
1

Relational
Database
Management
Systems

Learning Goals

 Understand and describe the
functionality of a DBMS
(Database management
System)

 Describe threaths to information
stored in a DMBS as well as
solutions to threats

 Be able to describe the
functionality of a relational query
language: SQL (structured query
language) as well as read and
write small part of SQL-queries

After this lecture you will be able to:

2

DBMS and RDBMS

 A DataBase Management System (DBMS) is a set
of programs that help users manage large sets of
data in an easy and consistent way. By manage is
meant that the users shall be able to DEFINE,
INSERT, UPDATE, DELETE AND RETRIEVE data
in a consistent and secure manner.

 A Relational DataBase Management System
(RDBMS) is a DataBase Management System
where the data is structered according to the
relational model.

4

Architecture of a Database
Management System

Data

Presentation

Applikationlogic

(Graphical) user interfaces

For example: Java servlets
executed on a server, a PHP-
script, or even program-code
executed and stored within the
DBMS.
Data from the tables
stored in the DBMS.

An DBMS is one type of Information Management system, often
referred to as a Transaction Management System. It interacts with
its users, applications outside of the DBMS, and the database itself
to capture and analyze data.

3

5

Presentation

How does (end-) users
retrieve information from
the DBMS? Graphical user
interfaces to various
applications provide
information about data
stored in the database
management system.
User interfaces may be
implemented within the
DBMS or be a program
outside of the DBMS that
connects to the DBMS via
some protocol-standard.

6

Query-languages

 How does application programs retrieve data
from the database management system?

 Through a query language.

SELECT ArtName

FROM Artefact

WHERE Artist = ”Picasso”

4

7

Query-languages: SQL- Structured
Query Language

 SQL has several parts, DDL, DML, DCL and TCL
 Through DDL, Data Defintion Language,we

define tables, rules etc. (se the former lecture)

 Using DML, Data Manipulation Language, we can
then write queries against the tables we created

 DCL, Data Control Language, deals with the
rights, permissions and other controls of the
database system (more on this on transactions in
DBMS:s)

 TCL, Transaction Control Language, TCL
commands deals with the transaction concept in
the DBMS (more on this on transactions in DBMS:s)

8

Query-languages: SQL- DML

 Through DML, Data Manipulation Language, we
can write queries against the tables in the DMBS

 SELECT – is used to retrieve data from the
database.

 INSERT – is used to insert data into a table.

 UPDATE – is used to update existing data within
a table.

 DELETE – is used to delete rows from a table.

5

9

DML: example tables

AId ArtName myAT Artist

11 Guernica 1 Picasso

11 The Night-
watch

1 Rembrandt

33 David 2 Michelangelo

Artefact
ATid Category NoOfArts

1 Painting_type 2

2 Sculpture_type 1

Artefact_Type
FN

10

Query-languages: SQL DML: An
example DML Query:

SELECT ArtName

FROM Artefact

WHERE Artist = ”Picasso”

In the SELECT-clause columns
are chosen to be displayed

The FROM-clause tells what
tables are going to be searched

The WHERE-clause
contains conditions that
shall hold for the rows to be
displayed

ArtName
Guernica

The result!

6

11

Query-languages: DML: Join-query

SELECT ArtName, Artist

FROM Artefact, Artefact_Type

WHERE myAT = ATid

AND Category = ”Painting_type”

In the SELECT-clause columns
are chosen to be displayed

The FROM-clause tells what
tables are going to be searched

The WHERE-clause
contains conditions that
shall hold for the rows to be
displayed. Here the
WHERE-clause contains
TWO conditions!

ArtName
Guernica

The Night-
watch

The result!

Give me the names and
artists of all paintings!

12

Query-languages: DML INSERT

INSERT INTO Artefact(44, ’Mona Lisa’, 1, ’Da Vinci’)

7

Transaction management
- Transactions and ACID

 What is a transaction?

 An action, or set of actions!, that reads and/or writes
the content of the database. It is performed by a
user or an application program. It is defined as ONE
unit that either happens as a whole, or not at all!

 A transaction is perfomed with respect to a set of
very important rules/properties referred to as ACID
(to be introduced in the next slide).

Transaction principles - ACID

• Atomicity – ”All or nothing”, i.e. either the entire action, or
actions, happens (a COMMIT is signaled if all is well) or
nothing happens (ROLLBACK if something went wrong
during the execution of the transaction)

• Consistency – Database integrity shall hold before and after
(not necessarily during) the transaction, for instance entity-
and referential integrity

• Isolation – all transaction must be independent of each
other (for instance, two transaction must not ”over-write” the
same data)

• Durability – uppdates shall be permanent after a COMMIT,
e.g. even if there is a database-crash

8

Transactions and concurrency

• Several transactions shall (ideally) be able to be run in
parallell (”concurrent/at the same time”)

- At least this is how the users want to perceive it

versus

• The transactions shall be indepent of each other, reads they
shall not ”disturb” or ”interfere” with each other.

PROBLEM: • Transactions
often demand access to the
SAME resource
(table/row/cell)

Concurrency and Isolation Example

Transaction Management

- The phantom problem

9

Transactions and concurrency

Solutions:

– Run everything serially only (non
parallell): not realistic, long wait-times

– Conservative parallell techniques, also
know as ”pessimistic techiques” : point
of departure is that conflicts _will_ arise
and these are solved via LOCKS,
TIMESTAMPS.

Transactions and concurrency

LOCKS come in two main variants:

 Read lock (shared lock) on a resource (-s)

» can be given to several transactions wrt the
same resource

 Write lock (exclusive lock) on a resource (-s)

» the resource may not even be read by other
transactions

 Locks are given/released wrt need and type of lock-
schema

» Granularity of locks: usually database, table, row, cell.
Important not to lock more resources than necessary.

10

Security, Threaths and Solutions

Security and

– Deliberate
– Non deliberate
– May effect the DBMS
– Or the whole organization

THREATH

Security, Threaths and Solutions

THREATH

Threaths may be directed
against:

Hardware
- Servers
- Networks

Software
- DBMS
- Application software

Database
- Data

People
- DA/DBA
- Programmers
- Operators
- End-users

Security

11

Security, Threaths and Solutions
Consequences of
threaths :

• Hardware faults
• Software bugs
• Theft
• Fraud
• Diminished:

- accessability
- personal integrity
- data integrity

Security

Solutions

• Authorization (grant user access only to
certain resources)

• Authentication (demand identification via

userIds, pin-codes, retina control, finger-prints etc.)

• Backup / recovery (redundance)
• Integrity rules
• Views
• Triggers

12

Solution examples: SQL DCL

Authorization (grant user access only to
certain resources) via

DCL(Data Control Language) : DCL includes
commands such as GRANT and REVOKE
which mainly deals with the rights,
permissions and other controls of the
database system.

Examples of DCL commands:
GRANT-gives user’s access privileges to

database.
REVOKE-withdraw user’s access privileges

given by using the GRANT command.

Solution examples: SQL DCL
cont.

• Privileges – SELECT, INSERT, UPDATE, DELETE,
REFERENCES, ALL PRIVILEGES

• Object : Table , view, domain, etc
• Subject : User, group-of-users, role (DBA etc.), PUBLIC
• WITH GRANT OPTION – Allows the subject to, in turn, grant
the privilage to another subject

13

Solution examples: DBMS
integrity rules (part of DDL)

• Entity integrity – primary keys may not be NULL
or contain duplicates

• Referential integrity – foreign keys must have a
value corrsponding to the referenced primary
key, OR be NULL

• Foreign key rules – what happens to the FK-
values when the PK changes (i.e. ON UPDATE
or ON DELETE)? » CASCADE » SET NULL /
NULLIFY » RESTRICT / NO ACTION

Solution examples: DBMS
integrity rules (part of DDL)

CREATE TABLE Artefact(Aid String NOT NULL, ArtName String
NOT NULL, MyAT Integer NOT NULL, Artist String NOT NULL,
PRIMARY KEY (Aid), FOREIGN KEY (MyAT) REFERENCES
Artefact_Type(ATName) ON DELETE CASCADE ON UPDATE
CASCADE)

14

Solution examples: Views

27

Course Student Result Group
IS:4 Kalle VG A
IS:4 Pelle G A
IS:4 Olle G B
IS:4 Lisa U B
2i1033 Kalle 5 1
2i1033 Lisa 4 1
2i1033 Oskar 3 2
2i1033 Eskil U 2
…

The database may be accessed through VIEWS – i.e. a set of retrived
tables/rows/part_of rows that can be tailored towards different users with different
information needs. A view is defined on top of one or several tables via a CREATE
VIEW command that contains a SELECT-query.

The Scheduler does
only want to read the
columns Course,
Student and Group.

The students are only
allowed to read the
columns Student and
Course.

Teachers and head-master need to
be able to read and write the entire
table.

COURSE_OCCASION

Solution examples: Views cont.

28

The Scheduler does
only want to read the
columns Course,
Student and Group.

The students are only
allowed to read the
columns Student and
Course.

Teachers and head-master need to
be able to read and write the entire
table.

Views are defined on one or several base-tables (or even other views):
CREATE VIEW Student_view AS

(SELECT Course, Student
FROM COURSE_OCCASION)

CREATE VIEW Teacher_view AS
(SELECT * FROM COURSE_OCCASION)

CREATE VIEW Scheduler_view AS
(SELECT Course, Student, Group
FROM COURSE_OCCASION)

15

Solution examples

• VIEW WITH CHECK OPTION
- Data can be INSERT:ed through the view The INSERT:s must follow the rules of the

view

Solution exampel: Trigger

 An event that triggers (INSERT, UPDATE,
DELETE, ...)

 An affected object, usually a table or a column
 A condition that must be true for the trigger body

to be executed
 A trigger body executed when the condition is true

By using triggers it is possible to implement business rules that
cannot be implemented otherwise (for instance using classes,
domain rules etc.): - credit limit must not be exceeded, - reported
mileage must be higher than earlier reported mileage, - updating
calculated attributes: no of employees in a company must
correspond with the number of tuples having that company as the
value for the foreign key.

16

Solution example: Trigger cont.

INSERT INTO Artefact(44, ’Mona Lisa’, 1, ’Da Vinci’)

Solution: Triggers Example

AId ArtName myAT Artist

11 Guernica 1 Picasso

11 The Night-
watch

1 Rembrandt

33 David 2 Michelangelo

44 Mona Lisa 1 Da Vinci

Artefact
ATid Category NoOfArts

1 Painting_type 2

2 Sculpture_type 1

Artefact_Type
FN

Not correct!

17

Solution: Triggers Example (DB2)

CREATE TRIGGER increment_noOfArts
AFTER INSERT ON Artefact
FOR EACH ROW
REFERENCING NEW as n
BEGIN
UPDATE Artefact_Type
SET NoOfArts = NoOfArts + 1
WHERE n.myAT = ATId;
END@

event!

affected object!

trigger body!

condition!

