Investigations of a Method for Comparing Process
Models

B. Andersson

June, 2001

Master’s thesis!
Department of Computer and Systems Sciences
Stockholm University / Royal Institute of Technology

Abstract

Sometimes there is a need to compare process models constructed in
different process modeling languages to each other to determine if they
model the same phenomena. Sometimes there is a need to translate
a process model made in one modeling language to another language.
A basic demand on the translated model is that it models the same
phenomena as the original model. In both cases there is a need to
determine if they have similar semantics. How should one go about
when trying to compare models made in different process modeling
languages for semantic similarity?

A method for doing model comparisons is proposed and validated
in this thesis. The basic idea in the method is to construct a reference
model, founded on some general concepts, that is used as a norm when
doing the comparisons. The notational constructs in the models are
then mapped onto the concepts in the reference model and a compar-
ison can be made based on the conceptual content in the models. The
method is validated by using it in a modeling exercise. The result of
the validation is that the method can be used to determine whether
two process models are similar or not.

!This thesis corresponds to 20 weeks of full-time work

Contents

1 Introduction

1.1 Background
1.2 Problem
1.3 Purposeand goals
1.4 Method motivation o oL
1.5 Method
1.6 Investigation approach,
1.7 Intended audience
1.8 Thesisscope« i

2 Theoretical Framework

2.1 Ontology e
2.1.1 Introduction.,
2.1.2 Thing, Property, Attribute, State, Law
2.1.3 Event, Transformation, Behaviour, History, Acts on . .
2.1.4 System, Subsystem, Composition, Structure
215 Comments

2.2 A processmetamodel L.

2.3 Definition of process similarity

3 Process Modeling Languages

3.1 Imtroduction
32 BPM
321 Concepts e
3.3 SDL
3.3.1 Concepts e
4 Modeling exercise
4.1 The coffee machineo
42 Models
4.3 A mapping schema
4.4 Comparison and translation
441 Comparison oo
442 Result of comparison
4.4.3 Translation
444 Result of translation

5 Conclusion

A BPM models

B SDL models

e i

12
12
13
13
14
14

16
16
17
17
20
20
22
22
25

25

iii

1 Introduction

1.1 Background

There are processes everywhere. Opening an account in a bank is a process,
making a cup of coffee is a process, assembling a car is a process. The
following quote points out there are several ways to describe real and abstract
phenomena, where a process description is one of the ways.

““A circle is a locus of all points equidistant from a given point.”
“To construct a circle, rotate a compass with one arm fixed until
the other arm has returned to its starting point.” It is implicit in
Euclid that if you carry out the process described in the second
sentence, you will produce an object that satisfies the definition
in the first. The first sentence is a state description of a circle;
the second a process description.

These two modes of apprehending structures are the warp and
weft of our experience. Pictures, blueprints, most diagrams, and
chemical structural formulas are state descriptions. Recipes, dif-
ferential equations, and equations for chemical reactions are pro-
cess descriptions. The former characterise the world as sensed;
they provide the criteria for identifying objects. The latter char-
acterise the world as acted upon; they provide the means for
producing or generating objects having the desired character ”[1]

Any description is a model, and the model can be expressed using the symbols
and rules of a language. To model a process, a process modeling language is
used. There are several different process modeling languages in existence, all
capable of describing such processes as were exemplified above. Some of the-
ses languages are standardised and are widely used, like Activity Diagrams
in UML[2]. Some are very informal and used only locally, perhaps in a small
firm. Process models are often expressed using some diagramatical notation
and in many cases there is computer support for generating the diagrams.

1.2 Problem

Sometimes there is a need to translate process models constructed in one lan-
guage to another. For example, a company that has made and accumulated
a huge number of models over the years, realises that the administrative
overhead in keeping these models constructed in different languages are to
large. The company decides to standarise. The work done, however, should
not and can not be thrown away and this creates a need to translate from
the old languages to the new one.

Sometimes there is a need to compare process models made in different
languages to determine if they model a similar thing. For example, two

companies that are using different modeling standards has modeled some
process that is common to both companies. No company can afford to adopt
or use the other ones standard, but it is essential that they both can agree
on the fact that they are modeling the same process. So here arises the need
for being able to compare the models.

1.3 Purpose and goals

The purpose of this thesis is to propose and investigate a method for doing
a comparison of two process models to determine if they are semantically
similar. The goals are to describe the method and to do a method validation.
The validation is made by trying the method in a modeling example.

1.4 Method motivation

How should one go about when trying to compare models made in different
modeling languages to determine if they are semantically similar? What
method should be employed? One suggestion is to lay down two models,
describing the same thing, next to one another and try to perform a mapping
of the different symbols. The first symbol (if it is possible to establish what
symbol is the first) in language 1 is mapped to the first symbol in language
2, and so on.

This method resembles the method of placing two books next to each
other and start mapping the symbols in the books. If a symbol in the first
book is always mapped to the same symbol in the other book, and vice versa,
and the order in which the symbols are presented in both books are the same,
then the books are deemed to be similar.

To be able to do this one have to start by establishing what the basic
symbols are, the alphabet, and how they can be legally combined. Is it
the letters that are the basic symbols? Or perhaps the words? Sentences?
Paragraphs? Let’s assume that the alphabet consists of words, i.e. strings
of letters. For instance, these words could be: “send” and “receive”. Then
the first word in book 1 is mapped onto the first word in book 2, the second
word in book 1 is mapped to the second word in book 2, and so on. One im-
mediately realises that this approach is not feasible. To draw the conclusion
that the two books are similar in content is almost impossible. The method
might work on the odd occasion where the book is very short (perhaps only
one word) or just by sheer luck, but it will generally fail.

A better approach is to agree on or determine what exist in reality and
consider the aspects that are of interest. What is determined are the things
that exists, how they change and behave, if they are complex or simple,
and their relations to other things. The model of common knowledge about
what exists in reality, is called an ontology model or (for short), an ontology.
The constructs in the ontology are the concepts of reality and an ontology

is sometimes also called a conceptual model. When doing comparisons of
models expressed in different languages, the concepts of the ontology are
used as a reference model.

A comparison of two models made in two different process modeling lan-
guages could be done like this: for each concept in the ontology the corre-
sponding construct in each of the models are looked for and identified. If we
find that all constructs in the first model has corresponding constructs in the
second model and that all constructs in the second model has corresponding
constructs in the first model, then we can conclude that the model made in
the first language and the model made in the second language describe the
same thing.

For example, if we are able to determine that book 1 start by in some
way expressing the concept ’send’ and this is followed by (*follow’ is also a
concept, as are 'start’ and ’end’) the expression of the concept 'receive’ and
that book 2 expresses the same concepts, and vice versa, then we can be quite
confident when we draw the conclusion that the two books are semantically
similar. They may look very different but that is no more strange than that
the same book look different when printed in English or Chinese.

Using this method, where we focus on the meanings of the models to
be compared, gives us a far better opportunity to do good comparisons of
models constructed in different languages regarding their similarity, rather
than using the method of direct mapping of symbols. The idea, that we
should focus on the meanings when comparing, not the notational symbols,
is the underlying idea in the method presented and investigated in this thesis.

1.5 Method

In this thesis we propose a method for comparing process models that estab-
lishes and uses an ontology as a reference model when doing the comparisons.
By reference model is meant that the concepts of the ontology is to be used
as a norm when settling the meanings of the notational constructs (symbols
and symbol combinations) of the models that are to be compared.

A process metamodel is constructed based on the concepts in the on-
tology. There are two reasons for constructing a process metamodel from
the concepts of the ontology: first, if the ontology is very general and all-
encompassing focusing on a sub-set of the concepts makes it easier to grasp
and manage the concepts. Secondly, a metamodel is a description of a model.
The constructs in the modeling languages are described in the respective
languages metamodels. By developing a process metamodel based on the
ontology and presenting the metamodel in a well known notation, a com-
fortable basis for comparison with the metamodels of different languages is
established. The concepts in the metamodel together with some additional
concepts from the ontology make up the reference model.

Next, the process model property to be compared is decided and defined.

It is important that this is done since the models could be compared with
respect to different properties or combinations of properties.

Following definition of property to be compared and with the ontology
and the metamodel in place, a mapping schema is constructed. A mapping
schema is a description that shows what concepts in the reference model are
mapped onto what notational constructs in the modeling languages. The
mapping should be presented with a textual motivation, and as the process
models often uses a graphical notation, some means for describing what
concept maps onto what graphical construct should be provided. The reason
for this is that constructing a mapping schema is very difficult and the work
done should be recorded as clearly as possible to make it easy to follow the
line of thought, and thereby minimise misunderstandings and errors.

The final step of the method is to validate and justify the mapping
schema. This is done by using it when doing real comparison. The knowl-
edge gained, when errors are discovered in the comparisons, are used to
refine and further justify the schema. This imply that a highly iterative way
of working when constructing and using the mapping schema is necessary.
A typical scenario is that a mapping schema is constructed, it is validated,
some weaknesses are found when validating it, this is recorded textually and
the schema is justified. A new validation takes place, new errors surface,
they are recorded, the schema is further justified, and so on.

In short, the method for doing comparisons to be investigated is this:

e A domain ontology is established

e A process metamodel is constructed based on a the concepts in the
ontology

A definition of the property to be compared is made

A mapping schema is constructed where concepts in the ontology and
metamodel is mapped onto constructs in different process models

Validation and justification of the mapping schema is done by perform-
ing real comparisons.

1.6 Investigation approach

1. An ontology was chosen, studied and described. The ontology chosen
was the ontology originally suggested by Bunge[3] and later on was
extended by Wand and Weber[4][5]. The reason for choosing this par-
ticular ontology is that it was well defined and was at at the time of
choice, readily available. Frisco|6] was one other candidate ontology
not chosen for the reason that it, at the time, appeared to be quite
similar to the chosen one.

. A metamodel was constructed. The metamodel was constructed from
concepts of the ontology and presented using the UML Class diagram
notation. The reason for choosing the UML notation was that it is
widely used and understood.

. The property that was to be compared was defined. In this case the
property defined was semantic similarity.

. Two process modeling languages was chosen. The languages chosen,
SDL and BPM, were of different kinds to make the comparisons more
interesting. SDL was chosen because it has some properties that were
of interest in an ongoing research project and BPM was chosen because
it was readily available.

. A modeling task was defined. The task was not too difficult, which
would have resulted in spending to much time on preparation and
analysis of the models. But it was not too easy which would have
made it useless for drawing any conclusions.

. The task was modeled. The task was first modeled in SDL and subse-
quently in BPM.

. A mapping schema was constructed. The schema was created where
the concepts of the ontology and the metamodel were mapped onto
notational constructs of SDL and BPM. It was not possible to use only
the available definitions and descriptions of the languages to make the
mappings. To be able to do the mappings, the task models were used
to determine the semantics of the language constructs.

. One comparison and one translation was made. The comparison was
made in the following manner: one process from the SDL task model
was chosen to be compared to the same process in the BPM model.
The SDL process was mapped onto the concepts provided in the map-
ping schema. After this, a BPM model was constructed based on
mapping result. This newly constructed BPM model was subsequently
compared to an already existing BPM model of the same process. A
conclusion about their similarity was drawn according to the definition
of similarity. A translation was carried out in in the following way:
one process from the BPM task model was chosen to be translated.
The BPM process was mapped onto the concepts provided in the map-
ping schema. The concepts describing the BPM process were then
used when constructing the SDL process model. Using the definition
of process similarity, a conclusion could be drawn about the similarity
of the BPM and SDL processes.

1.7 Intended audience

The intended audience for this thesis is anybody who is interested in a brief
introduction to process models and a method for comparing them. Some
previous knowledge on the topic of modeling is assumed on behalf of the
reader.

1.8 Thesis scope

In this thesis we argue that making comparisons and translations are to be
considered as being tasks of the same kind. Both comparisons and trans-
lations involves capturing the syntax and the semantics of the modeling
language.

In its original form, the ontology introduced it is given in a highly for-
malised set-theoretic language which is hard to read and understand for any-
one who is not trained in reading such formalisms. The ontology introduced
is presented in a way that is readable and understandable for the intended
audience. This means that the original high level of definitional precision is
decreased.

2 Theoretical Framework

2.1 Ontology
2.1.1 Introduction

Ontology is a well-established theoretical domain within philosophy dealing
with models of reality.

Wand and Weber have taken, and extended, an ontology presented by
Bunge and applied it to the modeling of information systems. Their fun-
damental premise is that any information systems modeling language must
be able to represent all things in the real world that might be of interest to
users of information systems; otherwise, the resulting model is incomplete.
If the model is incomplete, the analyst/designer will somehow have to aug-
ment the model(s) to ensure that the final computerised information system
adequately reflects that portion of the real world it is intended to simulate.

The Bunge-Wand-Weber (BWW) models consist of the representation
model, the state-tracking model, and the good decomposition model. This
thesis focuses on the representation model. The representation model defines
a set of constructs that are thought by Wand and Weber to be necessary
and sufficient to describe the structure and behaviour of the real world.
The following presentation is intended to be an intuitive introduction to the
concepts.

2.1.2 Thing, Property, Attribute, State, Law

The world is made out of things that possess properties. There exist simple
things and simple things can associate to form composite things. If things
X,Y, ..., associate to form a thing 7', then X,Y,..., are each a component
of T.

Properties can be intrinsic or mutual to several things. For example,
having weight is an intrinsic property of a person. Being employed is a
mutual property of a person and a company. A property of a composite
thing can be either inherited—Dbe a property of a component, or emergent—
be a property of none of the components. A composite thing must possess
emergent properties. Emergent properties depend on the properties of the
components, but are not necessarily reducible to them. In other words, an
emergent property may not be simply replaced by component properties,
although it might be explained by them.

A thing possesses properties whether humans are aware of them or not.
In contrast, attributes are characteristics assigned to things by humans. For
example, people will attribute a colour to an object while the real property
is the reflection of some wavelength. An attribute can be represented as a
function from a set of things and a set of “observation points” (in particular,
time points) into a set of values. This is the basis for defining a model of
a thing as a functional schema which is a set of attribute functions defined
over a certain domain, M (usually time). The state of a thing comprises
the values of the functions in the functional schema at a given point in M.
Similar things can be modeled using the same functional schema.

Every property can be modeled as an attribute but not every property
will be described in terms of attribute(s). The same property might be
represented by more than one attribute. For example, the power of a motor
can be described in more than one way (horsepower, torque at certain RPM’s,
etc.). Several properties might map into one attribute. For example, the
notion of IQ reflects many properties (not necessarily known). Moreover,
not every attribute has to represent a property. An example of this is the
name of a person.

The properties of a thing include laws, which are constraints on other
properties (and can specify relationships among properties). For example, in
the employee example mentioned above, there could be a law connecting rank
and salary. Because of laws, not all possible combinations of state function
values represent valid states of a thing. Laws are modeled as restrictions on
the possible states.

2.1.3 Event, Transformation, Behaviour, History, Acts on

It is an ontological principle that every change is tied to things and every
thing changes. When a thing changes, some of its property values must

change. Change can be modeled as a state transition—that is, as an event.
An event is a triplet (s1,s2,g) where g is one or more transformations that
changes state sl to state s2 and conforms to the laws of the thing. The
transformations that can occur inside a thing can be described in terms of a
transition law which specifies the possible state transitions

For the purpose of modeling dynamics of systems, several concepts have
been defined in addition to those of Bunge, but based on his concepts. Specif-
ically, there is a distinction between two types of state changes. Change of
state due to the actions of other things, i.e. external events; change of the
state due to transformations inside the thing, i.e. internal events.

One distinguish between two types of states, stable and unstable. A thing
can change state from a stable state only due to an external event—some
external thing cause the change from the stable state. A change from an
unstable state do not need interaction with an external thing to happen. A
thing can change state from a stable state only due to an external event and
80, in order to analyse the behaviour of a thing, the external events that can
happen to it should be known.

The behaviour of at thing comprises its change of state due to external
and internal events. Assume a thing is in a stable state. It will stay in
this state until an external event happens. The external event can result
in a change to a stable state or an unstable state. In the latter case there
will follow an internal event and the thing will change to yet another state,
which, in itself, could be stable or unstable.

Changes of state manifest a history of a thing. The history is a recording
of property value changes of a thing at time instants. The notion of history
allow us to determine when two things are coupled to each other. Intuitively,
if two things are independent of each other, they will have independent
histories. If they are coupled in some way, however, at least one of the
things history will depend on the other things history. A thing acts on
another thing if it affect the other things history. Two things are coupled if
the first one acts on the second one, or if the second one acts on the first
one, or both.

2.1.4 System, Subsystem, Composition, Structure

Two things interact if at least one of them can affect the states the other
traverses in time. The ability of two things to interact is a mutual property of
the two things. In other words, there is no “acting at a distance”. Interaction
can be modeled via joint state variables (representing the mutual properties).

A system is defined as a composite thing made of interacting things.
The composition of a system is the set of components in the system. The
environment of the system comprises of the things not in system that interact
with components of the system. The structure of the system is the set
of interactions that exist among components in the system and between

components in the system and things in the environment. Identifying the
composition of a system requires that a level of detail be specified. Since
a system is a composite thing, it has emergent properties. In particular,
the dynamic properties (i.e. the behaviour) of the system emerge from the
behaviour of its components, and their interactions.

The definition of a system does not specify the notions of a goal and a
boundary that are commonly mentioned in the context of systems. The con-
cept of goal is subsumed into the transition law of the system as “preferred”
states to which the transition leads. Similarly, there is no explicit notion
of a boundary. Instead, there are the composition and the set of relevant
external events. The composition defines what is inside the system and the
relevant external events define what happens outside the system that affect
the system.

2.1.5 Comments

Some concerns have consistently arisen[6] within the research community
over the time that the BWW ontological models have been developed and
used.

The understandability of the ontology has been criticized. Wand and
Weber originally defined the concepts using a rigorous set-theoretic language.
Even though they have attempted to simplify and clarify the explanation of
the concepts by defining them using plain English, the criticism of lack of
understandability has remained.

There is a difficulty in applying the ontology, e.g. when comparing models
or translating between languages. This difficulty stems from the fact that,
although the BWW concepts have clearly defined definitions, the models
are constructed in languages that sometimes, at best, have loose definitions.
Consequently, the analyses performed using the BWW models rely to a large
extent on the knowledge and experience of the researcher(s) performing the
analyses.

2.2 A process metamodel

To address the problems of understandability and applicability, and also
focus on the process parts of the BWW ontology, an attempt is made at
providing a semi-formal description of some of the core BWW concepts by
designing a process metamodel. What is required for the concepts is a defi-
nitional approach that is familiar to users, more specific than plain English,
but easier to understand than set-theoretic language. By using a relatively
well-known language (UML class diagrams, in this case), the current under-
standing of the concepts and how they relate to each other can be explained
quite clearly.

Thing

Precedes
1.1 0..1 1.*

1.1 Succedes

History I State O] = Transformation

0.* 2.2 1.

1.*%

Time E— Event

Figure 1: Process metamodel

The approach of constructing a metamodel has some additional advan-
tages: first, the developed metamodel that describes and clarifies the current
understanding of the ontological constructs facilitates the use of the ontology
in other related research areas. In other words, the assumption is that the
availability of an easy-to-understand description of the ontology simplifies
the communication about this approach. Second, this approach will also
help to identify and eliminate inconsistencies and anomalies within the on-
tology. Finally, the meta model contribute to the research on the usefulness
of metamodeling.

Figure 1 shows a process metamodel which is grounded in the BWW
ontology. The metamodel was designed by Rosemann and Green[7]. The
notation is the UML Class diagram notation. It shows the concepts that
constitute a process. A metamodel like the this one can be regarded as a
reference metamodel and the process pattern in this model is a structure
that might be expected to exist in every process modeling language.

10

2.3 Definition of process similarity

The behaviour of a thing can be modeled as a process and this model is
described by use of symbols and rules of a process modeling language. When
comparing processes, it is important that we understand clearly what we
mean when we say that two processes are similar. We start this section that
eventually will end up in a definition of process similarity, with a discussion
on the definition of process. A quick and dirty definition of a process is this:

A process is a partially ordered set of processes

This needs to be clarified.

To define the behaviour of a thing from a basic level amounts to this:
Assume that a thing has some outer, functional characteristics. That is, let
us think of it at a “black box”. The thing is to be thought of as an automate
whose inner structure it is not necessary to be known, but can be assumed
to give well-defined responses to well-defined stimuli.

Let us call one such “black box” an activity. A process is then defined
to be an ordered set of one or more activities. The reason for making this
reformulation is to point out that a process can be modeled at different levels
of abstraction. Our intention, when calling a process an activity, is that it
is not possible or necessary to analyse it further. So, we reformulate the
definition of process given above to the equivalent, but clearer:

A process is a partially ordered set of one or more activities

Some activity in a process is the first and some is the last. If the process only
consists of one activity, the first and the last are the same. Certain conditions
must be true to activate or start a process. The conditions for starting a
process are identical to the conditions for starting the first activity in the
process. The conditions to start a process is made true by some activity
outside the process. When the conditions for ending the process are made
true by the last activity in the process, the process stops. Some parallel or
concurrent activities can take place within a process as long as they do not
interfere with each others performance. This restriction is for simplifying
the analyses. All activities, concurrent or not, must be finished before the
last activity of the process can start.
We define activity similarity which we also may call “outer similarity™

Two activities is considered to be similar when they always pro-
duce the same response to the same stimuli.

This means that we do not concern ourselves with how the results are pro-
duced. The production work can use up different amounts of resources, such
as space, time, or whatever. As long as the end results are the same, the
activities are similar.

11

From this we move on to define processes similarity which we also may
call “inner similarity”:

Two processes are similar if:
they have the same number of activities,
the activities are performed in the same order,

the corresponding activities in the processes are similar

This means that for two processes to be similar they must consist of the
same number of activities, performed in the same order, and the result of
each activity as well as the results of the whole process must be similar.
For example, if two processes show the same process results but the results
are produced by a different number of activities, then the processes are not
similar by definition.

3 Process Modeling Languages

3.1 Introduction

It is possible to consider a process as consisting of two logically different
types of activities: First, there are the activities that does the “real” work in
a process, such as “heating the water” in a coffee making process, or “creat-
ing an account” in some banking process. Secondly, we have the governing
activities that control and coordinate the “work performing” activities ac-
cording to the rules and laws to which the process must comply. These are
the activities that make sure that the water, in a coffee making process, is
heated before it is filtered through the coffee.

We can, when we are about to model a process, start by concentrating
on one type of activity first and later add activities of the other type.

If we want to model a process by first and foremost show the “work
performing” type of activities that is part of the process and how these
activities are related, we describe a sequence of such activities where the
finishing conditions for one activity is identical to the starting conditions
for the next activity. The activities that are of the controlling and coordi-
nating type are only shown implicitly through the construction of the “work
performing™activity sequence where one activity is to be finished before an-
other. However, controlling type of activities like selection of process paths
or iterations are usually shown explicitly. The main idea in this approach is
that we concentrate on modeling the process by describing it as a sequences
of activities, its activity-flow.

If we, on the other hand, want to model a process by showing how it
is controlled and coordinated, some other modeling strategy should be em-
ployed. We can think like this: a controlling activity receives information

12

stating that the finishing conditions of some “work performing”-activity, ei-
ther in the process or in the process environment, has become true. Then,
according to the rules that govern the process and of which the controlling
activity are aware, the controlling activity starts the next “work performing”-
activity by sending information to it stating that the conditions for it to start
are true. When this next activity is finished (the conditions for its finishing
are true), a controlling activity is notified and the cycle can start all over
again. The essence of this approach is that we model the process by describ-
ing the communications that takes place between its parts, its control-flow.

The approaches are equivalent in the sense that both describe what hap-
pens in a process and when. However, the second (communications) ap-
proach tends to introduce slightly more details into the models.

The two approaches provides an opportunity to classify some process
modeling languages according to their underlying model. The first approach,
concentrating on describing the flow of activities, has as underlying model an
event-process chain (EPC). The second approach, concentrating on describ-
ing the control-flow, has as underlying model a finite state machine (FSM).

In the following, two process modeling languages representing each of the
two underlying models will be presented. BPM (Business Process Modeling)[8]
represent an EPC, SDL (Specification and Description Language)|9] repre-
sent a FSM. The descriptions of the languages presented below are by no
means complete but sufficient to get an understanding on how they are used.

3.2 BPM

BPM (Business Process Modeling) is mainly targeted at business managers
wanting to describe and improve business processes. BPM as presented here
is a subset of the core concepts, adapted by Allen and Frost[8]. The BPM
notation is shown in figure 2 (lower).

3.2.1 Concepts

The three main main concepts are elementary business process, business
event, and process thread.

An elementary business process (EBP) is an activity performed by one
person in one place at one time, in response to a business event.

A business event is a stimulus that trigger a EBP. Business events may
be of two different kinds: input or output driven. Input-driven business
events are signaled by the arrival of incoming information flow; they can
be external (produced outside the system), or internal (produced inside the
system). Output-driven business events are may be temporal or conditional.
Temporal events are are signaled by the arrival of a predefined point in time.
Conditional events reports the sensing of a particular circumstance, which
triggers an EBP.

13

A process thread is a chain of EBP’s. It is used to model the flow of
EBP’s, initiated by a business event in terms of sequence dependency, itera-
tion, conditionality and process breaks (waitings for something to happen).
A process thread normally produces a result. A result from one process
thread is often a business event relative to some other process thread. Pro-
cess threads can be diagrammed at a higher level of granularity by clustering
EBP’s into process groups.

The Process Hierarchy Diagram is used mainly as a graphical index,
which shows the relationship between the levels of process granularity. At
the very top sits the enterprise (or whatever under consideration). This is
divided into key business processes which in turn may be divided into process
groups, and so on. Eventually one reaches the level of single EBP’s although
stopping at a group level is quite normal. The Process Thread Diagram is
the major modeling tool. It is used to model dependencies between EBP’s.

3.3 SDL

SDL (Specification and Description Language) was developed by telecommu-
nications companies to cope with the increasing complexity of their systems.
The purpose of SDL is to provide an unambiguous specification and de-
scription of a systems behaviour. The intended users are mainly technicians
and engineers. Presented here is a subset of concepts and symbols in the
language.

The relevant SDL notation is shown in figure 2 (upper). Note, in order
to minimise the number of symbols and keep the models compact we shall
use the following diagramatical convention: a process in a SDL model will
be considered to have finished when it returns to its first state (which is
designated S1 in all models).

3.3.1 Concepts

A system is described as a number of extended finite state machines commu-
nicating by exchanging messages with each other and with the environment
of the system. All communications between the system and its environment
and within the system is achieved by sending messages. The state machines
may work in parallel, and several instances of the same state machine may
exist concurrently. The extended finite state machine is modeled by the
process concept.

The behaviour of a process is described by a start node, which is the
state the process is in when it is started, and a set of transitions that takes
place when the process receives a certain stimulus in a certain state. Part of
a transition may be the output of one or several messages and after finishing
a transition the process enters a new state. A message is modeled by a signal
that may carry a list of values. The values are of some type. When sending a

14

SDL Notation

symbol | () (=) (=) |
Name Start State Nextstate Input
P
symool | > []][e
Name Decision Procedure Process Output
BPM Notation
Name Symbol Description
Internal . .)
Busi |:> Internal stimulus which triggers a process
usiness -
E thread or activity
vent
BE xt_ernal :} External stimulus which triggers a process
usiness S
thread or activity
Event
Result <:
process
Mandatory - 5
Dependency Leads to a mandatory process
Optional
Dependency | d Leads to a process to indicate its optionality
Activity |:| Generic Process
Exclusivity < To indicate a condition
Parallel
Processes containing box to be complete
Iteration For Each X To indicate a repeating process or processes
Process A delay prior to another process starting(ends
Break with an event)

signal one may directly specify the process instance for which the message is
intended or leave it to the system to identify the receiving process instance.

Communication in SDL is asynchronous. No synchronisation is required
between sender and receiver. The rationale behind the asynchronous com-
munication is to model a distributed and loosely coupled system. To each

Figure 2: SDL

and BPM notation

15

process instance there is an unlimited buffer to hold all received signals not
yet consumed by the process. The buffer is called the input port of the
process instance.

A Block Diagram describes a system as a set of subsystems and the
communications channels between the subsystems and the environment and
between subsystems. The subsystems can be decomposed further to reach
an appropriate level of detail. A Process Diagram shows the behaviour of
processes in a block.

4 Modeling exercise

4.1 The coffee machine

At work, there is a coffee machine. I know that it is a coffee machine because
someone in past times, while nodding at it, told me so. It is called “the coffee
machine” although it produces other beverages as well. A description of a
very simplified version of the machine is as follows:

The coffee machine is a brown-colored box with three buttons and a place
to put a cup at the front. The first button is labeled “Normal” , the second
button is labeled “Strong”, and the third button is labeled “Chocolate”. By
placing a cup at the right place and pressing a button it will fill the empty
cup with the beverage of choice. It is not necessary that there is a cup
present. It will produce the beverage regardless of the cup being present or
not. If anything extra is needed, like sugar, then the machine cannot help.
Boxes with sugar and other things are kept beside it.

I do not know how the machine produce these beverages, but I define it to
be organised and to operate as follows: The machine consists of five general
parts. First, it has a casing, holding the other four units. Secondly, it has
a unit responsible for controlling and coordinating the activities. Thirdly, it
has a unit responsible for portioning variable amounts of beverage powder.
The fourth unit is a unit responsible for applying filters. And finally, it has
a unit for handling the water. It is responsible for heating and pouring a
volume of water.

Here’s how the machine brew a cup of coffee: The controlling unit receives
an activation signal from one of the coffee buttons. It makes the filter unit
apply a filter and makes the water unit heat a volume of water. When the
filter is applied, coffee is put into the filter. After this, water is poured
through the filter thereby producing a cup of coffee.

Making a cup of chocolate is done almost in the same fashion. The control
unit receives an activation signal from the chocolate button. It makes the
water unit heat a volume of water and makes the beverage powder unit
portion chocolate and milk powder straight into the cup. After this, water
is poured into the cup and the chocolate is ready.

16

When producing a normal cup of coffee, the machine uses one standard
amount of powder. When producing a strong cup, the machine uses two
amounts. When producing chocolate, the machine uses one standard amount
of chocolate powder and and one standard amount of milk powder. The
amount of water is the same for all three beverages.

4.2 Models

Models of the coffee machine processes are found in the appendices. The
BPM models are found in appendix A. The SDL models are found in ap-
pendix B. The models are placed in the appendices because there are so
many of them.

4.3 A mapping schema

This is the first attempt at constructing a mapping schema that can be used
for doing comparisons and translations. Making a correct schema is quite
difficult so this work should be carried out in a highly iterative manner. That
is, a schema must be tried and tested in a real modeling situation and when
it fails, the failures must be amended. The mappings motivated in this text
are presented in a graphical table found in figures 3 and 4.

Thing: A thing is some distinct logical and /or physical unit that exhibits
some behaviour. Thing is modeled as a named rectangle in both SDL and
BPM and are shown in the static diagrams of SDL. and BPM. The other con-
structs in the static diagrams, System, Subsystem are interpreted to have
direct correspondences. System structure in SDL has no corresponding con-
struct in BPM.

Property -mutual: Communication is modeled through change of mutual
properties. In SDL, communication is modeled by signal symbols. The name
inside such a signal symbol is the name of the mutual property. It can be
thought of as a variable in the receiver being changed by the sender. In
BPM, this is shown as the name within an event arrow with a thin arrow
emanating from it. This is a name of a property that has been changed by
an activity and this change imply the start of a new activity.

Property -intrinsic: In SDL, this is shown as a name within a rectangle.
The rectangle has also the keyword DCL written inside it. Changing an
intrinsic property does not imply change in another thing. The intrinsic
property can be thought of as a local variable. In BPM this is shown as the
name within an event arrow with no thin arrow emanating from it. This is
a name of a property that has been changed by an activity and this change
does not cause the start of a new activity.

Acts on: Indicates that a thing will cause an reaction in another thing,
a kind of dependency. In SDL this is shown by the sending of a message
to a receiver. In BPM this is shown by a thin arrow from an event-arrow

17

Mapping Schema

SDL (Process Diagram) BPM (Process Thread Diagram)
Concept

Name s . Name within big arrow with
Property Name within output/input- thin arrow or half-ellips with
-mutual signal symbol thin arrow

DCL Rectangle with reserved
Property word 'DCL’ and name of Name within big arrow or
-intrinsic property half-ellips
State Ellips with name
Transformation N
II Rectangle with two extra Rectangle or half-ellips
lines and name with name

Acts on |:> Output signal symbol |::>—> Big arrow with thin arrow

Figure 3: Mapping schema 1 of 2

to an activity. This thin arrow indicates that the finishing event of the first
activity is identical to the starting event of the second activity. Thus, the
first activity has to be finished before the second can start.
Transformation: A transformation is the work that is done to transform
a thing. To transform a thing is to change some property of that thing.

18

Concept SDL (Process Diagram) BPM (Process Thread Diagram)
Two consecutive ellipses with Two consecutive big arrows, the
Event T name and at least one input second with name
symbol with name
@»
> Signal ‘ > Signal ‘ Signal ‘
Single thin arrow Multiple thin arrows
Singlg thin arrow Muiltiple thin arrows emanating from state emanating from a
Law emanating from state emanating from a state symbol indicating trarlrsf(larm_atlon s,\fmbo/
symbol indicating sympol indicating choice sequence indicating choice
sequence
Concept SDL (Block Diagram) BPM (Process Hierarchy Diagram)
Thing Rectangle with name Rectangle with name
[System Rectangle with d N Rectangle connected to
System el a;grz Z;,st;if?rve and above other
tangl
eeenes
Rectangle with name
Subsystem | [Re
inside system or other Rectangle connected to
[] rectangle and below other
rectangle
System
st}ll'u cture (System Rectangle with name

inside system or other
rectangle connected
with thin arrows

In SDL this is shown by a procedure-symbol, in BPM this is shown by an

Figure 4: Mapping schema 2 of 2

activity symbol. Procedure and activity maps directly onto each other.

State:

at a point in time.

19

The state of a thing comprises the property values of the thing
In SDL this is shown by an ellipse with a name.
SDL state is not mapped onto anything in BPM. However, concerning the

An

mapping of states in SDL onto BPM it is possible to argue like this: In
SDL, a transformation of a thing means that a thing has gone from a state
before the transformation to a state after the transformation. A procedure
transforms a thing between two states. In BPM, a transformation of a thing
means that is has passed from the starting event of an activity to the finishing
event of the activity. An activity transforms a thing between two events. So,
the places where the event symbols in BPM are drawn corresponds to where
the states are in SDL.

Event: An event is a change of states together with the transformation(s)
that are necessary in order to change the state. In SDL, an event is shown
by two named ellipses connected by arrows and other symbols. Most notably
among those other symbols are the in-signal symbol indicating that the con-
ditions for the start of the event are true, and any number of procedure
symbols according to the definition of the event. In BPM, two event arrows
connected by thin arrows and activity symbols comprise an event.

Laws: Laws show in what order the activities in a process should be
performed and under what conditions they should start and finish. Illegal
sequences of activities are not modeled. Laws are modeled in the same way
in both BPM and SDL.

4.4 Comparison and translation

In this section a comparison the process of making a normal strength cup of
coffee is made. This process is the only one compared. The other processes
can be analysed in an analogous way.

4.4.1 Comparison

The comparison of two process models made in different modeling languages
is made in the following way: a process in one model is described in terms of
the concepts in the mapping schema. The description made is used to make
a model of the same process in the other language. The resulting model are
used when comparing it to another model of the same process made in the
same language. When this is done a a conclusion about their similarity is
drawn.

In this example, we start by describing the SDL process in terms of the
the reference model concepts in the mapping schema. The description is
used to construct the process in the BPM notation. The simplified version
of the original SDL model is shown in figure 5 (left) and the constructed
BPM model is shown in figure 5 (right). The BPM model is used later in
the comparison.

1. Due to the occurrence of an event in the environment of the process
which result in change of mutual property 'Make bev(Choice)’, an
event in process thing ’controlunit’, that require the change of mutual

20

SDL BPM

controlunit

e}

Water
heating Beverage-
'in waterunit selection

Water_heated
Ilfrom waterunit

Make_bev(Choice)
[ffrom environment

Normal
selected

Bev(Choice)
lIto bevunit
Filter
application
Selection
Filter
Coffee applied
portioning
Il'in bevunit
Apply_filter "
Iito filterunit Portion._done '
[lfrom bevunit Waterheating
Filter Pour
application Iito waterunit
I1in filterunit
Filter_OK
Iffrom filterunit Coffee-
portioning

Waterpouring
Il'in waterunit

Water_heat
Ilto waterunit

Water_poured
Iifrom waterunit

Waterpouring

Bev_ready
Ito
environment

Figure 5: Comparison of SDL and BPM

property 'Make bev(Choice)’ occurs. The occurrence of the event in
"controlunit’ result in change of mutual property ’Apply filter’ and in-
trinsic property 'Choice’. By changing mutual property ’Apply _ filter’,
‘controlunit’ acts on process thing 'filterunit’.

2. Due to the occurrence of an event in process thing ’filterunit’ which

21

result in change of mutual property 'Filter OK’, an event in process
thing ’controlunit’, that require the change of mutual property Fil-
ter OK occurs. The occurrence of the event in ’controlunit’ result in
change of mutual property "Water heat’. By changing mutual prop-
erty "Water heat’, controlunit’ acts on process thing 'waterunit’.

3. Due to the occurrence of an event in process thing 'waterunit’ which re-
sult in change of mutual property "Water heated’, an event in ’controlu-
nit’, that require the change of mutual property "Water heated’ occurs.
The occurrence of the event in ’controlunit’ result in change of mutual
property 'Bev(Choice)’. By changing mutual property 'Bev(Choice)’,
"controlunit’ acts on process thing ’bevunit’.

4. Due to the occurrence of an event in process thing ’bevunit’ which
result in change of mutual property 'Portion done’, an event in ’con-
trolunit’, that require the change of mutual property 'Portion done’
occurs. The occurrence of the event in ’controlunit’ result in change
of mutual property 'Pour’. By changing mutual property 'Pour’, 'con-
trolunit’ acts on process thing ’waterunit’.

5. Due to the occurrence of an event in ’waterunit’ which result in change
of mutual property "Water poured’, an event in ’controlunit’, that
require the change of mutual property "Water poured’ occurs. The
occurrence of the event in ’controlunit’ result in change of mutual
property 'Bev_ready’. By changing mutual property 'Bev_ready’,
"controlunit’ acts on the environment of the process.

4.4.2 Result of comparison

The BPM model created is in figure 5 (right). Let us compare the BPM
model of the process of making a normal strength cup of coffee from figure
5 to the corresponding process thread in the BPM model from appendix A,
figure 7 , by placing them next to each other. The thread “Normal” is the
middle of the three threads. As we can see, they model different processes.
The activities are clearly not performed in the same order. Specifically, the
SDL process is a strict sequence of activities but the BPM process contains
concurrent activities. So, by the definition of process similarity the processes
are not similar. However, they are similar in the sense that both processes
produce a normal strength cup of coffee when the “Normal” button is pressed.
The processes do not show process similarity, but shows activity similarity
as it is defined in section 2.3.

4.4.3 Translation

This is a comparison of two models, where only one exists from the start.
First, we need to construct the non-existing one. In doing this construction

22

)

Beverage-
selection

Filter
Waterheating application

Water
Iiter

Coffee-
portioning

Waterpouring

BPM

Beverage-
iselection

U

Waterheating
G
s)

S1
Normal
selected

Water
heated

Filter

fapplication

Normal
selected

Filter
applied

we can say that we translate the first model into the other. What we can
expect from a translation is that the resulting models are similar. In this
example we translate a model from BPM to SDL. The translation is made in
the following way: The process thread “Normal” from the BPM diagram is
described in terms of the reference model concepts in the mapping schema.

(Coffee
portioning

Coffee
portioned

SDL
Waterpouring
Water Coffee
heated portioned
Coffee Water
portioned heated
‘ ‘ i ‘ ‘ ‘ ‘ " ‘ ‘

Figure 6: Translation from BPM to SDL

23

Subsequently, this description is used when constructing a SDL model of
the same process thread. The SDL model constructed is presented in figure
6 (lower), where the original BPM process thread is presented in figure 6

(upper).

1.

Due to the occurrence of an event in the environment of the process,
which results in a change of mutual property 'Make bev’, an event in
process thing 'Beverage selection’ that requires the change of mutual
property 'Make bev’ occurs. The occurrence of the event in 'Beverage
selection’ results in a change of the mutual property 'Normal selected’.
By changing mutual property 'Normal selected’ , 'Beverage selection’
acts on both process things "Waterheating’ and ’Filter application’.

Due to the occurrence of an event in the process thing ‘Beverage selec-
tion’, which results in a change of mutual property 'Normal selected’,
an event in process thing "Waterheating’ that requires the change of
mutual property 'Normal selected’ occurs. The occurrence of the event
in 'Beverage selection’ results in a change of the mutual property "Wa-
ter heated’. By changing the mutual property > Water heated’ , "Wa-
terheating’ acts on process thing "Waterpouring’.

Due to the occurrence of an event in the process thing 'Beverage selec-
tion’, which results in a change of mutual property 'Normal selected’,
an event in process thing 'Filter application’ that requires the change
of mutual property 'Normal selected’ to occur. The occurrence of the
event in 'Filter application’ results in a change of the mutual property
"Filter applied’. By changing the mutual property 'Filter applied’, 'Fil-
ter application’ acts on process thing ’Coffee portioning’.

. Due to the occurrence of an event in the process thing ’ Filter applica-

tion’, which results in a change of mutual property 'Filter applied’, an
event in process thing 'Coffee portioning’ that requires the change of
mutual property 'Filter applied’ occurs. The occurrence of the event
in ’Filter application’ results in a change of the mutual property 'Cof-
fee portioned’. By changing the mutual property ’Coffee portioned’ ,
"Coffee portioning’ acts on process thing "Waterpouring’.

Due to the occurrence of events in the process things 'Waterheating’
and ’Coffee portioning’, which results in a change of mutual properties
"Water heated’ and 'Filter applied’, an event in process thing "Water-
pouring’ that requires the change of mutual properties "Water heated’
and ’Coffee portioned’ to occur. The occurrence of the event in "Wa-
terpouring’ results in a change of the mutual property "Water poured’.
By changing the mutual property "Water poured’ , "Waterpouring’ acts
on the process environment.

24

4.4.4 Result of translation

The SDL model created in the translation is in figure 6 (lower). Now, let us
compare the BPM model and the SDL model by placing them next to each
other. We see that the models contains the same number of activities. The
activities are performed in the same order. Corresponding activities in the
process models are similar. We conclude that, according to the definition of
process similarity from section 2.3, the two models describe similar processes.

5 Conclusion

This paper has proposed and investigated a method for comparing process
models with respect to their semantic similarity. The method was described
and it was validated by trying it in a practical example. The conclusion
drawn from the validation is that the method indeed can be used to determine
whether two models are semantically similar or not.

Some experiences gathered when using the method in the practical exam-
ple are; although the SDL documentation was adequate, the BPM documen-
tation was not. This made it difficult to establish the semantics of the BPM
notation. The availability of good documentation of the languages used is
quite important. The Bunge-Wand-Weber ontology was not easy to use as
starting point for modeling and understanding process models. Wand and
Weber have concluded from their research that the ontology has deficiencies
with respect to dynamics. This makes it less than perfect when used for
analysing process modeling,.

Future research concerning the method include the following; an alterna-
tive ontology, that better handle dynamics should be used. An alternative
possible ontology is Frisco[6]. The method should be tried and tested in a
more complicated modeling task, perhaps in a business setting. The models
to be compared in the should be be made in other languages. Strong can-
didates when doing this are BML (Business Model Language)[11] and UML
Activity diagrams.

25

References

1]

2]

3]

[4]

18]

[10]

[11]

Simon, H. A., The Sciences of the Artificial , 3rd ed. ISBN 0-262-19374-
4, MIT Press, 1996.

Rumbaugh,J. Jacobson, I. Booch, G. The unified modeling language
reference manual. ISBN 0-201-30998-X. Addison-Wesley, 1999.

Bunge, M., Treatise on Basic Philosophy: Vol. 8: Ontology I: The Fur-
niture of the World. Reidel, Boston, 1979

Wand, Y., Weber, R., An Ontological Model of an Information System.
IEEE Transactions on Software Engineering, Vol. 16, No. 11, November
1990.

Wand, Y., Ontology as a foundation for meta-modelling and method
engineering. Information and Software Technology 38 (1996) pp. 281-
287. Elsevier.

Falkenberg, E. et al. Frisco, a framework of information system con-
cepts. ISBN 3-901882-01-4, IFIP 1998.

Downloadable from ftp://ftp.leidenuniv.nl/pub/rul/fri-full.zip, 2001-
06-05.

Georgakopoulos, D. Hornick, M. Sheth, A. An Overview of Workflow-
Management: From Process Modeling to Workflow Automation Infras-
tructure. Distributed and Parallel Databases, 2, (3), pp.119-153, 1995.

Rosemann, M. Green, P. Enhancing the Process of Ontological
Analysis—The “Who cares” Dimension. Paper submitted to the IS Foun-
dations Workshop, Department of Computing, Macquarie University,
Australia. 1999.

Allen, P., Frost, S., Component-Based Development for Enterprise Sys-
tems. ISBN 0-521-64999-4, Cambridge University Press, 1998.

ITU-T. Recommendation Z.100, Specification and Description Language
(SDL). Published by ITU, 1999.

Johannesson, P. Perjons, E. Design Principles for Application Integra-
tion. Downloadable from http://dsv.su.se/ perjons/caise226.pdf, 2001-
05-07. Also published in 12th Conference for Advanced Information Sys-
tems Engineering (CAISE), LNCS, Springer, 2000.

26

A BPM models

Make_be: Beverage-
- selection

Chooo\alé

L/

selected /

Filter
Waterheating application

Waterheating ap;ﬁ:ion

Coffee-
portioning
A For each of 2 iterations
Water
heated Coffee-
portioning

Milk-portioning
Milk
portioned,
Chocolate-
portioning Waterheating
I
C

{

Figure 7: BPM process thread diagram

Water
heated

Water
poured

Process Hierachy Diagram

Coffee machine

Beverage-
selection

Portion
beverage

Filterapplication

Supply water

Waterheating Waterpouring

Figure 8: BPM process hierarchy diagram

i

controlunit

Apply_filter
Iho filterunit

Filter_OK
Iffrom filterunit

Water_heat
Ilto waterunit

Figure 9: SDL process diagram. controlunit

B SDL models

Make_bev(Choice)
Ilfrom environment

Water_heat
/lto waterunit

111

DCL
Choice:string

Water_heated
JIfrom waterunit

Bev(Choice)
Ilto bevunit

Portion_done
Jlfrom bevunit

Pour
Ilto waterunit

Water_poured
/Ifrom waterunit

Bev_ready
Ito
environment

bevunit

Portion(Amount,coffee)

4

Portion_done

Ito
controlunit

Bev(Beverage)

Beverage

(Strong)

Counter :=2

(else)

DCL
Beverage:string
Counter:integer
Amount:integer := 1

(Chocolate)

Portion(Amount,
milk)

Portion(Amount,coffee)

Portion(Amount,chocolate)

Counter :=
Counter - 1

v
Sl
(0)

Portion_done
o
controlunit

4

Portion_done
o
controlunit

Figure 10: SDL process diagram. bevunit

v

waterunit filterunit

Water_heat (1 >
/Ifrom controlunit

Apply_filter
Waterheating Iffrom controlunit

Water_heated
Ilto controlunit

Filterapplication

A4

Filter_OK
/lto controlunit

Pour
Ilfrom controlunit

Waterpouring

Water_poured
Ilto controlunit

Figure 11: SDL process diagram. waterunit, filterunit

System Coffee machine

[Make_bev]

[Bev_ready]

controlunit

[Apply_filter]
[Filter_OK]

[Water_heat]
[Pour]
[Water_poured]

Signal
Make_bev(string)
Apply_filter
Filter_OK
Bev(string)
Portion_done
Water_heat

Pour
Water_poured
Bev_ready

filterunit

[Bev]
[Portion_done]

waterunit

bevunit

Figure 12: SDL block diagram

vi

