
Conceptual Patterns – a Consolidation of Coad’s and
Wohed’s Approaches

Petia Wohed

Department of Information and Systems Sciences
Stockholm University/Royal Institute of Technology

Electrum 230, 164 40 Kista, Sweden
petia@dsv.su.se

Abstract: The information system analysis process is considered as a difficult
phase during the information systems development. The difficulty lies in
gathering relevant information from the domain experts. Different techniques
for supporting this process have been developed. One of them is provided by
Coad, who defines a number of patterns aimed for use during the analysis of an
information system. Another one is the work provided by Wohed on automating
the information gathering process, which so far is implemented for one domain
only. In this paper these two approaches are consolidated in order to continue
the work provided by Wohed and extend it into a domain independent effort.

1 Introduction

One of the main activities during the development of an information system is the
information analysis, which gives input for the design of the database behind a
system. To support information analysis, the conceptual modelling technique has
widely been used. The goal of conceptual modelling is to derive a model covering the
relevant aspects of the underlying universe of discourse (UoD). The difficulty for the
designers of an information system lies in capturing and extracting the relevant
information from people working within and knowledgeable about the UoD that is
analysed.

To support this process different techniques, supporting the communication
between domain experts and information systems developers, have been developed.
One of them is the representation of a conceptual schema produced by system
developers in a natural language [4],[2] in order to make the schema readable and
understandable to domain experts, who will then be able to validate it.

Another approach is the verbalization technique as described by Hofstede in [1].
This technique builds on the assumption that a verbalization of the samples from the
UoD gives the structure and rules of the UoD. The point of the departure is a
description of the communication in the UoD to be modeled, which builds the set of
sample sentences, and the output is a conceptual schema.

Similarly, a description of a system is required for the technique developed by
Purao and Storey [8],[9], which provides intelligent support for retrieval and synthesis
of patterns for object-oriented design. The required input for this technique is a
natural language sentence describing the aim of the system. Then, after applying

2

techniques for natural language processing, automated reasoning, learning heuristics,
pattern retrieval from a patterns library, and pattern synthesis a conceptual model for
the UoD is received.

The differences between the two approaches producing conceptual schemas
described above are: firstly, the access to a pattern library in Purao and Storey’s
approach; and secondly the kind of the description, which is used as input: a set of
sample sentences in the first case, and a sentence describing the aim of the system in
the second one. However, both these approaches start with a description. If such
description is not available the approaches can not be applied. An alternative, for such
situations, should be the approach proposed by Wohed [10], which does not require
any particularly prepared input. Instead, information for the modeled domain is
gathered by posing a number of predefined questions to a domain expert. In order to
automate the modeling process, similar to Purao and Storey’s approach, Wohed’s
approach builds on the access to a pattern library from which the suggested solutions
are selected.

The work provided by Wohed has so far been concentrated on one domain only.
The work provided here is a continuation of it. It attempts to generalize the predefined
questions in order to make them domain independent. Such a generalization is
suggested after consolidation of the approach with the work provided by Coad [3],
who extracts and defines a number of generic conceptual patterns.

The paper is organized as followed. Section 2 gives a brief description of the
notation used in the paper. In Sections 3 and 4 the approaches proposed by Wohed
and Coad are described. Section 5 presents the consolidation of the approaches. In
section 6 a suggestion for the generalization of the questions is presented and some
loss of information is outlined. Finally, Section 7 summarizes the paper and gives
directions for further work.

2 Conceptual Schemas

In this section we briefly introduce the modeling language which is used. A formal
definition of it, may be found in [7].

The basic construct in conceptual modeling approaches is the object. Objects that
are similar to each other are grouped together into object types, such as Person and
Country. Objects have different properties, which are modeled by attributes, and they
can be related to each other, which is represented by relationships. In our graphical
notation (see Figure 1) object types are represented by rectangles, attributes by lists
inside the object types, and relationships by labeled lines. A direction of each line is
given in its label. The object type initiating a relationship is called the domain of that
relationship and the object type in its end is called the range. Generalization
constraints are shown by arrows where the head of an arrow points to the super-type.
For each relationship, the mapping constraints, represented by a quadruple
<1m,1m,tp,tp>, specify whether it is single-valued, injective, total or surjective. A
relationship is single-valued, denoted by 1 in the first position of the quadruple, when
each instance of its domain is connected to at most one instance of its range. A
relationship that is not single-valued is multi-valued, denoted by m. A relationship is

3

total, denoted by t on the third position, when each instance of its domain is connected
to at least one instance in its range. A relationship that is not total is partial, denoted
by p. A relationship is injective (surjective) when its inverse is single valued (total).
The second and fourth positions in the quadruple are reserved for the injective and
surjective properties, correspondingly.

Figure 1 An example of a conceptual schema

The description of the domain represented by the model in Figure 1 is as follows: a
Person is a citizen_in a Country and (s)he may have several cousins . The distinction
between Man and Woman is kept. A person may only marry_to someone with the
opposite sex, and polygamy is only allowed for women.

3 The Modeling Wizard Tool

The conceptual modeling wizard is based, as can be seen from its name, on the
concept of a wizard tool, i.e., a tool gathering information from the user by asking her
(him) a number of questions and suggesting a solution tailored to the set of the
received answers. Applied to the area of conceptual modeling, this wizard poses
questions about a domain and suggests a conceptual schema for this domain (a
detailed description of the tool can be found in [10]. So far the wizard supports the
booking domain only.

Six questions were collected and implemented in the tool (see Figure 2). The
questions were identified after a number of different solutions, collected from Hay [6]
and Fowler [5], and completed by other relevant solutions for the booking domain,
were analyzed. They were aimed to cover the differences between different booking
situations so that a satisfactory solution could be identified. A brief description of the
questions is given below.

The first question is about the cardinality of a booking, i.e., where a booking may
consist of several booking lines (e.g. when booking a trip, both tickets and hotel
rooms may be reserved), or not (usually when booking a rental car). The second
question is about whether a booking concerns a (number of) concrete objects (like
when booking a time to dentist) or not (e.g. when booking a book in a library, not a
particular exemplar of a book, but rather a title is booked). The third question
investigates whether the bookings made within a system have the same character (as
is the case for cinema tickets bookings) or whether they may differ. (In the trip
booking example above, tickets bookings require departure and destination places and
time for departure, whereas hotel room bookings require arrival and departure times

Country

name - String

Man Womanmarried_to >
1mpp

Person

ss# - String

citizen_in >
1mttcousin >

mmpp

4

and number of beds.) The fourth question is aimed to clarify whether or not it is
necessary to keep information about the request for a booking. (For instance when
scheduling room bookings for university courses, booking requests are collected from
the head teachers for each course and used as input in the scheduling work.). The fifth

1. Does a booking consist of
m one object, or
m may it consist of several objects?

2. Does a booking concern a (number of)
m concrete object(s), or
m does it rather specify the character of the object(s)?

3. Do all the bookings
m have the same character

or may they be divided into several categories?
m 2 m 3 m 4
m larger than 4

4. Is it necessary to keep information about the request
for a booking, before making the booking?
m no

If yes , does the booking request concern
m a concrete object(s)
m a specification of an object(s)

5. Does a motivation need to be given for a booking?
5’. Does a motivation need to be given for a booking request?
(depending on the answer from question 4)
m yes
m no

6. May a booking be done on the behalf of someone else?
6’. May a booking request be done on the behalf of someone else?
(depending on the answer from question 4)
m no,

If yes, is it important to keep information about the party who made it?
m no
m yes.

Figure 2 The questions implemented in the tool

and sixth questions depend of the answer to the fourth question. If booking requests
are necessary to keep information about, the fifth and the sixth questions are posed for
the booking requests, otherwise the questions are posed for the bookings. The fifth
question asks if a motivation (a purpose) for a booking/booking request is necessary.
(For the university scheduling work each head teacher gives the course he/she will
make the bookings for.) The sixth question asks whether a booking/booking request
may be done on behalf of someone else (e.g., a secretary may book the business trips
for her/his boss).

5

For the sake of user-friendliness the questions are placed in sequence by showing a
new question only when the previous one has been answered. A conceptual schema
solution is gradually built and refined, and graphically presented after each new
answer. Figure 3 shows a solution suggested by the tool according to the answers in
the right hand side of the figure.

Figure 3 A snap shot from the tool

Initially, the object types Booking and Parties and the relationship for are
introduced. This is done because of the totality of this relationship. The answer from
the first question, results in the introduction of the object types Booking and
BookingLine and the relationship between them. The answer from the second question
causes the introduction of an object type called Object, which can not be seen in the
final solution, due to changes performed when answering the rest of the questions.
The answer from the third question results in specializing BookingLine into
BookingLnCtg1, BookingLnCtg2 and BookingLnCtg3. The object type Object,
introduced after the previous answer, is divided into Object1, Object2, and Object3.
The first part of the fourth question results in the introduction of the object type
BookingOrder. The second part results in the introduction of the object types for
different object categories (ObjectCtg1, ObjectCtg2 and ObjectCtg3). Beside, the
structure of a Booking is mirrored in the structure of the BookingOrder. If the answer
from the fifth question is positive a further object type called Motivation should be
introduced, but since it is negative, no changes are done. Finally, according to the
answer from the last question the relationship made_by between Booking and Party is
introduced.

6

4 Coad’s transaction patterns

One of the earliest contributions on patterns in information systems analysis was
provided by Coad, who in 1995 published “Object Models: Strategies, Patterns, and
Applications” [3]. The book presents 148 strategy steps for building systems and 31
object-model patterns for building object models and demonstrates their applicability
by using them when building five different systems.

The characteristic of Coad’s 31 patterns is that they are very small and generic,
usually consisting of no more than two object types and a relationship between them.
They do not address a particular problem, but are rather general and may be
considered as building bloks of a schema .

Coad divides 30 of his patterns in the following four categories: transaction
patterns; aggregate patterns; plan patterns; and interaction patterns. All these patterns
follow a template, defined through the first pattern called the fundamental pattern (see
Figure 4)

Figure 4 The fundamental pattern - Coad’s first pattern (pattern #1) -

Only the patterns classified as transaction patterns are relevant for this work. An
extract of Coad’s own description of them, including the object types’ names, the
relationships between them and some of the examples, is presented in Figure 5.
Coad’s notation is close to UML. The main difference is the placing of mapping
constraints on the opposite side of a relation.

Collection
number
name
date
time
status
aboutMe

howMany()
howMuch()
calcOverWorkers()
rankWorkers()
calcForMe()

Worker
number
name
aboutMe

calcForMe()
rateMe()

1** 1

7

#2 Actor-Participant pattern

Actor Participant

1* 1*

Examples:
Actor: person, organization
Participant: agent, applicant, buyer, client, owner

customer, dealer, order clerk, recipient, etc.

#3 Participant-Transaction pattern

Participant Transaction

1** 1

Examples:
Participant: agent, applicant, buyer, client, owner

customer, dealer, order clerk, recipient, etc
Transaction: agreement, contract, delivery,

inquiry, order, purchase, etc

#4 Place-Transaction pattern

Place Transaction

1* 1*

Examples:
Place: geographic entity, store, shelf, etc.
Transaction: agreement, assignment, contract,

delivery, inquiry, order, purchase, etc

#5 Specific Item-Transaction pattern

SpecificItem Transaction

1* 1*

Examples:
Specific item: specific aircraft, specific ship, etc.
Transaction: agreement, assignment, contract,

delivery, inquiry, order, purchase, etc

#6 Transaction-Transaction Line Item pattern

Transaction TransactionLineItem

11..* 11..*

Examples:
order-order line item, sale-sale line item, etc

#7 Transaction – Subsequent Transaction pattern

Transaction SubsequentTransaction
1** 1

Examples:
order- shipment, reservation-sale, purchase-

payment, etc

#8 Transaction Line Item – Subsequent Transaction
Line Item pattern

SubsequentTransactionLineItemTransactionLineItem
1** 1

Examples:
order line item – shipment line item, reservation

line item –sale line item, etc

#9 Item – Line Item pattern

LineItemItem

* 1* 1

Examples:
item - order line item, item – shipment line item,

item – rental line item, etc

#10 Specific Item – Line Item pattern

SpecificItem LineItem

1* 1*

Examples:
videotape - rental line item, etc

#11 Item – Specific Item pattern

Item SpecificItem
1** 1

Examples:
job description – specific job, aircraft – specific

aircraft, etc.

#12 Associate – Other Associate pattern

OtherAssociateAssociate

1* 1*

Examples:
building-sensor, diver-vehicle, etc.

#13 Specific Item – Hierarchical Item pattern

RootItem MiddleItem LeafItem

SpecificItem HierarchicalItem

**

Examples:
organization – organization description hierarchy

Figure 5 The transaction patterns defined by Coad

8

5 Relationships between the wizard’s questions and Coad’s
patterns

In the previous two sections the patterns defined by Coad and a modeling wizard tool
built partly on patterns presented by Hay and Fowler and partly on additional patterns
relevant for the booking domain, have been presented. In this section, the attention is
turned into incorporating these two approaches by analyzing the questions
implemented in the tool trough Coad’s patterns.

Starting with the first question “Does a booking consist of one object or may it
consist of several objects”, it may be noticed that an answer, claiming that a booking
consists of several object, results in the introduction of the Transaction-Transaction Line
Item pattern (pattern # 6 from Figure 5) into the solution (instantiated by Booking -
BookingLine in the example from Figure 3). An answer claiming the opposite should
not give any change. In this way the first question investigates whether pattern #6
shall, or shall not, be included in the solution.

Going further to the second question, investigating whether a booking concerns a
concrete object, or rather the description of an object, can be related to Item-Specific
Item pattern (#11). Not the whole pattern is applied at this moment, but the question
still focus on the distinction made by this pattern. Furthermore, depending on the
answers from the first and the second questions together, one of the following patterns
are used for extending the solution after answering the second question: Item-Line
Item pattern (#9); Specific Item–Line Item pattern (#10) (the one used in Figure 3,
where it is instantiated by Object and BookingLine), Specific Item–Transaction pattern
(#5); and finally a pattern not defined by Coad, but using his terminology we should
refer to it as Item–Transaction pattern.

The third question, asking whether the bookings in the analyzed domain have the
same, or different, characters, is related to the Specific Item–Hierarchical Item pattern
(#13). It results in specializing the booking object type into sub types when there are
different (but no more than four) kinds of bookings.

Continuing analyzing the fourth question, asking whether information about the
requests for a booking shall be kept or not, a relation to the Coad’s Transaction–
Subsequent Transaction pattern (#7) can clearly be outlined. Certainly, the name
Transaction – Preceding Transaction pattern should be more suitable, in this particular
case, but since the semantic should be the same, no new patterns extending the Coad’s
set are necessary. In our particular example Transaction-Subsequent Transaction is
instantiated by BookingOrder and Booking, correspondingly. Moreover, the second
part of the question is a repetition of the second question for the BookingOrder and the
analysis provided under the second question may be repeated here. The suggested
solution after answering the fourth question depends also on the first and the third
question. If the Transaction–Transaction Line Item pattern (#6) has been applied, then
the Transaction Line Item–Subsequent Transaction Line Item pattern (#8) is applied now
(which resulted in Figure 3 in the OrderLine-BookingLine construction). Similarly the
Specific Item-Hierarchical Item pattern (#13) is used depending on whether it has been
used in the solution resulting from the third question.

The fifth question asking whether the motivation for a booking (booking request) is
necessary or not is related to Associate–Other Associate pattern (#12). Finally the last

9

question investigating the different participants in a booking is related to Participant–
Transaction pattern (#3).

Summarizing, we would like to note that all patterns from Coad’s library, except
Actor-Participant pattern (#2), and Place-Transaction pattern (#4) were covered by the
questions (see Figure 6). One reason for not having a question related to pattern #4
could be that the place where a booking is done was not identified as potential
important information. However there may exist situations where even the physical
place for a booking is necessary to keep information about, which should make it
necessary to extend the questions in order to cover this aspect as well. Neither is the
pattern #2 covered by the questions in their present state. This can be explained by the
fact that, within the booking domain, an actor usually has one role only. In the cases
where an actor may have several roles, the connection between the different roles is
not considered. In domains where it is usual for the actors to be shared between
different roles, and in the cases where the connections between the different roles are
important, a question covering this aspect should be necessary to include.

Question number Pattern #

Q1 #6
Q2 #11
Q1 & Q2 #9, #10, #5, and an additional pattern
Q3 #13
Q4 (the second part repeats Q2) #7 (and the same patterns as for Q2

and Q1 & Q2)
Q1 & Q3 & Q4 #8, #13
Q5 #12
Q6 # 3

Figure 6 The patterns related to each question

Even if the analysis provided above was partly made to reason about the
completeness of the questions, i.e., whether all patterns were covered by the
questions, it is still not enough for making any conclusion whether the set of questions
is complete or not. This is due to the varying number of times a pattern can be applied
for building different solutions. To be able to reason about the completeness of the
questions according to the iteration of some patterns in a particular solution, some
empirical studies have to be provided.

6 Generalization of the Questions

After mapping the wizard’s questions into the Coad’s patterns successfully, the next
step, in the work of making the wizard domain independent, is generalizing the
questions. This is done by the support of the terminology defined by Coad, during the
construction of the patterns. In Figure 7 the result of this generalization is presented.
The following substitutions have been performed: booking → transaction (booking is
substituted with transaction); object → item; concrete object → specific item; request

10

and booking request → preceding transaction; motivation → other associate; and
finally, party → participant.

1. Does a transaction consist of
m one item, or
m may it consist of several items?

2. Does a transaction concern a (number of)
m specific item(s), or
m does it rather specify the character of the item(s)?

3. Do all the transactions
m have the same character

or may they be divided into several categories?
m 2 m 3 m 4
m larger than 4

4. Is it necessary to keep information about the preceding transaction
of a transaction, before making the transaction?
m no

If yes, does the preceding transaction concern
m (a) specific item(s)
m (a) specification of an item(s)

5. Does other associate need to be given for a transaction?
5’. Does other associate need to be given for a preceding transaction?
(depending on the answer from question 4)
m yes
m no

6. May a transaction be done on the behalf of someone else?
6’. May a preceding transaction be done on the behalf of someone else?
 (depending on the answer from question 4)
m no,

If yes, is it important to keep information about the participant who made it?
m no
m yes.

Figure 7 The questions after the substitution

Even if this set of general questions has not yet been empirically tested, it can be
observed that some of the semantics we had for the booking domain is lost. For
instance, when asking whether the booking requests were necessary to keep
information about, or not, it was supposed that the structure for booking requests is
similar to the structure of the bookings, i.e., if the bookings consisted of several
booking lines, then the requests should also consist of several order lines. It was also
supposed that there should be a connection from each booking line to each order line.
However, when asking generally if it is necessary to keep information about some
preceding transactions, we cannot just presuppose such semantic. Instead, it is
necessary to gather information whether such semantics exists by particularly asking

11

about it. Besides, it should also be necessary to ask if it is necessary to keep
information about any subsequent, and not only preceding, transactions. These
observations indicate that the questions need to be extended in order to make them
work for any domain where a transaction is involved. So far the questions work only
on domains with the presupposed properties described for the booking domain, e.g.,
Order-Shipment, Purchase-Payment etc.

7 Conclusions and Further Research

This paper summarizes and consolidates two approaches supporting the information
analyses process. The first approach, suggested by Coad, consists of a set of generic
patterns to be used during the conceptual modeling process and a set of guidelines for
how and when to use these patterns. The second approach, suggested by Wohed,
propagates the automation of the modeling process by suggesting a modeling wizard,
aimed to gather information about a domain by posing questions to the domain
experts and suggesting a solution according to the received answers. The wizard is so
far implemented for one domain only, the booking domain. The questions
implemented in the wizard were matched to the patterns defined by Coad. This
matching was done both to reason about the completeness of the questions and to
support their generalization into domain independent questions. During the
generalization process some of the semantics relating the questions with each other
were lost. Introducing complementary questions for retrieving this semantics is a way
to solve this loss of information.

The wizard can in this way be extended to even support other domains where a
transaction is involved. Each time the wizard is used it should be tailored to the
particular domain it is going to be used for. Such tailoring can be performed by
instantiation of the general questions into domain specific ones, going in the opposite
direction of the one performed in this paper. It is then necessary to define a set of
relevant substitutions for each domain.

After implementing and testing the extensions discussed here, the next step is to
further extend the wizard to support other domains then just transaction domains, e.g.,
to support the modeling process of different product structures. The aggregate
patterns defined by Coad could then be used as a point of departure.

Acknowledgments

I would like to thank my advisor Docent Paul Johannesson, my colleague Maria
Bergholtz, and the anonymous reviewers for many valuable comments on earlier
drafts of this paper.

12

References

1. A.H.M. ter Hofstede, H.A.Proper, T.P. van der Weide, “Exploiting Fact Verbalisation in
Conceptual Information Modelling”, Information Systems, vol. 22, no. 6/7, pp. 349-385,
1997

2. M. Bergholtz and P. Johannesson, “Validating conceptual models – utilising analysis
patterns as an instrument for explanation generation”, to be presented at the 5th
International Conference on Applications of Natural Language to Information Systems,
NLDB’00, Versailles, 2000

3. P. Coad, D. North, M. Mayfield, Object Models: Strategies, Patterns, and Applications,
Prentice Hall, 1995.

4. H. Dalianis. “A Method for Validating a Conceptual Model by Natural Language Discourse
Generation” in Loucopoulos, P., (Ed.), CAISE-92 International Conference on Advanced
Information Systems Engineering, Lecture Notes in Computer Science, No. 593, pp. 425-
444, Springer Verlag, 1992

5. M. Fowler, Analysis Patterns: Reusable Object Models , Addison-Wesley, 1997.
6. D.C. Hay , Data Model Patterns: Conventions of Thought, Dorset House Publishing, 1996.
7. P. Johannesson, Schema Integration, Schema Translation, and Interoperability in Federated

Information Systems, Dissertation at Department of Computer and Systems Sciences,
Stockholm University and Royal Institute of Technology, Sweden, 1993.

8. S. Purao and V.C. Storey, “Intelligent Support for Retrieval and Synthesis of Patterns for
Object-Oriented Design”, in, D.W Embley and R.C. Goldstein., (Eds.), CAISE-97
International Conference on Advanced Information Systems Engineering, Lecture Notes in
Computer Science, No. 1331, pp.30-42 , Springer Verlag, 1997.

9. S. Purao, “APSARA: A Tool to Automate Systems design via Intelligent Pattern Retrieval
and Synthesis”, The Data Base for Advances in Information Systems, vol. 29, no. 4, 1998.

10.P. Wohed, “Conceptual Patterns for Reuse of Information Systems Design” to be presented
at CAiSE’00, International Conference on Advanced Information Systems Engineering,
Stockholm, 2000.

