
SUPCOM – MODULE 3

Database Methodology

Gabriel Castagnino

TASK DB1

1) Data is a key element to the base of information and knowledge of any kind of organization. It
seems intrinsically consequent that investing in a database system is going to foster then the
organization’s capability to manage (organize, create, delete, etc) and use all the data in its own
favor, in an efficient way. The better the data moves in every way planned and desired, the better the
information the organization has, the better the profit it can take from it.

Apart from that main and broad principle, a database system introduces a simplified format for all the

data available for an organization. All data is then integrated into the same system, and shared by all

users, which is even better with the possibilities offered by subschemas. In this sense, investing in a

database system will not only allow us to share all information but also share as needed.

2) A database is gathered data in tables with relations between their rows, and the metadata that
explains its structure, and it is often stored on disks. A DBMS is basically a software program that
creates, process and manages databases. A database system combines these two so as to convert
large data conglomerates into accessible, manageable and useful sources of information​.

3) A three-tier has a more efficient network and processing thanks to the extra layer. The two-tier still
has all users sending requests directly to the server. Once there are more users or request than its
capability, the network becomes filled, or the server ultimately not responding. Also, a three-tier is
more secure, since the clients do not have direct access to the database, but to the APPS instead.

4) A three-layer Architecture can be put into practice for example in online sales systems like
Amazon. Users (customers) can access an enormous amount of data of their interest -products- that
are mainly only a subschema of the database of Amazon. The user interface they access is
connected through the internet to an APPS that solves their requests communicating safely with the
DBMS, and this of course with the DB.

TASK DB2

5) A tuple is an ordered list of one or more values or properties. It can be considered as an entity
that has attributes, and these attributes are characteristics. A relation is basically a set of tuples, in
which each tuple is unique and the tuple order is irrelevant. The relation’s structure is characterized
in a relation schema; it is metadata about the relation. Metadata is a description to aid in the
understanding of the data. A relational database schema is composed of many relations schemas
that are logically connected. Therefore, the relational database schema is the metadata about those
relations and connections.

In the relational model, relations are implemented as tables. The data stored becomes quite easy to
understand visually as tables logically connected to each other. In this sense, the relations schemas
become the tables’ definitions, the attributes become columns and the tuples rows.

6) NULLLs are not a value and therefore they cannot be compared to anything. Often they could be
expressing a bad database design, or a value not available or unknown to the database. Since
relational databases work on the basis of relations, a NULL value makes a tuple attribute impossible
to be compared to. In this sense, when choosing a PK we must have entity integrity, for later
constructing referential integrity.

7) A Candidate Key (CK) is, in other words, the minimal Super Key. This means that the CK is
composed of all the unique attributes or columns that identify a unique row in a table/relation. Every

table must have at least one or more CKs. From this point, further on there is the Primary Key (PK),
which is the one chosen by the designer of the database among the CKs to identify that relation. And
there must always be only one PK per table (composite or not). In contrast, Alternate Key (AK) are
all the other CK that have not been chosen for this purpose. And finally, a Surrogate Key (SK) is like
an artificial CK that contains no real information, but that it is created as an integer for finding tuples
and referencing relations, generally used due to PKs related problems (composite hard handling,
uniqueness over time, disagreement between users).

8) FKs connect the referencing table with the referenced table, via duplicating the PK of the
referenced table as an FK in the referencing one. Consequently, the FK becomes the connecting
reference to a relation. They represent connections in a relational database. And in order to create
referential integrity, all the attributes of the FK must match the attributes of the PK referenced.

TASK DB3

TASK DB4

10) Relational database schema in the form of textual description

Person (​personID​, name, address, libraryCardNo)
Librarian (​personID​, employeeNo)
Borrower (​personID​)
BookLoan (​bookLoanID​, loanDate, personID, bookCopyID)
BookCopy (​bookCopyID​, copyNo, bookTitleID)
Purchase (​purchaseID​, purchaseDate, bookCopyID)
BookTitle (​bookTitleID​, title, ISBN)
BookAuthor (​bookAuthorID​, bookTitleID, authorID)
Author (​authorID​, authorName)
BookCathegorization (​bookCathegorizationID​, bookCathegoryID, bookTitleID)
BookCathegory (​bookCathegoryID​, cathegoryName)

FKs

Borrower.personID is FK to Person.personID
Librarian.personID is FK to Person.personID
BookLoan.personID is FK to Borrower.personID and to Librarian.personID
BookLoan.bookCopyID is FK to BookCopy.bookCopyID
Purchase.bookCopyID is FK to BookCopy.bookCopyID
BookCopy.bookTitleID is FK to BookTitle.bookTitleID
BookAuthor.bookTitleID is FK to BookTitle.bookTitleID
BookAuthor.authorID is FK to Author.authorID
BookCathegorization.bookCathegoryID is FK to BookCathegory.bookCathegoryID
BookCathegorization.bookTitleID is FK to BookTitle.bookTitleID

AKs

Librarian.EmployeeNo AK
BookLoan.(loanDate, personID, bookCopyID) AK1

BookCopy.(copyNo, bookTitleID) AK1
Purchase.(purchaseDate, bookcopyID) AK1
BookTitle.ISBN AK
BookAuthor.(bookTitleID, authorID) AK1
BookCathegorization.(bookCathegoryID, bookTitleID) AK1
BookCathegory.cathegoryName AK

TASK DB5

11) Normalization comprehends a series of formal steps, or ‘normal forms’, mainly focused on
“converting poorly structured tables into two or more well-structured tables” (Kroenke & Boyle, 2017,
p. 472). It is useful to save storage space, since every data item must be in only in one table. But
even better, it improves the data quality due to the fact that it prevents issues when updating,
creating or deleting data items in the database.

12) In RDB design, the data model provides a “great picture, and the normalization contributes with
the finer details” (Church, 2012, p. 123). It means it is a complementary way for designing the best
possible structure of the RDB. In this detail-level, normalization ensures that the values in columns
are flattened, attributes are in the right tables, and, if necessary, more tables are added to keep our
data accurate.

13) In contrast to what can be called a universal relation, or a single spreadsheet containing all the
information we want, a normalized database implies having many tables. So many as needed for the
data structure to be finally normalized. A drawback is that evidently a RDBS will need to trace a
single unique data item scavenging through keys until it reaches the appropriate row, and this slows
up the processing.

14) Functional dependencies occur when a column (or several) in a table seem to hold a
dependency on another(s). This means that when there is a functional dependency, if you know a
value for column A, you should also know a unique value for column B. It also could be represented

A ​—​> B, meaning that A determines B, and A is, of course, the determinant. It plays a central role for

normalization, since its ultimate goal is to have only the primary key as the determinant of all other
columns in each table.

15) A surrogate key (SK) is a unique column that it is created so as to play the role of the primary
key. With the SK we should know all the other values of the table if it is properly normalized. It helps
to solve the 2NF since there will not be a composite primary key. However, there could still be
transitive dependencies on the table, meaning columns that can uniquely determine other values as
well in the table. It is in the 3NF, that this situation becomes normalized, because any such other
column is open as a new table.

TASK DB6

16) What is the ISBN for the book title The Little Prince?

SELECT isbn

FROM BookTitle

WHERE title = ‘The Little Prince’

17) What is the author of each book?

SELECT title AS book
 authorName AS author

FROM BookTitle BT, BookAuthor BA, Author A

WHERE BA.bookTitleID = BT.bookTitleID
AND BA.authorID = A.authorID

TASK DB8

19) When administering a database, especially in the process of updating a large database, there
could be several problems related to the heavy load of transactions. Sometimes, these transactions
or operations are partially completed due to several factors, and it could lead to inaccurate
information. That is the reason why a DBMS has features that deal with such situations, in order to
keep the database integrity. And the Commit/Rollback protocol serves exactly this purpose

Prior to altering a database, such alteration is recorded in the log with all the steps or actions of it,
until it reaches a commit point. This point is to where the DBMS commits itself to alter the database,
should all the actions be performed correctly. But, in case a malfunction may occur, or a transaction
cannot be finished, the DBMS will make use of the log to roll back or undo the actions taken.
Therefore, it prevents the database from being left in an inconsistent state. Moreover, if in between
other transactions have used wrong database entries due to this temporary inconsistency being
corrected, the protocol resorts to a cascading rollback that will undo these transactions as well.

20) The Locking protocol of a DBMS comes in handy to prevent issues related to the numerous
transactions occurring at the same time. For example, the incorrect summary problem or the lost
update problem. What happens then when two or more transactions try to update values in a
database base on the same columns, but with different intentions? A database needs a certain order
on the transactions, and that order is build up from locks. What a DBMS does is to lock certain items
that currently in use by a transaction. If that transaction is not going to modify the data, the DBMS
puts a shared lock, so other transactions can still view the data. But, if it is going to alter it, the DBMS
puts an exclusive lock instead, making that transaction the only one possibly affecting it during the
locking time.

Moreover, the locking protocol works with the wound-wait protocol to prevent possible deadlocks.
This means that the DBMS gives priority to older transactions. The new ones will have to release the
exclusive access to the data and even rollback, if it is required by an older one, and then they will
grow older until it is their turn.

21) A SQL stored procedure is a sequence of SQL commands and logic that is stored on the SQL
server. In this sense, a user can then call that procedure to be executed whenever desired. For
example, when a VIEW is created, we have only stored a query to read data from tables, using
mainly the SELECT command. Therefore a VIEW could be created within a stored procedure.
However, a stored procedure allows us to read but also alter data. It can insert, update or delete
data, depending on the stored SQL commands. And it is not necessary that any product is returned
to the user.

A trigger procedure also is a sequence of SQL commands and logic stored on the SQL server, but it
is supposed to work automatically whenever a certain event happens and is recognized but such
procedure. A SQL stored procedure can be called as many times as wanted by the user, however, a
trigger procedure can never be called by the user. It is more an automatic response, encoded to
react to events. For example, if we want to avoid deleting tables, a trigger procedure could print
information about it, and rollback the action.

References

Brookshear J.G.(2012). ​Computer Science - an overview ​(11th ed.). Pennsylvania.
Addison-Wesley.

Churcher C. (2012). ​Beginning Database Design ​(1st ed.). Berkeley, California. Apress..

Kroenke, D. M. & Boyle, R.J (2017). ​Experiencing MIS​ (7th ed.). Pearson

Kulamani S. (2013). Difference between a Stored Procedure and a Trigger. Doi:
https://www.codeproject.com/Tips/624566/Differences-between-a-Stored-Procedure-and-a-
Trigg

Kumar, R. (2008). View & Stored Procedure in SQL Server.
Doi:​https://www.c-sharpcorner.com/uploadfile/raj1979/views-stored-procedure-in-sql-server-
2005/

MICROSOFT (2018). Documentación de SQL. Doi:
https://docs.microsoft.com/es-es/sql/t-sql/lesson-1-creating-database-objects?redirectedfro
m=MSDN&view=sql-server-2017

Pankaj P. (2013). Difference between stored procedures and triggers.
doi:​https://www.c-sharpcorner.com/blogs/differences-between-stored-procedures-and-trigge
rs1

https://www.codeproject.com/Tips/624566/Differences-between-a-Stored-Procedure-and-a-Trigg
https://www.codeproject.com/Tips/624566/Differences-between-a-Stored-Procedure-and-a-Trigg
https://www.c-sharpcorner.com/uploadfile/raj1979/views-stored-procedure-in-sql-server-2005/
https://www.c-sharpcorner.com/uploadfile/raj1979/views-stored-procedure-in-sql-server-2005/
https://docs.microsoft.com/es-es/sql/t-sql/lesson-1-creating-database-objects?redirectedfrom=MSDN&view=sql-server-2017
https://docs.microsoft.com/es-es/sql/t-sql/lesson-1-creating-database-objects?redirectedfrom=MSDN&view=sql-server-2017
https://www.c-sharpcorner.com/blogs/differences-between-stored-procedures-and-triggers1
https://www.c-sharpcorner.com/blogs/differences-between-stored-procedures-and-triggers1

