Lic-tema: Patterns and Views in Business Process Modelling

Två artiklar:

1) Ny artikel: Process pattern categorisation

2) IS-artikeln: Design principles for process models in enterprise application integration

Ny artikel: Process Pattern Categorisation

I. Bakgrund:

Behov av process pattern

· för att snabbare designa processer. Help the designer with solutions as an answer to questions how to handle complex requirements

· för att kontrollera att de designade processerna är korrekta/effektiva

· för att jämföra processer och se likheter/skillnader

II. Problem:
Det finns flera olika former av process pattern, byggda utifrån olika perspektiv. Beroende på situation kan man behöva använda processer utfrån ett visst perspektiv. Behov att lagra olika former av/perspektiv på process pattern enhetligt för att snabbt kunna hitta det pattern man vill ha.

III. Syfte:

Att kategorisera olika former av process pattern byggda utifrån olika perspektiv på ett enhetligt sätt

IV. Idé:

Vi har delat in de olika formerna av process pattern på följande sätt:

[image: image31.wmf]BIA x

Request

Order

Wait

for

Event

End

Customer

Request

Order2

BIA a

Respond

Order

 answer2

Customer

BIA a

Respond

Order

 answer

Workflow-processer

· beskriver koreografin, kontrollflödet, i processen

· är kontextfria, beskriver inget om värde - därför egentligen ej business process

· exempelvis Hofstedes synkroniseringsprocess, split-process

Utbyta värde-process (business process)

· kännetecknas av utbyte av värde mellan aktörer/parter

· Robinson Crusoe utförde inga sådana före Fredags ankomst

· exempelvis Reservation/Booking-processen

Skapa värde-process (business process)

· arbetsprocesser som att bygga ett bord, skriva en artikel, skriva en dikt, lägga en patiens. Det leder till frågan om värde kan vara både materiellt och ideellt

· Robinson Crusoe byggde hus, fällor, bord och stolar

IS-processer/

· stoppa in information i processen

· har med system att göra

· Robinson Crusoe karvade in en kalender i trädstammen

· kan återspegla utbyta värde-processer och Skapa värde processer

· exempelvis Consistency processen, Maintenance processen

[image: image2.wmf]Vad gör IS-processer?

Organisation

Lokalisering

Ändra

Bevara

Konservering

Transformation

Transmission

Lagring

Information interctions

· frågor om objektiv verklighet eller frågor vars svar är ett villkor för fortsatt kontraktskrovning eller sprida information om objektiv verklighet

[image: image3.wmf]Vilka typer av processer finns det (eller de universella

värdessfärerna

)?

Emotiv

aspekt

Kognitiv

 aspekt

Upplevelse-

aspekt

Behag/”det sköna”

Lek-processer

Autenticitet/”det sanna”

Bygga världsbild-

processer

Handlingsaspekt

Normriktighet/”det rätta”

Bygga norm-

proceser

Effektivitet/”det ändamålsenliga”

Instrumentella

processer

[image: image4.wmf]Målprocesser

Versalitet

(kvalitet i

aktiviteter)

Effektivitet

(kvantitet i

aktiviteter)

Metod-

förändring

(

input

-ändring)

Nya sätt att nå

gamla mål

Ökad produktivitet

Resultatförändring

(

output

-ändring)

Nya handlingsmål

Ökad prestanda

V. Olika perspektiv på process pattern

UMM-perspectivet:

The e-business Business Transactional Pattern metamodel provide a framework for constructing e-business model specifications. Common business transaction representations, which capture common structure and semantics applicable to specific business transactions.

A business transaction specifies the contract formation process between two business partners. A contract is used to legaly bind parties to a clearly stated intention, i.e. promise, obligation, and responsibilites of each party. A contract usually outlines what each party can do in the event the intended actions are not carried out.

Business transcactions=contract forming processes, pga att det finns alltid obligations hos parterna att delta i transaktionen

There are many types of contract formation processes:

Exampe1: An "Offer-and acceptance" contract is formed when a product order is accepted by a vendor. After the contract is formed, the seller provides the product and the buyer pays for the product.

Example 2: A claim has been accepted for payment.. This is a contract to perform the issuance of monetary payment some times after the acceptance (contract formation) of the claim.

Six/seven/eight property-value convention for business transactions identified.

1. Business Transaction

- contract formation, till exempel lägga en order

- bestämmer när ett kontrakt har skrivits

- en definition av "offer" slåt fast att ett "offer" kan konverteras till ett kontrakt genom att det accepteras.

- detta pattern används bäst för att modellera "offer and acceptance" business transaction process, som resulterar i en residual obligation mellan parterna att uppfylla kontrakt

2. Request/Response

- dynamisk info, till exempel erhålla BuyerID, erhålla offert ("obtain quote")

- ett business dokument som input och ett som output

- exempel: Ett request om pris och tillgänglighet resulterar inte i att responding party allokerar produkter inför framtida försäljning eller att requesting party är förpliktigad att köpa

- inget krav att någon part fullföljer kontrakt, tills skillnad från Business Transaction pattern. Specificerar utbyte av requesting and responding business document

- non-repudiation är optional. Acknowledgement of business accaptance är inte tillåten. Acknowledgement of receipt business signal krävs.

3. Request/Confirm
- statusinfo-request/confirm, till exempel erhålla status info

- ett business dokument som input och ett som output

- väldigt konstigt exempel i UMM-dokumentet. "For example, a request for authorisation to sell certain products expects a confirmation response to the request that confirms if the requestor is authorized or not authorized to sell the product."

- inget krav att någon part fullföljer kontrakt, tills skillnad från Business Transaction pattern. Specificerar utbyte av requesting and responding business document

- non-repudiation är optional. Acknowledgement of business accaptance är inte tillåten. Acknowledgement of receipt business signal krävs.

4. Query/Response

- static information, till exempel erhålla katalog

- ett business dokument som input och ett som output

- tillåter inte receipt acknowledgement eller business acceptance acknolwledgement

5. Notification

- specificerar utbyte av ett notifierande business dokument. En Requesting Role utför en "notification activity", som skickar ett "Document notice" till en "Responding Role. Kräver non-repudiation. Ingen response/confirm, endast acknowledgement of receipt business signal.

6. Notification of failure

- ett specialfall av ovanstående mönster

7. Information distribution

- specificerar utbyt av ett requesting business document. Modellerar informellt info-utbytes-business-transaction. - -- - kräver därför ingen non-repudiation. Ingen response/confirm, endast acknowledgement of receipt business signal.

EAI process patterns

I have below sketched some EAI pattern, on different levels.

The request&respond pattern:

In a message oriented process diagram, every request should be followed by a corresponding confirmation. (This pair of request and confirmation is optionally followed by a notification). This pattern can be observed in Fig 3b, where the visualised process BIA x receives a service request from the customer (the message "Order") and the process BIA x sends a service confirmation back to the customer ("Order answer"), after that the order message ("Order2") has been sent to BIA a and the message ("Order answer2") is received from BIA a. BIA a is responsible for inserting the order in apps and send an answer to BIA x, with information if the order is registered or not. This information is then sent to the customer ("Order answer") by BIA x.

[image: image1.wmf]Workflow

-processer

(

kontextfria

 processer/enbart kontrollflödet, koreografin)

Skapa värde-processer

(Arbetsprocess)

Utbyta värde-processer

IS-processer

- lagra

info

/

återspegla övriga

processer

ISA

ISA

ISA

Deontic

interactions

-upprätta

kontrakt/

bygga avtal

Fullfillment

interactions

-bygga/utföra

det som(kan ha)

lovats i avtal

Offer/

Accept

Övriga

ISA

Information

interactions

-fråga om

/förmedla/yttra hur

världen är

funtad

(Mänskliga)

interaktioner

/

transaktioner

Actions

(

Re

-)

organise

/

categorise

Create

Promise

Buy

/Rent

Build

Request

/

Cancel

Respond

/

Confirmation

Agree

-

ment

Notification

Kontextfria

actions

Speech

acts

Assertive

 (påstå)

Directive

 (fråga)

Commisive

 (lova)

Declarative

(slå fast tillstånd)

Play

Figure 3b

The notification pattern:
A notification means that the sender informs the receiver about the changes of some state of affairs. No respond back is involved in the pattern, see the notifications in Fig 3d.,
The reserveration&booking&cancellation pattern:

The differences between reserving and booking is that reserving is a preliminary stage to booking. A reservation could either be followed by a booking or a cancellation of the reserved resource. The distinction is important if the system automatically should cancel reserved resources that have not been booked after a certain time. For example, a person wants to book a telephone number. The system offers the customer several telephone numbers, which he/her can choose one number from, and thereby book the number. The system has to reserv the numbers offered to the customer for a certain time, so that no one else can reserve/book them during that time. The reserved numbers that are not booked after a certain time limit are automatically released by the system so that other people can reserve or book the numbers.

The upper path in diagram BIA x in Fig 3c visualise a process that receive the message "Get number proposals" from customer. The message indicate that customer wants to book a telephone number, but he/she shall to first choose a number suggested by the system (The message "Number proposals" sent to the customer contains several number proposals). The customer can either accept one of the suggested numbers (The message "Number chosen" received by BIA x from the customer) or ask for other suggestions (The message "New number proposals" received by BIA x from the customer). The latter case is visualised in the second path in Fig 3c. The third path visualises that the customer explicit does not want to book any of the suggested numbers. The fourth path visualises the case when the customer has not book any of the numbers before a certain time limit. (Note that the system has to reserve the number suggested to the customer, to prevent that somebody else reserves or books the number during the process. This is not visualised in fig 3c.)

Pattern description: In a process diagram, every reservation request should be followed by a corresponding booking request by the same actor. And every reservation request should be followed by a corresponding cancel message if the customer cancels the reservation or if the customer does not send a booking in a certain time.

[image: image5]
Figure 3c

Maintanance process pattern:

When using a Process Broker it is often desirable, but not necessary, to maintain redundant information in an internal or a master storage, which duplicates part of the data in the external applications. There are several reasons for this. First, it is possible that the external application can be updated without the Process Broker being notified. For example, the data about a customer can be changed by mistake when an external application communicates with applications not connected to the Process Broker. By using an internal storage the system has complete and correct data saved in one place.

Secondly, if the customer or customer service quickly requires information about, for example, an order, the system does not have to query several external applications; it only has to query the internal storage. It is not unusual that information about a customer is distributed over several applications. In that case, the internal storage is from a performance perspective, an important improvement of a system.

Thirdly, the opportunity to notify an internal storage of important events that occur in the system, makes it possible to create a data warehouse that is updated in real-time. A Process Broker can support data movement in real-time and it thereby can provide business managers with constantly new information, which can be aggregated.

The internal storage is handled by a maintenance process. The business managers and business designers first have to decide which events should notify the internal storage and then extend the processes with Send Message symbols, i.e. the messages that are sent to the maintenance process. Following this, the maintenance process has to be modelled. Fig. 3d shows a maintenance process (BIA y) that is handling subscription information. When a new telephone subscription is ordered, a message, New subscription, is sent from BIA a to the maintenance process, BIA y, and a new instance of that process, i.e. BIA y is created. The instance is then waiting for three different messages: Change subscription, if the customer wants to change the subscription, Customer info, if the customer wants to know what he or she has ordered, or Finish subscription, if the customer wants to finish the subscription. The maintenance process visualises the activities, i.e. updates and queries that can be performed on the storage. Furthermore, an aggregation made on the internal storage data can be modelled. For example, the process in Fig 3d counts how many times a certain subscription is changed. Note that notification do not need any respond back (see notification pattern). A maintanance process takes care of a notification and stores the information carried by the notification.

[image: image6.wmf]BIA y

Notificatio

n

New

subscription

End

Customer

BIA a

Wait

for

Event

Notificatio

n

Change

subscription

Request

Customer

info

Notificatio

n

Finish

subscription

BIA b

BIA c

Respond

Customer

info

answer

Count

number

of changes

Customer

Figure 3d.

The consistency check pattern:

However, the redundant information in the internal storage and the external applications, requires a process for handling possible inconsistencies. This consistency process, checks whether there is any inconsistency and takes appropriate actions when any inconsistency is detected. The process send messages to the actual apps and receive information about the information in the apps, this is then compared with the information in the redunant storage.

Figure 3e.

Update app pattern (interface process pattern):
An update app process handles the interaction with the external applications or people. An uppdate app process (in the Figure 3f, BIA x) receive and send messages between other processes (in the Figure, BIA a) and external applications (in the Figure, App A) and people. If an app does not answer during a certain time, a timer expire (in Figure, Timer T1) and a message can be sent back to the requester or an operator (in Figure, System operator) or some processes (in the Figure, BIA b) handling this situation.

[image: image7.wmf]Request

Update

Respond

Update

answer

2

BIA a

System

Operator

BIA a

BIA x

Request

Update2

Wait

for

Event

Respond

Update

answer

Start

Timer

T1

Expire

Timer

T1

BIA a

Respond

Update

answer

Notification

App A does

 not answer

End

End

APP A

APP A

Figure 3f

Synchronisation apps pattern:

A synchronisation process synchronises a number of uppdate app pattern processes.

[image: image8.wmf]Request

Update

order

BIA k

BIA a

Request

Update

app A

Wait

for

Event

BIA x

Request

Update

app B

BIA y

Respond

Update

answer app A

Respond

Update

answer app B

Both App A

and App B

answered?

No

Yes

Respond

Update

order answer

End

BIA k

BIA x

BIA y

Figure 3g

Release resource pattern:

A release process cancel performed updates. This is a pattern used when for example two apps should be updated but one of the apps does not answer or can not be updated for some reason. In this pattern the app that was updated must be rolled back. This process pattern looks like the update app pattern.

Hinder duplicate instances patterns:

This process pattern will hinder serveral instances to start by misstake, for example if a customer push a button several time on the cellphone, which indicate that he/her wants to transfer money from bank account to a telecom operator prepay account. The customer wanst to do that transfer once, but if he/she push the button several time, the system must hinder that.

Figure 3h

Workflow-perspektivet

Delar in process pattern på följande sätt:

Catalog of patterns:

· Basic control patterns

· Advanced branching and synchronisation patterns

· Structural patterns

· Patterns involving multiple instances (MI)

· State based patterns

· Cancellation patterns

Examples of patterns:

Parallell Split (AND-split, fork, parallel routing)

Description:
· A single thread of control splits into multiple threads of control which can be executed in parallel. This pattern is required when two or more activities need to be executed in parallel.

[image: image9.wmf]A

B

C

and

Figure 6

Examples:

· The execution of the activity payment enables the execution of the activities ship_goods and inform_customer in parallel.

EAI examples:

· After activity/task new_cellphone_subscription_order the task/activity insert_new_subcription in Registry app (Home Location Registry app) and insert_new_subcription in Mobile answer app are executed in parallell

· After receiving the message new_cellphone_subscription_order two messages are sent in parallel: one to Registry app (Home Location Registry app), insert_new_subcription, and one to Mobile answer app, insert_new_subcription.

· After the message Registry_app_does_ not_ answer is received the same message is routed in parallel to both the system operator and the customer web client.

· After the subcription order is received the Registry application and the CRM application are updated in parallel.

BML solutions:

[image: image10.wmf]task A

M1

 (from BIA z)

End

BIA x

BIA a

BIA a

BIA z

M2

 (from BIA a)

BIA b

M3

 (to BIA b)

M2

 (to BIA x)

BIA x

BIA c

M4

 (to BIA c)

BIA b

activity B

M3

 (from BIA x)

BIA x

BIA c

BIA c

activity C

M4

 (from BIA c)

BIA x

Figure 7

Synchronisation (AND-join, synchroniser, rendezvous)

Description:
· A point in the process where multiple parallel activities/subprocess/threads converge into a single thread of control, thus synchronising multiple threads. An activity can be started only when all the parallel threads are completed. ”Synchronise two or more parallel threads of execution/control”

[image: image11.wmf]A

B

C

and

Figure 9

Examples:

· Activity archive is enabled after the completion of both the parallel activities send_tickets and receive_payments.
EAI examples:

· Activity Inform_customer_about_order is executed after the completion of the parallel tasks/activities insert_new_subcription in Registry app (Home Location Registry app) and insert_new_subcription in Mobile answer app.

· The message Order_information is sent to the customer after both the messages Insert_new_subcription_answer from Registry app and insert_new_subcription_answer from Moblie answer app is received.

· The customer is informed about the status of the order after both the Registry app and Mobile answer app is updated.

Solutions:

This pattern is easily supported by all workflow engines that support parallel execution.

Incorrect use of AND-join may easily lead to deadlock.

Two basic strategies among workflow engines:

1) Usually an explicit synchronisation construct (routing node) is available which is called a synchroniser. See the AND-construct in figure 9.

2) The alternative is to have a special start condition for an activity that have more than one incoming transitions.

Two approaches of the actual semantics of the synchroniser:

1) Leading workflow products will ignore multiple triggering, which means that it will ignore triggering an activity twice after a synchroniser. If for example an acticity C is preceded by a synchroniser having transitions from activity A and B as input, this synchroniser will ignore termination of instances of activity A if it has already seen one such instance and is waiting for the termination of an instance of activity B.

2) An alternative approach would be to simply keep track of the number of ”extra” instances of activity A that terminated while waiting for activity B and try to match them later with corresponding instances of activity B.

In figure 11 the synchronisation is rather simple because the message M2 that is sent from an instance of BIA x to an instance to BIA b, contains the address/id/key back to the instance of BIA x. The created instance of BIA b use the address/id/key to send the message M3 back to the right instance of BIA x.

[image: image12.wmf]End

task A

M2

 (from BIA x)

End

task B

End

BIA b

BIA x

BIA a

BIA z

BIA x

M1

 (from BIA z)

BIA a

M2

 (to BIA a)

M3

 (to BIA x)

M4

 (to BIA b)

M4

 (from BIA x)

M5

 (to BIA x)

BIA x

BIA a

BIA x

BIA x

BIA b

BIA b

Wait for

Event

M3

 (from BIA c)

M5

 (from BIA b)

Has

M3 and M5

received?

Yes

No

M6

 (to BIA c)

BIA c

task C

M6

 (from BIA x)

End

BIA c

BIA x

M7

 (to BIA x)

BIA x

Wait for

Event

M7

 (from BIA c)

BIA c

M8

 (to BIA z)

BIA z

Figure 11

Exclusive Choice (XOR-split, switch, decision, conditional routing)

About conditional routing, see also multiple choice.

Description:

One execution path from many alternative is chosen based on a decision or ("or"? Petia, why "or"? Should it not be "e.g.") workflow control data. Exclusive choice is a point in the workflow process where one of several branches is chosen.

[image: image13.wmf]A

B

C

xor

Figure 14

Example:

The task evaluate_claim is followed by either pay_damage or contact_customer, not both.

EAI examples:

· The manager is informed if the order exceeded $ 600, otherwise not.

· A message Order is received and is followed by either a send message Inform_manager or not depending if the order exceeded $ 600 or not.
· A message payment has received and is followed by a send message Payment_OK or Payment_not_OK.

Solutions:

Two basic strategies among workflow engines:

1) Some workflow engines provide an explicit construct/symbol for (the implementation of) the exclusive choice pattern. This is the matter for BML, see figure 15.

[image: image14.wmf]Automated

Business

Decision

x>7

X=<7

Figure 15

In BML the conditions for exlusive choice are Boolean expressions which are evaluated from the top downwards and the first condition are returning the value true is taken.

2) The workflow designer has to emulate the exclusivness of the choice by a selection of transition condition. Is figure 16 a correct interpretation of that statement?

[image: image15.wmf]A

B

C

X > 7

X <= 7

Figure 16

Multiple Choice (OR-split, selection, conditional routing)

About conditional routing, see also Exclusive choice

Description:
Several execution paths can be chosen from many alternatives. Multiple choice is a point in the workflow process where one or more branches are chosen based on decision or ("or"? Should it not be "e.g.") workflow control data.

[image: image16.wmf]A

B

C

 or

Figure 17

The multiple choice pattern generalises the parallel split and exclusive choice patterns, see figure 18.

[image: image17.wmf]A

B

C

xor

A

B

C

and

Figure 18

Example:

· After executing the activity evaluate_damage the activity contact_fire_department or the activity contact_insurance_company is executed. At least one of these activities is executed. However, it is also possible that both need to be executed.

EAI examples:

· After the message daily_paper_subscriptions is received the messages register_evening_paper_subscription or register_ morning_paper_subscription is sent. At least one of these activities is executed. However, it is also possible that both need to be executed.

· After the activity order_received the activities insert_order_in_Order_app or inform_department_about_order (if it exceed $400) or inform_ manager_about_order (if it exceed $600) At least one of these activities is executed. However, it is also possible that two or three activities need to be executed.

Two approaches among workflow engines:

1) Conditions can be specified on transitions, i.e. the OR-split can be captured directly.

[image: image18.wmf]A

B

C

 or

X>5

X<7

Figure 19

2) Conditions is not be specified on transitions, and instead AND-split and XOR-split building blocks are offered, i.e. a combination of the two. See Fig 20a and BML solution 20b

[image: image19.wmf]A

B

C

 and

X>5

X<7

xor

xor

X<=5

X>=7

Figure 20a

BML solution

[image: image20.wmf]M1

 (from BIA a)

Automated

Business

Decision

x>7

X=<7

BIA x

Automated

Business

Decision

x<5

X=>5

BIA y

M2

 (from BIA y)

M2

 (to BIA x)

BIA a

BIA x

BIA y

Figure 20b
Simple Merge (XOR-join, asynchronous join, merge)

Description:

Two or more alternative execution paths merge, i.e. two or more alternative branches come together without synchronisation
Figure 21 shows that C is executed as soon as one of A or B is executed.
[image: image21.wmf]A

B

C

xor

Figure 21.

Examples:

· After the activity payment_received or the activity credit_granted the activity car_delivered is followed, i.e. the car is delivered to the customer. However, a car should not be delivered twice if both activities is executed.

EIA examples:

· After the message payment_received or the message book_ordered, the message deliver_book is sent. However, the book should not be delivered twice if both message have the same order_number, i.e. the same customer order the same book.

Solutions:

Some workflow engines can automatically garantees that not more than one incoming transition can be triggered. How? 1) The design of the models? 2) Because of the workflow language? 3) the implementation of the workflow engine?

The BML solution when instances of BIA a and BIA b have knowledge of the address to the instance of BIA (figure 22):

[image: image22.wmf]task A

M1, M2,

M3

End

BIA c

BIA a

M1

 (to BIA c)

task B1

End

BIA c

BIA a

Message

M1, M2,

M3

arrived?

Yes

No

End

task C

M2

 (to BIA c)

BIAb1

BIA c

End

task B2

M3

 (to BIA c)

BIAb2

BIA c

BIA b1

BIA b2

Wait

for

Event

M1, M2,

M3

BIA a

BIA b1

BIA b2

Figure 22

However, some workflow engines require exclusive choise before simple merge, see figure below:

[image: image23.wmf]D

xor

A

B

C

xor

Figure 24.

The corresponding BML solution is visualised in fig 24. In this case the address to BIA d is known:

[image: image24.wmf]task C

M5

 (from BIA c)

End

BIA d

BIA c

M5

 (to BIA d)

task B

M4

 (to BIA d)

End

BIA d

BIA d

BIA c

BIA b

M4

 (from BIA b)

BIA b

End

task D

BIA x

Choose

one

alternative

Alternative 2

Alternative 1

M3

 (to BIA a)

BIA c

M2

 (to BIA b)

BIA b

End

End

M3

 (from BIA x)

M2

 (from BIA x)

BIA x

BIA xy

End

task A

M1

 (to BIA x)

BIA x

BIA a

M1

 (from BIA a)

 Figure 25

Multiple Merge

Description:

A point in a workflow process where many execution paths merge without synchronising, i.e. two or more branches reconverge (sammanstrålar) without synchronisation. If more than one branch get activated, the activity (D in figure 26) following the merge is started for every incoming branches that gets activited.

[image: image25.wmf]D

xor

A

B

C

and

Not included in Simple merge

Executed as soon as B or C

Compare with figure 24.

are executed, and executed

as many times B and C are

executed.
Figure 26

Example:

· Sometimes two or more branches share the same ending. Two activities audit_application and process_applications are running in parallel which should both be followed by an activity close_case, which should be executed twice if the activities audit_application and process_applications is excuted. Petia, is this a correct interpretation of the pattern?

Discriminator

A special case of N out of M join, where N=1. M is the number of parallel paths and N is

the number of completed paths.

The pattern is also converse of Multiple merge, see figure 26..

Description:

This pattern merge many execution paths without synchronising. Only one activity should be instantiated after merge. The discriminator is a point in the workflow process that waits for a number (N=1) of incoming branches to complete before activating the subsequent activity. From that moment on it waits for all remaining branches (all predefined incoming message types in BML) to complete (M) and ignores them. Once all incoming branches have been triggered the workflow process instance it reset itself so that a new instance can be trigged again.

[image: image26.wmf]D

disc

A

B

C

and

Fig 28

Example:

· A paper needs to be sent to external reviewers. The paper is accepted if both reviewers are positive. But if the first review that arrive is negative, the author should be notified without having to wait for the second review.

Petia, is this a correct exampel? According to the description of discrimintor once all incoming branches have been triggered the workflow process instance it reset itself so that a new instance can be trigged again. Is this covered by the exampel? No! Maybe the pattern presume that the workflow engine do not handle parallel instances of a process!??. Furthermore, the example presume that the incoming execution paths are checked: is the review postive or negative. Is that part of the describd pattern, i.e. is N in a N out of M join the same as "number of completed paths which make a condition come true", see figure 29d?

Another example:

· To improve query response time, a complex search is sent to two different db´s. The first one that comes up with the result should procede the flow. The second result is ignored.

N out of M join (partial join, discriminator, custom join)

A generalisation of the basic Discriminator pattern. M is the number of parallel paths and N is

the number of completed paths.

Description:

The pattern merge many execution paths, i.e. perform partial synchronisation and execute subsequent activity only once, i.e the subsequent activity should be activiated once N path have completed. Completion of all remaining path should not execute the actual activity, but should be they should be "fired"/"collected". Once all incoming branches have "fired"/are "collected", the join resets itself so that it can fire again.

Example:

· A paper needs to be sent to three external reviewers. Upon receiving two reviews the paper can be processed. The third review can be ignored, but need to be .
EAI examples:

· After an order is received the order is going to be inserted in three apps, a Registy app, a CRM app and a Transport app. As soon as the Registry and the CRM apps sent messages back informing that the order is registred in the apps, the customer will be informed that the order is registered. However, the system must also receive a message informing that the order is registered also in the Transport app. If not, this must be handled manually by an operator. But the customer is not going to be informed about that.

Solutions

Most of the workflow products do not provide construct that should allow for straightfoward implementation of the N-out-of-M join.

Solution 1:

Some workflow engines provide support for Custom triggers, which define the condition typically using some internal script language that would activate the activity when evaluate true.

Downside with this solution: The script solution do not visualise the solutions in the models, which thereby become harder to understand.

Solution 2:

By combining Discriminator and Synchronisation one can achieve the desired sematics, although the workflow definition becomes large and complex.

[image: image27.wmf]A

B1

B2

and

B3

and

and

and

and

and

and

disc

C

Figure 31

Synchronising Merge (synchronising join)

Description:

A point in the workflow process where multiple paths coverge into one single thread. If more than one path is taken, synchronisation of the active thread needs to take place. If only one path is taken, the alternative bransches should recoverge without synchronisation. This could only be decided at runtime, when we can tell whether one or several tasks are executed.

The difficulty is to decide when to synchroinise and when to merge. The problems are that

1) Synchronising alternative thread may leads to potential deadlocks

2) Merging parallel flows may lead to the undesireble multiple execution of activities, that follow the standard OR-join construct.

[image: image28.wmf]Synchronise

parallel

threads, not

merge. If

merging, the

result can be

undesireble

multiple

execution of

activities.

Merging

alternative

threads, not

synchronise

. If

synchronise

, the

result can be

deadlock.

Figure 33

[image: image29.wmf]C

xor

A

B

C

and

A

B

Sync/AND-join

Merge/XOR-join

Figure 34

Example:

· After either or both the activities Contact_fire_department and Contact_insurance_company have been completed (depending on whether they are executed at all) the activity submit_report needs to be performed, exactly once. But the submit_report should include information from all the executed activities.

EAI example:

· The customer order include a booking of either a travel ticket or both the travel ticket and a hotel. A booking message is sent to the apps of interest. After the booking_answer message is received from the apps the message inform_cusomer is sent to the customer. The message should include information about the booked travel ticket and hotel.

[image: image30.wmf]Evaluate_damage

Contact_insurance_company

Submit_report

Contact_fire_department

or

Sync/

merge

Multiple

choise

Sync/merge

Figure 35

Solutions:

1. Passing a false token for each transition that evaluates to false and a true token for each transition that evaluates to true. The merge will wait until it receives tokens from all incoming transitions.

2. Passes a token through every transition in a graph. This token may or may not enable the execution of an activity depending on the entry condition. In this way every activity having more than one incoming transition can expect that it will recieve a token from each one of them, thus deadlock cannot occur.

3. Avoid explicit use of OR-split and implement it as a combination of AND-split and XOR-split. This way we can easily synchronise corresponding branches by using AND-join and XOR-join constructs.

MI (multiple instances) requiring synchronisation

Description:

For one case many instances of one activity can be generated and these requiring synchronisation. The number of instances may not be determined at design time (as in the while loop). After completing all instances of that activity another activity has to be started. That is, sometimes it is required to continue the process only after all instances of an activity are completed without a priori knowledge of how many instances that were created at runtime.

Examples:

· When booking a trip, the activity book_flight is executed multiple times if the trip involves multiple flights. Once all booking are made, the invoice is to be sent to the client. How many booking made are determined at runtime.

· The requisition of 100 computers results in a certain number of deliveries. Once all deliveries are processed, the requisition has to be closed.

Solutions

Most workflow engines do not allow multiple instances. Languages that do allow multiple instances may not provide any constructs that allow for synchronisation of these instances.

1. If the number of instances is known at design time, then it should be easy to synchronise these using basic synchronisation.

2. If the language supports multiple instances and decomposition that does not terminate unless all activities are finished, then muktiple instances can be synchronised by placeing a sub-flow containing a loop generating the multiple instances.

3. If the number of instances is known at some point during runtime, all created instances can be synchronised. But how receive that information.

4. Use of external triggers once each instance of an activity is completed, an event should be sent. There should be antoher activity in the main process waiting for events. This activity will only complete after all events from each instance are received.

Producer Consumer

Producer Consumer with Bounded Queue

Messaging Communication

Messaging Coordination

Bulk Message Sending

Bulk Message Recieving

MIT-handbook perspektivet

VI. Related research

Målprocess-perspektiv

_1066544296.doc

D

xor

A

B

C

xor

_1066649002.doc

BIA y

Notification

New

subscription

End

Customer

BIA a

Wait

for

Event

Notification

Change

subscription

Request

Customer

info

Notification

Finish

subscription

BIA b

BIA c

Respond

Customer

info answer

Count

number

of changes

Customer

_1065847888.doc

A

B

C

xor

A

B

C

and

_1065755686.doc

D

disc

A

B

C

and

