&,
2 % S

TN
Stockholms
universitet

Requirement Modelling
with UML Use Case

Erik Perjons

Questions to answer Seratar

e What is a requirement?

e What is a requirements specification?

e What is requirements engineering?

e Why are requirements important?

e What types of requirements exist?

e How are requirements captured and documented?

e How can UML use cases support requirements engineering?

& W,
Real World and Models o

Stockholms
universitet

Business process model
of business activities

(in UML Activity diagram)
Domain model

of business
concepts

(in UML Class
diagram)

Human interaction with % E D)
software systam
(in UML Use cases)

Interaction
between software
objekts

(in UML Sequence

diagram)
System model of
software objects
(in UML Class
diagram)
The real world Graphical models/diagram

& W,
Real World and Models o

Stockholms
universitet

Business process model
of business activities

(in UML Activity diagram)
Domain model

of business
concepts

(in UML Class
diagram)

Human interaction with % E D)
software systam
(in UML Use cases)

Interaction
between software
objekts

(in UML Sequence

diagram)
System model of
software objects
(in UML Class
diagram)
The real world Graphical models/diagram

Requirement Engineering (in Real World)

Business process model
of business activities
(in UML Activity diagram)
Domain model

of business
concepts

(in UML Class
diagram)

Human interaction with fc E D)
software systam

(in UML Use cases)

Interaction
between software
objekts

(in UML Sequence

diagram)
System model of
software objects
(in UML Class
diagram)
The real world Graphical models/diagram

Requirement Engineering Models

Business process model
of business activities
(in UML Activity diagram)

Domain model
of business
concep

(in UML gfass
diffgram)

Hldman interaction with fc E D)
so\tware systam

(in YML Use cases)

Interaction
between software

(in equence

diagram)
System model of
software objects
(in UML Class

diagram)

The real world

Graphical models/diagram

Problems, Needs, and Requirements Stockholms

universitet

« Requirements have their foundation in problems and needs.

« A problem can be seen as something undesirable — or you can also say — a
problem is a gap between the current state and a more desirable state. A problem
describes something that does not work, works poorly, or is inefficient. It focus on

something negative in the current situation (as-is).

- Examples of problems:
e Patients have to wait a long time in the phone queue to book appointments.
e The electronic health record system is slow, causing staff to lose valuable time

interacting with patients.

Problems, Needs, and Requirements Stockholms

universitet

« A need, on the other hand, is the desired state that must be achieved in order to
eliminate the problem gap. A need expresses a wish or expectation for the future,

(while the problem focus on something negative in the current situation). Moreover

needs should be described without pointing to a specific solution.

- Examples of needs:
« Patients need to be able to book appointments quickly and easily

« Staff need quick and easy access to patient information in order to work

efficiently and provide high-quality care

Problems, Needs, and Requirements Stockholms

universitet

A requirement describes what a solution should do to meet a need, without
prescribing too much in detail how this should be done. This latter is important
because overly detailed requirements may lock the design too early, limit creativity,
and prevent alternative details of a solution from being explored.

- Examples of requirements

« The system shall allow patients to book appointments online through a self-

service portal.

« The health record system should support quick access to patient information by
providing simplified navigation, clear search functions, and a minimal number

of clicks to reach key data.

Problems, Needs, and Requirements Stockholms

« A requirement can be defined as a desirable property, feature, attribute, quality, or
capacity of a solution, in our case an IT system. However, a requirement could also

concern a process, a method, or something else, but in this presentation we focus

on IT system requirements.

Summary of the differences: Stockholms
Problems, Needs, and Requirements

« A problem is often formulated as something negative in the current situation (as-is). It

answers the question: “"What is not working today?”

« A need is formulated as something desirable or as a possibility, without directly referring
to the problem itself. In other words, it expresses a wish or expectation for the future (to-

be). It answers the question: "What should the user be able to do or experience instead?”

« A requirement is a concrete statement of what the solution (e.g. the IT system) must
deliver in order to meet the need. A requirement always relates to the solution (e.g. the IT
system). It specifies what the solution must do, often in terms of functionality or quality. It

answers the question: “"What shall the solution provide or enable, in practice?”

Functional and Non-Functional Requirements

« Requirements are usually categorized into two main types: functional and non-

functional.

« Functional requirements specify the functions the system should perform —
essentially what the system should do. A good guideline is that a functional
requirement requires the user of the system to act using the IT system, such as
clicking, selecting, or writing something in the user interface using, for example, a

mouse or keyboard.

« Examples of functional requirements:
e The system shall be able to register an order.
e The system shall be able to register a new customer.

e The system shall be able to find a placed order in the system.

Functional and Non-Functional Requirements

« Requirements are usually categorized into two main types: functional and non-

functional.

« Functional requirements specify the functions the system should perform —
essentially what the system should do. A good guideline is that a functional
requirement requires the user of the system to act using the IT system, such as
clicking, selecting, or writing something in the user interface using, for example, a

mouse or keyboard.

« Examples of functional requirements:
e The system shall be able to register an order.
e The system shall be able to register a new customer.

e The system shall be able to find a placed order in the system.

Functional and Non-Functional Requirements

 Non-functional requirements specify how the system should perform these
functions specified by the functional requirements. Non-functional requirements are
about the overall usability, security, and performance of the system.

« Examples of non-functional requirements:
« The system shall be easy to use.
« The system shall support secure communication.
« The system shall be able to handle 100 orders in parallel.

« The system shall be able to integrate with Microsoft platform systems.

How to Formulate Requirements Stockholms

When writing requirements, it is important that they are:
Clear - easy to understand.
Unambiguous - only one possible interpretation.
Verifiable - it should be possible to test if the requirement is fulfilled.

Consistent - not conflicting with other requirements

In requirements engineering, we often distinguish between:
. “Shall” requirements — mandatory requirements, must be fulfilled.

. “Should” requirements - desirable requirements, nice-to-have, but not strictly
mandatory.

How to Formulate Requirements Stockholms

Recommended form for formulate requirements:
1. Subject (the system or component): “The system ...” or “The module ..”
2. Modal verb (shall / should): “shall” for mandatory, “should” for recommended.

3. Action / property: description of what the system should/shall do

Examples:

The system should provide a search history to simplify repeated searches (desirable
(should) functional requirement)

The system shall respond to search queries within two seconds (mandatory (shall)
non-functional requirement)

Requirement specification R

A requirements specification is the document where you actually specify the
requirements of the system.

The core of this specification is the list of functional and non-functional
requirements, but often it also includes the context in which these requirements
apply: the problems to be addressed by the solution, the needs, the as-is and to-be
processes that the IT system aims to support, the main concepts used in the
organization, and the existing IT infrastructure, which the IT system needs to be part
of.

I i I Stockholms
Requirement Engineering Stockholm:
Requirements engineering (RE) can be defined as the systematic process of eliciting,

analyzing, documenting, validating, and managing the requirements of a system.

Key Activities in Requirements Engineering:
Elicitation - discovering and gathering requirements from stakeholders (for example using interviews, workshops,
and observations).

Analysis & Negotiation - checking the requirements for conflicts, prioritizing the requirements, and refining them

so they are clear, consistent, and feasible.

Specification - documenting requirements in a clear, structured, and testable way (including, for example,

requirement lists, graphical models, and use cases).

Validation - ensuring that the requirements reflect the real needs of stakeholders and that they are correct and

complete.

Management - tracking requirements over time, handling changes, and maintaining traceability

Why do we need RE? Stockholms

universitet
Research has shown that a major reason for failure in system development is
shortcomings in requirements engineering — very often because no or only a
limited set of requirements are gathered, and not all stakeholders have been involved

before development starts. This can result in a system that no user actually wants.

Another problem is that users often do not know what requirements they want —
it is difficult to identify requirements before the users have worked with the system in a

real-world setting.

Requirements are central in system development, and they usually drive the

development process.

Use Case Model

Stockholms
universitet

+ Use case model - consists of Use case diagram and Use case descriptions

Registrer
for course

Register
for exam

J \

Use casel: Register for exam

Use case: Registrer for course

Actor
Goal: Actor: Student

Goal: Student shall be registered for the
Main course

1) Student wants to see available

courses
2) System presents the courses
3) Student chooses a course

Main scenario:

the chosen course

4) Systemet confirms registration of

|

UML Use Case Diagram stockholms

universitet

A use case diagram shows the actors, the use cases,

and the associations between actors and use cases | Actor | \ Use Case

An actor is the user of the system. More precisely, an \

actor is a role played by someone or something, like in
theater when an actor plays a certain role. But an {i

actor could also be a software system. /

A use case is represented as an ellipse with a phrase, | Association

for example “Register for course” or “Register for

exam.”

Associations show which actors can perform which

use cases

UML Use Case Diagram

« A use case diagram shows the actors, the use cases,

and the associations between actors and use cases

« An actor is the user of the system. More precisely, an
actor is a role played by someone or something, like in
theater when an actor plays a certain role. But an

actor could also be a software system.

. A use case is represented as an ellipse with a phrase,
for example “Register for course” or “Register for

exam.”

. Associations show which actors can perform which

use cases

g
W?k
L]

/4"0 + S‘f{\

Stockholms
universitet

~NERS/
<
L)
~
Opy0©

Registrer
for course

Register
for exam

System

Use Case Description

A use case description presents the

interaction between the actor and the

system. It includes the use case name,

the actor, the goal, and the main

scenario (step-by-step interaction).

Stockholms
universitet

Actor ‘ ‘ Use Case

Use case: Registrer for course

Actor:
Goal:

Main scenario:

Student
Student shall be registered for the course

1) Student wants to see available courses
2) System presents the cources

3) Student chooses a course

4) Systemet confirms registration

\ Reglstrer
for course
:(): Register
for exam

Association

Use Case Diagram and Functional Stockholms
Requiremets

Use cases are not the same thing as functional requirements

Use cases show the interactions between the actor and the system that lead to a
valuable result for the actor. They describe the functionality of the system from

the user’s perspective.

Use cases can, therefore, be seen as a technique to capture and structure

functional requirements.

Use cases do not capture non-functional requirements.

Use Cases and Functional Requiremets

Example: Use Case: Book an Appointment

. Actor: Patient
e Goal: Schedule a medical appointment.

. Main Scenario:
The patient selects a date and time.
The system checks availability.
The system confirms the booking.

Derived functional requirements from the use case:

High-level requirement (based on the use case
name):

The system shall make it possible for the patient
to schedule an appointment.

Detailed requirements (based on the steps in the
scenario of the use case description):

The system shall allow the patient to select a
preferred date and time for an
appointment.

The system shall check the availability of
doctors for the selected time slot.

The system shall confirm the booking and
provide a confirmation number.

Use Case Description— Main scenario

The main scenario should be divided

into numbered steps.

Each step must be a simple, concise
statement of what is communicated

between actor and system.

The acting party (user or system)

must be stated first in the step.

Should not include XOR-splits; use a
single scenario. Alternatives and
exceptions go in Extension scenarios

(see next page)

Use Case: Book Repair Appointment
Actor: Customer
Goal: A repair time is booked

Main scenario:

1) The customer requests available time slots

2) The system returns available time slots

3) The customer selects one of the available time slots
4) The system confirms the selected time slot

Extension scenarios:

2a) No time slots are available
1. The system informs the customer that no time slots are available

2. The system asks customer to select another function or leave system
3.The customer chooses to leave the system
2b) The system cannot access available time slots
1. The system asks the customer to try again or select other function
2. The customer tries again

3. The scenario continues from step 2 in the Main scenario

Use Case Description—- Extension scenarios

In addition to the main scenario
(a single normal flow), a use
case description can also
contain extension scenarios
(exceptions or alternative flow).
These describe what happens
when something goes wrong
(exception) or when the actor
chooses another path
(alternative flow), see use case

description (to the right).

Use Case: Book Repair Appointment
Actor: Customer
Goal: A repair time is booked

Main scenario:
1) The customer requests available time slots
2) The system returns available time slots
3) The customer selects one of the available time slots
4) The system confirms the selected time slot
Extension scenarios:

2a) No time slots are available
1. The system informs the customer that no time slots are available

2. The system asks customer to select another function or leave system
3.The customer chooses to leave the system
2b) The system cannot access available time slots
1. The system asks the customer to try again or select other function
2. The customer tries again

— 3. The scenario continues from step 2 in the Main scenario

Use Case Description — Extension scenarios

Condition for the first extension in step 2 of the main
scenario (called 2a). That is, if the condition is true,
the first extension is performed

Step-by-step extension scenario
Condition for the second extension in step 2

(called 2b). That is, if the condition are true,
the second extension is performed

Step-by-step extension scenario —_

Use Case: Book Repair AT:)pointment

Actor: Customer

Goal: A repair time is booked

Main scenario
1) The customer requests available time slots
2) The system returns available time slots
3) The customer selects one of the available time slots
4) The system confirms the selected time slot

Extension scenarios:

2a) No time slots are available (condition)
1. The system informs the customer that no time slots are available

2. The system asks customer to select another function or leave system
3.The customer chooses to leave the system
2b) The system cannot access available time slots (condition)
1. The system asks the customer to try again or select another function
2. The customer tries again to requests available time slots
3. The scenario continues from step 2 in the Main scenario

Use Case Diagram - Include

« Include use case - can be used
when several use cases share
common behavior in parts of the
use case scenarios.

« It is often common parts of
scenarios, such as “Search for
customer,” that can be extracted
into a separate use case, and the
arrow indicates where the
include use case is needed.

Stockholms
universitet

Place order

N

Select
Express

Search for

Company customer

Employee

~
<<include>>
~

pdate
customer
profile

Use Case Diagram - Include Stockholms

More precisely regarding include use

cases:

The included use case represents
mandatory behavior.

The base use case depends on the
included use case.

The included use case is always
executed as part of the base use
case.

Why use include use cases?

To reuse common parts of scenarios.

To improve clarity and consistency.

To reduce maintenance effort when
requirements change.

universitet

Place order

Select
Express

Search for

Company customer

Employee

~
<<include>>
~

pdate
customer
profile

Use Case Diagram - Extend stockholms

Extend use case - can be used
when a use case sometimes has
additional optional behavior.

The extend use case adds steps
at a specific extension point in
the base use case.

universitet

Place order

Select
Express

Search for

Company customer

Employee

~
<<include>>
~

pdate
customer
profile

Use Case Diagram - Extend stockholms

More precisely regarding extend use cases:

An extend relationship is used when a base use
case can be extended with optional or
conditional behavior.

The base use case represents the main goal or
main scenario.

The extend use case adds behavior only under
certain conditions and is attached at a specific
extension point in the base use case.

The base use case does not depend on the
extension — it can run fully on its own

Why use extend use cases?

To avoid overloading a use case with too many
conditions and exceptions.

To keep the base use case simple and focused
on the “happy path.”

universitet

Place order

N

Select
Express

Search for

Company customer

Employee

~
<<include>>
~

pdate
customer
profile

Use Case Model - Include & Extend

Use Case: Place Order

Actor: Company Employee

Goal: To register a correct customer order in the system so that the products can
be delivered to the customer.

Precondition: The customer has contacted the company (phone, e-mail, in-
store, etc.) with an order request.

Main scenario:

Company Employee chooses to create a new order in the system.
Company Employee performs Search for Customer use case (include).
The system displays the customer’s information.

Company Employee adds products and services to the order

The system calculates the total price.

Company Employee confirms the order with the customer.

The system registers the order and generates an order confirmation.
ExtenS|on scenarios:

4a) Customer requests express delivery.

NoagakrowppE

1. Company employee carries out Select Express Delivery use case (extend).

2. Go to step 5 in the main scenario.

£ ™

Company
Employee

Stockholms
universitet

Place order
N

I ! <<‘e\xtend>> i

|
<<|ncl'ude>>

Express
Delive

Search for
customer

™~

~
<<include>>
~

pdate
customer
profile

Use Case Model - Include & Extend

Use Case: Place Order

Actor: Company Employee

Goal: To register a correct customer order in the system so that the products can
be delivered to the customer.

Precondition: The customer has contacted the company (phone, e-mail, in-
store, etc.) with an order request.

Main scenario:

Company Employee chooses to create a new order in the system.
Company Employee performs Search for Customer use case (include).
The system displays the customer’s information.

Company Employee adds products and services to the order

The system calculates the total price.

Company Employee confirms the order with the customer.

The system registers the order and generates an order confirmation.
ExtenS|on scenarios:

4a) Customer requests express delivery.

NoagakrowppE

1. Company employee carries out Select Express Delivery use case (extend).

2. The system updates the order with express delivery cost and details.

Stockholms
universitet

You can add this info
in the base use case

Place
Order

Extension point:
Add products and
services (Step 4).

'-<<*extend>>§

Search for

Company customer

Employee

<<include>>

customszr
radile

Use Case Diagram - Actor Stockholms

generalization/specialization

Actors can be generalized or
specialized.

A specialized actor inherits the
behavior of its general actor but
may also have additional
interactions.

universitet

I '<<\e\xtend>> '

% ? / Place order
|
|

Order <<include>>
Handling | Select

Express

Employee
Delive
Company customer
Employee

<<|ncTuqe>>
~

pdate
customer
rofile

Use Case Diagram - Actor

generalization/specialization

Actors can be generalized or
specialized.

A specialized actor inherits the
behavior of its general actor but
may also have additional
interactions.

Stockholms
universitet
N
3Ly
. | eend)
Order <<include>> i
Handling | Select
\2
Employee Exp_ress
Search for Delive
Company customer
Employee

™~

~
<<include>>
~

pdate
customer
profile

Use Case Diagram - Actor Stockholms
- - - - - universitet
generalization/specialization

More precisely regarding actor

generalization/specialization:
. Place order
« A specialized actor inherits the interactions of its /

general actor.
I '<<\e\xtend>>'

o« A specialized actor may add new use cases that |
the general actor cannot perform. Order <<|ncl'ude>>
. e Handling Select
\

V

. Generalization reduces duplication in diagrams

-) Express
by grouping common behavior.

Employee

Search for
Why use actor generalization/specialization? Company customer
Employee

™~

e To capture both common and specific .
<<include>>

interactions.

pdate
customer
rofile

o To simplify diagrams when there are many
actors.

« To make organizational roles and responsibilities
clearer.

Questions to answer Seratar

e What is a requirement?

e What is a requirements specification?

e What is requirements engineering?

e Why are requirements important?

e What types of requirements exist?

e How are requirements captured and documented?

e How can UML use cases support requirements engineering?

