
Designing Relational Databases 

Normalization  
(also called analytic database design) 

DATABASE METHODOLOGY 



Normalization 

● In this module you will learn some basics 
about normalization – ensuring high quality 
logical RDB designs 

• Normalization defined 
• Normal forms (1NF, 2NF, 3NF)  
• Functional Dependencies 
• Stepwise normalization method 
• Update anomalies (data anomalies) 



Normalization defined 

● “A technique for producing a set of relations with 
desirable properties, given the data requirements 
of an enterprise.” Connolly/Begg, “Database Systems” 

 

● Often used as a verification method following the  
logical RDB design. 



Why Normalization 

● The Goal: 
– To store each data item in just one place 

• Benefits: 
– The required disk space is minimized 

» Lower cost for storing the data  
– Update anomalies are avoided 

» Higher data quality 
• More about this later 

  



Normalization In Practice 

● Find so called functional dependencies (FDs) that 
are not handled correctly in the current design. 

● Move these FDs into their own tables 
– leave FK:s in the original tables 

• important in order not to lose information. 
– The so called determinants of the FDs (more about 

this later!) become the PKs in the new tables 



Normal Forms 

● Normalization is 
performed stepwise 
– From lower Normal 

Forms (NFs) to 
higher 

– The most important 
are 1NF, 2NF, 3NF 

• The higher forms are 
not covered in this 
course 

All tables (also unnormalized) 

Tables in 1NF 
Tables in 2NF 
Tables in 3NF 

Tables in higher NF:s 



Functional Dependencies 
● A functional dependency (FD) in normalization  

takes the following basic form:  
– A  B, where A is a set of columns (perhaps only one), and B 

is a set of columns (perhaps only one) 
– It all means that if the row values in the columns in A are 

known, then we can find the row values in the columns in B. 
– We say that A determines B; A is the FDs determinant  
A B C 

583 22 1 

819 78 8 

583 22 7 

109 22 8 

A B C 

583 22 1 

819 78 8 

583 32 7 

109 22 8 

A  B seems to hold in 
the left table. 
  
A  B does not hold in 
the right table. 



Functional Dependencies 

● Warning! 
– By inspecting the contents of a table: 

• we can falsify a claim that a functional dependency exists  
• but we cannot prove that a functional dependency exists 

– there might be yet un-entered data that will falsify it 
– functional dependencies should be defined by analyzing 

the part of the world we are modelling 
» That’s why normalization is also called analytic 

database design – we analyze which functional 
dependencies that exist, and make sure we are 
handling them correctly 



Method: 1NF – First Normal Form 

● For a table to be in 1NF, every cell (i.e cross-section of row and 
column) must have only one value(*) 
– We say that all data in the table must be atomic 
– Any lists in cells must be flattened: 

 
 
 
 
 
 

● (*) The table must also have a name and a PK 

A B C 

45 32, 33, 90 61 

82 27 2 

871 188 1002 

A B C 

45 32 61 

45 33 61 

45 90 61 

82 27 2 

871 188 1002 

Unnormalized table 
The table is now in 1NF 



Method: 2NF – Second Normal Form 
● For a table to be in 2NF, it must be in 1NF, and every  

column that is not a part of the PK, must be fully functionally 
dependent on the PK 
– It must not be sufficient with a part of the PK to maintain the 

functional dependency (a composite PK is necessary!) 

ColA ColB ColC ColD 
Kim 2002 36 89 
Mel 2002 36 45 
Mel 2009 33 56 
Jim 2009 33 09 
Ian 2002 36 67 
Ian 2004 36 76 

A table in 1NF, but not 2NF,  
ColB alone determines ColC.  The tables are now in 2NF. 

ColB in the original table is  
now an FK to ColB in the  
new table. 

ColA ColB ColD 
Kim 2002 89 
Mel 2002 45 
Mel 2009 56 
Jim 2009 09 
Ian 2002 67 
Ian 2004 76 

ColB ColC 
2002 36 
2009 33 
2004 36 

ColB  ColC 
now has its  
own table 



Method: 3NF – Third Normal Form 
● For a table to be in 3NF, it must be in 2NF, and every  

column that is not a part of the PK, must only be directly 
functionally dependent on the PK 
– There must not be any non-PK column that transitively 

determines other non-PK columns  

ColA ColB ColC ColD 
Wof 2002 101 95 
Dig 2002 77 45 
Del 2009 77 45 
Wof 2009 17 89 
Del 2002 101 95 
Sno 2004 77 45 

A table in 2NF, but not 3NF,  
ColC transitively determines ColD. The tables are now in 3NF. 

ColC in the original table is  
now an FK to ColC in the  
new table. 

ColA ColB ColC 
Wof 2002 101 
Dig 2002 77 
Del 2009 77 
Wof 2009 17 
Del 2002 101 
Sno 2004 77 

ColC ColD 
101 95 
77 45 
17 89 

ColC  ColD 
now has its  
own table 



Normalization Method - Summary 
● For each table in the database:  

Work stepwise from unnormalized (0NF) to 3NF 
– 0NF to 1NF: 

• Make sure that all cells have atomic values (no lists) 
• Make sure the table has a name and a PK assigned 

– 1NF to 2NF: 
• Eliminate partial functional dependencies, where non-PK 

columns are not fully dependent of the whole PK, by creating 
new tables as necessary and leaving FKs in the original table 

– 2NF to 3NF: 
• Eliminate transitive functional dependencies, where non-PK 

columns are not only dependent directly of the whole PK, 
but also via some other non-PK column(s), by creating new 
tables as necessary, and leaving FKs in the original table 
 



Update Anomalies – Poor Normalization 

● Insertion anomalies: 
– Say we need to insert the ColC-value for the 

ColB-value 2005. Then we at least must also 
enter a ColA-value, since ColA cannot be NULL (it 
is part of the PK). What value? 

● Deletion anomalies: 
– If we delete the row with the composite PK value 

Ian + 2004, then we lose the information that 
the ColC-value for the ColB value 2004 is 36. 

● Update anomalies: 
– What if the ColC value for ColB = 2002 

changes? Then we need to update the ColC 
value for all rows where ColB = 2002 

ColA ColB ColC ColD 
Kim 2002 36 89 
Mel 2002 36 45 
Mel 2009 33 56 
Jim 2009 33 09 
Ian 2002 36 67 
Ian 2004 36 76 

Table not in 2NF (ColB  ColC) 

Solution: 
Next slide! 



Update Anomalies – Good  Normalization 

● Insertion anomalies: 
– Say we need to insert the ColC-value for the ColB-

value 2005.  
• Just insert a new row into the new table! 

● Deletion anomalies: 
– Delete the row with the composite PK value Ian + 

2004. 
• The info about ColB = 2004 is still there in 

the new table! 

● Update anomalies: 
– What if the ColC value for ColB = 2002 

changes? 
• We can change it in one single place in the 

new table! 
 

ColA ColB ColD 
Kim 2002 89 
Mel 2002 45 
Mel 2009 56 
Jim 2009 09 
Ian 2002 67 

ColB ColC 
2002 68 
2009 33 
2004 36 
2005 71 



Normalization 

● In this module you learnt some basics about 
normalization, a technique for ensuring high 
quality logical RDB designs 

• We defined normalization 
• Talked about Normal forms (1NF, 2NF, 3NF)  
• And Functional Dependencies 
• We showed a stepwise normalization method 
• And explained update anomalies (data 

anomalies) 



Inspelat 2015-09-03 
Institutionen för data- och systemvetenskap, DSV  

Medverkande 
Anders Thelemyr – Lärare 
Lars In de Betou – Mediepedagog 


	Designing Relational Databases
	Normalization
	Normalization defined
	Why Normalization
	Normalization In Practice
	Normal Forms
	Functional Dependencies
	Functional Dependencies
	Method: 1NF – First Normal Form
	Method: 2NF – Second Normal Form
	Method: 3NF – Third Normal Form
	Normalization Method - Summary
	Update Anomalies – Poor Normalization
	Update Anomalies – Good  Normalization
	Normalization
	Slide Number 16

