A Framework for Comparing Process Modelling Languages

Eva Söderström*, Birger Andersson**, Erik Perjons**, Paul Johannesson**, Benkt Wangler*

*Department of Computer Science, University of Skövde, Box 408, 541 28 Skövde, Sweden
**Department of Computer and Systems Sciences

Stockholm University/Royal Institute of Technology

Electrum 230, 164 40 Kista, Sweden

Abstract

The increasing interest in process engineering and in application integration has resulted in the appearance of various new process modelling languages. Understanding and comparing such languages has therefore become a major problem in information systems research. We suggest a framework to solve this problem involving several instruments: a classification of event types, a general meta-model against which different process languages can be mapped, a comparison matrix, and classification of concepts according to the interrogative pronouns: what, how, why, who, when, and where. This framework can be used for several purposes, such as translating between languages or verifying that relevant organisational aspects have been captured. To validate the framework, three different process modelling languages have been compared: Business Modelling Language (BML), Event-driven Process Chains (EPC) and UML State Diagrams.

1 Introduction

Business Process Modelling has become a major focus of attention in Information Systems Engineering, in order to create efficiency, quality and customer satisfaction. Process models can be used for planning, designing, simulating and automatically execution of business processes, for example in Workflow Management Systems and Process Brokers. Furthermore, methods like Total Quality Management, Business Process Reengineering and software packages like SAP R/3 and Baan ERP have all put the business processes in centre of the analysis. As a result, several different process modelling languages have been developed, for example UML’s Activity and State Diagrams, Event-driven Process Chains and Business Modelling Language. These languages often define and use their concepts in an ambiguous way, which makes integration of process models, as well as communication between the users of these models, more difficult.

In this paper, we suggest a framework that aims at making comparisons between different process modelling languages easier to perform. The framework consists of serval instrument: a classification of event types, a general meta-model, a comparison matrix, and classification of concepts according to the interrogative pronouns: what, how, why, who, when, and where. The central part of this framwork is the meta-model, which comprise concepts against which different process modelling language concepts can be mapped. Such a meta-model functions like a standard that makes it possible to compare multiple modelling languages. Furthermore, the meta-model consist of a few basic concepts, which are grouped according to the interrogative pronouns: what, whether, how, why, who, when, and where. This grouping of concepts gives the user of the meta-model a better overview of the relations between the concepts, and facilitate for the him or her to verify that relevant organisational aspects have been captured in other process modelling languages, when comparing these languages with the meta-model.

The intended users of the framework are IS/IT-managers, business people and other stakeholders involved in business process management. This raises serveral requirements on the framework and especially the meta-model, which is the central part of the framework. First, the meta-model must be easy to understand for people not familiar with process modelling languages. Secondly, the meta-model needs to comprehend basic business concepts, for example, activity, actor, location, time and resources, i.g. concepts that are central in business process management. Thirdly, the meta-model must be extensible to enable users to complement it with concepts central to a certain business domain.

The paper is structured as follows: the next chapter, Related Research, discusses approaches such as meta-modelling and ontology analysis for comparing and evaluating process modelling languages. Chapter 3 introduces four basic process modelling concepts and a classification of event types. This classification are used as a first step of comparing process modelling languages. In chapter 4, three process modelling languages are introduced: EPC, UML´s State diagram and BML. The chapter also accomplish a comparision between the languages using the classification presented i the former chapter. Chapter 5 introduces the meta-model, including a classification according to interogartive pronouns. In chapter 6 a final comparison between the three modelling languages is done, using the metamodel, the classification of event types and a comparison matrix. Chapter 7 presents conclusions and further research needed.

2 Related research

A model is an abstraction of phenomena in the real world. A meta-model means yet another abstraction, but this time highlighting certain properties of the model itself, such as the logical foundation in terms of basic concepts and reasoning [van Gigch]. Meta-modelling is closely related to ontology analysis and conceptual modelling, and it is actually difficult to draw a line where one area ends and another begins. Ontology is sometimes considered to comprise more basic and less change-inclined concepts than meta-models do [Koch et al].

Ontology is a philosophical discipline aimed at studying the nature of the real world. Some ontologies try to define basic concepts in a certain area or domain, e.g. medicine or automobiles, while others try to be more domain independent. An example of the latter is the Bunge, Wand and Weber (BWW) ontology. Based on the BWW ontology, Wand and Weber [Wand&Weber, Wand] try to provide a theoretical foundation for the evaluation of information systems models. They assume that an information system (IS) represents a real world system, and that it is built to manage information process functions existing in this real world. Furthermore, Wand and Weber present a set of basic concepts that exist in the real world and that IS models should be able to express. By mapping concepts such as “thing”, “state”, “event” and “system” to concepts in different modelling languages, Wand and Weber can discuss strengths and weaknesses in these modelling languages, such as if a language includes ambiguously defined concepts. One problem with the BWW ontology, though, is that many concepts are difficult to interpret and map to concepts in process modelling languages.

Examples of conceptual models of process concepts are the Workflow Management Coalition (WfMC) reference model [WfMC] and the FRISCO report [Frisco]. In the WfMC reference model, terminology, structure, components and interface for workflow management systems and languages are defined. The FRISCO report in turn describes different definitions of central concepts in the IS area, e.g. process, state and action. None of these models, though, show how concepts from different types of process modelling languages, such as activity-oriented, state-oriented and communication-oriented process modelling languages [Johannesson et al], should be related to one another. Activity-oriented process modelling languages primarily aim at describing what activities that follow and precede one another in a process. Examples of such languages are UML Activity Diagram [OMG], Task Structures (a workflow process language) [Aalst&Hofstede] and Event-driven Process Chain (EPC) [Sheer]. State-oriented process languages, e.g. UML’s State Diagram (SD) [OMG], show what process states that follow and precede one another in a process. SDL [Belina] and Viewlocity’s Business Modeling Language (BML) [Johannesson, Wåhlander] are examples of communication-oriented process modelling languages that focus on the interaction between people and systems, and between systems. In this paper, we will compare one process modelling language from each group: EPC, UML’s SD and BML, related to our meta-model.

The basic grammar of most process modelling languages derives from Petri nets [Reisig]. Petri nets provide both a graphical description and formal base of processes. Van der Aalst [Aalst] and van der Aalst and ter Hofstede [Aalst&Hofstede] have mapped EPC and Task Structures to Petri net to give the process modelling languages a formal semantics and thereby use Petri net-based analysis techniques to verify the correctness (soundness) of the process definitions. This approach could be also be used to compare different process modelling language. However, Petri net is a method for method experts and cannot work as platform for communications between business people. Furthermore, a process modelling language for business process management must include more information than just places (e.g conditions), transitions (e.g events) and tokens (e.g states) that are represented in classical Petri nets.

In this paper, we have grouped process concepts according to a number of interrogative pronouns to clarify what aspects of process models that different concepts represent. Zachman [Zachman] uses interrogative pronouns to classify a descriptive representation of an enterprise, especially the management and development of an enterprise’s system. Bunge [Bunge] also uses interrogative pronouns to separate basic types of domain-dependent problems.

3 Basic concepts in process modelling

In this chapter four basic concepts in business process modelling are presented: time point, state, activity and event. Most of the process modelling languages contain these concepts, but the relation between the concepts differs in the different languages. In the beginning of this chapter the intuitive meaning of the concepts is presented, then an instrument, a classifaction of event types, for comparing different process modelling languages is introduced.

The intuitive meaning of the four basic concepts are:

A time point occurs instantaneously, i.e. it takes no time.

A state lasts between two time points and shows the condition of a process represented as a set of attribute values. A sequence of states indicates how a process has changed over time.

An activity lasts between two time points and describes one or several actions (depending of the abstraction level). It can be either concrete (e.g. building a car) or abstract (e.g. thinking).

Event is a noteworthy occurrence.

We think that most process modelling languages would agree on these intuitive definitions, but interpret the relation between the concepts in different way. A way of illustrating these differences is to see the event concept as central and define it in the following way:

Event records a noteworthy occurrence and connects states and activities in time, as illustrated in Fig.1.

[image: image4.wmf]Activity

Activity

Activity

State

State

State

Activity

 Postevent

Postevent

 Postevent

 Preevent

 Preevent

 Preevent

 Preevent

 Preevent

timepoints

Activity

State

State

State

Activity

Postevent

 Postevent

 Preevent

 Preevent

 Preevent

timepoints

Postevent

Activity

 Preevent

Activity

Postevent

 Preevent

Activity

Time point

State

Event

 Occur_at

Precedes

Result_in

Change

Performed_in_a

Fig. 1: The relation between the basic concepts.

In this definition two things are important. First, event is something that is recorded. While activites, states and time are something that happends in reality irrespectable of the observer, events are something that the observer find noteworthy to record, i.e make a note of. Secondly, the event concept works as a middleware, something that connects the concept of activity, state and time point. This gives us an opportunity to elaborate the event concept further and identify serveral types of events. First, events can either record a certain point in time (time point events) or record the time between two time points (time duration events). Secondly, events can either record the start of an activity (pre-activity events) or record the end of an activity (post-activity events). Thirdly, events can either record ocurrences outside the decribed system (external events) or record occurences inside the system (internal events). Finally, events can record the change of a state (state change events). Note also that an event can be composite, i.e. a conjunction of a set of included events. For example, two pre-activity events as Order received and Production date arrived can be descibed as one pre-activity event Manufacturing started.

The different types of events described above can now be used to compare different process modelling languages. First, different languages use different types of events. For example, some languages explicit use or can use time duration events, post-activity events and internal events, while other do not. Secondly, different kinds of process modelling language combine different types of events, i.e thay are equivalent. For exemple, some languages combine post-activity events and state change event, i.e. the completion of an activity always leads to a change of the process´state. Thirdly, some languages do not use the distictions between the different types of events, while others do. For example, some languages do not make any distinction between internal events and external events.

4 Comparing process modelling languages

In this chapter three different process modelling languages are compared: EPC, UML’s State Diagram and and BML. All three languages represent different types of process modelling languages: EPC represents activity-oriented process modelling languages, UML’s State Diagram represents state-oriented process modelling languages and BML communication-oriented process modelling languages, see section 2.

4.1 Event-driven Process Chains (EPC)

Event-driven Process Chains (EPC) is a business process language introduced by Keller, Nüttgens and Scheer in 1992 [Keller et al, Sheer]. This language is used among other things to describe business processes in the SAP/R3 enterprise system. It is also embedded in the Architecture of Integrated Information System (ARIS), which is a framework or BPR-tool that integrate five different perspectives or views (data, function, organisation, output and process) of an organisation. The EPC diagrams are used in the process view of the ARIS framework.

EPC is a graph with active nodes, called functions (represented as soft rectangles), and passive nodes, called events (represented as hexagons), see Fig 2 (left diagram). In EPC, a process is a chain of functions to be executed, and of events describing the situation before and after each function. Events should always exist before and after a function. EPC do not explicit use the state concept. The logical relationships and dependencies between functions and events are described using logical connectors (represented as circles including the logical AND, OR and XOR) and control flow (represented as dotted arrows). The left diagram of Figure 2 shows an EPC diagram visualising that two events, Order recieved and Production date arrived exist before the function Manufacturing. Before the function is completed also two event must exist, Product in store and Order executed. Note that the function nodes also can be connected to information, material, product and services and responsible organisational unit, by adding the other views of the ARIS framework.

EPC explicit use the following event types (The event types are described i section 3):

· Pre-activity events (i.e. the EPC-events before the EPC-functions).

· Post-activity events (i.e the EPC-events after the EPC-functions).

EPC do not explicit combine any event types.

EPC do not use the following event types:

· State change events (because EPC do not explicit use the concept state)

EPC do not explict use the distinction between:

· Internal events and External events

· Time point events and Time duration events

[image: image2.wmf]Order

received

 Manufacturing

&

Order

executed

Product

in store

&

Production

date arrived

State

Order

received

 (and)

Produktion

date arrived

Product in

store

 (and)

Order

executed

Do activity/

Manufacturing

Production

date

arrived

End

M

anu-

facturing

Wait

for

Event

Wait

for

Event

Order

received

Production

date

arrived

Order

received

Order

executed

Product

in store

Fig. 2: Three different modelling languages: EPC (left), UML´s State Diagram (top, right) and BML (down, right)

4.2 UML State (-chart) Diagrams (SD)

The Unified Modelling Language (UML) was created by Booch, Rumbaugh and Jacobson [Rumbaugh et al] and later standardised by the Object Management Group (OMG) in 1997 [OMG]. The state – or statechart – diagram (SD) is one of the nine predefined diagrams in UML. SD is a representation of a state machine and visualise how states changes in the modelled element, which can be a UML class, a system or a business process. The SD also describe which actions that are executed as a result of the occurrence of events.

A SD is a graph with states (represented by soft rectangles), transitions (represented by directed arcs), events (represented by labels), and actions (represented by labels), see Fig 2 (top, right diagram). A state can be subdivided into compartment name, state variables and actions. (Fig 2 only show the action compartment.) The state variables compartment is decribing variables like counters and timers. The action compartment is describing activities. In SD, transitions (represented by arrows between states) change states. The transition occurs if 1) an externally generated event occurs, meaning that a possible ongoing activity is aborted, or if 2) an activity has been completed and thus has triggered a completion event. Furthermore, a SD diagram always visualise an initial state (represented by a solid circle) and one or more final states (represented by a solid circle surrounded by a circle). Also note that in SD the events occur instantly, while states have duration, but the UML semantics do not hinder events from being modelled with time duration and states from being modelled as instantaneous.

SD explicit use the following event types (The event types are described i section 3.):

· Post-activity events (i.e. the UML completion events)

· State change events (i.e. the UML transition)

· External events

· Internal events

SD explicit combined the following event types:

· External events combined with Post-activity events and State change events (i.e. if an externally generated event occurs, it both abort an ongoing UML activity and trigger an UML transition).

· Internal events combined with Post-activity events and State change events (i.e. an UML activity has been completed which both trigger an UML completion event and an UML transition).

SD do not explicit use the following event types:

· Pre-activity events

SD do not explict use the distinction between:

· Time point events and Time duration events

4.3 Business Modelling Language (BML)

The Business Modelling Language (BML) was introduced by Wåhlander, Nilsson and Skoog in 1998 [Wåhlander]. BML focuses on describing interactions between systems through the sending and receiving of messages. The language has similarities to SDL (Specification and Description Language) [Belina], but is more adapted to application integration. It is developed for usage in a Process Broker, also called Process Automation System [Linthicum, Johannesson]. An important feature of BML is that the language can be used for business specification and design as well as for the execution of systems.

BML describes both structure and behaviour of a system by using two kinds of graphical diagrams. The system structure is visualised by a static diagram, describing messages sent between the processes and between the processes and the environment, i. e. the external applications and people. The dynamic behaviour is described by using a process diagram, which visualises the control flow of the process, see Fig. 2 (down, right).

The main BML symbols in the process diagram, see some of them i Fig. 2 (down, right), are Receive message (represented as a concave box), Send message (convex box), Wait for event (circle), which visualise that the process instance is waiting in the Wait for event state until a message is recieved or a timer has expired, Start timer (hourglas full of “time”) and Expire timer (hourglas “out of time”), Business activity (rectangle), and Automated business decision (romb, not shown i Fig. 2), which means that the control flow is dynamically changed depending on different business rules. Like the SD diagram, BML always visualise a Start state (in BML represented by a circle without name) and one or more End states (represented by a circle with the label “End”). A BML dynamic diagram can also visualise to which application, human agents and processes that messages are sent to or received from, by using labels (and symbols) above each of the diagram symbols (not shown in Fig. 2).

A process instance in the BML process diagram can either be in a stable state (represented as a circle i BML, i.e. Start state, Wait for event state or End state) or perform a transition from one state to another. A transition is initiated when a message is received or a timer is expired, which means that these two symbols represent state change events. During the transition messages could be sent or other activities could be perfomed. These activities (Send message, Start timer, Business activity) are interpreted as happening instantaneously.

BML explicit use the following event types (The event types are described i section 3.):

· Pre-activity events

· State change events (i.e. the BML transition)

· External events

· Time point events

BML combined the following event types:

· External events combined with Time point events, Pre-activity events and State change events (i.e. a BML Receive Message or BML Expire Timer trigger both one or serveral activities, i.e Send message, Start timer, Business activity, and a BML transition.)

· External events combined with Time point events and State change events, (i.e. a BML Receive Message or BML Expire Timer trigger a BML transition but not an activity, i.e. Send message, Start timer, Business activity).

BML do not explicit use the following event types:

· Post-activity events

· Time duration events (This means that BML interpret all activites, i.e. Send message, Start timer, Business activity, as instantaneously.)

5 The meta-model

In this chapter we suggest a meta-model. The thought behind the meta-model is that it should work as a reference model against which the process modelling language can be mapped and compared. A comparision between EPC, UML´s State diagram and BML, using the meta-model, is made in next chapter.

The intuitive meaning of the four basic concepts in our meta-model are:

A time point occurs instantaneously, i.e. it takes no time.

A state lasts between two time points and shows the condition of a process represented as a set of attribute values. A sequence of states indicates how a process has changed over time.

An activity lasts between two time points and describes one or several actions. It can be either concrete (e.g. building a car) or abstract (thinking). Activities are performed in a state.

Event records a noteworthy occurrence and connects states and activities in time. An event occurs in a time point, i.e. instantaneously. An event can record a start of an activity (pre-activity event), an end of an activity (post-acivity event) and a change of state (state change event). The post-activity event and the state change event are combined, i.e they are equivalent, in the meta-model.

[image: image1.png]Event

Fig. 3 (left) show how we interpreted the relation between the four basic concepts our meta-model. Even though this figure provides an illustration of what concepts that relate to what other concepts, it does not show these concepts in relation to a process. Fig. 3 (right) provides a more practical illustration of the dynamic relationships between the basic concepts.

Fig. 3: Two views of the meta-models basic concepts: the static view (left) and dynamic view (right).

Besides the four basic concepts, the meta-model can be extended with additional, context-relevant concepts:

The process itself – the environment that the mentioned concepts describe – is defined as a set of partially ordered activities with at least two states during its lifetime: a start and an end state. A process is thus always in a state, and changes states as a consequence of the occurrence of one or more events.

A resource is some form of material, information, man or machine needed in an activity to achieve desired results. Commonly, resources can be divided into consumables (e.g. gasoline) and non-consumables (e.g. machines).

An actor is person, machine or organisational entity that can cause one or more events to initiate one or more activities. The actor may have a goal or intention for its actions. Furthermore, an actor is a resource that can be used in an activity.

A location is a physical or conceptual space where an activity is performed. It can be a system, part of a system or an organisational unit.

Rules are descriptions of allowed and disallowed relationships of the concepts in a process, and rules thus govern a process.

Fig 4 show the complete meta-model.

[image: image3.png]Pracess

govems

When What Why

How

Who

Where

 Figure 4: The complete meta-model.

Interrogative pronouns (where, who, how, when, what and why) have been inserted into the meta-model to enhance readability and understandability of the model. These pronouns illustrate that more than one viewpoint of the process has been taken into account. They provide an easy-to-grasp classification of the concepts according to various aspects, and also give an intuitive meaning to the concepts. Furthermore, the interrogative pronouns enable organisations to ask questions about themselves and what concepts they want the process model to represent.
6 The final comparison

This chapter presents the comparison between EPC, BML and UML’s SD, using the meta-model and a comparision matrix.

The comparision between EPC, BML and UML’s SD is presented in a comparison matrix, see Table 1. The matrix
provides a structured overview of the defined concepts, and clearly shows that there are differences between the three process modelling languages. Looking at the empty boxes in the table, they illustrate that the particular process modelling language cannot express this concept, at least not in a direct way. An organisation using the table to select an appropriate language for modelling its processes can thus eliminate languages that cannot express desired concepts. Furthermore, comparison matrix makes concepts definitions differences between the three languages explicit. This can, for example, enable organisations to rapidly determine which process modelling language that defines concepts the most similar to the organisation itself. It can also provide a basis for organisations to redefine their own concepts, since they are provided with more knowledge regarding possible ways to define concepts.

Concept
Meta model (MM)
EPC
BML
SD

Time-point
Occurs instantly, i.e. takes no time
Implicit
Implicit
Implicit

Event
Occurs instantly at a certain point in time, represents that something has happened
An EPC-event exists before and after an EPC-function

Events are triggers that initiate transitions and activities

State
Begins and ends with events, shows the condition of a process where a sequence of states indicates how a process has changed through one or more events

BML-Wait for Event equals the MM’s state. BML-transition is interpreted as a pair of the MM’s states
UML state is equals the MM’s state. UML-transitions are interpreted as pairs of the MM’s states

Activity
Begins and ends by one or more events, lasts during some period of time and can be either concrete or abstract
An EPC-function equals the MM definition of activity.
BML-send message and BML-start timer are interpreted as the MM’s activity.
do Activity equals the MM’s activity.

exit action is interpreted as the MM’s activity.

Entry action is interpreted as the MM’s activity.

Process
A set of partially ordered activities with at least two states during its lifetime: a start and an end state. It changes states as a consequence of events.

Rule
Descriptions of allowed and disallowed relationships of the process’ concepts, and rules thus govern a process.

Guard-conditions equal the MM’s rules

Resource
Some form of material, information, man or machine needed in an activity to achieve desired results.

Actor
A person, machine or organisational entity that can cause one or more events to initiate one or more activities, may have a goal for its actions, and is a resource that can be used in an activity.

Location
A physical or conceptual space where an activity is performed. It can be a system, part of a system or an organisational unit.

Table 1: Comparison of EPC, BML and UML’s SD, using the meta-model.

7 Conclusions and Further Research

In this paper, we suggest a meta-model aiming at easing comparisons between various process modelling languages. Organisations that are inexperienced in process modelling can, by using the meta-model, get insight into different ways of modelling processes, and hence acquire an ability to easier read and understand process models.

We claim that process models more or less always consist of the basic concepts described in this paper, regardless of what modelling language that is used. The meta-model and the table in which it is compared to process modelling languages make it easier for organisations to know what they can expect to find in their process models.

Furthermore, the interrogative pronouns make up a suitable starting point when performing such an analysis. The pronouns illustrate that multiple viewpoint of the process has been taken into account. They provide an easy-to-grasp classification of the concepts according to various aspects, and also give an intuitive meaning to the concepts
In the first section of this article four requirements were identified regarding a meta-model: the meta-model should be comprehensive, understandable and flexible:

1. Furthermore, our meta-model is comprehensive in that it presents basic concepts and introduce the use of interrogative pronouns and swim lanes. Using only a few basic concepts means that the meta-model becomes pedagogic, since organisations now can focus on the basics.
2. The suggested meta-model is understandable in that it is easier to get an overview of since it only presents a few basic concept . By defining concepts and their relationships, organisations get an aid in translating and comparing process models, and can hence also better understand one another. One example is when matching different concepts in different organisations.
3. Finally, the meta-model is flexible in that it is possible for users to complement the meta-model with other relevant concepts that may be central to a certain domain. Using interrogative pronouns and swim lanes make it easier to perform this complementation. The use of interrogative pronouns and swim lanes furthermore enables organisations to ask questions about the process model such as what the organisation wishes to express about its processes. The meta-model then become a way of verifying that all relevant organisational aspects have been captured.
The meta-model has been validated by comparing three different process modelling language. First of all, we have shown that process modelling languages can be compared by using our meta-model. This makes better ground for working with several process models. Furthermore, since several process modelling languages define central concepts and their relationships in a fuzzy and ambiguous way, the meta-model provides a basis for achieving a commonly defined concept base. The interrogative pronouns can help organisations to ask questions about their processes and process models, and are furthermore an aid in selecting the appropriate process modelling language. For example, an organisation for which actors are central can exclude languages that do not model actors, i.e. languages that disregard from the “who”-aspect.

There is still work to be done with this meta-model, such as enabling it to cope with rules (such as those present in UML State Diagrams). The meta-model cannot deal with these aspects as of today. Another area for further research is to develop a method for using the meta-model, i.e. a stepwise guide for how to work with and use the model.

Future work:

· The paper is directed to those who want an instrument for understanding and comparing different process modelling languages, and to those who want to validate a language to make sure that no important concepts needed to model the relevant business processes are missing.

· Create a method for using the meta-model in similar comparisons.

References

[Aalst] van der Aalst, W. M. P: Formalization and Verification of Event-driven Process Chains, In: Information and Software Technology, 41(10):639-650, (1999)
[Aalst et al] van der Aalst, W. M. P, Ter Hofstede, A. H. M.: Verification of Workflow Task Structures: A Petri-net-based Approach, Information Systems, vol. 25, no. 1 (2000)
[Belina] Belina, F., Hogrefe, D., Amardeo, S.: SDL with Applications from Protocol Specification. Carl Hanser Verlag and Prentice Hall International, UK (1991)
[Rumbaugh et al] Rumbaugh, J., Jacobson, I., Booch, G.: The unified modeling language reference manual, Addison Wesley Longman Inc. (1999)
[Bunge]Bunge, M.: Treatise on Basic Philosophy Vol 3, Ontology I: The Furniture of the World, Reidel, Dordrecht, Boston (1977)

[Bunge] Bunge, M.: Scientific Research I, Springer-Verlag, (1967)

[van Gigch] van Gigch, J. P (1991) System Design Modeling and Metamodeling. Plenum Press, New York. ISBN 0-306-43740-6

[Johannesson et al] Johannesson, P., Perjons, E.: Design Principles for Application Integration, In: Proceedings of the 12th International Conference, CaiSE’00. Springer-Verlag, Heidelberg (2000) xxx-xxx

[Frisco] The FRISCO Report, A Framework of Information System Concept, IFIP (1998), available at: http://www.liacs.nl/~verrynst/frisco.html

[Keller et al] Keller, G., Nüttgens, M. , Scheer, A.W.: Semantische Processmodellierung auf der Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des Instituts für Wirtschaftsinformatik, Heft 89, University of Saarland, Saarbrücken (1992)

[Koch et al].
[Linthicum] Linthicum, D.: Enterprise Application Intergration, Addison-Wesley (2000).

[OMG] OMG Unified Modelling Language Specification, Version 1.3. (1999), available at: http://www.oml.org

[Reisig] Reisig, W.: Petri Nets: an introduction. Springer-Verlag, Berlin (1985)

[Sheer] Sheer, A.: ARIS-Business Process Modelling. Springer-Verlag, Berlin (1998)

[Wand et al] Wand, Y.: Ontology as a Foudation for Meta-modelling and method engineering, In: Information and Software Technology 38 (1996), 281-287

[Wand] Wand, Y., Weber, R.: An Ontological Model of an Information System, In: IEEE Transactions on Software Engineering, 11 (1990), p 1282-1290

[WfMC] Reference Model - The Workflow Reference Model, WFMC-TC-1003, 19-Jan-95 (1995), 1.1, available at: http://www.aiim.org/wfmc/mainframe.htm
[WfMC] Terminology & Glossary, WFMC-TC-1011, Feb-1999, 3.0 (1999), available at: http://www.aiim.org/wfmc/mainframe.htm
[Wåhlander] Wåhlander, C., Nilsson, M., Skoog, A.: Introduction to Business Model Language & SmartSync Model Manager, Copyright Viewlocity (1998)
[Zachman]Zachman, J.: Enterprise Architecture: The Issue of the Century In: Zifa Framwork Articles (1996), available at: http://www.zifa.com

�PAGE \# "'Page: '#'�'" ��En idé är att dela upp tabellen i två delar, en med grundläggande begrepp och en med övriga. Bara för platsbristens skull, men det kanske kan verka pedagogiskt… (

�PAGE \# "'Page: '#'�'" ��Nödvändigt att ta med

