A Meta-model for Comparing

Process Modelling Languages

Eva Söderström*, Birger Andersson**, Paul Johannesson**, Erik Perjons**, Benkt Wangler*

*Department of Computer Science, University of Skövde, Box 408, 541 28 Skövde, Sweden
**Department of Computer and Systems Sciences

Stockholm University/Royal Institute of Technology

Electrum 230, 164 40 Kista, Sweden

The increasing interest in process engineering and in application integration has resulted in the appearance of various new process modelling languages. Understanding and comparing such languages is therefore a major issue in information systems research. A possible strategy to solve this problem is to construct a general meta-model comprising a few basic concepts to be used when performing such comparisons. We suggest a meta-model where a set of basic notions is introduced. These notions are then grouped according to the interrogative pronouns: what, how, why, who, when, and where. The meta-model can be used for several purposes, such as e.g. translating between languages or verifying that relevant organisational aspects have been captured. To validate the meta-model, three different process modelling languages been compared: Business Modelling Language (BML), Event-driven Process Chains (EPC) and UML State Diagrams.

1. Introduction

Business Process Modelling has become a major focus of attention in Information Systems Engineering, in order to create efficiency, quality and customer satisfaction. Process models can be used for planning, designing, simulating and automatically execution of business processes, for example in Workflow Management Systems and Process Brokers. Furthermore, methods like Total Quality Management, Business Process Reengineering and software packages like SAP R/3 and BaanERP have all put the business processes in centre of the analysis. As a result, several different process modelling languages have been developed, for example UMLs Activity and State Diagrams, Event-driven Process Chains, IDEF3 and Business Modelling Language.

These languages often use the same term to denote different things, or different terms to denote the same thing. This makes integration of process models, as well as communication between the users of these models, more difficult. One approach to solve this problem is to construct a general meta-model comprising basic notions (or concepts) against which various process modelling language constructs can be mapped. Such a meta-model functions like a standard that makes it possible to compare multiple modelling languages to one another.

In this paper, we suggest a meta-model that aims at making comparisons between different process modelling languages easier to perform. The meta-model consist of a few basic notions, which are grouped according to the interrogative pronouns: what, whether, how, why, who, when, and where.

The paper is directed to those who want an instrument for comparing and translating between different process modelling languages, and to those who want to validate a language to make sure that no important concepts needed to model the relevant business processes are missing. This requires the meta-model to be formal, in order to enable a comparison between different languages. The meta-model also need to be comprehensive, in that it not only should comprise concepts like activity and state, but also actor, location, time (e.g. deadlines) and resources – concepts that are central in business process management. Furthermore, this paper can form a basis for discussion among business people and stakeholders involved in business process management who are not familiar with process modelling. This requires the meta-model to be easy to understand. Finally, it must be possible to extend the meta-model, to enable users to complement it with concepts that are central to a certain domain. This requires the meta-model to be flexible. To summarise, the meta-model must be formal, comprehensible, understandable and flexible at the same time, see also [Green&Rosemann].
The paper is structured as follows: the next chapter, Related Research, discusses approaches such as meta-modelling and ontology analysis to compare and evaluate process modelling languages. Chapter 3 introduces the meta-model. In chapter 4, the meta-model is validated by comparing three process modelling languages: UML State Diagrams (SD), SAP:s Event-driven Process Chains (EPC) and Viewlocity’s Business Modeling Language (BML) and how they relate to the meta-model. Chapter 5 presents conclusions and further research needed.

2. Related research

A model is an abstraction of phenomena in the real world. A meta-model means yet another abstraction, but this time certain properties of the model itself is highlighted, such as the logical foundation in terms of basic concepts, reasoning and proof [van Gigch]. Meta-modelling is closely related to the areas of ontology analysis and conceptual modelling. It is actually difficult to draw a line where one area ends and another begins. Sometimes, for example, ontology is considered to comprise more basic and less change inclined concepts than meta-models do [Koch et al].

Ontology is a philosophical discipline aimed at studying the nature of the real world. Some ontologies try to define basic concepts in a certain area or domain, e.g. medicine or automobiles, while others try to be more domain independent. An example of the latter is the Bunge, Wand and Weber (BWW) ontology. Wand and Weber [Wand&Weber, Wand] have originated from, and to some extent further developed, Bunge’s [Bunge] thoughts on systems. Basing their work on the BWW ontology, Wand and Weber try to provide a theoretical foundation for the evaluation of information systems models. They assume that an information system (IS) is a representation of a real world system, and that it is built to manage information process functions existing in this real world. Furthermore, they present a set of basic concepts, or constructs, that they consider to exist in the real world, and that information system models should be able to express. By mapping concepts such as “thing”, “property”, “state”, “event” and “system” to concepts in different modelling languages, e.g. data flow diagrams and entity-relationship diagrams, they can discuss strengths and weaknesses in these modelling languages. Wand and Weber can, for example, show that a modelling language lacks important concepts to describe the real world, and that the language includes redundant concepts (i.e. several concepts denote the same thing or one and the same concept comprises several of the BWW basic constructs), meaning it is ambiguous. Green and Roseman [Green&Rosemann] have have extended the BWW ontology analysis into the area of process modelling by investigating the business process language Event-driven Process Chains (EPC). Among other things, they show that EPC cannot represent multiple concepts in the BWW ontology, and that some concepts in EPC are ambiguous. One problem with the BWW ontology, though, is that many concepts are difficult to interpret and map to concepts in process modelling languages.

Examples of conceptual models, or meta-models, of process concepts are the Workflow Management Coalition (WfMC) reference model [WfMC] and the FRISCO report [Frisco]. In the WfMC reference model, terminology, structure, components and interface for workflow management systems and languages are defined. The FRISCO report describes different definitions of central concepts in the IS area, e.g. process, state and action. OMG as well presents concept models with UML specifications [OMG]. None of these models, though, show how concepts from different types of process modelling languages, such as activity-oriented, state-oriented and communication-oriented process modelling languages [Johannesson et al], should be related to one another. Activity-oriented process modelling languages primarily aim at describing what activities that follow and precede one another in a process. Examples of such process modelling languages is the UML Activity Diagram [OMG], Task Structures (a workflow process language) [Aalst&Hofstede] and Event-driven Process Chain (EPC) [Sheer]. State-oriented process languages, e.g. UML’s State Diagram (SD) [OMG], show what process states that follow and precede one another in a process. SDL [Belina] and Viewlocity’s Business Modeling Language (BML) [Johannesson, Wåhlander] are examples of communication-oriented process modelling languages that focus on the interaction between people and systems, and between systems. In this paper, we will demonstrate how one process modelling language from each group: EPC, UML:s SD och BML, relate to the introduced meta-model.

The basic grammar of most process modelling languages derives from Petri nets [Reisig]. Petri nets provide both a graphical description and formal base of processes. Van der Aalst [Aalst,]och van der Aalst and ter Hofstede [Aalst&Hofstede] have mapped EPC and Task Structures to Petri net to give the process modelling languages a formal sematics and thereby use Petri net based analysis techniques to verify the correctness (soundness) of the process definitions. This approach could be also be used to compare different process modelling language. However, Petri net is a method for method experts and cannot work as platform for communications between business people. Furthermore, a process modelling language for business process management must include more information than just places (e.g conditions), transitions (e.g events) and tokens (e.g states) which are represented in classical Petri nets.

In this paper, we have grouped process concepts according to a number of interrogative pronouns to clarify what aspects of process models that different concepts represent. Zachman [Zachman] uses interrogative pronouns to classify a descriptive representation of an enterprise, especially the management and development of an enterprise’s system. Bunge [Bunge] uses interrogative pronouns to separate basic types of domain dependent problems.

3. Meta-model
3.1. Basic concepts in the meta-model: event, state, activity, and timepoint

The following concepts in the meta-model are primitives: state, event, activity and timepoint. Below, their relationships and intuitive meaning are described. The remaining concepts in the meta-model are defined in terms of these primitive concepts. All concepts represented in the meta-model should be interpreted as being on a type level.

[image: image1.wmf]activity

event

state

timepoint

start

occur

_at

pre

event

post

event

ISA

ISA

föregår

finish

pre

post

Figur 1. The core concepts of our meta-model: state, event, activity och timepoint

[image: image2.wmf]Activity

Activity

Activity

State

State

State

Activity

 Postevent

Postevent

 Postevent

 Preevent

 Preevent

 Preevent

 Preevent

 Preevent

timepoints

Activity

State

State

State

Activity

Postevent

 Postevent

 Preevent

 Preevent

 Preevent

timepoints

Postevent

Activity

 Preevent

Activity

Postevent

 Preevent

Figur 2 Dynamic relationships between the basic concepts
Figure 2 shows the dynamic relationships between the basic concepts. As we see, events are noticeable occurrences that happen at certain points in time. An activity starts by a pre-event and ends by a post-event. This post-event may lead to a change of process state. In other words, a post-event is a prerequisite for a state change to occur, which in turn prerequisites that an activity is completed.

Time point

Intuitively: a time point occurs instantly, i.e. it takes no time.

Event

An event occurs at a certain point in time. It can be composed of several events, in which case the composite event should be considered as the conjunction of the included events. I.e., in order for the composite event to have occurred, all included events must have occurred.

Rules: An event always occurs at a certain point in time. Multiple events can occur at the same point in time. An event is either a pre- or a post-event.

Intuitively: An event occurs instantly and is a representation of that something has happened. Usually, an event means that a condition becomes true or false, e.g. that a signal, message or object has been received, that something has completed or that a certain time period has elapsed. Examples of events are “order received”, “order processed”, and “invoice is sent”.

State

A state begins and ends with an event.

Rules: A state is surrounded by two post-events, i.e. a state is initiated by a post-event and is also completed by a post-event. A state can be a goal-state, in which case there is no post-event. A state is a start-state, which is initiated by a pre-event.

Intuitively: A state regulates two post-events, or with other words: a state lasts during some period of time. State usually refers to a number of process conditions becoming true or false, and that they remain true or false until they change. A state shows the condition of a process. A sequence of states indicates how a process has changed by the occurrence of one or more events. A state can be represented by a set of attribute values.

Activity

One or more activities begin and end by an event.

Rules: An activity always begins by one or more pre-events. An activity always ends by one or more post-events. An activity lasts between two time points. Several activities can last between the same time points.

Intuitively: An activity lasts during some period of time and can be either concrete (e.g. building a car) or abstract (thinking). Examples of activities are “order is being processed” and “automobile parts are being assembled”.

Pre-event

A pre-event is an event that always initiates an activity.

Rules: One or more pre-events always initiate an activity. One or more pre-events can initiate several activities. A pre-event is always caused by an actor.

Intuitively: Pre-events occur as a consequence of some activity for an actor. This actor can be said to cause a pre-event. As the start of an activity always presupposes the occurrence of a pre-event, an activity can be said to be caused by an actor (via a pre-event).

Post-event

A post-event always ends an activity and can lead to a new state. A state must always begin and end by a post-event (except the start-state).

Rules: One or more post-events always ends an activity. One or more post-events can end several activities. One or more post-events can mean a state change for a process.

Intuitively: Some post-events occur unnoticed from the process’ point of view and do not change the process state. For example, “invoice is written” can be a post-event for an activity, but the post-event that changes the process state can be “invoice is sent”.

3.2. The full meta-model

[image: image3.wmf]activity

event

state

timepoint

occur

_at

pre

event

post

event

ISA

ISA

preceed

finish

start

finish

actor

cause

location

at

goal

ISA

has

process

has

has

why

what

how

who

where

when

start

resource

whether

use

Figur 3. The full meta-model
Actor

An actor is someone/something that can cause a pre-event. An actor can cause several pre-events. An actor may have a goal or intention for its actions.

Intuitively: an actor is someone who can cause a pre-event that initiates one or more activities. An example of an actor is someone who fills out an invoice (an activity), which ends with the post-event “invoice is filled out”. Someone, possibly the same actor, then mails the invoice (an activity), which ends with the post-event “invoice is sent”. An actor can be a person, a machine or an organisational entity.

Resource

Rules: A resource can be used by an activity for its completion. A resource can be produced by an activity at its processing. A resource can be used by several activities in parallel.

Intuitively: Examples of resources that are used to process an activity is material, information, and time. It is not trivial to separate resources from actors.

Location

A location is a place where an activity occurs.

Process

Rules: A process is an ordered set of states. A process is always in a state. A process can have a goal state. A process changes state as a consequence of the occurrence of one or more post-events.

Start of a process:

In a process: If a post-event PE1 begins state S1, there is at least one activity A such that post-event PE2 ends A and PE2 ends S1 and PE2 starts state S2.

End of a process:

Intuitively: A process is a form of transaction that affects objects in a system. The role of the process is to change the states of the different objects. The process also has a state in itself that changes to enable readings of how ??? hur långt påverkan på de olika objekten har. A process is a complex object.

Intuitivt: En process är en form av transaktion som påverkar objekt i ett system.

3.3 Interogrative pronouns

What? – What is about to occur/occurs/has occurred in a process? Answer: Read the states.

How? – How will the work be performed/is the work performed/has the work been performed? Answer: Study the activities, resources and control flow.

Whether? – What events are about to occur/occurs/has occurred in the process? Answer: Study the events.

When? – When are things about to occur/do things occur/have things occurred? Answer: Study the time point.

Why? – Why should the process be performed/ is the process performed/has the process been performed? Answer: Study the goal of the process.

Who? – Who should act/is acting/has acted in the process? Answer: Study the actor.

Where? – Where should the process be performed/is the process performed/has the process been performed? Answer: Study the location.

4. Process modelling languages
4.1 Event-driven Process Chains (EPC)

4.1.1 Brief description

Event-driven Process Chains (EPC) is a business process language introduced by Keller, Nüttgens and Scheer in 1992 [Keller et al, Sheer]. This language is used among other things to describe business processes in the SAP/R3 enterprise system. It is also embedded in the Architecture of Integrated Information System (ARIS), which is a framwork or BPR-tool that integrate five different perspectives or views (data, function, organisation, output and process) of an organisation. The EPC diagrams are used in the process view of the ARIS framework.

EPC is a graph with active nodes, called functions (represented as soft rectangles), and passive nodes, called events (represented as hexagons). From the EPC point of view, a process is a chain of functions to be executed, and of events describing the situation before and after each function. Events should always exist before and after a function. The logical relationships and dependencies between functions and events are described using logical connectors (represented as circles including the logical AND, OR and XOR) and control flow (represented as steckade pilar). The function nodes can also be connected to information, material, product and services (represented as a rectangle) and responsible organisational unit (represented by an ellipse), by adding the other views of the ARIS framework.

[image: image4.wmf]function

event

start

finish

actor

process

has

why

what

how

who

where

when

resource

use

whether

produce

precede

1..*

*

0..*

0..*

0..*

0..*

has

*

*

interact

*

*

Figur 4. The concepts in EPC
4.2.2 Relation to the meta-model

We do the following interpretation of the EPC concepts:

EPC-function

An EPC-function is identical to the meta-model definition of activity.

EPC-event

An EPC-event exists before and after an EPC-function. We interpret EPC-events before a function as identical to the meta-model’s pre-event, and EPC-events after a function as identical to the meta-model’s post-event. There is no explicit notion of states in EPC, and post-events hence do not lead to a new state, as illustrated in Figures 5 and 6.

[image: image5.wmf]activity

event

start

finish

EPC-function

EPC-event

pre

event

post

event

ISA

ISA

[image: image6.wmf]Activity

Activity

Activity

State

State

State

Activity

 Postevent

Postevent

 Postevent

 Preevent

 Preevent

 Preevent

 Preevent

 Preevent

timepoints

Function

Function

Function

EPC-event(post)

EPC-event(post)

EPC-event(post)

EPC-event

EPC-event

EPC-event

 EPC-event

timepoints

EPC-event(post)

Activity

EPC-event

Fig. 5. The relationship between the basic concepts of EPC and the meta-model
Fig. 6. The relationships between EPC and the meta-model in a dynamic view

It is possible to interpret centrain EPC-events as states. This would mean that some EPC-events in an EPC-diagram correspond to the meta-model’s pre- and post-events, while others correspond to the meta-model’s states, see Figure 7.

[image: image7.wmf]activity

event

state

start

finish

EPC-function

EPC-event

pre

event

post

event

ISA

ISA

Fig. 6. An alternative interpretation of the basic concepts
It is also possible to look at all EPC-events immediately preceding an EPC-function as a state and all EPC-events immediately following as the next state, but this interpretation poses problems, since those EPC-events immediately preceding an EPC-function not necessarily are post-events for the EPC-function they follow. Yet another interpretation would be to look at EPC-functions as states (an interpretation partly corresponding to the UML Activity Diagrams, which considers activities as activity states, i.e. activity and state are identical. In the UML Activity Diagrams, there are no explicit symbols for expressing events, though.)

Information, material, product, services, organisation unit

Information, material, product and services and responsible organisational unit can be placed in the meta-model as illustrated in Figure 4.

4.2.2 Case example
[image: image8.wmf]Tillverkningsordern

klar och bekräftad

Produktionsdatum

inträffat

Material godkänt

och kan användas

Produkt i lager

Tillverkning

Fabrik

Produkt

Material

Produktplan

AND

AND

Fig. 7. An EPC case example

In the case example, part of a business process is shown modelled using EPC, where both EPC-events “Material approved” and “Production date occurred” must have occurred before the EPC-function “Production” can be initiated. “Production” uses the EPC-information “Product plan” and EPC-material “Material”, and produces the EPC-product “Product”. The EPC-function “Production” is completed when the EPC-events “Product in stock” and “Production order completed and confirmed” have occurred.

4.1 UML Statechart Diagrams (SD)

4.1.1 Brief description
The Unified Modeling Language was created by Booch, Rumbaugh and Jacobson [Rumbaugh et al] and later standardised by the Object Management Group (OMG) in 1997 [OMG]. UML has nine predefined diagrams, of which we have focused on the state (or statechart) diagram. The State Diagram (SD) is a representation of a state machine. It is used to describe the behaviour of a model element, i.e. how its states change and what actions that are executed as a result of the occurrence of discrete events. The modelling element can be a UML class, a system or a business process.

A SD is a graph with states (represented as soft rectangles), transitions (represented as directed arcs), events (represented as labels), and actions (represented as labels). A state can be subdivided into compartments, being: name, state variable and action. A SD furthermore has an initial state (represented as a solid circle) and one or more final states (represented as a solid circle surrounded by an empty circle - ”the bull’s eye”). From the SD point of view, states are changed by transitions (represented as arrows pointing from one state to another). The transition occurs if 1) an event occurs that is generated from outside of the system (outside event), meaning that a possible ongoing do activity is aborted, or if 2) a do activity has been completed and thus triggered a completion event. Events occur instantly, while states have a duration, but nothing in the UML semantics hinders events from being modelled with time duration and states from being modelled as instantaneous.

[image: image9.wmf]entry-action

do-activity

exit-action

event

state

outside

event,

completion

event

transition

ISA

precede

source

target

process

has

has

why

what

how

who

where

when

whether

trigger

has

1..*

1

1..*

1..*

1..*

1

1

1..*

0..*

0..*

1

1

*

*

Fig. 8. The concepts in the UML State Diagram
4.2.2 Relation to the meta-model

[image: image10.wmf]Activity

Activity

State

State

State

Activity

 Postevent

Postevent

 Postevent

 Preevent

 Preevent

 Preevent

timepoints

State

State

timepoints

Entry

action

Exit

action

Postevent

Postevent

 Preevent

Do Activity

 Preevent

 Preevent

 Copletion

event

Entry

action

 Preevent

Postevent

do Activity

 Preevent

Outside event

Postevent

Exit

action

Postevent

Activity

Activity

State

State

State

Activity

 Postevent

Postevent

 Postevent

 Preevent

 Preevent

 Preevent

timepoints

State

State

timepoints

Entry

action

Exit

action

Postevent

Postevent

 Preevent

do Activity

 Preevent

 Preevent

Copletion

(post)event

Entry

action

 Preevent

Postevent

do Activity

 Preevent

Oustide

(

psot

) event

Exit

action

Postevent

 Preevent

Fig. 9. The relationships between the basic concepts and the meta-model in a dynamic view. The first part show how a transition is caused by a do Activity that completes by itself, the other part how an outside event cause the transition.
We do the following interpretation of the UML:s State Diagram concepts:

UML-State

A UML state is identical to the meta-model’s state.

UML-do Activity

UML-do Activity is identical to the meta-model’s activity.

UML-completion event

UML-completion event terminates a do Activity and is identical to the meta-model’s post-event.
UML-transition

UML-transitions are interpreted as pairs of the meta-model’s states.

UML-outside event

UML-outside event is interpreted as a post-event for do Activity..

UML-exit action

UML-exit action is interpreted as the meta-model’s activity.

UML-entry action

UML-entry action is interpreted as the meta-model’s activity.
4.2.2 Case example

In the case example, part of a business process is shown modelled using the UML SD, where both UML-events “Material approved” and “Production date occurred” must have occurred before a new state occurs and the do Activity function “Production” can be initiated. “Production is terminated once the UML-events “Product in stock” and “Production order completed and confirmed” have occurred.

[image: image11.wmf]State

do

Activity

/tillverkning

Material godkänt ^

Produktionsdatum

inträffat

Produkt i lager ^

Tillverkningsorder OK

Fig.10. A UML Statechart Diagram case
4.1 Business Modeling Language (BML)

4.1.1 Brief description

The Business Modelling Language (BML) was introduced by Wåhlander, Nilsson och Skoog in 1998 [Wåhlander]. BML is a communication-oriented process language, which means that it focuses on describing interactions between systems through the sending and receiving of messages. The language has similarities to SDL (Specification and Description Language) [Belina], but is more adapted to application integration. It is developed for usage in a Process Broker, also called Process Automation System [Linthicum, Johannesson]. An important feature of BML is that the language can be used for business specification and design as well as for the execution of systems.

BML can describe the structure as well as the behaviour of a system by using two kinds of graphical diagrams. The structure of the system is visualised by a static diagram, which describes the processes in a static mode. The static diagram describes the messages sent between the processes and between the processes and the environment, i. e. the external applications and people. The dynamic behaviour of a system is described by using process diagram, an extended state machine, which visualise the control flow of the processes, see Fig. 12.

[image: image12.wmf]m1

m2

Start

Timer

T1

Expire

Timer

T1

Wait

for

Event1

m3

<End

name>

Wait

for

Event2

app A

person B

person B

Fig.12. A dynamic BML diagram
Following the example in Fig. 12, the process instance starts in a Start State (circle without a name). The next symbol shows that a message m1 is to be received. This should be interpreted as an event triggering a transition to the next circle, which is a Wait for Event 1. During this transition, a number of activities can be performed, e.g. send message, perform automatic decisions, start timer, or perform automated business activity. In our example, a message m2 is sent and a timer T1 is started. Thereafter, two types of events (the message m3 or the timer T1 that expire) can occur. If event m3 is received before the timer T1 expire, a transition to Wait for Event 2 occurs, otherwise there is a transition to an End. The BML dynamic diagram can also visualise to which application, human agents and processes that messages are sent to or received from.

[image: image13.wmf]Send

message,

Start

 timer

event

Wait-for-

event

timepoint

start

occur

_at

Recieve

message,

expire

timer

transition

ISA

precede

pre

post

Application,

human

actor

cause

process

has

has

why

what

how

who

when

whether

trigger

Fig.14. The concepts of BML
4.2.2 Relation to the meta-model

[image: image14.wmf]Activity

State

 Preevent

 Preevent

timepoints

State

timepoints

Entry

action

Postevent

Postevent

 Preevent

Do Activity

 Preevent

Postevent

Activity

State

 Preevent

 Preevent

timepoints

State

timepoints

Activity

 Preevent

Postevent

Postevent

State

Activity

State

Postevent

Activity

 Preevent

Postevent

 Preevent

 Preevent

Activity

 Preevent

Activity

Postevent

Fig.14. The relationship between the basic concepts of BML and the meta-model
Fig.15. The relationship between the basic concepts of BML and the meta-model in a dynamic view

We do the following interpretation of the BML concepts:

BML-Wait for Event

BML-Wait for Event is identical to the meta-model’s state
BML-transition

BML-transition is interpreted as a pair of the meta-model’s states.
BML-receive message, BML-expire timer

BML-receive message and BML-expire timer are identical to the meta-model’s pre-event
BML-send message, BML-start timer,

BML-send message and BML-start timer are interpreted as the meta-model’s activity.

Application, Human agent

Application and Human agent are identical to the meta-model’s actor
4.2.2 Case example

In the case example, part of a business process is shown modelled using BML, where both BML-events “Material approved” and “Production date occurred” must have occurred before the activity “Production” can be initiated. After these events have occurred, BML sends a message that initiates the activity “Production” somewhere else in the organisation. When the BML-events “Product in stock” and “Production order completed and confirmed” have occurred, two messages are sent back to the BML process, confirming that production is completed. Both must have occurred before the process instance can proceed.

[image: image15.wmf]Wait

for

Event

Material

godkänt

Wait

for

Event

Klart

att tillverka

Material

godkänt

Produkt i lager

Produkt i lager

Tillverkningsorder

klar

Wait

for

Event

Produktions

datum

inträffat

Produktions

datum

inträffat

Tillverkningsorder

klar

Fig.16.. A BMLs diagram case
5. Conclusions and Further Research

In this paper, we suggest a meta-model aiming at easing comparisons between various process modelling languages. In the first section of this article four requirements were identified regarding a meta-model: the meta-model should be formal, comprehensive, understandable and flexible at the same time:

1. The suggested meta-model is formal in that it present four primitive concepts: state, event, activity and time-point, the relations between the primitives are presented as well-formed rules and the other basic concept are defined based on these primitives. Since many modelling languages are ambiguous, our model can provide a basis for developing formal semantics for process models by eg. mapping the languages to our meta-model.
2. Furthermore, the suggested meta-model is comprehensive in that it present basic concepts and introduce the use of interrogative pronouns and swimlanes. Using only a few basic concepts means that the meta-model becomes pedagogic, since organisations now can focus on the basics in the models.
3. The suggested meta-model is also understandable in that it only presents a few basic concept and therefore is easier to get an overview of. By defining used concepts and the relationships between these, organisations get an aid in translating and comparing process models. Organisations thus get an aid in better understanding one another, eg. in order to match different concepts in different organisations.
4. Finally, the suggested meta-model is flexible in that it is possible for users to complement the meta-model with other relevant concepts that may be central to a certain domain. The interrogative pronouns and swimlanes make it easier for users to perform this complementation. The use of interrogative pronouns enables organisations to ask questions about the process model. Using swimlanes makes clear what organisations wish to express using a process model. Interrogative pronouns then become a way of verifying that all such aspects have been captured.
The meta-model has been validated by comparing three different process modelling language. The result from the comparison shows and further motivates the usefulness of a meta-model such as ours. First of all, we have shown that process modelling languages can be compared by using our meta-model, which thus makes the meta-model an important tool for such activities. Furthermore, since several process modelling languages define central concepts and their relationships in a fuzzy and ambiguous way, the meta-model provides a basis for achieving a commonly defined concept base.

[Mer om resultatet av jämförelsen…]
Researchers often discuss the usefulness of meta-models, but only a few actually create such models of, for example, their process modelling languages. Whether organisations have process models or are about to create them, the meta-model provides assistance in defining and making used concepts and their relationships clear. The interrogative pronouns can help organisations in selecting the appropriate process modelling language. One situation where this could be applicable is when an organisation wants to know eg which person performs what activity. Using the interrogative pronouns, an organisation can exclude modelling languages that do not cover the “who” aspect.

Further research ….

[Vad var det vi sade om fortsatt arbete för oss???]
References

[Aalst] van der Aalst, W. M. P: Formalization and Verification of Event-driven Process Chains, In: Information and Software Technology, 41(10):639-650, (1999)
[Aalst et al] van der Aalst, W. M. P, Ter Hofstede, A. H. M.: Verification of Workflow Task Structures: A Petri-net-based Approach, Information Systems, vol. 25, no. 1 (2000)
[Belina] Belina, F., Hogrefe, D., Amardeo, S.: SDL with Applications from Protocol Specification. Carl Hanser Verlag and Prentice Hall International, UK (1991)
[Rumbaugh et al] Rumbaugh, J., Jacobson, I., Booch, G.: The unified modeling language reference manual, Addison Wesley Longman Inc. (1999)
[Bunge]Bunge, M.: Treatise on Basic Philosophy Vol 3, Ontology I: The Furniture of the World, Reidel, Dordrecht, Boston (1977)

[Bunge] Bunge, M.: Scientific Research I, Springer-Verlag, (1967)

[van Gigch] van Gigch, J. P (1991) System Design Modeling and Metamodeling. Plenum Press, New York. ISBN 0-306-43740-6

[Johannesson et al] Johannesson, P., Perjons, E.: Design Principles for Application Integration, In: Proceedings of the 12th International Conference, CaiSE’00. Springer-Verlag, Heidelberg (2000) xxx-xxx

[Frisco] The FRISCO Report, A Framework of Information System Concept, IFIP (1998), available at: http://www.liacs.nl/~verrynst/frisco.html

[Green et al] Green, P., Rosemann, M.: Integrated Process Modeling: An Ontological Evaluation. In: Information Systems, 2 (2000) 73-87
[Keller et al] Keller, G., Nüttgens, M. , Scheer, A.W.: Semantische Processmodellierung auf der Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des Instituts für Wirtschaftsinformatik, Heft 89, University of Saarland, Saarbrücken (1992)

[Koch et al].
[Linthicum] Linthicum, D.: Enterprise Application Intergration, Addison-Wesley (2000).

[OMG] OMG Unified Modelling Language Specification, Version 1.3. (1999), available at: http://www.oml.org

[Reisig] Reisig, W.: Petri Nets: an introduction. Springer-Verlag, Berlin (1985)

[Sheer] Sheer, A.: ARIS-Business Process Modelling. Springer-Verlag, Berlin (1998)

[Wand et al] Wand, Y.: Ontology as a Foudation for Meta-modelling and method engineering, In: Information and Software Technology 38 (1996), 281-287

[Wand] Wand, Y., Weber, R.: An Ontological Model of an Information System, In: IEEE Transactions on Software Engineering, 11 (1990), p 1282-1290

[WfMC] Reference Model - The Workflow Reference Model, WFMC-TC-1003, 19-Jan-95 (1995), 1.1, available at: http://www.aiim.org/wfmc/mainframe.htm
[WfMC] Terminology & Glossary, WFMC-TC-1011, Feb-1999, 3.0 (1999), available at: http://www.aiim.org/wfmc/mainframe.htm
[Wåhlander] Wåhlander, C., Nilsson, M., Skoog, A.: Introduction to Business Model Language & SmartSync Model Manager, Copyright Viewlocity (1998)
[Zachman]Zachman, J.: Enterprise Architecture: The Issue of the Century In: Zifa Framwork Articles (1996), available at: http://www.zifa.com

