Related research - Process management systems for well-defined and non-specified processes

During the ‘90s, many organisations launched large process oriented initiatives, often under the banners of business process reengineering (BPR) and total quality management (TQM). However, many of these efforts did not achieve their objectives. One reason for this was the lack of support for process management offered by current IT systems.

To handle this inadequacy, Enterprise resource planning (ERP) systems and workflow management systems (WfMS) have been developed. The goal of these systems is to integrate and automate the business processes in organisations. These systems are mainly focused on supporting well-defined, fixed and highly routinised processes. But most organisations also need to handle unspecified, rapidly changing and non-routine processes. Therefore, organisations have procured communications management system or groupeware (like email or Lotus Notes). However, these systems have drawbacks. They require the users to do a lot of work themselfes to understand and keep track of ongoing processes: what has been done, what has been achieved, who has done what, what need to be done next, and so forth. This explain, at least partly, the limited success for these systems: the overwhelming overhead for the users in understanding the context and find out, without any tool support, alternative activities to perform.

Therefore, there is a need for organisations to bridge between the workflow approach and communication approach, so that the whole range from well-defined to non-specified, situated processes could be supported. Several traditional workflow systems have moved from the static modelling of well-defined processes to capture and manage the uncertainty and change of processes in more complex and dynamic environments. Changes in personnel, resources, partners, and suppliers during the course are expected in these processes, but the precise form that those changes will take cannot be defined in advance. These issues are precisely what researchers in artificial intelligence have been dealing with for a long time [Lander, 1999], [Santanu, 1999]. …detta ska utvecklas …

A particular category of workflows is emergent workflows [Jörgensen, 1999]. An emergent workflow is described by a partially structured process model that emerges from the workflow itself; i.e. process definition and enactment are intertwined. Change is considered the rule of the game, not as an exception to be handled in a manner similar to the way exceptions are handled in programming languages. Focus is more on a workflow instance level, less on a workflow type level. Process definition, or planning, is viewed as an activity that is also a part of the process it defines. Process model templates, fragments, and patterns are resources for adaptation rather than prescriptions of action.

Här kan man lägga in avsnitt om patterns!

(Important properties of emergent workflow solutions are tailorability, accountability, and traceability. Tailorability allows organisations, groups, and individuals to adapt the workflow to their special needs and preferences in order to support empowerment, local variants and changing conditions. Accountability is supported when users are externalising what has been done. Traceability is supported when capturing both the history of the process definition and the enactment in an extended audit trail. The captured information gives unique material for later reasoning about the process, thereby increasing the probability of informed decision making and learning from experience.)

Another approach for addressing the problem of managing uncertainty and change in highly dynamic processes is to explicitly include goals in process specification. Goals are typically more stable in a process than the events and activities that are carried out to achieve the goals. Therefore, including goals in process specifications will provide a stable framework in which activities can be ordered and reordered. A process specification will then consist of a collection of goals and for each goal a tentative and adaptable structure of activities to be carried out for achieving the goal. For this approach to work, it is required that the implemented software system makes goals visible to the user. Thus, the notion of goals are not only used in the early requirements specification phases of software development – they are also explicit in the application logic of a system as well as in its user interface. This approach to modelling and development can be seen in Tropos [Mylopoulos, 2000], where intentional concepts are used in late software development phases.

ObjectDriver [Bider, 1997] by IbisSoft AB, is a method that also emphasise the goal of the process. It supports the development of interactive object- and time-oriented systems in within the field of management automation, but it is also suitable for the design and implementation of systems that supports highly dynamical processes. Examples of such systems are: Sales Management and Medical Patient Journal. Common for all such systems is the importance of availability of comprehensive information on everything that has happend to be able to plan what is going to happen in the future. At the core of the ObjectDriver approach is a small number of constructs which are used for expressing the variety of application environments. The basic constructs are: Object, Event, Activity and History. None of them is new; the novelty of the ObjectDriver approach lies in the way these concepts are used to express various elements of application worlds, e.g. plans and calendars.

Further important insights into the modelling of business processes can be found in the theory of hybrid dynamical systems and CHAOS frameworks. Hybrid dynamical systems [Schaft, 2000] aims at modelling physical processes. It uses a number of basic concepts like state, location, and activity that could be applied to business processes as well. CHAOS (Concurrent Human-Assisted Object Systems) [Bider, 2000] is a philosophical–theoretical framework aiming at modeling complex systems with non-deterministic behavior (e.g. human-assisted systems). In this framework, the system is viewed as consisting of: a set of objects, a code of laws, a set of connectors, each connector hanging on a group of objects that must obey a certain law. An advantage of this model is a uniform approach to representing both goals and actions. Connectors can be used to model planned activities inside the process, where the processes themselves can be represented by objects. The CHAOS framework is general and it needs to be specialized in order to suit the objectives of practical modeling (business) processes.
Related research - Process patterns

The term “pattern” in information systems engineering first became popular with the book [Gamma et. al, 1994]. (The authors are frequently refered to as the Gang of Four.) They catalogued systematically 23 design patterns, which describe the smallest recurring interactions in object-oriented systems. The design patterns provided independence from implementation technology and at the same time independence from the essential requirements of the domain that they were attempting to address. The authors define design patterns as “descriptions of communicating objects and classes that are customised to solve a general design pattern in a particular context”.

The term “design pattern” is often used to refer to any pattern which directly adresses issues of software architechture, design or programming implementation. However, [Buschman et al, 1996] categorises these three conceptual levels into architectural patterns, design patterns, and idioms:

Architectural patterns expresses a fundamental structural organisation or schema for software systems. It provides a set of predefined subsystems, specifies their responsibilities, and includes rules and guidelines for organising the relationships between them.

A design pattern provides a scheme for refining the subsystems or components of a software system, or the relationships between them. It describes commonly recurring structure of communicating components that solves a general design problem within a particular context.

An idiom is a low-level pattern specific to a programming language. An idiom describes how to implement particular aspects of components or the relationships between them using the features of the given language. Idioms are sometimes called coding patterns.

The difference between these three kinds of patterns are in their corresponding levels of abstraction and detail. Architectural patterns are high-level strategies that concern large-scale components and the global properties and mechanisms of a system. They have wide-sweeping

implications which affect the overall skeletal structure and organization of a software system. Design patterns are medium-scale tactics that flesh out some of the structure and behavior of entities and their relationships. They do not influence overall system structure, but instead define

micro-architectures of subsystems and components. Idioms are paradigm-specific and language-specific programming techniques that fill in low-level internal or external details of a component's structure or behavior.

[Riehle et al, 1996] partition the different kinds of patterns among analysis, design, and implementation. They used the terms "conceptual patterns", "design patterns", and

"programming patterns" for this partition:

A conceptual pattern is a pattern whose form is described by means of terms and concepts from an application domain.

A design pattern is a pattern whose form is described by means of software design constructs, for example objects, classes, inheritance, aggregation and use-relationship.

A programming pattern is a pattern whose form is described by means of programming language constructs.

Using these definitions, conceptual patterns are based upon metaphors in a restricted application domain. Design patterns complement, or elaborate, upon conceptual patterns by delving into the implementation of elements from the conceptual space. And programming patterns descend

further into implementation details using a specific implementation language.

When comparing and contrasting these two sets of definitions, it appears that programming patterns are equivalent to idioms. For the other types of patterns described above, the first set of authors choose to delineate them by their architectural scope whereas the latter set of authors choose to delineate them by whether they employ language from the problem space or the solution space.

Also [Fowler] makes a distinction between design and analysis patterns …[Ska kolla vad han skriver!]

At present, the software community has been using patterns largly for software architechture and design and, more recently, for software development processes and organisations.

In [Ambler 1998a] a process pattern is defined as a pattern which describes a proven, successful approach and/or series of actions for developing software. Just as there are process patterns, there are also process antipatterns. A process antipattern describes an approach and/or series of

actions for developing software that is proven to be ineffective and often detrimental to your organisation. [Ambler 1998a] identified three types of process patterns. In order

of increasing scale they are:

A task process pattern, which depicts the detailed steps to perform a specific task, such as the Technical Review.

A stage process pattern, which depicts the steps, which are often performed iteratively, of a single project stage. A stage process pattern is presented for each project stage such as the Program and Rework stages.

A phase process pattern, which depicts the interactions between the stage process patterns for a single project phase, such as the Initiate and Delivery phases.

There is a growing body of patterns called organizational patterns which describes proven, successful approaches for organizing and managing people involved with the software process [Coplien, 2001]. Acccording to [Ambler, 1998a] organisational patterns and process patterns go hand in hand and should be used together. Kaul proposes to use the three dimensions – Structure, Process, and Behavior – presented in [Gamma et al, 1994] as a taxonomy for organizational patterns.

Kaul believes that structural organizational patterns would cover established patterns of interacting and coordinating technological and human structure of an organization, covering much of the same ground as does organization structure and some management patterns.

Process organization patterns would be patterns relating to information flow, communication, and decision making within organizations, covering the same ground as my process patterns and some management patterns once again.

Finally, behavioral organizational patterns deal with delegation within organizations, covering the same ground as role and some management patterns.

While [Ambler, 1998a] presents software development process patterns, [Aalst et al 2000a] presents business process patterns or workflow patterns. These workflow patterns describes conventional workflow functionality like task sequencing, split parallelism, join synchronisation and iteration. For example, a workflow pattern can describe how to synchronise two activities before perform a third activity, or how to hinder an activity to be perfomed twice after two activities are merged.

The workflow patterns can be used to examine the expressive power of workflow engines. Also the expressivness and the adequancy of a certain modelling language for workflow specification, can be evaluated by testing its ability to capture a collection of predefined workflow patterns. Furthermore, if an organisation have a workflow server already deployed the patterns can serve as a set of ideas how to implement given requirements. [Aalst et al 2000a] also state that these pattern which recure quite frequently in the analysis phases [OBS! Ilia] of workflow projects.
In [Aalst et al 2000b] also more advanced workflow patterns are identified.

The MIT/Phios Corporation´s Process Handbook [Malone et al, 1999] is a framework for classification of processes. The Process Handbook consists of a software tool, i.e the process handbook system for navigation, information content, i.e. the process handbook databas, and methodologies. The database contains different kind of process descriptions: order process, procurement process, and so on.

The goal is help the users of the process handbook to identify possible process alternatives and improvments. [Malone et al, 1999] has thereforee classified the processes in two dimensions:

Decompostion, which breaking the processes into different parts (its subactivities)

Specialisation, which differentiating a process into different types. Genom att använda tanken bakom specialisering, som baseras på idéer om arv i den objektorienterade rogrammeringsmetodiken, går det att representera olika typer av processer. Det gör att man explicit kan visa likheter och skillnader mellan processer.

[Eriksson et al, 2000] has identified business patterns ……

Ilia, notera också att det finns flera förslag på vad som bör ingå när man skriver patterns: till exemple namn på mönstret, problem det löser, kontext för mönstret, osv.

T.W. Malone, K. Crowston, J. Lee, B. Pentland, C. Dellarocas, G. Wyner, J. Quimby, C.S. Osborn, A. Bernstein, G. Herman, M. Klein, E. O´Donnell: “Towards a handbook of organisational processes, Management Science 45(3), pp 425-443 (1999)

E. Gamma, R. Helm, R. Johnson, and J. Vlissides: “Design Patterns: Elements of Reuseable Object Oriented Software”, 1994

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal: “Pattern-oriented Software Architecture – A system of Patterns”, Wiley and Sons (1996)

D. Riehle, H. Zullighoven: “Understanding and Using Patterns in Software Development”, Theory and Practice of Object Systems, Vol.2, No.1, pp.3-13, (1996)

M. Fowler: ”Analysis Patterns: Reusable Object Models, Addison-Wesley (1997)

S.W. Ambler: Process Patterns: "Building Large-Scale Systems Using Object Technology", New York: SIGS Books/Cambridge University Press. (1998a)

S.W. Ambler: "More Process Patterns: Delivering Large-Scale Systems Using Object Technology", New York, SIGS Books/Cambridge University Press (1998b).

J. Coplien: Organisation Patterns site, www. …..[2001]

W.M.P. van der Aalst, A.P. Barros, A.H.M. ter Hofstede, and B. Kiepuszewski: "Advanced Workflow Patterns", In O. Etzion and P. Scheuremann, editors, Proceedings Seventh IFCIS International Conference on Cooperative Information Systems, CoopIS 2000, volume 1901 of Lecture Notes in Computer Science, pages 18-29, Eilat, Israel, Springer-Verlag (2000b)

W.M.P. van der Aalst, A.P. Barros, A.H.M. ter Hofstede, and B. Kiepuszewski: "Workflow Patterns", Technical report WP47, BETA Research Institute, http://tmitwww.tm.tue.nl/research/patterns (2000a)

H.-E. Eriksson and M. Penker: Business Modeling with UML, Business Patterns at Work, John Wiley & Sons Inc. (2000)

More about Process Pattern (ska kollas)

AGCS Patterns White Papers -- A collection of white papers, including some of Linda Rising's process patterns.

An Introduction to Process Patterns (AmbySoft Inc. Whitepaper) -- This should get you started.

Antipatterns Site -- This is the key site for Antipatterns, worth checking out (it's a good book and a good site, 'nuff said).

Business Process Reengineering Patterns

Completing the Unified Process With Process Patterns

Configuration Management Patterns

Extreme Programming -- Process patterns for OO development (Kent Beck)

Jim Coplien’s Organizational Patterns site -- This is the site online for electronically published organizational patterns (including process patterns).

Object Ideas Tutorials (including ones on process)

Patterns Conferences

Patterns for Conducting Process Improvement (Brad Appleton)

Portland Pattern Repository (Wiki Wiki Web)

Requirements Engineering Patterns

Reuse Patterns and Antipatterns

Risk Management Patterns (Alistair Cockburn)

System Reengineering Patterns

WWW Patterns Home Page (hillside.net) -- This is where to go to join good patterns mailing lists

Related Patterns Pages

Baker's Dozen Persistence Design Patterns

Business Information Design Patterns (Arcus)

Christopher Alexander, Biography

Cetus Patterns Links

Component Design Patterns (Philip Eskelin)

Doug Lea's Home Page

Doug Schmidt's Pattern Page

EJB Design Patterns

EJB Patterns Repository

Essential Design Patterns Page (Walter F. Tichy)

Joe's Pattern Reference (Joseph Yoder) -- Interesting Security, Design, and Architecture patterns

Patterns and Software: Essential Concepts and Terminology (Brad Appleton) -- A "must read"

Patterns Archive (at WWW.DistributedObjects.com)

Phoenix Patterns Group

System Reengineering Patterns

User Interface Design Patterns (Coram & Lee) -- Experiences Pattern Language

User Interface Design Patterns (Jenifer Tidwell)

