1 Introduction

1.1 Background

Companies today are becoming ever more focused on their business processes, i.e. the set of related activities that create value for the customer. Different companies can stipulate different business processes. For example, in some companies, handling an order is a business process, in others, the complete chain from receiving an order to the delivery of a product or a service is a business process. Examples of other business processes are activities which handling customer relationships and manufacturing.

The focusing on business processes has several reasons. First, the traditional way of organising companies into separated departments such as marketing, production, service, has shown to require a huge administration to handle issues crossing the departments. That is, considerable resources are allocated to administrative tasks that do not create value for the customer. The business processes, on the other hand, cross the borders of the departments, and facilitate for the companies to focus on the activities that really fulfil the goal - to create customer value. Secondly, a focus on business processes puts the customers in the centre, and when customers demand novel products or services, the companies can faster and easier discover and meet the requirements by adjusting its business processes accordingly. Thirdly, when concentrating on the business processes, the companies can start automate the activities in the processes. However, this requires that the IT systems of the companies support the business processes in a efficient and flexible way. [Davenport, 1993], [Hammer et al, 1993], [Riempp, 1998]

Business process modelling has therefore become a major focus of attention in business analysis and information systems engineering. Process models can be used for analysing, designing, simulating and automatically execution of business processes. There are software tools for modelling processes, like Visio [Microsoft, 2001], iGrafx [Micrografx, 2001] and Rational Rose [Rational, 2001]. There are also software systems for modelling, simulating and automatically execution of business processes, e.g. “Workflow Management Systems” and “Process Brokers” [Johannesson et al, 2001], [Linthicum, 2000]. Furthermore, popular software packages, like SAP R/3 and Baan ERP [Linthicum, 2000], use process models to visualise the predefined business processes that companies can implement. As a result, several different process modelling languages have been developed, e.g. Business Modelling Language (BML) [Wåhlander et al, 2001], Event-driven Process Chains (EPC) [Sheer, 1998], IDEF0 [IDEF0 1993], IDEF3 [Mayer, 1995], and UML Activity and State Diagrams [Rumbaugh et al, 1999].

Different languages are created for different purposes. However, there are situations when a company needs to compare different business process modelling languages. For example, a company is planning to model its business processes and needs to choose one appropriate business process modelling language among several. Another example is when two different companies want to integrate their business processes, modelled in different languages, in order to make the co-operation more efficient.

1.2 Problem

Performing comparisons between different business process modelling languages are problematic. The concepts in the different languages are usually defined in different and sometimes ambiguous ways. Furthermore, there is a lack of literature that describes how to handle such a comparison.

1.3 Purpose

The purpose of this thesis is to develop a reference model that facilitates comparisons between business process modelling languages.

1.4 Intended audience

The intended audience of this thesis are IS/IT managers, business people involved in business analysis and process engineering, and undergraduate and postgraduate students at universities, studying information systems engineering. The audience is assumed to be familiar with conceptual modelling and process engineering concepts.

1.5 Research method

The overall research method employed in this paper is to create a reference model for comparing business process modelling languages and then validate the reference model by comparing existing languages. Figure 1 depicts the main steps that have been taken during this research.

[image: image1.wmf]Preliminary work

-

literature study

- research project

- conclusions

Initial reference model

-

initial model created

- the model validated

- conclusions

Improved reference model

-

improved model created

- the model validated

- conclusions

Figure 1. The steps in the research process.
Preliminary work

In order to enhance the understanding of different methods, models and frameworks for comparing process modelling languages, a literature study was carried out, as the first step in the research process. It focused on the following questions:

· Which are the difficulties when comparing process modelling languages?

· Which methods, models and frameworks for comparing process modelling languages are described in the literature?

· Which different process modelling languages exists?

During the literature study, several difficulties when comparing process modelling languages were identified, e.g. the same concept is defined in different ways in different languages, the relations between the concepts in the different languages differs, and several languages have no definitions at all for some of the concepts used. The literature study also identified different methods, models and frameworks. These are described in Section 2.1. Different process modelling languages are briefly presented in Section 2.2.

Furthermore, knowledge about process modelling languages has also been acquired during a research project, called “Process Broker project” [Process Broker, 2001] at the Department of Computer and Systems Sciences, at Stockholm University/KTH. The purpose of the project was to investigate “Process Brokers”, also called “Process Managers” or “Process Automation Systems”, which is a technology for facilitating integration of applications in a distributed environment. Process Brokers visualise the communication between the applications by using business process modelling languages. In the project, a business process modelling language, Business Modelling Language (BML), was investigated [Johannesson et al, 2001]. The project was carried out during 1999-01-01--2001-08-30.

Creation of an initial reference model

The first draft of the reference model comprises basic concepts used in business process modelling languages. The draft was based on the literature study and the experiences of BML. The idea behind the reference model was to map the concepts of different business process modelling languages against the concepts of the reference model and thereby facilitate comparisons between the languages.

The initial reference model was validated by mapping three business process modelling languages against the reference model. First, however, the languages had to be selected. The goal was to choose quite different languages, i.e. languages that emphasised different aspects of business processes. Secondly, the definitions of the concepts of the different languages were analysed. Thirdly, to further clarify the differences between the languages, a particular example business process, a manufacturing process, was modelled using each language.

The validation showed that several basic concepts of the reference model were defined in slightly different ways in the different languages. Especially the event concept has different meaning in different languages. Therefore, the event concept was further analysed and several components of the concept were identified. These components were combined into different combinations. The combinations were then mapped against different modelling languages’ event concepts, to highlight the differences and similarities between the languages’ use of the concept.

The result of this work is described in a working paper, “Towards a Framework for Comparing Process Modelling Languages” [Söderström et al, 2001], which presents a framework for comparing process modelling languages. The framework consists of an analysis of the “event” concept, a reference model, a classification of concepts according to the interrogative pronouns: “what”, “how”, “why”, “who”, “when”, and “where”, and a validation, comparing three modelling languages: Business Modelling Language (BML), Event-driven Process Chain (EPC), and Unified Modelling Language’s State Diagram (UML’s SD).

Creation of an improved reference model

The analysis of the “event” concept triggered the idea of analysing other basic concepts to identify different components of these concepts, e.g. different “activity components”, “state components”, “resource components”, and so on. This work was carried out, and resulted in an improved reference model.

The improved reference model was validated by comparing four different process modelling languages. Besides EPC, UML´s SD and BML, also IDEF0 was added. The goal of the validation was to show that it was possible to use the reference model to highlight the differences and similarities between the languages.

The result is presented in thesis, which differs from the working paper [Söderström et al, 2001] in several respects. Unlike the working paper, this thesis is analysing several process modelling language concepts in depth. In the working paper only the “event” concept was further analysed. Furthermore, in this thesis no classification of concepts according to the interrogative pronouns: “what”, “how”, “why”, “who”, “when”, and “where”, is done. Finally, one further process modelling language, IDEF0, is added in the validation of the reference model.

2 Related Research

2.1 Comparing concepts and languages

Models, meta-models, meta-meta-models, reference models, ontologies, and conceptual models are used to describe and analyse the relations between concepts. A model is an abstraction of phenomena in the real world, and a meta-model is yet another abstraction highlighting certain properties of the model itself, such as its logical foundation [van Gigch, 1961]. Furthermore, the logical foundation of a meta-model can be specified in a meta-meta-model, and so on. When comparing models at the same meta level, a reference model can be used as a connector, against which different models, at the same meta level, can be mapped.

Ontology is a philosophical discipline aimed at studying the nature of the real world. Also researchers in artificial intelligence (AI) have developed ontologies. These ontologies are often more focused on knowledge sharing, i.e. capture consensual knowledge, instead of answering the traditional metaphysical question: “What are there in the real world?” [Fensel, 2001]. However, there are similarities between the AI-researchers’ and the metaphysically-oriented philosophers’ goals; both groups are interested in establish basic concepts. Some authors try to establish basic concepts in a certain area or domain, e.g. medicine or automobile manufacturing, while others try to be more domain independent. An example of the latter is Bunge, who has developed a well-known ontology [Bunge, 1977]. Based on Bunge’s ontology, Wand and Weber [Wand et al, 1990], [Wand, 1996], try to provide a theoretical foundation for the evaluation of information systems models. This ontology is called Bunge, Wand and Weber (BWW) ontology. Wand and Weber assume that an information system (IS) represents a real world system, and that it is built to manage information functions existing in this real world. They present a set of basic concepts that exist in the real world and they state that IS models must be able to express these concepts. By mapping concepts such as “thing”, “state”, “event” and “system” to concepts in different modelling languages, Wand and Weber can discuss strengths and weaknesses of these languages, such as whether or not a language include all basic ontological concepts or has ambiguous definitions. One problem with the BWW ontology, though, is that many concepts in the ontology are difficult to apply and map to concepts in everyday process modelling languages.

Conceptual models can be seen as a common term for all types of models, e.g. ontologies, meta-models, reference models. Examples of different conceptual models of business process concepts are the Workflow Management Coalition (WfMC) reference model [WfMC, 1995], [WfMC, 1998] and the FRISCO report [Frisco, 1998]. In the WfMC reference model, terminology, structure, components and interfaces for workflow management systems and languages are defined. The FRISCO report also define central concepts in the IS area, e.g. “process”, “state” and “action”, but the definitions of same named concepts are different from those given by WfMC.

None of the models show how concepts from different business process modelling languages are related. However, Petri nets [Reisig, 1985], see Section 2.2, provide both a graphical description and formal base of processes. Researchers [Aalst, 1999], [Aalst et al, 2000] have mapped different process modelling languages to Petri net to give the process modelling languages a formal semantics and thereby use Petri net based analysis techniques to verify the correctness (“soundness”) of the process definitions. This approach could also be used to compare different business process modelling languages. However, Petri net is a method for method experts and cannot easily work as a platform for communication between business people. Furthermore, a business process modelling language for business process management must include more information than just “places”, “transitions” and “tokens” that are the basic concepts in classical Petri nets.

An approach similar to the one used in this thesis for comparing process modelling language, is presented in a doctoral thesis [Karhu, 2001]. Based on concepts from six process modelling languages, a generic process model is created, which comprise the concepts of the six investigated languages. The languages investigated in the thesis are scheduling, simple flowchart, IDEF0, IDEFv, IDEF3 and Petri nets. However, the thesis is focused on construction processes in particular [Karhu, 2001]. Therefore, important concepts in information systems engineering, like “state”, “activity” and “resource” have not been further elaborated, and the “event” concept has not been analysed at all.

2.2 Process modelling languages

The basic grammar of most process modelling languages derives from Petri nets. The language is a formal and graphical method, which is appropriate for modelling systems with concurrency. It originates from Carl Adam Petri’s doctoral thesis from 1962, “Kommunikation mit Automaten” [Petri, 1962], which introduced a new model of information flow in systems. Today, Petri nets are used to model computer software, hardware, information flow, control flow, and business processes.

The strengths of Petri nets are that they are graphical and in the same time have a strong mathematical basis. Thanks to this formal basis it is possible to use them to analyse the correctness (i.e. “soundness”) of a given process. There are also several analysis techniques and tools available, which can be applied to Petri nets, to check such correctness. [Reisig, 1985]

A classical Petri net is composed of three primitive concepts, i.e. concepts that are non-defined [Peterson, 1981]:

· Places (P1-P4 in Figure 2)

· Transitions (t1-t2 in Figure 2)

· Tokens (black dots in Figure 2)

[image: image2.wmf]P1

t1

t2

P2

P3

P4

t3

t4

[image: image3.wmf]P1

t1

t2

P2

P3

P4

t3

t4

[image: image4.wmf]P1

t1

t2

P2

P3

P4

t3

t4

Figure 2. The classical Petri nets consist of places (P1-P4), transitions (t1-t4) and tokens (black dots). The figures visualise three different states of the same Petri net, i.e. three different distribu-tions of the tokens.

Places and transitions describe the structure of the Petri net, which are fixed. However, the distribution of tokens may vary. Every such distribution visualise a certain “state” of the Petri net. An example will elucidate: In Figure 2 (left) transition t2 can take (“consume”) tokens from the places P1 and P2, and put one token (“produce”) in place P3. When this happens, the transition t2 is said to “fire”. A transition can only fire if it is enabled (“loaded”). This occurs when there are at least one token at each of the places before the transition. Following the example in Figure 2 (left), the transition t2 fires when it consumes one token in P1 and one in P2, and produce one token in P3. The result of the firing is visualised in Figure 2 (middle). This figure shows that t3 is loaded, i.e. ready to fire. The reason for this is that there is a token in P3, and P3 is the only place before the transition t3. When t3 fires, the token in P3 is consumed and one token in P4 and one in P2 are produced, see Figure 2 (right).

The modeller/designer decides what the “places”, “transitions” and “tokens” in a Petri net shall represent in the real world. For example, “transitions” (t1-t4 in Figure 2) can represent activities, “tokens” (black dots in Figure 2) resources, and “places” (P1-P4 in Figure 2) the state of being. Using such representations, a Petri net describes the following: when a resource (“token”) is available, the activity (“transition”) moves the resource to the next place. The arrows in the Petri net indicate in which direction the resources (“tokens”) move when an activity (“transition”) is performed. However, in a Petri net, “transitions” can also represent an event, a transformation, or a transportation. Furthermore, “tokens” can represent different types of objects, i.e. physical objects or information objects (e.g. an insurance claim or an order), and “places” can represent a condition, a buffer, or a geographical location, and so on. [Reisig, 1985]

A state machine is a variant of a Petri net. The state machine is restricted so that each transition has exactly one input and one output, i.e. exactly one place before and one place after the transition. A representation of a state machine is a Statechart Diagram, e.g. UML’s State Diagram [OMG, 1999]. It is also possible to extend a state machine by adding the concepts “receive message” and “send message”. Such extended state machine are called a communicating state machine. Representations of state machines are Business Modelling Language (BML) [Wåhlander et al, 1998] and Specification and Description Language (SDL) [Belina, 1991].

[image: image5.wmf]Receive

order

Place

order

Check

order

Check

customer

[Order

exceed

$2000]

[Order less

then

 $2000]

Manager

Operator

Order handling

department

 Figure 3. A flowchart diagram using swimlanes.

Another process modelling language tradition originates from flowchart diagrams, which is one of the first graphical methods applied on computing. They were primary used to visualise the sequence of steps in computer programs. However, later on, when more and more organisations were focusing on the business processes, flowcharts were also used to show the sequence of activities in a business process [DeMarco, 1979]. Today, many different variations of flowcharts are used in organisations to model the business processes.

Cross-functional flowcharts are an extension of simple flowcharts, by visualising who is responsible for, or who is the performer, of an activity. This is modelled by dividing the flowchart in parallel segments, “swimlanes”, which group together activities, connected to specific actor (role), see Figure 3.

In a flowchart the activities are usually represented as rectangles. Furthermore, the arrows represent the flow, which can visualise the input or output for an activity or just show the order of the activities. Decisions can be visualised by using a decision points, see the rhombus in Figure 3. Many types of so called activity diagrams originates from flowcharts.

Existing business process modelling languages can be classified in several ways. One classification is to group the languages in “static-oriented”, “activity-oriented”, “state-oriented”, and “communication-oriented” languages:

· Static-oriented languages are in principle independent of time, i.e. the models do not show in which order in time the activities are performed. These languages usually visualise the input to and output from the activities. An example of a static-oriented languages is IDEF0 [Marca et al, 1986], [Meyer, 1993].

· Activity-oriented languages primarily describe which activities follow and precede another in a process. Examples of such languages are Task Structures, which is a workflow process language [Aalst et al, 2000], Event-driven Process Chain (EPC) [Keller et al,1992], [Sheer, 1998], and UML Activity Diagram [OMG, 1999], [Rumbaugh et al, 1999].

· State-oriented languages describe which states follow and precede another in a process. An example of a state-oriented language is UML State Diagram [OMG, 1999], [Rumbaugh et al, 1999].

· Communication-oriented languages focus on the interaction between people and systems, and between systems. Examples of communication-oriented languages are Specification and Description Language (SDL) [Belina, 1991], Business Modelling Language (BML) [Johannesson et al, 2001], [Wåhlander et al, 2001], UML Sequence Diagram [OMG, 1999], [Rumbaugh et al, 1999], and Role-Activity Diagram (RAD) [Huckvale, 1995].

The reference model

2.3 Four basic concepts

Most process modelling languages include the basic concepts: “time point”, “event”, “state”, “activity”, and “process”. The “process” concept is presented in Section 3.2. The intuitive meanings of the other basic concepts are:

· A time point is an instant in time, not further decomposable.

· An event is a noteworthy occurrence.

· A state shows the condition of a process and can be represented in several ways, e.g. as a set of attribute values.

· An activity is something that is performed in a process, possibly changing its state.

Most process modelling languages agree on the general meaning of these concepts but their definitions are usually more precise. These more precise definitions clarify that there are differences between the languages.

Event concept

The greatest differences between the process modelling languages regarding the use of the concepts time point, event, state and activity, lie in the understanding of the relations between the concepts. A way of clarify these differences, is to consider the event concept as a connector between the other three concepts. In the reference model, an event is a recording of a noteworthy occurrence and it connects states and activities in time, as is schematically illustrated in Figure 4.

[image: image6.wmf]Activity

State

Time Point

Event

Figure 4. The relation between

 the event concept and

 other basic concepts.

A few comments concerning the event concept are needed. First, an event is something that is recorded, i.e. events are some facts in a process that an observer find noteworthy to record by some means. Secondly, the event concept functions as a connector, something that connects the concepts of activity, state and time point. Thirdly, when analysing different languages it is obvious that the concepts of event, activity, state and time can be connected in many ways.

Therefore, to perform comparisons between different languages the event concept has to be analysed further and divided into different components. The following components of the event concept have been identified:

· Events can either record a certain point in time (time point events) or record the time between two time points (time duration events).

· Events can either record the start of an activity (pre-activity events) or record the end of an activity (post-activity events).

· Events can record occurrences outside the described system (external events) or record occurrences inside the system (internal events).

· Events can record the change of a state (state change events) or not.

It is possible to draw some conclusions about languages and their use of the event concept: First, different languages define an event as non-similar combinations of the above mentioned event components. For example, one language define an event to be a combination of post-activity and state change events, i.e. the completion of an activity always leads to a change of the process’ state, while another language define event to be a combination of time point, external and pre-activity events, and so on. Secondly, the same language can use several meanings of the term “event” by using different combination of the event components. For example, in one context a certain language can use a combination of the time point, pre-activity and state change event components of a process model, and in another it can use only a combination of the time-point and state change event components. Thirdly, some languages do not recognise differences between event components as they are presented above. For example, there may not exist distinction between internal and external events.

The reference model with the four basic concepts, including the different event components, is illustrated in Figure 5. The IS-A relation in Figure 5 visualises a generalisation/specialisation relation between concepts.

[image: image7.wmf]Activity

State

Event

occurs

_

at

Internal event

External event

IS-A

IS-A

Interuptable

 activity

IS-A

Non

-

interuptable

state

Interuptable

state

IS-A

Wait state

Time duration

activty

IS-A

Time point

activty

Single activity

 state

Several

activity state

IS-A

IS-A

Time point

 event

Non

-

interuptable

activity

records

_

changes

State change event

IS-A

starts_

at

IS-A

IS-A

IS-A

Time Point

ends

_

at

IS-A

Pre

-

activity event

Post-

activity event

Time duration

event

IS-A

records

_

start_of

records

_

end

_of

contains

IS-A

IS-A

IS-A

 Figure 5. The reference model including the four basic concepts.
In some process modelling languages, an event can contain one or many activities. Therefore, the relation “contains” between the concepts Event and Activity, is included in the reference model, see Figure 5.

Activity concept

Also the use of the concept activity differs in different process modelling languages. An identification of different activity components may therefore be an important instrument for comparing languages. By analysis of different process modelling languages, the following activity components was identified:

· Activities can either be performed in a time point (time point activities) or be performed between two time points (time duration activities).

· Activities can either be non-interruptible (non-interruptible activities), which means that once the activity has begun executing it must be completed, or interruptible (interruptible activities), which means that an activity can be temporarily stopped, aborted or rolled backed during execution.

These different activity components are to be used in a language analysis. First, different languages combine these components of activities in different ways. Secondly, some languages do not make any explicit distinction between the different components, while others do. The reference model including the different activity components is illustrated in Figure 5.

State concept

Furthermore, different state components have been identified that can be used in the comparison between process modelling languages:

· States can have no activities connected to them (wait states).

· States can contain only one activity (single activity states) or several activities (several activities states).

· State can be non-interruptible (non-interruptible states) or interruptible (interruptible states).

Also these state components can be combined in different ways in different languages. Furthermore, some languages do not make any distinction between the different components, while others do. The reference model with the different state components is illustrated in Fig. 5.

Time concept

The time concept is not divided into several time components, see Figure 5.

2.4 The process concept

An important concept in process modelling languages is, of course, the process concept. Some languages define a process as a sequence of activities, others as a sequence of events or states. The reference model has the following definition:

A process is a sequence of activities, events, or states.

The process concept is included in the reference model in Figure 6.

2.5 Additional concepts

Besides the five concepts presented in Section 3.1 and 3.2, the reference model has been extended with some additional concepts to make it more useful in a business setting. Figure 6 shows the reference model with the additional concepts.

The rule concept

Rules are descriptions of allowed and disallowed relationships of concepts in a process. Rules are also used more explicit in “logical connectors”, see Section 3.4.

[image: image8.wmf]Activity

State

Event

occurs

_

at

Internal event

External event

IS-A

IS-A

Interuptable

 activity

IS-A

Non

-

interuptable

state

Interuptable

state

IS-A

Wait state

Time duration

activty

IS-A

Time point

activty

Single activity

 state

Several

activity state

IS-A

IS-A

Time point

 event

Process

Rule

governs

Resource

output

_

from

input

_

to

Goal

Location

Physical

location

Virtual

location

IS-A

IS-A

Information

resource

Machine resource

Material

resource

Organisational

actor

Human

resourse

Non

-

interuptable

activity

Human

actor

Actor with goal

IS-A

IS-A

IS-A

IS-A

IS-A

IS-A

IS-A

has

IS-A

s

records

_

changes

State change event

IS-A

starts_

at

IS-A

IS-A

IS-A

Time Point

ends

_

at

IS-A

Pre

-

activity event

Post-

activity event

Time duration

event

IS-A

records

_

start_of

records

_

end

_of

contains

IS-A

IS-A

Actor

causes

IS-A

Machineactor

has

takes

_

place

_at

has

has

has

Figure 6. The extended reference model.

Resource concept

A resource is something needed in an activity to achieve desired results (“input”), or something that is created by a process (“output”). The following different resource components have been identified:

· Resources can either be material (material resources), information (information resources), human (human resources) or machine (machine resources).

Actor concept

An actor is an entity that can cause one or more events. The following actor components are identified:

· An actor can either be a person (human actor), a machine (machine actor) or an organisational (organisational actor).

· An actor can have goal (actor with goal).

These actor components can be combined in different ways in different languages. Furthermore, some languages do not make any distinction between the different components, while others do.

The goal concept

A goal is what an actor wants to achieve with its activities. In some process modelling languages, also a process has goal, see Figure 6.

Location concept

A location is a physical or virtual space where an activity is performed. The following location components are identified:

· A location is either physical (physical location) or virtual (virtual location), se Figure 6.

2.6 The complete reference model

As stated before, a process is a sequence of events, activities or states. Therefore, there must be concepts describing this sequence. In the reference model, these concepts are process flow concept, temporal dependency and logical connectors, see Figure 7.

[image: image9.wmf]Activity

State

Event

occurs

_

at

Internal event

External event

IS-A

IS-A

Interuptable

 activity

IS-A

Non

-

interuptable

state

Interuptable

state

IS-A

Wait state

Time duration

activty

IS-A

Time point

activty

Single activity

 state

Several

activity state

IS-A

IS-A

Time point

 event

Process

Rule

governs

Resource

output

_

from

input

_

to

Goal

Location

Physical

location

Virtual

location

IS-A

IS-A

Information

resource

Machine resource

Material

resource

Organisational

actor

Human

resourse

Non

-

interuptable

activity

Human

actor

Actor with goal

IS-A

IS-A

IS-A

IS-A

IS-A

IS-A

IS-A

Temporal

dependency

Logical

connector

Split

connector

AND

connector

Merge

 connector

XOR

connector

has

Process

flow concept

IS-A

IS-A

IS-A

IS-A

IS-A

IS-A

IS-A

has

uses

records

_

changes

State change event

IS-A

IS-A

IS-A

starts_

at

IS-A

IS-A

IS-A

IS-A

Time Point

ends

_

at

IS-A

Pre

-

activity event

Post-

activity event

Time duration

event

IS-A

records

_

start_of

records

_

end

_of

contains

IS-A

IS-A

Actor

causes

IS-A

Machineactor

has

takes

_

place

_at

 Figure 7. The complete reference model.
Process flow concept

A process flow concept is either an event, an activity, a state, a temporal dependency (see below), or a logical connector (see below).

Temporal dependency concept

A temporal dependency is constraint in time between activities, events, states and logical connectors, i.e. the order of the activities, states and logical connectors in a process. (The temporal dependency is usually represented as an arrow in a business process modelling diagram.)

Logical connector concept

A logical connector is a point where the process logically split or merge. The following logical connector components are identified:

· A logical connector is either a split (split connector) or a merge connector (merge connector)

· A logical connectors is either a AND (AND connector) or a XOR (XOR connector).

These components can be combined in different languages. Furthermore, some languages do not make any distinction between the different components, while others do.

Process Modelling Languages

In this chapter, four different modelling languages are described: EPC, UML State Diagram, BML and IDEF0. These languages are used in the thesis to validate the reference model presented in Chapter 3. The main criteria for selecting the process modelling languages was to choose languages from different languages components, i.e. languages that emphasised different aspects of business processes. The four chosen languages were EPC, UML State Diagram, BML and IDEF0. They represent four different categories of process modelling languages: an “activity-oriented” language, a “state-oriented” language, a “communication-oriented” language, and a “static-oriented” language, see Section 2.1.

2.7 Event-driven Process Chains (EPC)

Event-driven Process Chains (EPC) was introduced in 1992 [Keller et al, 1992] and the language is used among other things to describe business processes in the SAP/R3 enterprise system. It is also embedded in the Architecture of Integrated Information System (ARIS) framework, which integrates five different perspectives or views of an organisation, i.e. the “data”, “function”, “organisation”, “output” and “process” views [Sheer, 1998]. The EPC diagrams are used in one of the view of the ARIS framework: the “process” view.

[image: image10.wmf]AND

AND

Manufacturing

Order

received

Production

date arrived

Product

in store

Order

executed

Figure. 8. An EPC diagram.
EPC is a graph with active nodes, called “functions” (soft rectangles) and passive nodes, called “events” (hexagons), see Figure 8. In EPC, a “process” is considered as chain of functions to be executed, and of events describing the situation before and after each function. Events should always exist before and after a function. EPC do not explicitly use the “state” concept. The logical relationships and dependencies between functions and events are described using “logical connectors” (represented as circles including the logical AND, OR and XOR) and “temporal dependencies” (represented as arrows).

The EPC diagram of Figure 8 shows that two events, Order received and Production date arrived must occur before the business function Manufacturing can take place. When the function is completed two additional events must occur, Product in store and Order executed. The function nodes can be connected to information, material, product and services and responsible organisational unit, by adding the other views of the ARIS framework. This is not included in the figure.

2.8 UML State Diagrams (SD)

The Unified Modelling Language (UML) was created by Booch, Rumbaugh and Jacobson [Rumbaugh et al, 1999] and later standardised by the Object Management Group (OMG) in 1997 [OMG, 1999]. The State – or Statechart – diagram (SD) is one of the nine predefined diagrams in UML. SD is a representation of a “state machine” and visualises how states change in the modelled element, which can be a UML class, a system or a business process. The SD also describes which actions (i.e. “activities”) that are executed as a result of the occurrence of events.

[image: image11.wmf]State

Order

received

(and)

Production

data

arrived

Product

in store

(and)

Order

exectuted

Do

activity

/

Manufacturing

Figure 9. A UML’s State Diagram.

A SD is a graph with “states” (represented by soft rectangles), “transitions” (represented by directed arcs), “events “(represented by labels), and “actions”/“activities” (represented by labels), see Figure 9. The differences between an action and an activity is that an action is non-interruptible. A state (the soft rectangle symbol) can be subdivided into three compartments: name of the state, state variables, and actions/activities. The state variables describe variables like counters and timers. (Figure 9 only shows the name of the state, i.e. “State”, and the activity “Manufacturing”).

There are three different components of actions/activities in a state: “entry action” that describe the action that is performed when the state is entered, “exit action” that describes the action that is performed when the state is exited, and “do activities” that describes activities that is performed during the state. (The diagram in Figure 9 only shows the “do activity”.) Note that all these parts of a state is optional and that a state could contain no actions/activity at all, which is called a “Wait State”.

Transitions (represented by arrows between states) change states in SD. A transition can occur if an externally generated event occurs, meaning that a possible ongoing do activity is aborted. A transition can also occur if a do activity has been completed and thus has triggered a “completion event”. However, before a transition occurs also a condition, called “guard” is evaluated (not shown in Figure 9). If the condition is evaluated true the transition occurs, otherwise the transition is cancelled. During the transition certain actions can be performed, for example sending a signal. This scenario is also called “Event-Condition-Action”, where Condition is the guard and the Action is the actions performed during the transition.

Furthermore, a SD diagram always visualise an “initial state” (represented by a solid circle, not shown in Figure 9) and one or more “final states” (represented by a solid circle surrounded by a circle, shown in Figure 9). Also note that in SD the events occur instantly, while states have duration, but the UML semantics do not hinder events from being modelled with time duration and states from being modelled as instantaneous.

2.9 Business Modelling Language (BML)

The Business Modelling Language (BML) was introduced in 1998 [Wåhlander et al, 2001], and is used in Visuera Process Manager [Wåhlander et al, 2001], which is a “Process Broker” [Johannesson et al, 2001]. BML focuses on describing interactions between systems through the sending and receiving of messages. The language has similarities to SDL (Specification and Description Language) [Belina, 1991], but is more adapted to application integration. An important feature of BML is that the language can be used for business specification and design as well as for the execution of systems.

BML describes the structure and behaviour of a system by using two kinds of diagrams. The system structure is shown in the Business Process Integration (BPI) logical diagram. The BPI logical diagram is a “static-oriented” process language, see Section 2.2, but the BPI logical diagram is not further analysed in this thesis.

The dynamic behaviour of the system is described in BML by using Business Integration Application (BIA) diagrams, see Figure 10, which visualise when the system sends and receives messages, and what activities to perform depending on the messages content.

[image: image12.wmf]Wait

for

Event

Order

received

Production

date

arrived

Send to

Manu-

facturing

Wait

for

Event

Product

in store

Order

executed

End

Figure 10. A BML dynamic diagram (called “BIA”).
Central BML symbols in the process diagram (i.e. the BIA), which are presented in Figure 10, are Receive message (concave box), Send message (convex box), and Wait for Event (circle with the label “Wait for Event”).

Further BML symbols are Start timer (hourglass full of “time”, not shown in Figure 10), Expire timer (hourglass “out of time”, shown in Figure 10), Business activity (rectangle, not shown in Figure 10), and Automated business decision (rhombus, not shown in Figure 10), which shows what paths should be taken through the process according to business rules. The BIA always includes a Start state (circle without name, not shown in Figure 10) and one or more End states (circle with the label “End”, shown in Figure 10). A BIA can visualise to which application, human agent or process that a message are sent to or received from, by using labels (or icons) above the diagram’s send and receive symbols (not shown in Figure 10).

A instance of a BIA can either be in a state (i.e. “Wait for Event”, “Start” or “End”) or be in a transition from one state to another. A transition is initiated when an event happens, i.e. message is received or/and when a timer is expired. During the transition some activities may occur. These activities, e.g. Send message, Start timer, and Business activity are considered to happen instantaneously.

Another important feature of BML is the data model, which is not described in this thesis. Each BIA diagram has a data model that describes the structure, type and meaning of the data that is handled in the diagram.

2.10 IDEF0

The IDEF family consists of many methods for different purposes. The IDEF methods were originally developed during the 1970s by the US Air Force Program for Integrated Computer Aided Manufacturing (ICAM). Today, the IDEF family consists of IDEF0 for functional modelling, IDEF1 for information modelling, IDEF2 for systems dynamic modelling, IDEF3 for process flow and object state description, IDEF4 for object-oriented design, and IDEF5 for ontology description. [IDEF, 2001]. IDEF0 is used to model the activities of an organisation or a system. In December 1993, the Computer Systems Laboratory of the National Institutes of Standards & Technology (NIST) released IDEF0 as a standard for functional modelling [IDEF0, 1993].

In IDEF0 rectangles represent the “activities”, see Figure 11. The activity rectangles are placed according to their relative order of importance as judged by the designer of the model. This order is called “dominance”, which can be thought of as the influence one activity has over the other activities in a diagram. Usually, the most dominant activity is placed first in the diagram.

[image: image13.wmf]Blueprint

Seat

Chair

Legs

Back

Assembler

Paint

Painted Chair

Painter

Paint

Cabinet

-

maker

Tools

Paintbrush

Figure 11. An IDEF0 diagram.

IDEF0 models are in principle independent of time, i.e. the models do not show in which order in time the activities are performed. For example, it is not visualised in IDEF0 that an activity can be performed several times, or two activities can be performed in parallel. However, a problem with IDEF0 models are that they tend to be interpreted as the time aspect is part of them. A reason for this is that arrows wrongly can be interpreted as “temporal dependencies”. Actually, arrows represent the information or objects related to activities. These arrows can also branch and join, see the arrow “Blueprint” in Figure 11. Depending on which side of the rectangles the arrow is connected to, the arrows represent “inputs”, “outputs”, “controls”, and “mechanisms”. The left side is reserved for the inputs, the top side for controls, the right side for outputs, and the bottom side for mechanisms. This notation represent certain principles: inputs are transformed into outputs, controls constrain or dictate under what condition transformation occur, and mechanisms describe how the functions is accomplished.

The reason why the IDEF0 method distinguish between input, control and mechanism is several. First, control give the analyst the capability to describe the facts and the rules that must be followed when transform input into output. By adding a blueprint as a control, see Figure 11, the analyst can make a statement that the blueprint is the only guide to follow when assembling chairs. Secondly, the mechanism give the analyst the ability to precisely define how a particular activity will operate, who will do it, and so on. However, a problem is that it is not always easy to distinguish between input, control and mechanism. [Marca, 1986]

3 Language comparison

The comparisons between EPC, BML, IDEF0 and UML’s SD are carried out by comparing concept by concept of the different languages, focusing on which of the reference model’s concept components that the different languages combine. At the end of this chapter the main differences between the languages are summarised.

The goal of the comparisons is to validate the reference model. That is, whether it is possible to map the concepts in the different process modelling languages against the reference model’s concepts and concept components, and thereby highlight the differences similarities between the languages.

3.1 Event concepts compared

EPC, BML, and SD use different event components from the reference model, see Figure 12. Note that IDEF0 does not use the event concept at all.

[image: image14.wmf]Event

Pre

-

activity event

Post-

activity event

IS-A

IS-A

Event

Internal event

External event

IS-A

IS-A

State change event

Pre

-

activity event

IS-A

IS-A

Time point

 event

IS-A

Event

Internal event

External event

IS-A

IS-A

State change event

Pre

-

activity event

Post-

activity event

IS-A

IS-A

IS-A

EPC

BML

SD

IDEF0

No

event

concept

used

Figure 12. Different process modelling languages use different “event components”.
The languages EPC, BML and SD combine these event components in different ways, and these combinations are herafter called “language specific event types”. Figure 13 shows which “event components” that BML combine, i.e. which “language specific event types” BML uses.

Language specific event types

EPC uses two “language specific event types”. Note that the “language specific event types” are “pure” event components from the reference model, i.e. EPC does not combine any event components:

· Pre-activity events (i.e. the events before the functions in the EPC diagram.)

· Post-activity events (i.e. the events after the functions in the EPC diagram.)

[image: image15.wmf]Internal event

External event

External event

Internal event

Time point

 event

Time point

 event

Time point

 event

Time point

 event

State change event

State change event

State change event

State change event

Pre

-

activity event

Pre

-

activity event

BML

 Figure 13. BML uses four “language specific event types”, i.e. BML

 uses four combinations of the “event components” from

 the reference model.
BML uses four “language specific event types”, see Figure 13:

· Combined External event, Time point event, Pre-activity event and State change event (i.e. a Receive Message triggers both one or several activities, e.g. Send message, Start timer and/or, Business activity, and a BML transition.)

· Combined External event, Time point event and State change event (i.e. a Receive Message triggers a BML transition but no activities.)

· Combined Internal event, Time point event, Pre-activity event and State change event (i.e. an Expire Timer trigger both one or several activities, e.g. Send message, Start timer and/or, Business activity, and a transition.)

· Combined Internal event, Time point event and State change event (i.e. an Expire Timer trigger a BML transition but not any activity.)

SD uses twelve “language specific event types”:

· Combined External event, Post-activity event and State change event (i.e. an externally generated event occurs, and it aborts an ongoing do activity and triggers a transition. No other optional action/activity exists than the do activity.)

· Combined External event and Post-activity event (i.e. an externally generated event occurs, and it aborts an ongoing do activity, but it does not trigger a transition since the guard is evaluated false. No exit action exists.)

· Combined External event, Post-activity event, Pre-activity event and State change event (i.e. an externally generated event occurs, and aborts an ongoing do activity, eventually initiates an optional exit action, triggers a transition, eventually performs certain optional actions in connection to the transition, and eventually initiates optional entry action and do activities in the next state. At least one of the optional actions/activities must be initiated.)

· Combined External event, Post-activity event, and Pre-activity event (i.e. an externally generated event occurs, and it both aborts an ongoing do activity, initiates the exit action, but it does not trigger a transition because the guard is evaluated false.)

· Combined External event and State change event (i.e. an externally generated event occurs, and the state is a wait state, and it triggers a transition. No optional action/activity exists.)

· External event (i.e. an externally generated event occurs, and the state is a wait state, but it does not trigger a transition since the guard is evaluated false.)

· Combined External event, Pre-activity event, and State change event (i.e. an externally generated event occurs, and the state is a wait state, and it eventually initiates an optional exit action, triggers a transition, eventually performs certain optional action in connection to the transition, and eventually initiates optional entry action and do activities in the next state. At least one of the optional actions/activities must be initiated.)

· Combined External event and Pre-activity event (i.e. an externally generated event occurs, and the state is a wait state, and it initiates the exit action, but it does not trigger a transition because the guard is evaluated false.)

· Combined Internal event, Post-activity event, and State change event (i.e. a do activity has been completed, a completion event occurs, and triggers a transition. No optional action/activity exists.)

· Combined Internal event and Post-activity event (i.e. a do activity has been completed, a completion event occurs, but it does not trigger a transition because the guard is evaluated false. No exit action exists.)

· Combined Internal event, Post-activity event, and Pre-activity event (i.e. a do activity has been completed, a completion event occurs, and an exit action is performed, but it does not trigger a transition because the guard is evaluated false.)

· Combined Internal event, Post-activity event, Pre-activity event, and State change event (i.e. a do activity has been completed, a completion event occurs, eventually initiate an optional exit action, triggers a transition, eventually performs certain optional actions in connection to the transitions, and eventually initiates optional entry action and do activites in the next state. At least one of the optional actions/activities must be initiated.)

Differences between the language regarding event types

The lists above show that SD uses twelve different “language specific event types” by combining five event components from the reference model, while BML uses four “language specific event types” by combining five event components, and EPC uses two “language specific event types”. EPC only uses “pure” event components from the reference model, i.e. uses no combination of event concepts. IDEF0 does not use the event concept at all.

Both BML and SD, but not EPC, use state change event component. In BML, an event always contains a state change. That is due to the fact that BML explicit does not use a guard condition, which SD uses, which can hinder a transition.

It is also important to check which event components from the reference model that the different languages do not use.

EPC does not use:

· State change events (Because EPC does not explicit use the concept “state”.)

· Internal events and External events (Because EPC does not use this distinction explicitly.)

· Time point event and Time duration event (Because EPC does not use the distinction explicitly.)

SD does not use:

· Time point events and Time duration events (Because SD does not use the distinction explicitly.)

BML does not use:

· Post-activity events

· Time duration events (Because every transition from one Wait for Event to another happens instantaneously.)

BML is the only language of the four compared that explicitly has defined that the events happens instantaneously, i.e. takes no time.

3.2 Activity concepts compared

BML and SD use and combine different activity components from the reference model, while EPC and IDEF0 use the activity concept but no activity components, see Figure 14. The combination of the activity components that a language uses are called “language specific activity types”. Note that EPC calls an activity a “function”.

[image: image16.wmf]EPC

BML

SD

IDEF0

Activity

Activity

IS-A

Time point

activty

Non

-

interuptable

activity

IS-A

Activity

Interuptable

 activity

IS-A

Time duration

activty

IS-A

IS-A

Time point

activty

Non

-

interuptable

activity

IS-A

Activity

Figure 14. Different process modelling languages use different activity components.

Language specific activity types

BML uses one “language specific activity type”:

· Combined Non-interruptible activity and Time point activity (This is represented by one of the the following terms/symbols in BML: “Send Message”, “Start Timer”, “Business Activity”.)

SD uses three “language specific activity types”:

· Combined Interruptible activity and Time duration activity (This is represented by the following terms/labels in SD: “do Activity”.)

· Combined Non-interruptible activity and Time duration activity (This is represented by the following terms/labels in SD: “Entry action”, “Exit action”.)

· Combined Non-interruptible activity and Time point activity (This is represented by the actions during the transitions.)

EPC and IDEF0 use no activity components presented in the reference model, only the activity concept.

Differences between the language regarding activity components

SD combines four different “activity components” from the reference model into three different “language specific activity types”. BML has only one “language specific activity type”, which is represented by several symbols in BML. BML’s “language specific activity type” is the same as one of the SD’s , the one that uses the Time point activity component. EPC and IDEF0 do not use any of the activity components presented in the reference model, i.e. the activity concept is non-specified regarding the reference models activity components.

3.3 State concepts compared

BML and SD use different state components from the reference model, see Figure 15. IDEF0 and EPC do not use the state concept at all. The combination of the state components that a language uses are called “language specific state types”.

[image: image17.wmf]v

EPC

BML

SD

IDEF0

State

Non

-

interuptable

state

Interuptable

state

IS-A

IS-A

IS-A

Wait state

State

IS-A

Wait state

No

state

concept

used

No

state

concept

used

Figure 15. Different process modelling languages use different state components.

Language specific state types

BML uses only one “language specific state type”:

· Wait State (This is represented by the term/symbol “Wait for Event”.)

SD uses three “language specific state types”:

· Wait State (This is called “Wait State” in SD.)

· Interruptible activity state (This is called “Activity-in-State” in SD.)

· Non-interruptible state (This is called “Action State” in SD.)

Differences between the language regarding state components

SD uses three “language specific state types”, while BML uses only one. The BML “language specific state type”, “Wait State”, is also used by SD. EPC and IDEF0 do not use the state concept at all. Note that no one of the compared languages uses the state components Single activity state and Several activity state used in the reference model, see Figure 6.

3.4 The rest of the concepts compared

In this Section, the rest of the concepts and concept components presented in the reference model are compared.

Time point concepts compared

EPC, BML and SD do not explicit use the Time point concept, but they do it implicit, because the languages describe events or activities that happens instantaneously or have duration in time. IDEF0 does not use the Time point concept at all, because IDEF0 diagrams are in principle independent of time, i.e. the models do not show in which order in time the activities are performed.

Resource concepts compared

SD does not use the resource concept at all, which means that SD is not a language that shows which resources are used (“input”) or created (“output”). BML only visualise one resource component, Information resource component, i.e. the messages sent and received by BML processes. In EPC, recources are not visualised, but can be connected to the activities (called “function” in EPC) by using the ARIS framework.

IDEF0 has a very complex resource concept by distinguishing between three different kinds of inputs: input, control and mechanism. There is no exact definition what is included and not included in the different kinds of input. This means that the modeller/designer can decide which resource components that shall be used in the different kinds of input. For example, the “mechanism” can be a machine resource component or/and a human resource component.

Actor concepts compared

SD does not visualise any actors. BML can visualise the actors that cause an event, by adding a symbol above the Receive message. In EPC, actors are not visualised, but can be connected to the activities by using the ARIS framework. Finally, IDEF0 does not use the actor concept.

Rule concept compared

Rules are modelled explicit in the XOR split connector in both the languages BML (called “Automated Business Decision”) and SD.

Location concepts compared

SD, BML and IDEF0 do not use the location concept explicit. In EPC, locations are not visualised either, but can be connected to the activities by using the ARIS framework.

Temporal dependency concepts compared

SD, BML and EPC use the temporal dependency concept by visualising the order between the symbols in the languages. IDEF0 does not use the concept explicitly. However, IDEF0 can use a temporal dependency description as a control input, and such a description can describe the temporal dependencies between the activities. However, this is not explicit visualised in the IDEF0 models.

Logical connector concepts compared

A BML diagram does not visualise parallel flows. This means, that if only one BML diagram is used, the only logical connector visualised in the language is XOR split. XOR split is a combination of the logical connector components XOR connector and Split connector, presented in Section 3.4, see also Figure 7. In BML, XOR split is represented by the symbol “Automated business decision”. However, it is rather easy to describe XOR merge, AND split and AND merge (called “synchronisation”) by using several BML diagrams. Note that also XOR merge, AND split and AND merge are combinations of the logical components.

SD does not use explicit symbols for XOR split, but this can be visualised by using labels on the arrows from the states. Furthermore, AND split and AND merge can also be visualised by using nested and parallel states, not described in Section 4.2.

EPC uses explicit symbols for XOR split, XOR merge, AND split and AND merge.

IDEF0 does not use logical connectors at all.

3.5 Differences between the languages

The results of the comparison show that EPC uses two “language specific event types” and a activity concept, which is non-specific regarding the activity concept components presented in the reference model. No state concept is used. Furthermore, EPC has explicit symbols for the logical connectors XOR split, XOR merge, AND split and AND merge. EPC does not explicit use the concepts resource, actor and location, but they can all be visualised by using the ARIS framework (see Section 4.1).

The results also show that UML State Diagram has twelve different “language specific event types”, three different “language specific activity types” and three different “language specific state types”. The resource, location and actor concepts are not part of SD at all.

BML uses four “language specific event types”, one “language specific state type”, and one “language specific activity type”. Furthermore, actor and resource symbols can be visualised in the process models. However, the only resource used in the models is the information resources, in form of messages, which can be sent from and received by the BML diagrams. Location is not visualised in the BML diagrams. A single BML diagram can not handle parallel flow, i.e. the only logical connector in BML is the XOR split.

IDEF0 does not use the event or the state concept, and the activity concept is non-specific, i.e. no activity components are used. Furthermore, the IDEF0 diagram does not use the time point concept or the temporal dependency concept, i.e. IDEF0 diagrams do not describe in which the order of the activities shall be performed. However, IDEF0 has a complex resource concept by distinguish between three kinds of input.

4 Conclusion and Further Research

Presented in this paper is a reference model that aims at facilitate comparisons between business process modelling languages. The reference model comprise basic business process concepts, which have been analysed and further divided into different concept components. By combining and mapping these concept components against the concepts of different existing process modelling languages, a comparison can be carried out between the languages.

To validate the reference model four process modelling languages have been compared: Business Modelling Language (BML), Event-driven Process Chains (EPC), IDEF0, and UML State Diagram (SD). The validation shows that it is possible to map the concepts in the different process modelling languages against the reference model’s concept components and the combination of concepts, and thereby highlighting the differences between the languages. For example, the reference model makes it possible to show which concepts and concepts components that the language use and not use. The reference model also makes it possible to show how different languages combine the concept components for each concept.

The work presented in this thesis can be followed up by further research which goes in several directions. One is to refine the reference model by further validate process modelling languages. Another direction is to give the reference model more formal definitions of the concepts, and thereby start using it as a translation instrument between process modelling languages. A third research direction is to develop a method for using the reference model, including step-by-step guidelines for how to perform language comparisons.

References

[Aalst, 1999] van der Aalst, W. M. P: Formalization and Verification of Event-driven Process Chains, In: Information and Software Technology, 41(10):639-650, (1999)
[Aalst et al, 2000] van der Aalst, W. M. P, Ter Hofstede, A. H. M.: Verification of Workflow Task Structures: A Petri-net-based Approach, In: Information Systems, vol. 25, no. 1, (2000)
[Belina, 1991] Belina, F., Hogrefe, D., Sarma, A.: SDL with Applications from Protocol Specification, Carl Hanser Verlag and Prentice Hall International, UK, (1991)
[Bunge, 1977] Bunge, M.: Treatise on Basic Philosophy Vol 3, Ontology I: The Furniture of the World, Reidel, Dordrecht, Boston, (1977)

[Davenport, 1993] Davenport T.: Process Innovation: Reengineering work through information technology, Business School Press, Boston, (1993).

[DeMarco, 1979] DeMarco, T: Structured Analysis and Systems Specification, Yourdon Inc, New York (1979)

[Fensel, 2001] Fensel, D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce, Springer-Verlag, Berlin (2001)

[Frisco, 1998] The FRISCO Report, A Framework of Information System Concept, IFIP (1998), available at: http://www.liacs.nl/~verrynst/frisco.html

[van Gigch, 1991] van Gigch, J. P: System Design Modeling and Metamodeling. Plenum Press, New York, (1991)

[Hammer et al, 1993] Hammer M., Champy J.: Reengineering the Corporation: a Manifesto for Business Revolution, London (1993).

[Huckvale, 1995] Huckvale T., Ould M.: Process Modeling – Who, What, and How: Role Acyivity Diagramming”. In: Business Process Change: Concepts,. Methods and Technologies, Idea Group Publishing (1995)

[IDEF, 2001] IDEF Family of Methods, http://www.idef.com/, 2001-12-10 (2001)

[IDEF0, 1993] Announcing the Standard for Integration Definition for Function Modeling (IDEF0), FIPS PUBS, National Institute of Standards and Technology (1993), available at: http://www.idef.com/Downloads/pdf/idef0.pdf, 2001-12-10

[Johannesson et al, 2001] Johannesson, P., Perjons, E.: Design Principles for process modelling in enterprise application integration, In: Information Systems, 26:165-184, (2001)

[Keller et al, 1992] Keller, G., Nüttgens, M., Scheer, A.W.: Semantische Processmodellierung auf der Grundlage Ereignisgesteuerter Processketten (EPK), Veröffentlichungen des Instituts für Wirtschaftsinformatik, Heft 89, University of Saarland, Saarbrücken, (1992)

[Karhu, 2001] Karhu V.: A generic construction process modelling method. A model based approach for process description, doctoral thesis, Royal Institute of Technology (2001)

[Mayer, 1995] Mayer R., Menzer C., Painter M., deWitte P., Blinn T., Perakath B.,:IDEF3 Process Description Capture Method Report, Knowledge Based System Inc (1995), available at: http://www.idef.com/Downloads/pdf/Idef3_fn.pdf, 2001-12-10

[Linthicum, 2000] Linthicum, D.: Enterprise Application Integration, Addison-Wesley, (2000)

[Marca, 1986] Marca D., McGowan C.: IDEF0 - Sadt Business Process & Enterprise Modelling (1986)
[Microsoft, 2001] Microsoft Visio 2001, http://www.microsoft.com/office/visio/ (2001)

[Micrografx, 2001] Micrografx iGrafx, http://www.micrografx.com/igrafx/ (2001)

[OMG, 1999] OMG Unified Modelling Language Specification, Version 1.3, (1999), available at: http://www.oml.org
[Peterson, 1981]Peterson J.L.: Petri Net Theory and the Modeling of Systems, Prentice-Hall, N.J. (1981)

[Petri, 1962] Petri C. A.: Kommunikation mit Automaten, doctoral thesis (1962)

[Process Broker, 2001] Process Broker Project, http://www.dsv.su.se/~pajo/arrange/index.html, 2001-12-10 (2001)

[Rational, 2001] Rational Rose, http://www.rational.com/products/rose/index.jsp, 2001-12-10 (2001)

[Reisig, 1985] Reisig, W.: Petri Nets: an introduction, Springer-Verlag, Berlin (1985)

[Riempp, 1998] Riempp, G.: Wide Area Workflow Management: Creating Partnership for the 21st Century. Springer-Verlag (1998)

[Rumbaugh et al, 1999] Rumbaugh, J., Jacobson, I., Booch, G.: The unified modeling language reference manual, Addison Wesley Longman Inc, (1999)
[Sheer, 1998] Sheer, A.: ARIS-Business Process Modelling, Springer-Verlag, Berlin, (1998)

[Söderström et al, 2001] Söderström E., Andersson B, Johannesson P., Perjons E., Wangler B.: “Towards a Framework for Comparing Process Modelling Languages”, working paper (2001)

[Wand, 1996] Wand, Y.: Ontology as a Foundation for Meta-modelling and method engineering, In: Information and Software Technology, 38, p. 281-287, (1996)

[Wand et al, 1990] Wand, Y., Weber, R.: An Ontological Model of an Information System, In: IEEE Transactions on Software Engineering, 11, p 1282-1290, (1990)

[WfMC, 1995] Reference Model - The Workflow Reference Model, WFMC-TC-1003, 19-Jan-95, 1.1, (1995), available at: http://www.aiim.org/wfmc/mainframe.htm
[WfMC, 1999] Terminology & Glossary, WFMC-TC-1011, Feb-1999, 3.0, (1999), available at: http://www.aiim.org/wfmc/mainframe.htm

[Wåhlander et al, 2001] Wåhlander, C., Nilsson, M., Törnebohm J.: Visuera PM Introduction, Copyright Viewlocity (2001)

PAGE
1

_1068809337.doc

P1

t1

t2

P2

P3

P4

t3

t4

_1078731746.doc

Event

Pre

-

activity event

Post-

activity event

IS-A

IS-A

Event

Internal event

External event

IS-A

IS-A

State change event

Pre

-

activity event

IS-A

IS-A

Time point

 event

IS-A

Event

Internal event

External event

IS-A

IS-A

State change event

Pre

-

activity event

Post-

activity event

IS-A

IS-A

IS-A

EPC

BML

SD

IDEF0

No event concept used

_1078731783.doc
v

EPC

BML

SD

IDEF0

State

Non

-

interuptable

state

Interuptable

state

IS-A

IS-A

IS-A

Wait state

State

IS-A

Wait state

No state concept used

No state concept used

_1068809299.doc

P1

t1

t2

P2

P3

P4

t3

t4

