finalization, a limited amount of information is available
through theResult interface. Once a result is finalized (accepted or
rejected), more detailed information is available through theFinalResult

interface and either theFinalRuleResult or FinalDictationResult

interface.

♦ The type of information available for a finalized result is different for a
result that matches aRuleGrammar than for a result that matches a
DictationGrammar . The differences are explicitly represented by having
separate interfaces forFinalRuleResult andFinalDictationResult .

♦ Once a result object is created as a specific Java class it cannot chan
changed to another class. Therefore, because a result object must
eventually support the final interface it must implement them when fir
created. Therefore, every result implements all three final interfaces w
it is first created:FinalResult , FinalRuleResult and
FinalDictationResult .

♦ When a result is first created a recognizer does not always know wheth

Speech Recognition: javax.speech.recognition

lt is

se

all
ed

calls.

a

and
s.
will eventually match aRuleGrammar or aDictationGrammar . Therefore,
every result object implements both theFinalRuleResult and
FinalDictationResult interfaces.

♦ A call made to any method of any of the final interfaces before a resu
finalized causes aResultStateException .

♦ A call made to any method of theFinalRuleResult interface for a result
that matches aDictationGrammar causes aResultStateException .
Similarly, a call made to any method of theFinalDictationResult

interface for a result that matches aRuleGrammar causes a
ResultStateException .

♦ All the result functionality is provided by interfaces in the
java.speech.recognition package rather than by classes. This is becau
the Java Speech API can support multiple recognizers from multiple
vendors and interfaces allow the vendors greater flexibility in
implementing results.

The multitude of interfaces is, in fact, designed to simplify application
programming and to minimize the chance of introducing bugs into code by
allowing compile-time checking of result calls. The two basic principles for
calling the result interfaces are the following:

1. If it is safe to call the methods of a particular interface then it is safe to c
the methods of any of the parent interfaces. For example, for a finaliz
result matching aRuleGrammar , the methods of theFinalRuleResult

interface are safe, so the methods of theFinalResult andResult interfaces
are also safe. Similarly, for a finalized result matching a
DictationGrammar , the methods ofFinalDictationResult , FinalResult

andResult can all be called safely.

2. Use type casting of a result object to ensure compile-time checks of method
For example, in events to an unfinalized result, cast the result object to theResult

interface. For aRESULT_ACCEPTEDfinalization event with a result that matches
DictationGrammar , cast the result to theFinalDictationResult interface.

In the next section the different information available through the different
interfaces is described. In all the following sections that deal with result states
result events, details are provided on the appropriate casting of result object
105

Java Speech Application Programming Interface

106

lt
pon

ay
han

zed

may
ed
6.7.3 Result Information

As the previous section describes, different information is available for a resu
depending upon the state of the result and, for finalized results, depending u
the type of grammar it matches (RuleGrammar or DictationGrammar).

6.7.3.1 Result Interface

The information available through theResult interface is available for any
result in any state — finalized or unfinalized — and matching any grammar.

♦ Result state: ThegetResultState method returns the current state of the
result. The three possible state values defined by static values of theResult

interface areUNFINALIZED, ACCEPTED andREJECTED. (Result states are
described in more detail in Section 6.7.4.)

♦ Grammar: ThegetGrammar method returns a reference to the matched
Grammar, if it is known. For anACCEPTED result, this method will return a
RuleGrammar or aDictationGrammar . For aREJECTED result, this method
may return a grammar, or may returnnull if the recognizer could not
identify the grammar for this result. In theUNFINALIZED state, this method
returnsnull before aGRAMMAR_FINALIZED event, and non-null afterwards.

♦ Number of finalized tokens: ThenumTokens method returns the total
number of finalized tokens for a result. For an unfinalized result this m
be zero or greater. For a finalized result this number is always greater t
zero for anACCEPTEDresult but may be zero or more for aREJECTEDresult.
Once a result is finalized this number will not change.

♦ Finalized tokens: ThegetBestToken andgetBestTokens methods return
either a specified finalized best-guess token of a result or all the finali
best-guess tokens. TheResultToken object and token finalization are
described in the following sections.

♦ Unfinalized tokens: In theUNFINALIZED state, thegetUnfinalizedTokens

method returns a list of unfinalized tokens. An unfinalized token is a
recognizer’s current guess of what a user has said, but the recognizer
choose to change these tokens at any time and any way. For a finaliz
result, thegetUnfinalizedTokens method always returnsnull .

In addition to the information detailed above, theResult interface provides the
addResultListener andremoveResultListener methods which allow a
ResultListener to be attached to and removed from an individual result.

Speech Recognition: javax.speech.recognition

,
d in

izer
d

ce
n

r for
sses

, the
sses.

 (not
ResultListener attachment is described in more detail in Section 6.7.5 (on
page 109).

6.7.3.2 FinalResult Interface

The information available through theFinalResult interface is available for
any finalized result, including results that match either aRuleGrammar or
DictationGrammar .

♦ Audio data: aRecognizer may optionally provide audio data for a finalized
result. This data is provided asAudioClip for a token, a sequence of tokens
or for the entire result. Result audio and its management are describe
more detail in Section 6.7.11 (on page 125).

♦ Training data: many recognizer’s have the ability to be trained and
corrected. By training a recognizer or correcting its mistakes, a recogn
can adapt its recognition processes so that performance (accuracy an
speed) improve over time. Several methods of the FinalResult interfa
support this capability and are described in detail in Section 6.7.12 (o
page 127).

6.7.3.3 FinalDictationResult Interface

TheFinalDictationResult interface contains a single method.

♦ Alternative tokens: ThegetAlternativeTokens method allows an
application to request a set of alternative guesses for a single token o
a sequence of tokens in that result. In dictation systems, alternative gue
are typically used to facilitate correction of dictated text. Dictation
recognizers are designed so that when they do make a misrecognition
correct word sequence is usually amongst the best few alternative gue
Section 6.7.10 (on page 119) explains alternatives in more detail.

6.7.3.4 FinalRuleResult Interface

Like theFinalDictationResult interface, theFinalRuleResult interface
provides alternative guesses. TheFinalRuleResult interface also provides some
additional information that is useful in processing results that match a
RuleGrammar .

♦ Alternative tokens: ThegetAlternativeTokens method allows an
application to request a set of alternative guesses for the entire result
107

Java Speech Application Programming Interface

108

how

ing

s (see
ult is

g

d by

ed
t. As

lt is

s
gh

is
. If
for tokens). ThegetNumberGuesses method returns the actual number of
alternative guesses available.

♦ Alternative grammars: The alternative guesses of a result matching a
RuleGrammar do not all necessarily match the same grammar. The
getRuleGrammar method returns a reference to theRuleGrammar matched
by an alternative.

♦ Rulenames: When a result matches aRuleGrammar , it matches a specific
defined rule of thatRuleGrammar . ThegetRuleName method returns the
rulename for the matched rule. Section 6.7.9 (on page 114) explains
this additional information is useful in processingRuleGrammar results.

♦ Tags: A tag is a string attached to a component of aRuleGrammar definition.
Tags are useful in simplifying the software for processing results match
a RuleGrammar (explained in Section 6.7.9). ThegetTags method returns
the tags for the best guess for aFinalRuleResult .

6.7.4 Result Life Cycle

A Result is produced in response to a user’s speech. Unlike keyboard input,
mouse input and most other forms of user input, speech is not instantaneou
Section 6.3.3.1 for more detail). As a consequence, a speech recognition res
not produced instantaneously. Instead, aResult is produced through a sequence
of events starting some time after a user starts speaking and usually finishin
some time after the user stops speaking.

Figure 6-2 shows the state system of aResult and the associated
ResultEvents . As in the recognizer state diagram (Figure 6-1), the blocks
represent states, and the labelled arcs represent transitions that are signalle
ResultEvents .

Every result starts in theUNFINALIZED state when aRESULT_CREATED event is
issued. While unfinalized, the recognizer provides information including finaliz
and unfinalized tokens and the identity of the grammar matched by the resul
this information is added, theRESULT_UPDATEDandGRAMMAR_FINALIZEDevents are
issued

Once all information associated with a result is finalized, the entire resu
finalized. As Section 6.7.1 explained, a result is finalized with either a
RESULT_ACCEPTED or RESULT_REJECTED event placing it in either theACCEPTED or
REJECTED state. At that point all information associated with the result become
available including the best guess tokens and the information provided throu
the three final result interfaces (see Section 6.7.3).

Once finalized the information available through all the result interfaces
fixed. The only exceptions are for the release of audio data and training data

Speech Recognition: javax.speech.recognition

an
 the

step

ey
audio data is released, anAUDIO_RELEASED event is issued (see detail in
Section 6.7.11). If training information is released, anTRAINING_INFO_RELEASED

event is issued (see detail in Section 6.7.12).
Applications can track result states in a number of ways. Most often,

applications handle result inResultListener implementation which receives
ResultEvents as recognition proceeds.

As Section 6.7.3 explains, a recognizer conveys a range of information to
application through the stages of producing a recognition result. However, as
example in Section 6.7.1 shows, many applications only care about the last
and event in that process — theRESULT_ACCEPTED event.

The state of a result is also available through thegetResultState method of
theResult interface. That method returns one of the three result states:
UNFINALIZED, ACCEPTED or REJECTED.

6.7.5 ResultListener Attachment

A ResultListener can be attached in one of three places to receive events
associated with results: to aGrammar, to aRecognizer or to an individualResult .
The different places of attachment give an application some flexibility in how th
handle results.

UNFINALIZED

RESULT_ACCEPTED

Figure 6-2 Result states

ACCEPTED

RESULT_REJECTED

REJECTED

RESULT_CREATED

Result

**

**

++

++ RESULT_UPDATED / GRAMMAR_FINALIZED

** AUDIO_RELEASED / TRAINING_INFO_RELEASE
109

Java Speech Application Programming Interface

110

ar.

 with

g.,
.

cally,

 an

d

To supportResultListeners theGrammar, Recognizer andResult interfaces
all provide theaddResultListener andremoveResultListener methods.

Depending upon the place of attachment a listener receives events for
different results and different subsets of result events.

♦ Grammar: A ResultListener attached to aGrammar receives all
ResultEvents for any result that has been finalized to match that gramm
Because the grammar is known once aGRAMMAR_FINALIZED event is
produced, aResultListener attached to aGrammar receives that event and
subsequent events. Since grammars are usually defined for specific
functionality it is common for most result handling to be done in the
methods of listeners attached to each grammar.

♦ Result : A ResultListener attached to aResult receives allResultEvents

starting at the time at which the listener is attached to theResult . Note that
because a listener cannot be attached until a result has been created
theRESULT_CREATED event, it can never receive that event.

♦ Recognizer : A ResultListener attached to aRecognizer receives all
ResultEvents for all results produced by thatRecognizer for all grammars.
This form of listener attachment is useful for very simple applications (e.
“Hello World!”) and when centralized processing of results is required
Only ResultListeners attached to aRecognizer receive the
RESULT_CREATED event.

6.7.6 Recognizer and Result States

The state system of a recognizer is tied to the processing of a result. Specifi
theLISTENING , PROCESSING andSUSPENDED state cycle described in Section 6.3.3
(on page 79) and shown in Figure 6-1 (on page 77) follows the production of
event.

The transition of aRecognizer from theLISTENING state to thePROCESSING

state with aRECOGNIZER_PROCESSING event indicates that a recognizer has starte
to produce a result. TheRECOGNIZER_PROCESSING event is followed by the
RESULT_CREATED event toResultListeners .

TheRESULT_UPDATED andGRAMMAR_FINALIZED events are issued to
ResultListeners while the recognizer is in thePROCESSING state.

As soon as the recognizer completes recognition of a result, it makes a
transition from thePROCESSING state to theSUSPENDED state with a
RECOGNIZER_SUSPENDED event. Immediately following that recognizer event, the
result finalization event (eitherRESULT_ACCEPTED or RESULT_REJECTED) is issued.
While the result finalization event is processed, the recognizer remains
suspended. Once result finalization event is completed, the recognizer

Speech Recognition: javax.speech.recognition

e
dded
sult

.
mars

on

r

(see

nt
lt
t each

king
rable.

d.
automatically transitions from theSUSPENDED state back to theLISTENING state
with aCHANGES_COMMITTEDevent. Once back in theLISTENING state the recognizer
resumes processing of audio input with the grammar committed with the
CHANGES_COMMITTED event.

6.7.6.1 Updating Grammars

In many applications, grammar definitions and grammar activation need to b
updated in response to spoken input from a user. For example, if speech is a
to a traditional email application, the command “save this message” might re
in a window being opened in which a mail folder can be selected. While that
window is open, the grammars that control that window need to be activated
Thus during the event processing for the “save this message” command gram
may need be created, updated and enabled. All this would happen during
processing of theRESULT_ACCEPTED event.

For any grammar changes to take effect they must be committed (see
Section 6.4.2 on page 85). Because this form of grammar update is so comm
while processing theRESULT_ACCEPTED event (and sometimes the
RESULT_REJECTED event), recognizers implicitly commit grammar changes afte
either result finalization event has been processed.

This implicit is indicated by theCHANGES_COMMITTED event that is issued
when a Recognizer makes a transition from theSUSPENDED state to theLISTENING

state following result finalization and the result finalization event processing
Section 6.3.3 for details).

One desirable effect of this form of commit becomes useful in compone
systems. If changes in multiple components are triggered by a finalized resu
event, and if many of those components change grammars, then they do no
need to call thecommitChanges method. The downside of multiple calls to the
commitChanges method is that a syntax check be performed upon each. Chec
syntax can be computationally expensive and so multiple checks are undesi
With the implicit commit once all components have updated grammars
computational costs are reduced.

6.7.7 Grammar Finalization

At any time during processing a result aGRAMMAR_FINALIZED event can be issued
for that result indicating theGrammar matched by the result has been determine
This event is issued is issued only once. It is required for anyACCEPTEDresult, but
is optional for result that is eventually rejected.

As Section 6.7.5 describes, theGRAMMAR_FINALIZED event is the first event
received by aResultListener attached to aGrammar.
111

Java Speech Application Programming Interface

112

er

ing

ult
eech
nges

ing

 the

er
e

ult

eft
TheGRAMMAR_FINALIZEDevent behaves the same for results that match eith
a RuleGrammar or aDictationGrammar .

Following theGRAMMAR_FINALIZED event, thegetGrammar method of the
Result interface returns a non-null reference to the matched grammar. By issu
a GRAMMAR_FINALIZED event theRecognizer guarantees that theGrammar will not
change.

Finally, theGRAMMAR_FINALIZED event does not change the result’s state. A
GRAMMAR_FINALIZEDevent is issued only when a result is in theUNFINALIZED state,
and leaves the result in that state.

6.7.8 Token Finalization

A result is a dynamic object a it is being recognized. One way in which a res
can be dynamic is that tokens are updated and finalized as recognition of sp
proceeds. The result events allow a recognizer to inform an application of cha
in the either or both the finalized and unfinalized tokens of a result.

The finalized and unfinalized tokens can be updated on any of the follow
result event types:RESULT_CREATED, RESULT_UPDATED, RESULT_ACCEPTED,
RESULT_REJECTED.

Finalized tokens are accessed through thegetBestTokens andgetBestToken

methods of theResult interface. The unfinalized tokens are accessed through
getUnfinalizedTokens method of theResult interface. (See Section 6.7.3 on
page 106 for details.)

A finalized token is aResultToken in aResult that has been recognized in
the incoming speech as matching a grammar. Furthermore, when a recogniz
finalizes a token it indicates that it will not change the token at any point in th
future. ThenumTokens method returns the number of finalized tokens.

Many recognizers do not finalize tokens until recognition of an entire res
is complete. For these recognizers, thenumTokens method returns zero for a result
in theUNFINALIZED state.

For recognizers that do finalize tokens while aResult is in theUNFINALIZED

state, the following conditions apply:

♦ TheResult object may contain zero or more finalized tokens when the
RESULT_CREATED event is issued.

♦ The recognizer issuesRESULT_UPDATED events to theResultListener

during recognition each time one or more tokens are finalized.

♦ Tokens are finalized strictly in the order in which they are spoken (i.e., l
to right in English text).

Speech Recognition: javax.speech.recognition

 yet
 and

he

me

ay

 the

 of
ver,

 to be
y

r
the

s

A result in theUNFINALIZED state may also have unfinalized tokens. An
unfinalized token is a token that the recognizer has heard, but which it is not
ready to finalize. Recognizers are not required to provide unfinalized tokens,
applications can safely choose to ignore unfinalized tokens.

For recognizers that provide unfinalized tokens, the following conditions
apply:

♦ TheResult object may contain zero or more unfinalized tokens when t
RESULT_CREATED event is issued.

♦ The recognizer issuesRESULT_UPDATED events to theResultListener

during recognition each time the unfinalized tokens change.

♦ For an unfinalized result, unfinalized tokens may be updated at any ti
and in any way. Importantly, the number of unfinalized tokens may
increase, decrease or return to zero and the values of those tokens m
change in any way the recognizer chooses.

♦ Unfinalized tokens always represent a guess for the speech following
finalized tokens.

Unfinalized tokens are highly changeable, so why are they useful? Many
applications can provide users with visual feedback of unfinalized tokens —
particularly for dictation results. This feedback informs users of the progress
the recognition and helps the user to know that something is happening. Howe
because these tokens may change and are more likely than finalized tokens
incorrect, the applications should visually distinguish the unfinalized tokens b
using a different font, different color or even a different window.

The following is an example of finalized tokens and unfinalized tokens fo
the sentence “I come from Australia”. The lines indicate the token values after
singleRESULT_CREATED event, the multipleRESULT_UPDATED events and the final
RESULT_ACCEPTED event. The finalized tokens are in bold, the unfinalized token
are in italics.

1. RESULT_CREATED: I come

2. RESULT_UPDATED: I come from

3. RESULT_UPDATED: I come from

4. RESULT_UPDATED: I come from a strange land

5. RESULT_UPDATED: I come from Australia

6. RESULT_ACCEPTED: I come from Australia
113

Java Speech Application Programming Interface

114

 a
d
does
y
a

on

sults

ing
Recognizers can vary in how they support finalized and unfinalized tokens in
number of ways. For an unfinalized result, a recognizer may provide finalize
tokens, unfinalized tokens, both or neither. Furthermore, for a recognizer that
support finalized and unfinalized tokens during recognition, the behavior ma
depend upon the number of active grammars, upon whether the result is for
RuleGrammar or DictationGrammar , upon the length of spoken sentences, and
upon other more complex factors. Fortunately, unless there is a functional
requirement to display or otherwise process intermediate result, an applicati
can safely ignore all but theRESULT_ACCEPTED event.

6.7.9 Finalized Rule Results

The are some common design patterns for processing accepted finalized re
that match aRuleGrammar . First we review what we know about these results.

♦ It is safe to cast an accepted result that matches aRuleGrammar to the
FinalRuleResult interface. It is safe to call any method of the
FinalRuleResult interface or its parents:FinalResult andResult .

♦ ThegetGrammar method of theResult interface return a reference to the
matchedRuleGrammar . ThegetRuleGrammar method of the
FinalRuleResult interface returns references to theRuleGrammars

matched by the alternative guesses.

♦ ThegetBestToken andgetBestTokens methods of theResult interface
return the recognizer’s best guess of what a user said.

♦ ThegetAlternativeTokens method returns alternative guesses for the
entire result.

♦ The tags for the best guess are available from thegetTags method of the
FinalRuleResult interface.

♦ Result audio (see Section 6.7.11) and training information (see
Section 6.7.12) are optionally available.

6.7.9.1 Result Tokens

A ResultToken in a result matching aRuleGrammar contains the same information
as theRuleToken object in theRuleGrammar definition. This means that the
tokenization of the result follows the tokenization of the grammar definition
including compound tokens. For example, consider a grammar with the follow
Java Speech Grammar Format fragment which contains four tokens:

Speech Recognition: javax.speech.recognition

ns

t

 to

hat

than
atch

g

ly.
<rule> = I went to "San Francisco";

If the user says “I went to New York” then the result will contain the four toke
defined by JSGF: “I”, “went”, “to”, “San Francisco”.

TheResultToken interface defines more advanced information. Amongst
that information thegetStartTime andgetEndTime methods may optionally
return time-stamp values (or-1 if the recognizer does not provide time-alignmen
information).

TheResultToken interface also defines several methods for a recognizer
provide presentation hints. Those hints are ignored forRuleGrammar results —
they are only used for dictation results (see Section 6.7.10.2).

Furthermore, thegetSpokenText andgetWrittenText methods will return an
identical string which is equal to the string defined in the matched grammar.

6.7.9.2 Alternative Guesses

In aFinalRuleResult , alternative guesses are alternatives for the entire result, t
is, for a complete utterance spoken by a user. (AFinalDictationResult can
provide alternatives for single tokens or sequences of tokens.) Because more
oneRuleGrammar can be active at a time, an alternative token sequence may m
a rule in a differentRuleGrammar than the best guess tokens, or may match a
different rule in the sameRuleGrammar as the best guess. Thus, when processin
alternatives for aFinalRuleResult , an application should use thegetRuleGrammar

andgetRuleName methods to ensure that they analyze the alternatives correct
Alternatives are numbered from zero up. The 0th alternative is actually the

best guess for the result soFinalRuleResult.getAlternativeTokens(0) returns
the same array asResult.getBestTokens() . (The duplication is for programming
convenience.) Likewise, theFinalRuleResult.getRuleGrammar(0) call will
return the same result asResult.getGrammar() .

The following code is an implementation of theResultListener interface
that processes theRESULT_ACCEPTED event. The implementation assumes that a
Result being processed matches aRuleGrammar .

class MyRuleResultListener extends ResultAdapter
{

public void resultAccepted(ResultEvent e)
{

// Assume that the result matches a RuleGrammar.
// Cast the result (source of event) appropriately
FinalRuleResult res = (FinalRuleResult) e.getSource();

// Print out basic result information
115

Java Speech Application Programming Interface

116

), a

ults:

ch
PrintStream out = System.out;
out.println("Number guesses : " + res.getNumberGuesses());

// Print out the best result and all alternatives
for (int n=0; n < res.getNumberGuesses(); n++) {

// Extract the n-best information
String gname = res.getRuleGrammar(n).getName();
String rname = res.getRuleName(n);
ResultToken[] tokens = res.getAlternativeTokens(n);

out.print("Alt " + n + ": ");
out.print("<" + gname + "." + rname + "> :");
for (int t=0; t < tokens.length; t++)

out.print(" " + tokens[t].getSpokenText());
out.println();

}
}

}

For a grammar with commands to control a windowing system (shown below
result might look like:

Number guesses: 3
Alt 0: <com.acme.actions.command>: move the window to the back
Alt 1: <com.acme.actions.command>: move window to the back
Alt 2: <com.acme.actions.command>: open window to the front

If more than one grammar or more than one public rule was active, the
<grammarName.ruleName> values could vary between the alternatives.

6.7.9.3 Result Tags

Processing commands generated from aRuleGrammar becomes increasingly
difficult as the complexity of the grammar rises. With the Java Speech API,
speech recognizers provide two mechanisms to simplify the processing of res
tags and parsing.

A tag is a label attached to an entity within aRuleGrammar . The Java Speech
Grammar Format and theRuleTag class define how tags can be attached to a
grammar. The following is a grammar for very simple control of windows whi
includes tags attached to the important words in the grammar.

Speech Recognition: javax.speech.recognition

e are
rth
e
o”.
de

ith
est

).
 of

he
d
at

itive
grammar com.acme.actions;

public <command> = <action> <object> [<where>]
<action> = open {ACT_OP}| close {ACT_CL} | move {ACT_MV};
<object> = [a | an | the] (window {OBJ_WIN} | icon {OBJ_ICON});
<where> = [to the] (back {WH_BACK} | front {WH_FRONT});

This grammar allows users to speak commands such as

open window
move the icon
move the window to the back
move window back

The italicized words are the ones that are tagged in the grammar — thes
the words that the application cares about. For example, in the third and fou
example commands, the spoken words are different but the tagged words ar
identical. Tags allow an application to ignore trivial words such as “the” and “t

Thecom.acme.actions grammar can be loaded and enabled using the co
in the“Hello World!” example (on page 72). Since the grammar has a single
public rule,<command>, the recognizer will listen for speech matching that rule,
such as the example results given above.

The tags for the best result are available through thegetTags method of the
FinalRuleResult interface. This method returns an array of tags associated w
the tokens (words) and other grammar entities matched by the result. If the b
sequence of tokens is “move the window to the front”, the list of tags is the
following String array:

String tags[] = {"ACT_MV", "OBJ_WIN", "WH_FRONT"};

Note how the order of the tags in the result is preserved (forward in time
These tags are easier for most applications to interpret than the original text
what the user said.

Tags can also be used to handle synonyms — multiple ways of saying t
same thing. For example, “programmer”, “hacker”, “application developer” an
“computer dude” could all be given the same tag, say “DEV”. An application th
looks at the “DEV” tag will not care which way the user spoke the title.

Another use of tags is forinternationalization of applications. Maintaining
applications for multiple languages and locales is easier if the code is insens
to the language being used. In the same way that the “DEV” tag isolated an
application from different ways of saying “programmer”, tags can be used to
117

Java Speech Application Programming Interface

118

of

ces
ent.
o be

 to be
l

kens
provide an application with similar input irrespective of the language being
recognized.

The following is a grammar for French with the same functionality as the
grammar for English shown above.

grammar com.acme.actions.fr;

public <command> = <action> <object> [<where>]
<action> = ouvrir {ACT_OP}| fermer {ACT_CL} | deplacer {ACT_MV};
<object> = fenetre {OBJ_WIN} | icone {OBJ_ICON};
<where> = au-dessous {WH_BACK} | au-dessus {WH_FRONT};

For this simple grammar, there are only minor differences in the structure
the grammar (e.g. the"[to the]" tokens in the<where> rule for English are
absent in French). However, in more complex grammars the syntactic differen
between languages become significant and tags provide a clearer improvem

Tags do not completely solve internationalization problems. One issue t
considered is word ordering. A simple command like “open the window” can
translate to the form “the window open” in some languages. More complex
sentences can have more complex transformations. Thus, applications need
aware of word ordering, and thus tag ordering when developing internationa
applications.

6.7.9.4 Result Parsing

More advanced applicationsparse results to get even more information than is
available with tags. Parsing is the capability to analyze how a sequence of to
matches aRuleGrammar . Parsing of text against aRuleGrammar is discussed in
Section 6.5.5 (page 96).

Parsing aFinalRuleResult produces aRuleParse object. ThegetTags method
of a RuleParse object provides the same tag information as thegetTags method of
a FinalRuleResult . However, theFinalRuleResult provides tag information for
only the best-guess result, whereas parsing can be applied to the alternative
guesses.

An API requirement that simplifies parsing of results that match a
RuleGrammar is that for a such result to beACCEPTED (not rejected) it must exactly
match the grammar — technically speaking, it must be possible to parse a
FinalRuleResult against theRuleGrammar it matches. This is not guaranteed,
however, if the result was rejected or if theRuleGrammar has been modified since
it was committed and produced the result.

Speech Recognition: javax.speech.recognition

ults

ens.

0.2

 for
r

hs or
 that
ext is
e

the
 the

ther
6.7.10 Finalized Dictation Results

The are some common design patterns for processing accepted finalized res
that match aDictationGrammar . First we review what we know about these
results.

♦ It is safe to cast an accepted result that matches aDictationGrammar to the
FinalDictationResult interface. It is safe to call any method of the
FinalDictationResult interface or its parents:FinalResult andResult .

♦ ThegetGrammar method of theResult interface return a reference to the
matchedDictationGrammar .

♦ ThegetBestToken andgetBestTokens methods of theResult interface
return the recognizer’s best guess of what a user said.

♦ ThegetAlternativeTokens method of theFinalDictationResult

interface returns alternative guesses for any token or sequence of tok

♦ Result audio (see Section 6.7.11) and training information (see
Section 6.7.12) are optionally available.

TheResultTokens provided in aFinalDictationResult contain specialized
information that includes hints on textual presentation of tokens. Section 6.7.1
(on page 121) discusses the presentation hints in detail. In this section the
methods for obtaining and using alternative tokens are described.

6.7.10.1Alternative Guesses

Alternative tokens for a dictation result are most often used by an application
display to users for correction of dictated text. A typical scenario is that a use
speaks some text — perhaps a few words, a few sentences, a few paragrap
more. The user reviews the text and detects a recognition error. This means
the best guess token sequence is incorrect. However, very often the correct t
one of the top alternative guesses. Thus, an application will provide a user th
ability to review a set of alternative guesses and to select one of them if it is
correct text. Such a correction mechanism is often more efficient than typing
correction or dictating the text again. If the correct text is not amongst the
alternatives an application must support other means of entering the text.

ThegetAlternativeTokens method is passed a starting and an ending
ResultToken . These tokens must have been obtained from the same result ei
through a call togetBestToken or getBestTokens in theResult interface, or
through a previous call togetAlternativeTokens .
119

Java Speech Application Programming Interface

120

f

our
f the
ed”

ple,
in
 by
e

e of
ResultToken[][] getAlternativeTokens(
 . ResultToken fromToken,
 . ResultToken toToken,
 . int max);

To obtain alternatives for a single token (rather than alternatives for a
sequence), settoToken to null .

The int parameter allows the application to specify the number of
alternatives it wants. The recognizer may choose to return any number of
alternatives up to the maximum number including just one alternative (the
original token sequence). Applications can indicate in advance the number o
alternatives it may request by setting theNumResultAlternatives parameter
through the recognizer’sRecognizerProperties object.

The two-dimensional array returned by thegetAlternativeTokens method is
the most difficult aspect of dictation alternatives to understand. The following
example illustrates the major features of the return value.

Let’s consider a dictation example where the user says “he felt alienated
today” but the recognizer hears “he felt alien ate Ted today”. The user says f
words but the recognizer hears six words. In this example, the boundaries o
spoken words and best-guess align nicely: “alienated” aligns with “alien ate T
(incorrect tokens don’t always align smoothly with the correct tokens).

Users are typically better at locating and fixing recognition errors than
recognizers or applications — they provided the original speech. In this exam
the user will likely identify the words “alien ate Ted” as incorrect (tokens 2 to 4
the best-guess result). By an application-provided method such as selection
mouse and a pull-down menu, the user will request alternative guesses for th
three incorrect tokens. The application calls thegetAlternativeTokens method of
theFinalDictationResult to obtain the recognizer’s guess at the alternatives.

// Get 6 alternatives for for tokens 2 through 4.
FinalDictationResult r = ...;
ResultToken tok2 = r.getBestToken(2);
ResultToken tok4 = r.getBestToken(4);
String[][] alt = r.getAlternativeTokens(tok2, tok4, 6);

The return array might look like the following. Each line represents a sequenc
alternative tokens to “alien ate Ted”. Each word in each alternative sequence
represents aResultToken object in an array.

alt[0] = alien ate Ted // the best guess
alt[1] = alienate Ted // the 1st alternative

Speech Recognition: javax.speech.recognition

er

the
s.

3, 2,

ded,
rray.

mans.

 the

t
n

that
ake

n a

er
alt[2] = alienated // the 2nd alternative
alt[3] = alien hated // the 3rd alternative
alt[4] = a lion ate Ted // the 4th alternative

The points to note are:

♦ The first alternative is the best guess. This is usually the case if thetoToken

andfromToken values are from the best-guess sequence. (From an us
perspective it’s not really an alternative.)

♦ Only five alternative sequences were returned even though six were
requested. This is because a recognizer will only return alternatives it
considers to reasonable guesses. It is legal for this call to return only
best guess with no alternatives if can’t find any reasonable alternative

♦ The number of tokens is not the same in all the alternative sequences (
1, 2, 4 tokens respectively). This return array is known as aragged array.
From a speech perspective is easy to see why different lengths are nee
but application developers do need to be careful processing a ragged a

♦ The best-guess and the alternatives do not always make sense to hu

A complex issue to understand is that the alternatives vary according to how
application (or user) requests them. The 1st alternative to “alien ate Ted” is
“alienate Ted”. However, the 1st alternative to “alien” might be “a lion”, the 1s
alternative to “alien ate” might be “alien eight”, and the 1st alternative to “alie
ate Ted today” might be “align ate Ted to day”.

Fortunately for application developers, users learn to select sequences
are likely to give reasonable alternatives, and recognizers are developed to m
the alternatives as useful and accurate as possible.

6.7.10.2Result Tokens

A ResultToken object represents a single token in a result. A token is most ofte
single word, but multi-word tokens are possible (e.g., “New York”) as well as
formatting characters and language-specific constructs. For aDictationGrammar

the set of tokens is built into the recognizer.
EachResultToken in aFinalDictationResult provides the following

information.

♦ Thespoken formof the token which provides a transcript of what the us
says (getSpokenText method). In a dictation system, the spoken form is
121

Java Speech Application Programming Interface

122

e
f
g

se,

e

the
nt.
e

n
ive

ld

e of

 In
ple,

ken.

or
igns

 or

er. In

ens,
typically used when displaying unfinalized tokens.

♦ Thewritten formof the token which indicates how to visually present th
token (getWrittenText method). In a dictation system, the written form o
finalized tokens is typically placed into the text edit window after applyin
the following presentation hints.

♦ A capitalization hintindicating whether the written form of the following
token should be capitalized (first letter only), all uppercase, all lowerca
or left as-is (getCapitalizationHint method).

♦ An spacing hintindicating how the written form should be spaced with th
previous and following tokens.

The presentation hints in aResultToken are important for the processing of
dictation results. Dictation results are typically displayed to the user, so using
written form and the capitalization and spacing hints for formatting is importa
For example, when dictation is used in word processing, the user will want th
printed text to be correctly formatted.

The capitalization hint indicates how the written form of the following toke
should be formatted. The capitalization hint takes one of four mutually exclus
values.CAP_FIRST indicates that the first character of the following token shou
be capitalized. TheUPPERCASE andLOWERCASE values indicate that the following
token should be either all uppercase or lowercase.CAP_AS_IS indicates that there
should be no change in capitalization of the following token.

The spacing hint deals with spacing around a token. It is anint value
containing three flags which are or’ed together (using the '|' operator). If non
the three spacing hint flags are set true, thengetSpacingHint method returns the
valueSEPARATE which is the value zero.

♦ TheATTACH_PREVIOUS bit is set if the token should be attached to the
previous token: no space between this token and the previous token.
English, some punctuation characters have this flag set true. For exam
periods, commas and colons are typically attached to the previous to

♦ TheATTACH_FOLLOWING bit is set if the token should be attached to the
following token: no space between this token and the following token. F
example, in English, opening quotes, opening parentheses and dollar s
typically attach to the following token.

♦ TheATTACH_GROUP bit is set if the token should be attached to previous
following tokens if they also have theATTACH_GROUP flag set to true. In
other words, tokens in an attachment group should be attached togeth
English, a common use of the group flag is for numbers, digits and
currency amounts. For example, the sequence of four spoken-form tok

Speech Recognition: javax.speech.recognition

age.

 do

ms
"3" "point" "1" "4" , should have the group flag set true, so the
presentation form should not have separating spaces:"3.14" .

Every language has conventions for textual representation of a spoken langu
Since recognizers are language-specific and understand many of these
presentation conventions, they provide the presentation hints (written form,
capitalization hint and spacing hint) to simplify applications. However,
applications may choose to override the recognizer’s hints or may choose to
additional processing.

Table 6-6 shows examples of tokens in which the spoken and written for
are different:

Table 6-6 Spoken and written forms for some English tokens

Spoken Form Written Form Capitalization Spacing

twenty 20 CAP_AS_IS SEPARATE

new line '\n' '\u000A' CAP_FIRST ATTACH_PREVIOUS &
ATTACH_FOLLOWING

new paragraph '\u2029' CAP_FIRST ATTACH_PREVIOUS &
ATTACH_FOLLOWING

no space null CAP_AS_IS ATTACH_PREVIOUS &
ATTACH_FOLLOWING

Space bar ' ' '\u0020' CAP_AS_IS ATTACH_PREVIOUS &
ATTACH_FOLLOWING

Capitalize next null CAP_FIRST SEPARATE

Period '.' '\u002E' CAP_FIRST ATTACH_PREVIOUS

Comma ',' '\u002C' CAP_AS_IS ATTACH_PREVIOUS

Open
parentheses

'(' '\u0028' CAP_AS_IS ATTACH_FOLLOWING

Exclamation
mark

'!' '\u0021' CAP_FIRST ATTACH_PREVIOUS
123

Java Speech Application Programming Interface

124

t”

r.
but
r

hints
w

de

he
e

“New line”, “new paragraph”, “space bar”, “no space” and “capitalize nex
are all examples of conversion of an implicit command (e.g. “start a new
paragraph”). For three of these, the written form is a single Unicode characte
Most programmers are familiar with the new-line character '\n' and space ' ',
fewer are familiar with the Unicode character for new paragraph '\u2029'. Fo
convenience and consistency, theResultToken includes static variables called
NEW_LINE andNEW_PARAGRAPH.

Some applications will treat a paragraph boundary as two new-line
characters, others will treat it differently. Each of these commands provides
for capitalization. For example, in English the first letter of the first word of a ne
paragraph is typically capitalized.

The punctuation characters, “period”, “comma”, “open parentheses”,
“exclamation mark” and the three currency symbols convert to a single Unico
character and have special presentation hints.

An important feature of the written form for most of the examples is that t
application does not need to deal with synonyms (multiple ways of saying th
same thing). For example, “open parentheses” may also be spoken as “open
paren” or “begin paren” but in all cases the same written form is generated.

The following is an example sequence of result tokens.

dollar sign '$' '\u0024' CAP_AS_IS ATTACH_FOLLOWING &
ATTACH_GROUP

pound sign '£' '\u00A3' CAP_AS_IS ATTACH_FOLLOWING &
ATTACH_GROUP

yen sign '¥' '\u00A5' CAP_AS_IS ATTACH_PREVIOUS &
ATTACH_GROUP

Table 6-7 Sample sequence of result tokens

Spoken Form Written Form Capitalization Spacing

new line "\n" CAP_FIRST ATTACH_PREVIOUS &
ATTACH_FOLLOWING

Table 6-6 Spoken and written forms for some English tokens (cont’d)

Spoken Form Written Form Capitalization Spacing

Speech Recognition: javax.speech.recognition

and
.

enty
e

ers of
This sequence of tokens should be converted to the following string:

"\nThe INDEX is 7-2."

Conversion of spoken text to a written form is a complex task and is
complicated by the different conventions of different languages and often by
different conventions for the same language. The spoken form, written form
presentation hints of theResultToken interface handle most simple conversions
Advanced applications should consider filtering the results to process more
complex patterns, particularly cross-token patterns. For example “nineteen tw
eight” is typically converted to “1928” and "twenty eight dollars" to "$28" (not
the movement of the dollar sign to before the numbers).

6.7.11 Result Audio

If requested by an application, some recognizers can provide audio data for
results. Audio data has a number of uses. In dictation applications, providing
audio feedback to users aids correction of text because the audio reminds us
what they said (it’s not always easy to remember exactly what you dictate,

the "the" CAP_AS_IS SEPARATE

uppercase next null UPPERCASE SEPARATE

index "index" CAP_AS_IS SEPARATE

is "is" CAP_AS_IS SEPARATE

seven "7" CAP_AS_IS ATTACH_GROUP

dash "-" CAP_AS_IS ATTACH_GROUP

two "2" CAP_AS_IS ATTACH_GROUP

period "." CAP_FIRST ATTACH_PREVIOUS

Table 6-7 Sample sequence of result tokens (cont’d)

Spoken Form Written Form Capitalization Spacing
125

Java Speech Application Programming Interface

126

tion

of

ine
re

that
e, a
ions

of

t.
especially in long sessions). Audio data also allows storage for future evalua
and debugging.

Audio data is provided for finalized results through the following methods
theFinalResult interface.

There are twogetAudio methods in theFinalResult interface. One method
accepts no parameters and returns anAudioClip for an entire result ornull if
audio data is not available for this result. The othergetAudio method takes a start
and endResultToken as input and returns anAudioClip for the segment of the
result including the start and end token ornull if audio data is not available.

In both forms of thegetAudio method, the recognizer will attempt to return
the specified audio data. However, it is not always possible to exactly determ
the start and end of words or even complete results. Sometimes segments a
“clipped” and sometimes surrounding audio is included in theAudioClip .

Not all recognizers provide access to audio for results. For recognizers
do provide audio data, it is not necessarily provided for all results. For exampl
recognizer might only provide audio data for dictation results. Thus, applicat
should always check for a null return value on agetAudio call.

The storage of audio data for results potentially requires large amounts
memory, particularly for long sessions. Thus, result audio requires special
management. An application that wishes to use result audio should:

♦ Set theResultAudioProvided parameter ofRecognizerProperties to
true . Recognizers that do not support audio data ignore this call.

♦ Test the availability of audio for a result using theisAudioAvailable

method of theFinalResult interface.

♦ Use thegetAudio methods to obtain audio data. These methods returnnull

if audio data is not available.

Table 6-8 FinalResult interface: audio methods

Name Description

getAudio Get anAudioClip for a token, a sequence of
tokens or for an entire result.

isAudioAvailable Tests whether audio data is available for a resul

releaseAudio Release audio data for a result.

Speech Recognition: javax.speech.recognition

to

 by

r
tion

r of

e

♦ Once the application has finished use of the audio for aResult , it should
call thereleaseAudio method ofFinalResult to free up resources.

A recognizer may choose to release audio data for a result if it is necessary
reclaim memory or other system resources.

When audio is released by either a call toreleaseAudio or by the recognizer
a AUDIO_RELEASED event is issued to theaudioReleased method of the
ResultListener .

6.7.12 Result Correction

Recognition results are not always correct. Some recognizers can be trained
informing of the correct tokens for a result — usually when a user corrects a
result.

Recognizers are not required to support correction capabilities. If a
recognizer does support correction, it does not need to support correction fo
every result. For example, some recognizers support correction only for dicta
results.

Applications are not required to provide recognizers with correction
information. However, if the information is available to an application and the
recognizer supports correction then it is good practice to inform the recognize
the correction so that it can improve its future recognition performance.

TheFinalResult interface provides the methods that handle correction.

Table 6-9 FinalResult interface: correction methods

Name Description

tokenCorrection Inform the recognizer of a correction in which
zero or more tokens replace a token or sequenc
of tokens.

MISRECOGNITION
USER_CHANGE
DONT_KNOW

Indicate the type of correction.

isTrainingInfoAvailable Tests whether the recognizer has information
available to allow it to learn from a correction.

releaseTrainingInfo Release training information for a result.
127

Java Speech Application Programming Interface

128

cts
r
 user

the

tants

ns

s is a

y

the

ord
ased

ial

ive
Often, but certainly not always, a correction is triggered when a user corre
a recognizer by selecting amongst the alternative guesses for a result. Othe
instances when an application is informed of the correct result are when the
types a correction to dictated text, or when a user corrects a misrecognized
command with a follow-up command.

Once an application has obtained the correct result text, it should inform
recognizer. The correction information is provided by a call to the
tokenCorrection method of theFinalResult interface. This method indicates a
correction of one token sequence to another token sequence. Either token
sequence may contain one or more tokens. Furthermore, the correct token
sequence may contain zero tokens to indicate deletion of tokens.

The tokenCorrection method accepts acorrectionType parameter that
indicates the reason for the correction. The legal values are defined by cons
of theFinalResult interface:

♦ MISRECOGNITIONindicates that the new tokens are known to be the toke
actually spoken by the user: a correction of a recognition error.
Applications can be confident that a selection of an alternative token
sequence implies aMISRECOGNITION correction.

♦ USER_CHANGE indicates that the new tokens are not the tokens originally
spoken by the user but instead the user has changed his/her mind. Thi
“speako” (a spoken version of a “typo”). AUSER_CHANGEmay be indicated
if a user types over the recognized result, but sometimes the user ma
choose to type in the correct result.

♦ DONT_KNOW the application does not know whether the new tokens are
correcting a recognition error or indicating a change by the user.
Applications should indicate this type of correction whenever unsure of
type of correction.

Why is it useful to tell a recognizer about aUSER_CHANGE? Recognizers adapt to
both the sounds and the patterns of words of users. AUSER_CHANGE correction
allows the recognizer to learn about a user’s word patterns. AMISRECOGNITION

correction allows the recognizer to learn about both the user’s voice and the w
patterns. In both cases, correcting the recognizer requests it to re-train itself b
on the new information.

Training information needs to be managed because it requires substant
memory and possibly other system resources to maintain it for a result. For
example, in long dictation sessions, correction data can begin to use excess
amounts of memory.

Recognizers maintain training information only when the recognizer’s
TrainingProvided parameter is set to true through theRecognizerProperties

Speech Recognition: javax.speech.recognition

ing

d

n

).

user

dent

int
interface. Recognizers that do not support correction will ignore calls to the
setTrainingProvided method.

If the TrainingProvided parameter is set to true, a result may include
training information when it is finalized. Once an application believes the train
information is no longer required for a specificFinalResult , it should call the
releaseTrainingInfo method ofFinalResult to indicate the recognizer can
release the resources used to store the information.

At any time, the availability of training information for a result can be teste
by calling theisTrainingInfoAvailable method.

Recognizers can choose to release training information even without a
request to do so by the application. This does not substantially affect an
application because performing correction on a result which does not have
training information is not an error.

A TRAINING_INFO_RELEASED event is issued to theResultListener when the
training information is released. The event is issued identically whether the
application or recognizer initiated the release.

6.7.13 Rejected Results

First, a warning:ignore rejected results unless you really understand them!
Like humans, recognizers don’t have perfect hearing and so they make

mistakes (recognizers still tend to make more mistakes than people). An
application should never completely trust a recognition result. In particular,
applications should treat important results carefully, for example, "delete all
files".

Recognizers try to determine whether they have made a mistake. This
process is known asrejection. But recognizers also make mistakes in rejection! I
short, a recognizer cannot always tell whether or not it has made a mistake.

A recognizer may reject incoming speech for a number of reasons:

♦ Detected a non-speech event (e.g. cough, laughter, microphone click

♦ Detected speech that only partially matched an active grammar (e.g.
spoke only half a command).

♦ Speech contained "um", "ah", or some other speaking error that the
recognizer could not ignore.

♦ Speech matched an active grammar but the recognizer was not confi
that it was an accurate match.

Rejection is controlled by theConfidenceLevel parameter of
RecognizerProperties (see Section 6.8). The confidence value is a floating po
129

Java Speech Application Programming Interface

130

0

ut a

.

rrect.

hat
number between 0.0 and 1.0. A value of 0.0 indicates weak rejection — the
recognizer doesn’t need to be very confident to accept a result. A value of 1.
indicates strongest rejection, implying that the recognizer will reject a result
unless it is very confident that the result is correct. A value of 0.5 is the
recognizer’s default.

6.7.13.1Rejection Timing

A result may be rejected with aRESULT_REJECTED event at any time while it is
UNFINALIZED: that is, any time after aRESULT_CREATED event but without a
RESULT_ACCEPTED event occurring. (For a description of result events see
Section 6.7.4.)

This means that the sequence of result events that produce aREJECTEDresult:

♦ A singleRESULT_CREATED event to issue a new result in theUNFINALIZED

state.

♦ While in theUNFINALIZED state, zero or moreRESULT_UPDATEDevents may
be issued to update finalized and/or unfinalized tokens. Also, a single
optionalGRAMMAR_FINALIZED event may be issued to indicate that the
matched grammar has been identified.

♦ A singleRESULT_REJECTED event moves the result to theREJECTED state.

When a result is rejected, there is a strong probability that the information abo
result normally provided throughResult , FinalResult , FinalRuleResult and
FinalDictationResult interfaces is inaccurate, or more typically, not available

Some possibilities that an application must consider:

♦ There are no finalized tokens (numTokens returns 0).

♦ TheGRAMMAR_FINALIZED event was not issued, so thegetGrammar method
returnsnull . In this case, all the methods of theFinalRuleResult and
FinalDictationResult interfaces throw exceptions.

♦ Audio data and training information may be unavailable, even when
requested.

♦ All tokens provided as best guesses or alternative guesses may be inco

♦ If the result does match aRuleGrammar , there is not a guarantee that the
tokens can be parsed successfully against the grammar.

Finally, a repeat of the warning. Only use rejected results if you really know w
you are doing!

Speech Recognition: javax.speech.recognition

e time

en

ss

o
sult
nd,

 only

ut
d be

ult
s are
s that

.

ry to
ess

re
ore

, the
ses.
6.7.14 Result Timing

Recognition of speech is not an instant process. There are intrinsic delays
between the time the user starts or ends speaking a word or sentence and th
at which the corresponding result event is issued by the speech recognizer.

The most significant delay for most applications is the time between wh
the user stops speaking and theRESULT_ACCEPTED or RESULT_REJECTED event that
indicates the recognizer has finalized the result.

The minimum finalization time is determined by theCompleteTimeout

parameter that is set through theRecognizerProperties interface. This time-out
indicates the period of silence after speech that the recognizer should proce
before finalizing a result. If the time-out is too long, the response of the
recognizer (and the application) is unnecessarily delayed. If the time-out is to
short, the recognizer may inappropriately break up a result (e.g. finalize a re
while the user is taking a quick breath). Typically values are less than a seco
but not usually less than 0.3sec.

There is also anIncompleteTimeout parameter that indicates the period of
silence a recognizer should process if the user has said something that may
partially matches an active grammar. This time-out indicates how long a
recognizer should wait before rejecting an incomplete sentence. This time-o
also indicates how long a recognizer should wait mid-sentence if a result coul
accepted, but could also be continued and accepted after more words. The
IncompleteTimeout is usually longer than the complete time-out.

Latency is the overall delay between a user finishing speaking and a res
being produced. There are many factors that can affect latency. Some effect
temporary, others reflect the underlying design of speech recognizers. Factor
can increase latency include:

♦ TheCompleteTimeout andIncompleteTimeout properties discussed above

♦ Computer power (especially CPU speed and memory): less powerful
computers may process speech slower than real-time. Most systems t
catch up while listening to background silence (which is easier to proc
than real speech).

♦ Grammar complexity: larger and more complex grammars tend to requi
more time to process. In most cases, rule grammars are processed m
quickly than dictation grammars.

♦ Suspending: while a recognizer is in theSUSPENDEDstate, it must buffer of
incoming audio. When it returns to theLISTENING state it must catch up by
processing the buffered audio. The longer the recognizer is suspended
longer it can take to catch up to real time and the more latency increa
131

Java Speech Application Programming Interface

132

rver

 for

ent

r
)
l
t

 by
ly

the
 the

de
♦ Client/server latencies: in client/server architectures, communication of
the audio data, results, and other information between the client and se
can introduce delays.

6.7.15 Storing Results

Result objects can be stored for future processing. This is particularly useful
dictation applications in which the correction information, audio data and
alternative token information is required in future sessions on the same docum
because that stored information can assist document editing.

TheResult object is recognizer-specific. This is because each recognize
provides an implementation of theResult interface. The implications are that (a
recognizers do not usually understand each other’s results, and (b) a specia
mechanism is required to store and load result objects (standard Java objec
serialization is not sufficient).

TheRecognizer interface defines the methodswriteVendorResult and
readVendorResult to perform this function. These methods write to an
OutputStream and read from anInputStream respectively. If the correction
information and audio data for a result are available, then they will be stored
this call. Applications that do not need to store this extra data should explicit
release it before storing a result.

{
Recognizer rec;
OutputStream stream;
Result result;
...
try {

rec.writeVendorResult(stream, result);
} catch (Exception e) {

e.printStackTrace();
}

}

A limitation of storing vendor-specific results is that a compatible recognizer
must be available to read the file. Applications that need to ensure a file
containing a result can be read, even if no recognizer is available, should wrap
result data when storing it to the file. When re-loading the file at a later time,
application will unwrap the result data and provide it to a recognizer only if a
suitable recognizer is available. One way to perform the wrapping is to provi
thewriteVendorResult method with aByteArrayOutputStream to temporarily
place the result in a byte array before storing to a file.

Speech Recognition: javax.speech.recognition

nizer.
ble

get

ethod,
6.8 Recognizer Properties

A speech engine has both persistent and run-time adjustable properties. The
persistent properties are defined in theRecognizerModeDesc which includes
properties inherited fromEngineModeDesc (see Section 4.2 on page 36). The
persistent properties are used in the selection and creation of a speech recog
Once a recognizer has been created, the same property information is availa
through thegetEngineModeDesc method of aRecognizer (inherited from the
Engine interface).

A recognizer also has seven run-time adjustable properties. Applications
and set these properties throughRecognizerProperties which extends the
EngineProperties interface. TheRecognizerProperties for a recognizer are
provided by thegetEngineProperties method that theRecognizer inherits from
theEngine interface. For convenience agetRecognizerProperties method is also
provided in theRecognizer interface to return a correctly cast object.

The get and set methods ofEngineProperties andRecognizerProperties

follow the JavaBeans conventions with the form:

Type getPropertyName();
void setPropertyName(Type);

A recognizer can choose to ignore unreasonable values provided to a set m
or can provide upper and lower bounds.

Table 6-10 Run-time Properties of a Recognizer

Property Description

ConfidenceLevel float value in the range 0.0 to 1.0. Results are
rejected if the engine is not confident that it has
correctly determined the spoken text. A value of 1.0
requires a recognizer to have maximum confidence
in every result so more results are likely to be
rejected. A value of 0.0 requires low confidence
indicating fewer rejections. 0.5 is the recognizer’s
default.
133

Java Speech Application Programming Interface

134

e

.

.

-

Sensitivity float value between 0.0 and 1.0. A value of 0.5 is
the default for the recognizer. 1.0 gives maximum
sensitivity, making the recognizer sensitive to quiet
input but more sensitive to noise. 0.0 gives
minimum sensitivity, requiring the user to speak
loudly and making the recognizer less sensitive to
background noise.
Note: some recognizers set the gain automatically
during use, or through a setup “Wizard”. On these
recognizers the sensitivity adjustment should be
used only in cases where the automatic settings ar
not adequate.

SpeedVsAccuracy float value between 0.0 and 1.0. 0.0 provides the
fastest response. 1.0 maximizes recognition
accuracy. 0.5 is the default value for the recognizer
which the manufacturer determines as the best
compromise between speed and accuracy.

CompleteTimeout float value in seconds that indicates the minimum
period between when a speaker stops speaking
(silence starts) and the recognizer finalizing a result
The complete time-out is applied when the speech
prior to the silence matches an active grammar (c.f
IncompleteTimeout).
A long complete time-out value delays the result and
makes the response slower. A short time-out may
lead to an utterance being broken up inappropriately
(e.g. when the user takes a breath). Complete time
out values are typically in the range of 0.3 seconds
to 1.0 seconds.

Table 6-10 Run-time Properties of a Recognizer (cont’d)

Property Description

Speech Recognition: javax.speech.recognition

.

e

n
s

n

IncompleteTimeout float value in seconds that indicates the minimum
period between when a speaker stops speaking
(silence starts) and the recognizer finalizing a result
The incomplete time-out is applied when the speech
prior to the silence does not match an active
grammar (c.f.CompleteTimeout). In effect, this is the
period the recognizer will wait before rejecting an
incomplete utterance.
The IncompleteTimeout is typically longer than the
CompleteTimeout .

ResultNumAlternatives integer value indicating the preferred maximum
number of N-best alternatives in
FinalDictationResult andFinalRuleResult

objects (see Section 6.7.9). Returning alternatives
requires additional computation.
Recognizers do not always produce the maximum
number of alternatives (for example, because som
alternatives are rejected), and the number of
alternatives may vary between results and betwee
tokens. A value of 0 or 1 requests that no alternative
be provided — only a best guess.

ResultAudioProvided boolean value indicating whether the application
wants the recognizer to audio withFinalResult

objects. Recognizers that do provide result audio ca
ignore this call. (SeeResult Audio on page 125 for
details.)

TrainingProvided boolean value indicating whether the application
wants the recognizer to support training with
FinalResult objects.

Table 6-10 Run-time Properties of a Recognizer (cont’d)

Property Description
135

Java Speech Application Programming Interface

136

ne

. A

er

s
d

ker.

a
on is
tion
6.9 Speaker Management

A Recognizer may, optionally, provide aSpeakerManager object. The
SpeakerManager allows an application to manage theSpeakerProfiles of that
Recognizer . TheSpeakerManager for is obtained throughgetSpeakerManager

method of theRecognizer interface. Recognizers that do not maintain speaker
profiles — known as speaker-independent recognizers — returnnull for this
method.

A SpeakerProfile object represents a single enrollment to a recognizer. O
user may have multipleSpeakerProfiles in a single recognizer, and one
recognizer may store the profiles of multiple users.

TheSpeakerProfile class is a reference to data stored with the recognizer
profile is identified by three values all of which areString objects:

♦ id : A unique identifier for a profile (per-recognizer unique). The string
may be automatically generated but should be printable.

♦ name: An identifier for a user. This may be an account name or any oth
name that could be entered by a user.

♦ variant : The variant identifies a particular enrollment of a user and
becomes useful when one user has more than one enrollment.

TheSpeakerProfile object is a handle to all the stored data the recognizer ha
about a speaker in a particular enrollment. Except for the three values define
above, the speaker data stored with a profile is internal to the recognizer.

Typical data stored by a recognizer with the profile might include:

♦ Full speaker data: Full name, age, gender and so on.

♦ Speaker preferences: Settings such as those provided through the
RecognizerProperties (see Section 6.8).

♦ Language models: Data about the words and word patterns of the spea

♦ Word models: Data about the pronunciation of words by the speaker.

♦ Acoustic models: Data about the speaker’s voice and speaking style.

♦ History: Records of previous training information and usage history

The primary role of stored profiles is in maintaining information that enables
recognition to adapt to characteristics of the speaker. The goal of this adaptati
to improve the performance of the speech recognizer including both recogni
accuracy and speed.

Speech Recognition: javax.speech.recognition

 the

d
e of

ion
’s
other
t the

is
lities

g,

ted.
TheSpeakerManager provides management of all the profiles stored in the
recognizer. Most often, the functionality of theSpeakerManager is used as a direct
consequence of user actions, typically by providing an enrollment window to
user. The functionality provided includes:

♦ Current speaker: ThegetCurrentSpeaker andsetCurrentSpeaker

methods determine which speaker profile is currently being used to
recognize incoming speech.

♦ Listing profiles: ThelistKnownSpeakers method returns an array of all the
SpeakerProfiles known to the recognizer. A common procedure is to
display that list to a user to allow the user to select a profile.

♦ Creation and deletion: ThenewSpeakerProfile andnewSpeakerProfile

methods create a new profile or delete a profile in the recognizer.

♦ Read and write: ThereadVendorSpeakerProfile and
writeVendorSpeakerProfile methods allow a speaker profile and all the
recognizer’s associated data to be read from or stored to aStream . The data
format will typically be proprietary.

♦ Save and revert: During normal operation, a recognizer will maintain an
update the speaker profile as new information becomes available. Som
the events that may modify the profile include changing the
RecognizerProperties , making a correction to a result, producing any
result that allows the recognizer to adapt its models, and more many
activities. It is normal to save the updated profile at the end of any sess
by callingsaveCurrentSpeakerProfile . In some cases, however, a user
data may be corrupted (e.g., because they loaned their computer to an
user). In this case, the application may be requested by a user to rever
profile to the last stored version by callingrevertCurrentSpeaker .

♦ Display component: ThegetControlComponent method optionally returns
an AWTComponent object that can be displayed to a user. If supported, th
component should expose the vendor’s speaker management capabi
which may be more detailed than those provided by theSpeakerManager

interface. The vendor functionality may also be proprietary.

An individual speaker profile may be large (perhaps several MByte) so storin
loading, creating and otherwise manipulating these objects can be slow.

TheSpeakerManager is one of the capabilities of aRecognizer that is
available in the deallocated state. The purpose is to allow an application to
indicate the initial speaker profile to be loaded when the recognizer is alloca
To achieve this, thelistKnownSpeakers , getCurrentSpeaker and
setCurrentSpeaker methods can be called before calling theallocate method.
137

Java Speech Application Programming Interface

138

user,

le

ed.
udio

to

ents

f

at

d the
ss.
To facilitate recognizer selection, the list of speaker profiles is also a
property of a recognizer presented through theRecognizerModeDesc class. This
allows an application to select a recognizer that has already been trained by a
if one is available.

In most cases, aRecognizer persistently restores the last used speaker profi
when allocating a recognizer, unless asked to do otherwise.

6.10 Recognizer Audio

The current audio functionality of the Java Speech API is incompletely specifi
Once a standard mechanism is established for streaming input and output a
on the Java platform the API will be revised to incorporate that functionality.

In this release of the API, the only established audio functionality is
provided through theRecognizerAudioListener interface and the
RecognizerAudioEvent class. Audio events issued by a recognizer are intended
support simple feedback mechanisms for a user. The three types of
RecognizerAudioEvent are as follows:

♦ SPEECH_STARTED andSPEECH_STOPPED: These events are issued when
possible speech input is detected in the audio input stream. These ev
are usually based on a crude mechanism for speech detection so a
SPEECH_STARTED event is not always followed by output of a result.
Furthermore, oneSPEECH_STARTED may be followed by multiple results,
and one result might cover multipleSPEECH_STARTED events.

♦ AUDIO_LEVEL: This event is issued periodically to indicate the volume o
audio input to the recognizer. The level is afloat and varies on a scale
from 0.0 to 1.0: silence to maximum volume. The audio level is often
displayed visually as a “VU Meter” — the scale on a stereo system th
goes up and down with the volume.

All the RecognizerAudioEvents are produced as audio reaches the input to the
recognizer. Because recognizers use internal buffers between audio input an
recognition process, the audio events can run ahead of the recognition proce

	Java™ Speech API Programmer’s Guide
	List of Figures
	List of Tables
	Preface
	About this Guide
	Part 1
	Part 2
	Getting Started

	Web Resources
	Related Reading
	Mailing Lists
	Revision History
	Version 1.0: October 26, 1998
	Version 0.7: May, 1998. Revised public beta release.
	Version 0.6: February 98. Initial public beta release

	Contributions
	chapter �1
	Introduction
	1.1 What is the Java Speech API?
	1.2 Design Goals for the Java Speech API
	1.3 Speech-Enabled Java Applications
	1.3.1 Speech and other Java APIs

	1.4 Applications of Speech Technology
	1.4.1 Desktop
	1.4.2 Telephony Systems
	1.4.3 Personal and Embedded Devices
	1.4.4 Speech and the Internet

	1.5 Implementations
	1.6 Requirements

	chapter �2
	Speech Technology
	2.1 Speech Synthesis
	2.1.1 Speech Synthesis Limitations
	2.1.2 Speech Synthesis Assessment

	2.2 Speech Recognition
	2.2.1 Rule Grammars
	2.2.2 Dictation Grammars
	2.2.3 Limitations of Speech Recognition

	chapter �3
	Designing Effective Speech Applications
	3.1 When to Use Speech
	3.2 Design for Speech
	3.3 Challenges
	3.3.1 Transience: What did you say?
	3.3.2 Invisibility: What can I say?
	3.3.3 Asymmetry
	3.3.4 Speech synthesis quality
	3.3.5 Speech recognition performance
	3.3.6 Recognition: flexibility vs. accuracy

	3.4 Design Issues for Speech-Only Applications
	3.4.1 Feedback & Latency
	3.4.2 Prompting
	3.4.3 Handling Errors

	3.5 Design Issues for Multi-Modal Applications
	3.5.1 Feedback & Latency
	3.5.2 Prompting
	3.5.3 Handling Errors

	3.6 Involving Users
	3.6.1 Natural Dialog Studies
	3.6.2 Wizard-of-Oz Studies
	3.6.3 Usability Studies

	3.7 Summary
	3.8 For More Information

	chapter �4
	Speech Engines: �javax.speech
	4.1 What is a Speech Engine?
	4.2 Properties of a Speech Engine
	4.3 Locating, Selecting and Creating Engines
	4.3.1 Default Engine Creation
	4.3.2 Simple Engine Creation
	4.3.3 Advanced Engine Selection
	4.3.3.1 Refining an Engine List

	4.4 Engine States
	4.4.1 State systems
	4.4.2 Allocation State System
	4.4.3 Allocated States and Call Blocking
	4.4.4 Pause - Resume State System
	4.4.5 State Sharing
	4.4.6 Synthesizer Pause
	4.4.7 Recognizer Pause

	4.5 Speech Events
	4.5.1 Event Synchronization

	4.6 Other Engine Functions
	4.6.1 Runtime Engine Properties
	4.6.2 Audio Management
	4.6.3 Vocabulary Management

	chapter �5
	Speech Synthesis: javax.speech.synthesis
	5.1 “Hello World!”
	5.2 Synthesizer as an Engine
	5.3 Speaking Text
	5.4 Speech Output Queue
	5.5 Monitoring Speech Output
	5.6 Synthesizer Properties
	5.6.1 Selecting Voices
	5.6.2 Property Changes in JSML
	5.6.3 Controlling Prosody

	chapter �6
	Speech Recognition: javax.speech.recognition
	6.1 “Hello World!”
	6.2 Recognizer as an Engine
	6.3 Recognizer State Systems
	6.3.1 Inherited States
	6.3.2 Recognizer Focus
	6.3.3 Recognition States
	6.3.3.1 Speech Events vs. Other Events
	6.3.3.2 Speech Input Event Cycle
	6.3.3.3 Non-Speech Event Cycle

	6.3.4 Interactions of State Systems

	6.4 Recognition Grammars
	6.4.1 Grammar Interface
	6.4.2 Committing Changes
	6.4.3 Grammar Activation

	6.5 Rule Grammars
	6.5.1 Rule Definitions
	6.5.2 Imports
	6.5.3 Rule Classes
	6.5.3.1 Advanced Rule Programming

	6.5.4 Dynamic Grammars
	6.5.5 Parsing

	6.6 Dictation Grammars
	6.6.1 Dictation Context

	6.7 Recognition Results
	6.7.1 Result Finalization
	6.7.2 Result Interface Hierarchy
	6.7.3 Result Information
	6.7.3.1 Result Interface
	6.7.3.2 FinalResult Interface
	6.7.3.3 FinalDictationResult Interface
	6.7.3.4 FinalRuleResult Interface

	6.7.4 Result Life Cycle
	6.7.5 ResultListener Attachment
	6.7.6 Recognizer and Result States
	6.7.6.1 Updating Grammars

	6.7.7 Grammar Finalization
	6.7.8 Token Finalization
	6.7.9 Finalized Rule Results
	6.7.9.1 Result Tokens
	6.7.9.2 Alternative Guesses
	6.7.9.3 Result Tags
	6.7.9.4 Result Parsing

	6.7.10 Finalized Dictation Results
	6.7.10.1 Alternative Guesses
	6.7.10.2 Result Tokens

	6.7.11 Result Audio
	6.7.12 Result Correction
	6.7.13 Rejected Results
	6.7.13.1 Rejection Timing

	6.7.14 Result Timing
	6.7.15 Storing Results

	6.8 Recognizer Properties
	6.9 Speaker Management
	6.10 Recognizer Audio

