Pattern Based Analysis of BPEL4WS

Petia Wohed™ Wil M.P. van der Aalst? Marlon Dumas?
Arthur H.M. ter Hofstede?

! Department of Computer and Systems Sciences
Stockholm University/The Royal Institute of Technology
petia@dsv.su.se
2 Department of Technology Management
Eindhoven University of Technology
w.m.p.v.d.aalst@tm.tue.nl
3 Centre for Information Technology Innovation
Queensland University of Technology
{m.dumas, a.terhofstede}@Qqut.edu.au

Abstract. Web services composition is an emerging paradigm for en-
abling application integration within and across organisational bound-
aries. A landscape of languages and techniques for web services composi-
tion has emerged and is continuously being enriched with new proposals
from different vendors and coalitions. However, little or no effort has been
dedicated to systematically evaluating the capabilities and limitations of
these languages and techniques. The work reported in this paper is a
first step in this direction. It presents an in-depth analysis of the Busi-
ness Process Execution Language for Web Services (BPEL4WS). The
framework used for this analysis is based on a collection of workflow and
communication patterns.

1 Introduction

Web Services is a rapidly emerging paradigm for architecting and imple-
menting business collaborations within and across organisational bound-
aries. In this paradigm, the functionalities provided by business appli-
cations are encapsulated within web services: software components de-
scribed at a semantical level, which can be invoked by application pro-
grams or by other services through a stack of Internet standards including
HTTP, XML, SOAP, WSDL, and UDDI [6]. Once deployed, web services
provided by various organisations can be inter-connected in order to im-
plement business collaborations, leading to composite web services.
Business collaborations require long-running interactions driven by an
explicit process model [1]. Accordingly, a current trend is to express the
logic of a composite web service using a business process modelling lan-
guage tailored for web services. Recently, many languages have emerged,

* Research conducted while at the Queensland University of Technology.

including WSCI [17], BPML [4], BPEL4WS [7], and BPSS [16], with lit-
tle effort spent on their evaluation with respect to a common benchmark.
Such a comparative evaluation will contribute to establishing their over-
lap and complementarities, to delimit their capabilities and limitations,
and to detect inconsistencies and ambiguities.

As a first step in this direction, this paper reports an in-depth analysis
of one of these emerging languages, namely BPEL4WS (Business Process
Execution Language for Web Services). It is expected that a similar anal-
ysis will be conducted for other alternative languages in the future.

The reported analysis is based on a framework composed of a set of
patterns: abstracted forms of recurring situations found at various stages
of software development [10]. Specifically, the framework brings together
a set of workflow patterns documented in [3], and a set of communication
patterns documented in [14].

The workflow patterns (WPs) have been compiled from an analysis
of existing workflow languages and they capture typical control flow de-
pendencies encountered in workflow modelling. More than 12 commercial
Workflow Management Systems (WFMS) as well as the UML Activity
Diagrams, have been evaluated in terms of their support for these pat-
terns [3,8]. The WPs are arguably suitable for analysing languages for
web services composition, since the situations they capture are also rele-
vant in this domain.

The Communication Patterns (CPs) on the other hand, are related
to the way in which system modules interact in the context of Enter-
prise Application Integration (EAI). They are structured according to
two dichotomies: synchronous vs. asynchronous, and point-to-point vs.
multicast. They are arguably suitable for the analysis of the communica-
tion modelling abilities of web services composition languages, given the
strong overlap between EAI and web services technologies.

Two other frameworks for analysing and comparing business process
modelling languages have been proposed by Rosemann & Green [13] and
Soderstrom et al. [15]. While these two frameworks are motivated by the
same problem that motivates this paper, i.e. the continuously increasing
number of process modelling languages and the need to understand and
compare them, they differ from the pattern-based framework in that they
target a different audience namely, IS/IT-managers, business strategists
and other business stakeholders involved in business process management.
Accordingly, they adopt a higher level of granularity.

The rest of the paper is structured as follows. Section 2 provides an
overview of the BPEL4AWS language. In sections 3 and 4 the BPEL4WS

language is analyzed using the set of workflow and communication pat-
terns respectively. Finally, section 5 concludes the work.

2 BPEL4WS

BPEL4WS builds on IBM’s WSFL (Web Services Flow Language) and
Microsoft’s XLANG (Web Services for Business Process Design) and com-
bines accordingly the features of a block structured language inherited
from XLANG with those for directed graphs originating from WSFL.
The language is intended to support the modelling of two types of pro-
cesses: executable and abstract processes. An abstract, (not executable)
process is a business protocol, specifying the message exchange behaviour
between different parties without revealing the internal behaviour for any-
one of them. An executable process, which is also the focus of this paper,
specifies the execution order between a number of activities constituting
the process, the partners involved in the process, the messages exchanged
between these partners, and the fault and exception handling specifying
the behaviour in cases of errors and exceptions.

The BPEL4WS process itself is a kind of flow-chart, where each ele-
ment in the process is called an activity. An activity is either a primitive
or a structured activity. The set of primitive activities contains: invoke,
invoking an operation on some web service; receive, waiting for a message
from an external source; reply, replying to an external source; wait, waiting
for some time; assign, copying data from one place to another; throw, in-
dicating errors in the execution; terminate, terminating the entire service
instance; and empty, doing nothing.

To enable the presentation of complex structures the following struc-
tured activities are defined: sequence, for defining an execution order;
switch, for conditional routing; while, for looping; pick, for race conditions
based on timing or external triggers; flow, for parallel routing; and scope,
for grouping activities to be treated by the same fault-handler. Structured
activities can be nested and combined in arbitrary ways. Within activi-
ties executed in parallel the execution order can further be controlled by
the usage of links (sometimes also called control links, or guarded links),
which allows the definition of directed graphs. The graphs too can be
nested but must be acyclic.

3 The Workflow Patterns in BPEL4WS

Web services composition and workflow management are related in the
sense that both are concerned with executable processes. Therefore, much

[R R

of the functionality in workflow management systems [2,9, 12] is also rel-
evant for web services composition languages like BPEL4AWS, XLANG,
and WSFL. In this section, we consider the 20 workflow patterns pre-
sented in [3], and we discuss how and to what extent these patterns can
be captured in BPEL4WS. Most of the solutions are presented in a sim-
plified BPEL4WS notation, which is rich enough for capturing the key
ideas of the solutions, while at the same time avoiding a detailed coding-
oriented representation.

WP1 Sequence An activity in a workflow process is enabled after the
completion of another activity in the same process. Example: After the
activity order registration the activity customer notification is executed.

Solution, WP1 There are two possible solutions for this pattern in
BPEL4WS: one using the operator sequence inherited from XLANG (see
Listing 1), and one using the concept of control link inherited from WSFL
(see Listing 2). In this case a link needs to be defined first (lines 2 to 4)
and then the activity to be executed first is specified as source activity
for this link (line 6) while the subsequent activity is specified as target
for the link (line 8). All these activities are embedded within a single flow
activity.

Listing 1 Listing 2
<sequence> <flow>

activityA <links>

activityB <link name="L"/>
</sequence> </links>

<source linkName="L"/> ...
activityB
<target linkName="L"/> ...
</flow>

1

2

3

4

5 activityA
6

7

8

9

WP2 Parallel Split A point in the process where a single thread of
control splits into multiple threads of control which can be executed in
parallel, thus allowing activities to be executed simultaneously or in any
order [5]. Example: After activity new cellphone subscription order the
activity insert new subscription in Home Location Registry application
and insert new subscription in Mobile answer application are executed in
parallel.

WP3 Synchronization A point in the process where multiple parallel
branches converge into one single thread of control, thus synchronizing

1

2
3
4
5
6
7

multiple threads [5]. It is an assumption of this pattern that after an in-
coming branch has been completed, it cannot be completed again while
the merge is still waiting for other branches to be completed. Also, it is
assumed that the threads to be synchronized belong to the same global
process instance (i.e., to the same “case” in workflow terminology). Ex-
ample: Activity archive is executed after the completion of both activity
send tickets and activity receive payment. Obviously, the synchronization
occurs within a single global process instance: the send tickets and receive
payment must relate to the same client request.

Solutions, WP2 & WP3 The parallel split is realized by defining the
activities to be run in parallel as components of an activity of type flow
(see Listing 3, lines 2 to 5). If no control link is defined within a flow,
the activities within the flow are executed in parallel. Adding an activity
after the flow, as for example activity B in line 6, yields the solution to
the Synchronization pattern.

Similarly to the solution for WP1, a solution based on control links is
also possible for WP2 and WP3 (see Listing 4). In this solution the links
L1 and L2 are defined in a flow F. Furthermore, F consists of the activities
A1, A2 and B. The sources of L1 and L2 are A1 and A2 respectively (lines
7 and 9) and the target for both links is activity B (lines 12 and 13). To
execute B after both Al and A2 have been completed successfully an AND
joinCondition is defined for activity B (line 11).

Listing 3 Listing 4
<sequence> 1 <flow name="F">
<flow> 2 <links>
activityAl 3 <link name="L1"/>
activityA2 4 <link name="L2"/>
</flow> 5 </links>
activityB 6 activityAl
</sequence> 7 <source linkName="L1"/>...
8 activityA2
9 <source linkName="L2"/>...
10 activityB
11 joinCondition="L1 AND L2"
12 <target linkName="L1"/>
13 <target linkName="L2"/>...
14 </flow>

Listings 3 and 4 illustrate the two styles of process modelling sup-
ported by BPEL4WS. Listing 3 shows the “XLANG-style” of modelling
(i.e., routing through structured activities). Listing 4 shows the “WSFL-

0w N O O R W N =

e e e
g W N = O ©

style” of modelling (i.e., using links instead of structured activities). It is
also possible to mix both styles by having links crossing the boundaries
of structured activities.* An example is given in Listing 5, where the se-
quences Sa and Sb are defined to run in parallel. The definition of a link
L (lines 3, 7 and 14) implies that activity B2, following after activity B1
in sequence Sb, can be executed first after activity Al from sequence Sa
have completed its execution. In other words, link L captures an interme-
diate synchronization point between the two parallel threads Sa and Sb.
This inter-thread synchronization cannot be expressed using structured
activities only (for a proof see [11]). Figure 1 illustrates the example in
graphical form.?

Listing 5 Figure 1
<flow name="F"> Flow F
<links>
<link name="L"/> Sa \Sb
</links> A1 B1
<sequence name="Sa'"> l \\\L\\\J
activityAl
<source linkName="L"/> A2 B2
activityA2 \/
</sequence>
<sequence name="Sb"> Legend:
act%v%tyBl [Activity
activityB2
<target linkName="L"/> |< Flow
</sequence> — Sequence
</flow> -» Link

WP4 Exclusive Choice A point in the workflow process where, based
on a decision or workflow control data, one of several branches is chosen.
Example: The manager is informed if an order exceeds $ 600, otherwise
not.

WP5 Simple Merge A point in the workflow process where two or
more alternative branches come together without synchronization. It is
an assumption of this pattern that none of the alternative branches is
ever executed in parallel (if it is not the case, then see the patterns Multi
Merge and Discriminator). Example: After the payment is received or
the credit is granted the car is delivered to the customer.

4 However, in order to prevent deadlocks, links are not allowed to cross the boundaries
of while loops, serializable scopes, or compensation handlers.

5 Since BPELAWS does not provide a graphical notation, the use of figures is limited
to some patterns only.

W N O g os W N =

Solutions, WP4 & WP5 As in the previous patterns, two solutions
are proposed. The first one relies on the activity switch inherited from
XLANG (Listing 6). Each case specifies the activity to be performed when
a condition is fulfilled. The second solution uses control links (see Listing 7
and Figure 2). The different conditions (C1 and C2 in the example) are
specified as transitionConditions, one for each corresponding link (L1 or
L2). This implies that the activities specified as targets for these links
(Al and A2 in the example) will be executed only if the corresponding
conditions are fulfilled. An empty activity is the source of links L1 and
L2, implying that conditions C1 and C2 are evaluated as soon as the flow
is initiated. Activity C is the target of links L1s and L2s whose sources
are Al and A2 respectively, thereby capturing the Simple Merge pattern.

Listing 6 Listing 7
<switch> 1 <flow>
<case condition="C1"> 2 <links>
activityAl 3 <link name="L1"/>
</case> 4 <link name="L2"/>
<case condition="C2"> 5 <link name="L1s"/>
activityA2 6 <link name="L2s"/>
</case> 7 </links>
</switch> activityC 8 <empty>
9 <source linkName="L1"
10 transitionCondition="C1"/>
Figure 2 11 <source linkName="L2"
12 transitionCondition="C2"/>
Flow 13 </empty>
I 14 activityAl
Empty 15 <target linkName="L1">
L1:CL~ ~_L2:C2 16 <source linkName="L1s">
y'd N 17 activityA2
A1 A2 18 <target linkName="L2">
19 <source linkName="L2s">
Lis™~ QE ~"L2s 20 activityC
C 21 joinCondition="L1s OR L2s"
v 22 <target linkName="L1s">
23 <target linkName="L2s"> ...
24 </flow>

A difference between these two solutions is that in the solution of
Listing 6 only one activity is trigerred, the first one for which the spec-
ified condition evaluates to true. Meanwhile, in the solution of Listing 7
multiple branches may be trigerred if more than one of the conditions
evaluates to true. To ensure that only one of the branches is trigerred,

the conditions have to be disjoint. If this is not the case, Listing 7 rather
provides a solution to the Multi Choice pattern described below.

WP6 Multi-Choice A point in the process, where, based on a decision
or control data, a number of branches are chosen and executed as parallel
threads. Example: After executing the activity evaluate damage the ac-
tivity contact fire department or the activity contact insurance company
is executed. At least one of these activities is executed. However, it is also
possible that both need to be executed.

WP7 Synchronizing Merge A point in the process where multiple
paths converge into one single thread. Some of these paths are “active”
(i.e. they are being executed) and some are not. If only one path is active,
the activity after the merge is triggered as soon as this path completes.
If more than one path is active, synchronization of all active paths needs
to take place before the next activity is triggered. It is an assumption
of this pattern that a branch that has already been activated, cannot be
activated again while the merge is still waiting for other branches to com-
plete. Example: After either or both of the activities contact fire depart-
ment and contact insurance company have been completed (depending
on whether they were executed at all), the activity submit report needs
to be performed (exactly once).

Solutions, WP6 & WPT As indicated before the solution of WP6 and
WP7 are identical to the WSFL-style solutions of WP4 and WP5 (List-
ing 7). This follows from the dead-path elimination principle, which states
that the truth value of an incoming link is propagated to its outgoing link.
In the example of Listing 7, if condition C1 (C2) evaluates to true, ac-
tivity A1l (A2) receives a positive value and it is therefore executed. On
the other hand, if condition C1 (C2) evaluates to false, activity Al (A2)
receives a negative value, and it is not executed but still propagates the
negative value through its outgoing link L1s (L2s). In particular, both A1l
and A2 are executed if the two conditions C1 and C2 evaluate to true.
In any case, the OR joinCondition attached to C, ensures that C is always
executed, provided that one of the activities Al or A2 is executed.

WP8 Multi-Merge A point in a process where two or more branches
reconverge without synchronization. If more than one branch gets acti-
vated, possibly concurrently, the activity following the merge is started
for every action of every incoming branch. Example: Sometimes two or
more branches share the same ending. Two activities audit application

and process applications are running in parallel which should both be
followed by an activity close case, which should be executed twice if the
activities audit application and process applications are both executed.

Solution, WP8 BPEL4WS offers no direct support for WP8. Neither
XLANG nor WSFL allow for two active threads following the same path
without creating new instances of another process.

WP9 Discriminator A point in the workflow process that waits for one
of the incoming branches to complete before activating the subsequent
activity. From that moment on it waits for all remaining branches to
complete and ’ignores’ them. Once all incoming branches have been trig-
gered, it resets itself so that it can be triggered again (which is important
otherwise it could not really be used in the context of a loop). Example:
To improve query response time a complex search is sent to two different
databases over the Internet. The first one that comes up with the result
should proceed the flow. The second result is ignored.

Solution, WP9 This pattern is not directly supported in BPEL4WS.
Neither is there a structured activity construct which can be used for
implementing it, nor can links be used for capturing it. The reason for
not being able to use the link construct with an ORr joinCondition, is the
fact that a joinCondition is evaluated first when the status of all incoming
links are determined and not, as required in this case, when the first
positive link is determined.

WP10 Arbitrary Cycles A point where a portion of the process (in-
cluding one or more activities and connectors) needs to be “visited” re-
peatedly without imposing restrictions on the number, location, and nest-
ing of these points.

Solution, WP10 This pattern is not supported in BPEL4WS. Although
the while activity allows for structured cycles, it is not possible to jump
back to arbitrary parts of the process, i.e. only loops with one entry point
and one exit point are allowed.® The restriction made that links can not
cross the boundaries of a loop and that links may not create a cycle
disables support for WP10.

5 For a discussion on non-structured cycles that can not be unfolded into structured
cycles see [11].

WP11 Implicit Termination A given subprocess is terminated when
there is nothing left to do, i.e., termination does not require an explicit
termination activity.

Solution, WP11 Implicit termination is supported by the flow con-
struct. A structured activity (without flows and links) completes when
its outermost activity completes and therefore corresponds to explicit
termination. Using the flow construct and links, a subprocess can have
multiple sink activities (i.e., activities not being a source of any link)
without requiring one unique termination activity.

WP12 MI without Synchronization Within the context of a single
case multiple instances of an activity may be created, i.e. there is a facility
for spawning off new threads of control, all of them independent of each
other. The instances might be created consecutively, but they will be able
to run in parallel, which distinguishes this pattern from the pattern for
Arbitrary Cycles. Example: When booking a trip, the activity book flight
is executed multiple times if the trip involves multiple flights.

Solution, WP12 Multiple instances of an activity can be created by
using the invoke activity embedded in a while loop (see Listing 8). The
invoked process, i.e., process B, has to have the attribute createlnstance
within its receive activity assigned to “yes” (see Listing 9).

WP13-WP15 MI with Synchronization A point in a workflow where
a number of instances of a given activity are initiated, and these instances
are later synchronized, before proceeding with the rest of the process. In
WP13 the number of instances to be started/synchronized is known at
design time. In WP14 the number is known at some stage during run
time, but before the initiation of the instances has started. In WP15 the
number of instances to be created is not known in advance: new instances
are created on demand, until no more instances are required. Example of
WP15: When booking a trip, the activity book flight is executed multiple
times if the trip involves multiple flights. Once all bookings are made, an
invoice is sent to the client. How many bookings are made is only known
at runtime through interaction with the user.

Solutions, WP13-WP15 If the number of instances to be synchronized
is known at design time (WP13), a simple solution is to replicate the ac-
tivity as many times as it needs to be instantiated, and run the replicas
in parallel by placing them in a flow activity. The solution becomes more

o oo W N =

g W N =

complex if the number of instances to be created and synchronized is only
known at run time (WP14), or not known (WP15) — see Listing 10. In this
solution a pick activity within a while loop is used, enabling repetitive pro-
cessing triggered by three different messages: one indicating that a new in-
stance is required, one indicating the completion of a previously initiated
instance, and one indicating that no more instances need to be created.
Depending on the message received an activity is performed/invoked in
each iteration of the loop. However, this is only a work-around solution
since the logic of these patterns is not directly captured by a BPEL4WS
construct. Instead the logic is encoded by means of a loop and a counter:
the counter is incremented each time that a new instance is created, and
is decremented each time that an instance is completed. The loop is ex-
ited when the value of the counter is zero and no more instances need to
be created.

Listing 8 Listing 10
<processA> 1 moreInstances:=True
<while cond="C1"> 21i:=0
<invoke processB ... > 3 <while moreInstances OR i>0>
</invoke> 4 <pick>
</while> 5 <onMessage StartNewActivityA>
</process> 6 invoke activityA
7 i:=i+l
8 </onMessage>
9 <onMessage ActivityAFinished>
Listing 9 10 ir=i-1
<processB> 11 </onMessage>
<receive processA ... 12 <onMessage NoMorelInstances>
createInstance="yes"> 13 moreInstances:=False
</receive> 14 </onMessage>
</process> 15 </pick>

16 </while>

WP16 Deferred Choice A point in a process where one among several
alternative branches is chosen based on information which is not neces-
sarily available when this point is reached. This differs from the normal
exclusive choice, in that the choice is not made immediately when the
point is reached, but instead several alternatives are offered, and the
choice between them is delayed until the occurrence of some event. Ex-
ample: When a contract is finalized, it has to be reviewed and signed
either by the director or by the operations manager, whoever is available
first. Both the director and the operations manager would be notified that

the contract is to be reviewed: the first one who is available will proceed
with the review.

Solution, WP16 This pattern is realized through the pick construct. The
semantics of pick, i.e. awaiting the receipt of one of a number of messages
and continuing the execution according to the received message, captures
the key idea of this pattern, namely a choice is not made immediately
when a certain point (i.e. the pick activity) is reached, but delayed until
receipt of a message.

WP17 Interleaved Parallel Routing A set of activities is executed
in an arbitrary order. Each activity in the set is executed exactly once.
The order between the activities is decided at run-time: it is not until
one activity is completed that the decision on what to do next is taken.
In any case, no two activities in the set can be active at the same time.
Example: At the end of each year, a bank executes two activities for each
account: add interest and charge credit card costs. These activities can be
executed in any order. However, since they both update the account, they
cannot be executed at the same time.

Solution, WP17 The existence of serializable scopes in BPEL4WS makes
this pattern possible to express (see Listing 11). A serializable scope is a
scope activity, whose containterAccessSerializable attribute is set to “yes”,
thereby guaranteeing concurrency control on shared containers. Defining
the activities to be interleaved as activities belonging to different con-
current serializable scopes, implies their potential parallelism and avoids
predefining an order between them. Defining, furthermore, the access of
these scopes to one and the same container, implies that the activities will
be executed consecutively, which is ensured by the blocking of the shared
container during their corresponding executions. Two things are worth
pointing out with respect to this solution. First, from the BPEL4WS
specification it is not clear in what order the different activities are going
to be executed. Furthermore, this order cannot be influenced externally.
Secondly, since serializable scopes are not allowed to be nested, a more
general solution allowing nesting of interleaved parallel routing can not
be provided by the use of serializable scopes.

To overcome this limitation a work-around solution using deferred
choice (i.e. the pick construct in BPEL4WS) as proposed in [3] can be
applied, see Listing 12. The drawback of this solution is its complexity,
which increases exponentially with the number of activities that have to
be executed in arbitrary order.

1

2
3
4
5
6
7
8
9

18

Listing 11 Listing 12
<flow> 1 <pick>

<scope name=S1 2 <onMessage mi1>
containerAccessSerializable:="yes"> 3 <sequence>
<sequence> 4 activity A1l
write to container C 5 activity A2
activityAl 6 </sequence>
write to container C 7 </onMessage>
</sequence> 8 <onMessage m2>
</scope> 9 <sequence>
<scope name=S2 10 activity A2
containerAccessSerializable:="yes"> 11 activity Al
<sequence> 12 </sequence>
write to container C 13 </onMessage>
activityA2 14 </pick>
write to container C
</sequence>
</scope>
</flow>

WP18 Milestone A given activity E can only be enabled if a certain
milestone has been reached which has not yet expired. A milestone is de-
fined as a point in the process where a given activity A has finished and
an activity B following it has not yet started. Example: After having
placed a purchase order, a customer can withdraw it at any time before
the shipping takes place. To withdraw an order, the customer must com-
plete a withdrawal request form, and this request must be approved by
a customer service representative. The execution of the activity approve
order withdrawal must therefore follow the activity request withdrawal,
and can only be done if: (i) the activity place order is completed, and (ii)
the activity ship order has not yet started.

Solution, WP18 BPEL4WS does not provide a direct support for cap-
turing this pattern. Therefore, a work-around solution has to be used (see
Listing 13). Once again the solution is inspired by the ideas in [3]. A de-
ferred choice between executing the activity B, or executing activity E, is
made. A while loop is used to guarantee that as long as B is not chosen,
E can be executed an arbitrary number of times. The limitation of this
solution is that activity E can not be restricted by any parallel treads.
WP19 Cancel Activity & WP20 Cancel Case A cancel activity ter-
minates a running instance of an activity, while cancelling a case leads
to the removal of an entire workflow instance. Example of WP19: A
customer cancels a request for information. Example of WP20: A cus-
tomer withdraws his/her order.

Listing 13
1 activityA
2 B_completed:="false"
3 <while B_completed="false">

4 <pick>

5 <onMessage mE> activityE

6 </onMessage>

7 <onMessage mB>

8 <sequence> B_completed:="true" </sequence>
9 </onMessage>

10 </pick>
11 </while>
12 activityB

Solutions, WP19 & WP20 WP20 is solved with the terminate activity,
which is used to abandon all execution within a business process instance
of which the terminate activity is a part. All currently running activi-
ties must be terminated as soon as possible without any fault handling
or compensation behaviour. WP19 is dealt with using fault and com-
pensation handlers, specifying the course of action in cases of faults and
cancellations.

4 The Communication Patterns in BPEL4WS

In this section we evaluate BPEL4WS according to the communication
patterns presented in [14]. Since communication is realized by exchanging
messages between different processes, it is explicitly modelled by sending
and receiving messages. Two types of communications are distinguished,
namely synchronous and asynchronous communication.

4.1 Synchronous Communication

CP1 Request/Reply Request/Reply communication is a form of syn-
chronous communication where a sender makes a request to a receiver and
waits for a reply before continuing to process. The reply may influence
further processing on the sender side.

CP2 One-Way A form of synchronous communication where a sender
makes a request to a receiver and waits for a reply that acknowledges the
receipt of the request. Since the receiver only acknowledges the receipt,
the reply is “empty” and only delays further processing on the sender
side.

© 0 N O Uk W N

Solutions, CP1 & CP2 The way in which synchronous communication
is modelled in BPEL4WS is by the invoke activity included in the request-
ing process, process A (see Listing 14) and a couple of receive and reply
activities in the responding process, process B (see Listing 15). Further-
more, two different containers need to be specified in the invoke activity
within process A: one inputContainer, where the outgoing data from the
process is stored (or input data for the communication); and one output-
Container, where the incoming data is stored (or the output data from this
communication). The One-Way pattern differs from Request/Reply only
by B sending its reply (i.e., confirmation) immediately after the message
from A has been received, i.e., no processing is performed between receipt
and reply activities.

Listing 14 Listing 15
<process name="processA"> 1 <process name="processB"> ...
<sequence> 2 <sequence>
- 3 <receive partner="A" ...
<invoke partner="B" ... 4 container="Request">
inputContainer="Request" 5 </receive>
outputContainer="Response"> 6 R
</invoke> 7 <reply partner="A" ...
e 8 container="Response">
</sequence> 9 </reply>
</process> 10 </sequence>

11 </process>

CP3 Synchronous Polling Synchronous Polling communication is a
form of synchronous communication where a sender communicates a re-
quest to a receiver but instead of blocking continues processing. At inter-
vals defined by the developer, the sender checks to see if a reply has been
sent. When it detects a reply it processes it and stops any further polling
for a reply. Example: During a game session, the system continuously
checks if the customer has terminated the game.

Solution, CP3 This pattern is captured trough utilization of two par-
allel flows: one for the receipt of the expected response, and one for the
sequence of the activities not depending on this response (see Listing 16,
lines 4 to 7). The initiation of the communication is done beforehand
through an invoke action (line 3). To be able to proceed, the invoke action
is specified to send data and not wait for a reply. This is indicated by the
use of an inputContainer and by omitting the specification of an output-
Container. The communication for the responding process is the same as
for the previous pattern (Listing 15).

1

2
3
4
5
6
7
8
9
10

Listing 16
<process name="A"
<sequence>
<invoke partner="B" ... inputContainer="Request"...> </invoke>
<flow>
<sequence> ... </sequence>
<receive partner="B" ... container="Result" ...> </receive>
</flow>
access container "Result" ...
</sequence>
</process>

4.2 Asynchronous Communication

CP4 Message Passing Message passing is a form of asynchronous com-
munication where a request is sent from a sender to a receiver. When the
sender has made the request it essentially forgets it has been sent and
continues processing. The request is delivered to the receiver and is pro-
cessed. Example: When an order is received, a log is notified, before the
system executes the order.

Solution, CP4 The solution for this pattern has already been demon-
strated as a part of the solution for CP3, namely an invoke activity with
an inputContainer only (line 3 in Listing 16).

CP5 Publish/Subscribe A form of asynchronous communication where
a request is sent by the sender and the receiver is determined by a declara-
tion of interest by the receiver in the request. Example: An organization
offers information about products to its customers. If the customers are
interested in receiving such information, they have to notify a system,
which lists interested customers. When product information is going to
be distributed to the customers, the organization requests the current list,
including the customers’ addresses.

CP6 Broadcast A form of asynchronous communication in which a
request is sent to all participants, the receivers, of a network. Each par-
ticipant determines whether the request is of interest by examining the
content. Example: Before a system is shut down for maintenance, every
client connected to it is informed about the situation.

Solutions, CP5 & CP6 Publish/Subscribe and Broadcast are not di-
rectly supported in BPEL4WS.

5 Conclusion

In this paper a framework based on existing workflow and communication
patterns was used for an in-depth analysis of BPEL4AWS. A summary of
the results from the analysis are presented in Table 1. The table also
shows a comparison of BPELAWS with XLANG, WSFL and two major
Workflow Modelling Languages: Staffware PLC’s Staffware and IBM’s
MQSeries Workflow. The ratings for Staffware and MQSeries Workflow
in the table are taken from [3] where an analysis of more than 12 major
commercial WEMS is provided. Since XLANG and WSFL correspond to
subsets of the BPEL4WS, their ratings are straightforward given the dis-
cussions provided in this paper. Note that we indicate that Staffware and
MQSeries Workflow are assumed to offer no support for the communica-
tion patterns. Although this may not be entirely true (e.g., Staffware has
the concept of an event step), they are not intended for communication
and therefore rated ' .

A '+’ in a cell of the table refers to direct support (i.e. there is a
construct in the language which directly support the pattern). A '~ in
the table refers to no direct support. Sometimes there is a feature that
only partially supports a pattern, e.g., a construct that implies certain
restrictions on the structure of the process. In such cases, the support is
rated as '+ /-,

The following observations can now be made from the table: i) As
the first five patterns correspond to the basic routing constructs, they are
naturally supported by all languages. In contrast, the patterns referring
to more advanced constructs are often poorly supported in the different
languages. ii) BPEL4WS as a language integrating the futures of the block
structured language XLANG and the directed graphs of WSFL, indeed
supports all patterns supported by XLANG and WSFL. iii) BPEL4WS
as a Web Service Composition language provides constructs for communi-
cation modelling which clearly distinguishes it from traditional workflow
modelling languages.

Besides these positive remarks, we would also like to pose two neg-
ative comments. First of all, BPEL4WS is a complex language because
if offers (too) many constructs. The simple fact that many of the pat-
terns can be realized using “XLANG style” and “WSFL style” illustrates
its complexity. Secondly, the semantics of BPEL4WS is not always clear.
The precise semantics of advanced concepts like serializable scopes leave
room for multiple interpretations thus complicating the adoption of the
language.

pattern

product/standard

BPEL

XLANG

WSFL

Staffw.

»

Sequence

Parallel Split

Synchronization

Exclusive Choice

Simple Merge

Multi Choice

Synchronizing Merge

Multi Merge

Discriminator

Arbitrary Cycles

Implicit Termination

MI without Synchronization

MI with a Priori Design Time Knowledge
MI with a Priori Runtime Knowledge
MI without a Priori Runtime Knowledge
Deferred Choice

Interleaved Parallel Routing

Milestone

Cancel Activity

Cancel Case

I e

I+ + +

+

+/-

e

B s

4+ +

D

|

Request/Reply
One-Way
Synchronous Polling
Message Passing
Publish/Subscribe
Broadcast

L+

L+ |+

L+ [

Table 1. Comparison of BPEL4WS against XLANG, WSFL, Staffware and MQSeries
Workflow using both workflow and communication patterns.

References

1. W.M.P. van der Aalst. Don’t go with the flow: Web services composition standards

exposed. to appear. IEEE Intelligent Systems, Jan/Feb 2003. Electronically ac-
cessible from http://www.tm.tue.nl/it/research/patterns/ieeewebflow.pdf.
. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Meth-
ods, and Systems. MIT press, Cambridge, Massachusetts, 2002.

. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow patterns. Technical report FIT-TR-2002-2, Faculty of IT, Queensland
University of Technology, July 2002. Accessed from http://www.tm.tue.nl/it/
research/patterns. To appear in Distributed and Parallel Databases, Kluwer.

. BPML.org. Business process modeling language. Accessed November 2002 from
www.bpmi.org/, 2002.

. Workflow Management Coalition. Terminology and glossary. Document Number
WFMC-TC-1011, Document Status - Issue 3.0, February 1999 http://www.wfmc.
org.

6.

10.
11.

12.

13.

14.

15.

16.

17.

F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana.
Unraveling the Web Services Web: An Introduction to SOAP, WSDL, and UDDI.
IEEE Internet Computing, 6(2):86-93, March 2002.

F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weer-
awarana. Business Process Execution Language for Web Services. http://
dev2dev.bea.com/techtrack/BPEL4WS. jsp.

M. Dumas and A.H.M. ter Hofstede. UML activity diagrams as a workflow spec-
ification language. In M. Gogolla and C. Kobryn, editors, Proc. of the 4th Int.
Conference on the Unified Modeling Language (UMLO1), volume 2185 of LNCS,
pages 76-90, Toronto, Canada, October 2001. Springer Verlag.

L. Fischer, editor. Workflow Handbook 2001, Workflow Management Coalition.
Future Strategies, Lighthouse Point, Florida, 2001.

Hillside.net. Patterns Home Page. http://hillside.net/patterns, 2000-2002.
B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On structured workflow
modelling. In B. Wangler and L. Bergman, editors, Proc. of the 12th Int. Confer-
ence on Advanced Information Systems Engineering (CAiSE00), volume 1789 of
LNCS, pages 431-445, Stockholm, Sweden, June 2000. Springer Verlag.

F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, 1999.

M. Rosemann and P. Green. Developing a meta model for the Bunge—Wand—Weber
ontological constructs. Information Systems, 27:75-91, 2002.

W.A. Ruh, F.X. Maginnis, and W.J. Brown. Enterprise Application Integration:
A Wiley Tech Brief. John Wiley and Sons, Inc, 2001.

E. Séderstrom, B. Andersson, P. Johannesson, E. Perjons, and B. Wangler. To-
wards a framework for comparing process modelling languages. In A.B. Pidduck,
J. Mylopoulos, C.C. Woo, and M.Tamer Ozsu, editors, 14th International Confer-
ence on Advanced Information Systems Engineering, CAiSE 2002, volume 2348 of
LNCS, pages 600-611. Springer, 2002.

UN/CEFACT and OASIS. ebXML Business Process Specification Schema (Version
1.01). Accessed November 2002 from www.ebxml.org/specs/ebBPSS.pdf, 2001.
W3C. Web Service Choreography Interface (WSCI) 1.0. Accessed November 2002
from www.w3.org/TR/wsci/, 2002.

