## **Presentation:** Dimensional Modelling 2

Erik Perjons DSV, Stockholm University



Analysis

#### **DW Architecture**

#### Data staging





# **OLAP tools: User interface**



| Product Group | Region            | Quarter          | Sales (kSEK) |
|---------------|-------------------|------------------|--------------|
| Group A       | Region ABC        | Quarter 1 - 2018 | 100          |
| Group A       | Region DEF        | Quarter 1 - 2018 | 400          |
| Group B       | <b>Region ABC</b> | Quarter 1 - 2018 | 200          |
| Group B       | Region DEF        | Quarter 1 - 2018 | 900          |



#### **DW Architecture**



#### **Dimensional modelling/Star schema**







# **Towards Dimensional Modelling**







Analysis

#### **DW Architecture**

#### Data staging



#### A business event/transaction







Analysis

#### **DW Architecture**

#### Data staging





# **Operational Systems**







Operational DBs



#### Operational DBs



External sources



Data sources

- The operational systems/transactional systems
  - are tuned to support known daily operations
- They are normalized according to 3 NF
- They are focusing is on data integrity



### **Database fundamentals**

- Relation and Relation schema
- Relational database schema
- Keys
- Normalisation
- Data integrity



# **Relation and relation schema**





# **Relational database schema**





# **Relational database schema**

|                                          |                                                                          | Registration                                              | Course                                                                                           |
|------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                                          | registrationID<br>regDate (11                                            | ) (11) (PK)                                               | courseID (PK)<br>courseName                                                                      |
| Student<br>studentID (PK)                | courseOccasio<br>CourseC                                                 | onID (11) (FK to<br>Occasion.courseOccasionID)            |                                                                                                  |
| studentName                              | <u>studentID (1.</u>                                                     | <u>.1) (FK to Student.studentID)</u>                      | CourseOccasion                                                                                   |
|                                          |                                                                          |                                                           | courseOccasionID (PK)<br>startDate                                                               |
|                                          |                                                                          |                                                           | courseID (FK to Course.courseID),                                                                |
|                                          |                                                                          |                                                           |                                                                                                  |
|                                          | R                                                                        | egistration                                               | Course 11                                                                                        |
|                                          | R<br>registrationID (<br>regDate (11)                                    | egistration<br>[11) (PK)                                  | Course 11<br>courseID (PK)<br>courseName                                                         |
| Student                                  | R<br>registrationID (<br>regDate (11)<br>courseOccasion                  | egistration<br>(11) (PK)<br>ID (11) (FK)                  | Course 11<br>courseID (PK)<br>courseName                                                         |
| Student<br>studentID (PK)                | R<br>registrationID (<br>regDate (11)<br>courseOccasion<br>studentID (11 | egistration<br>(11) (PK)<br>ID (11) (FK)<br>.) (FK)       | Course 11                                                                                        |
| Student<br>studentID (PK)<br>studentName | R<br>registrationID (<br>regDate (11)<br>courseOccasion<br>studentID (11 | egistration<br>(11) (PK)<br>ID (11) (FK)<br>.) (FK)       | Course 11                                                                                        |
| Student<br>studentID (PK)<br>studentName | R<br>registrationID (<br>regDate (11)<br>courseOccasion<br>studentID (11 | egistration<br>(11) (PK)<br>ID (11) (FK)<br>.) (FK)<br>0* | Course 11<br>courseID (PK)<br>courseName<br>CourseOccasion<br>courseOccasionID (PK)<br>startDate |

1..1



#### Keys

- Candidate key is a minimal set of attributes/columns necessary to uniquely identify a tuple/row
- Primary key is a candidate key chosen to be the unique identifyer of the tuple/row
- Alternate key is a candidate key not chosen to be the primary key
- Foreign key is a key in a table that refers to a primary key in another table, representing the relation between two tables in a relational database schema

#### Keys



- Natural key is a candidate key derived from application data (that is, formed of attribute(s) that already exist in the real world)
- Surrogate key is a candidate key not derived from application data (that is, has no meaning outside the database environment) – assigned sequentially by the system (that is, an integer that starts by 1 and is increased by 1 when adding rows to the dimension table)
- Composite key/Concatenated key is a candidate key that consists of two or more attributes



#### Keys

- Intelligent key/smart keys is a key that includes encoded info into the key.
- For example Stock keeping unit (SKU) can contain information about manufacturer, product type and product



#### Normalization

 Normalization - is the process to restructuring a relational database in accordance with a series of so called normal forms in order to reduce data redundancy (that is, an activity aiming to store data in one place), prevent update, insertion, deletion anomalies, and, thereby, improve data integrity



# 1:st Normal Form (1NF)

• 1 NF is a property of a relation where each attribute in a tuple contains only a single value from a domain



# 1:st Normal Form (1NF)

Team

| Name                    | Members |
|-------------------------|---------|
| Farsta och Cobran (FOC) | Helen   |
|                         | Andrea  |
|                         | Lotta   |
|                         | Maria   |
| Farsta och Cobran (FOC) | Lars    |
|                         | Sören   |
|                         | Peter   |
|                         | David   |
| Kyrkheddinge IF (KIF)   | Helen   |
|                         | Andrea  |
|                         | Lotta   |
|                         | Maria   |
| Farsta och Cobran (FOC) | Lars    |
|                         | Sören   |
|                         | Peter   |
|                         | David   |

Member

| Member | Team |
|--------|------|
| Helen  | FOC  |
| Andrea | FOC  |
| Lotta  | FOC  |
| Maria  | FOC  |
| Lars   | FOC  |
| Sören  | FOC  |
| Peter  | FOC  |
| David  | FOC  |
| Helen  | KIF  |
| Andrea | KIF  |
| Lotta  | KIF  |



# 2:nd Normal Form (2NF)

 2 NF is a property of a relation that is in 1 NF and where ALL the attributes in a composite candidate key determines the values of the non-key attributes



# 2:nd Normal Form (2NF)

#### Purchase

| PurchaseID | ItemID | ItemName      | Туре    | amount | Unitsof_ | Price |
|------------|--------|---------------|---------|--------|----------|-------|
|            |        |               |         |        | Measure  |       |
| 673        | 46545  | Cardamom      | Pods    | 3      | Kg       | 10 £  |
| 673        | 73     | Glee          | Frozen  | 1      | L        | 5£    |
| 673        | 41065  | Cumin         | Seeds   | 1      | Kg       | 10 £  |
| 674        | 42775  | Cinnamon      | Stick   | 0,5    | Kg       | 12 £  |
| 674        | 5534   | Ginger/Garlic | Paste   | 10     | Kg       | 5£    |
| 675        | 311    | Cashew        | Nuts    | 5      | Kg       | 20 £  |
| 676        | 41065  | Cumin         | Seeds   | 1      | Kg       | 10 £  |
| 676        | 48888  | Coriander     | Seeds   | 0,5    | Kg       | 10 £  |
| 676        | 46545  | Cardamom      | Pods    | 1      | Kg       | 10 £  |
| 677        | 73     | Glee          | Package | 10     | L        | 5£    |
| 677        | 151    | Yoghurt       | Package | 50     | L        | 1£    |

#### Purchase

|   | PurchaseID | amount | <u>ItemID</u> |
|---|------------|--------|---------------|
| [ | 673        | 3      | 46545         |
| [ | 673        | 1      | 73            |
| [ | 673        | 1      | 41065         |
| [ | 674        | 0,5    | 42775         |
| [ | 674        | 10     | 5534          |
|   | 675        | 5      | 311           |
| [ | 676        | 1      | 41065         |
| [ | 676        | 0,5    | 48888         |
| [ | 676        | 1      | 46545         |
| [ | 677        | 10     | 73            |
| [ | 677        | 50     | 151           |

#### Item

| <u>ItemID</u> | ItemName      | Туре    | Unitsof_<br>Measure | Price |
|---------------|---------------|---------|---------------------|-------|
| 46545         | Cardamom      | Pods    | Kg                  | 10 £  |
| 73            | Glee          | Frozen  | L                   | 5£    |
| 41065         | Cumin         | Seeds   | Kg                  | 10 £  |
| 42775         | Cinnamon      | Stick   | Kg                  | 12 £  |
| 5534          | Ginger/Garlic | Paste   | Kg                  | 5£    |
| 311           | Cashew        | Nuts    | Kg                  | 20 £  |
| 41065         | Cumin         | Seeds   | Kg                  | 10 £  |
| 48888         | Coriander     | Seeds   | Kg                  | 10 £  |
| 46545         | Cardamom      | Pods    | Kg                  | 10 £  |
| 73            | Glee          | Package | L                   | 5£    |
| 151           | Yoghurt       | Package | L                   | 1£    |



# 3:rd Normal Form (3NF)

 3 NF is a property of a relation that is in 2 NF and all non-key attributes are determined only by the candidate keys (and not by any non-key attributes)



# **3:rd Normal Form (3NF)**

#### Owner

| Person ID | Name   | CarID   | Brand | Model  | Color  |
|-----------|--------|---------|-------|--------|--------|
| 51-03-14  | Helen  | NBS-735 | SAAB  | Sonett | Red    |
| 88-09-16  | Andrea | HSJ-888 | Volvo | 245    | Red    |
| 73-05-05  | Lotta  | KDD-284 | SAAB  | 9-3    | Silver |
| 92-04-03  | Maria  | HJI-223 | Volvo | PV     | Black  |
| 73-12-19  | Tuija  | KDF-638 | Volvo | XC 90  | Black  |
| 58-11-01  | Ulrika | HYT-923 | SAAB  | 900    | White  |

#### Person

58-11-01

Person ID Name Helen 51-03-14 88-09-16 Andrea 73-05-05 Lotta 92-04-03 Maria 73-12-19 Tuija

Ulrika

#### Owner

| Person ID | <u>Car ID</u> |
|-----------|---------------|
| 51-03-14  | NBS-735       |
| 88-09-16  | HSJ-888       |
| 73-05-05  | KDD-284       |
| 92-04-03  | HJI-223       |
| 73-12-19  | KDF-638       |
| 58-11-01  | HYT-923       |

| _ |   |   |  |
|---|---|---|--|
|   | 9 | r |  |
| - | a |   |  |
|   |   |   |  |

| <u>Car ID</u> | Color  | Brand | Model  |
|---------------|--------|-------|--------|
| NBS-735       | Red    | SAAB  | Sonett |
| HSJ-888       | Red    | Volvo | 245    |
| KDD-284       | Silver | SAAB  | 9-3    |
| HJI-223       | Black  | Volvo | PV     |
| KDF-638       | Black  | Volvo | XC 90  |
| HYT-923       | White  | SAAB  | 900    |



### **Data Integrity**

• Data Integrity – is the maintenance of the accuracy and consistency

of data. Data integrity is enforced by a number of rules/constraints:

- Entity Integrity every tuple must have a primary key and the value of the primary key must be unique
- Referential Integrity the foreign key value must refer to a primary key value of some table in the database

- ...

#### **Anomalies**



- Update anomalies if redundant data is stored in several places there is a risk that an update is not done in all this places
- Delete anomalies data might be lost when some other data is delted if not stored properly
- Insertion anomalies it is not possible to add new data







#### The retail case

- The retail company has 100 grocery stores spread over a five state area
- Each store has a number of departments, including grocery, frozen food, dairy, meat, produce, bakery, floral, health/beauty aids
- Each store has roughly 60 000 individual products
- The individual products are called Stock Keeping Units (SKU)



#### The retail case

- Management is concerned with:
  - the logistics of ordering (the procurement are often done too late)
  - the stock levels (too high stock levels for some products and too low for other)
  - the selling of products (too low sales figure)
- We can collect data:
  - at the back door of retail stores, where deliveries are made
  - at the depository where we keep our stock
  - at the cash registers, called point of sale (PoS), where customer purchases products.



# **Step 1. Select a business process**

- A business process is a "low-level activity" performed by an organization, such as taking orders, receiving payments, etc
- Kimball: "The <u>first dimensional model</u> built should be the one with the most impact – it should answer the most pressing business questions and be readily accessible for data extraction."



A dimensional model is based on a business process, therefore the focus on business process



# **Step 1. Select a business process**

- Which Business process should we select first?
  - the *logistics of ordering* can be interpreted as *the order process*
  - the *stock levels* can be interpreted as *the inventory process*
  - the *selling of products* can be interpreted as *the sales process*



# **Step 1. Select a business process**

- Which Business process should we select first?
  - the *logistics of ordering* can be interpreted as *the order process*
  - the stock levels can be interpreted as the inventory process
  - the *selling of products* can be interpreted as *the sales process*

More information is needed to select the business process with most impact and highest feasibility. In this case, we assume that a sales process in an important process since the management is concerned with the low sales figures, and increased sales will probably make a larger impact than the other two processes



- The grains is the level of detail of data of the process or event. The grain means specifying exactly what an individual fact table row represent.
- Typical grains are individual transactions, individual daily (or monthly) snapshots
- Kimball: "The less granular model is immediately vulnerable to unexpected user requests to drill down into the detail."
- Kimball: "Preferably you should develop dimensional models for the most atomic information captured by a business process."



#### This is how you can express the most detailed level of data:

- Most granular data (the more you go into details, the more granular data you have)
- High granularity (the more you go into details, the higher granularity you have)



- What grain shall we choose for our case study?
  - An individual line item on a POS transaction, i.e. the sale of a product, per store, per transaction)
  - The sale of a product, per store, per day
  - The sale of a product, per region, per day
  - The sale of a product, per store, per month
  - The sale of a product category, per region, per month



- What grain shall we choose for our case study?
  - An individual line item on a POS transaction, i.e. the sale of a product, per store, per transaction
  - The sale of a product, per store, per day
  - The sale of a product, per region, per day
  - The sale of a product, per store, per month
  - The sale of a product category, per region, per month



- Identify the dimensions that will be applied to each fact table tuple/record
  - Consider what aspects do you want to be able to slice and dice
  - Typical dimensions are date, product, customer, store, etc
- Guideline: Use the declared grain of the selected process to determine dimensions: product, store
- Guideline: Use the Who, What, When, Where, and How to identify possible dimensions



• An example of a dimension: Product dimension

Fat Content

|                                                        | Product    |                    |                 |                                              |                       |                  |                     |                    |         |        |        |        |                    |                |
|--------------------------------------------------------|------------|--------------------|-----------------|----------------------------------------------|-----------------------|------------------|---------------------|--------------------|---------|--------|--------|--------|--------------------|----------------|
| Product_D                                              | ProductKey | SKU                | Product<br>Name | Product<br>Description                       | Supplier              | Product<br>Class | Product<br>Property | Package<br>Type    | Volume  | Height | Widht  | Depth  | Height-<br>Widtht- | Fat<br>content |
| ProductKey (PK)<br>Product_Name<br>Product_Description | 1          | 7 310865<br>001191 | Blue Milk       | Milk with<br>vitamin D and<br>0,5% fat       | Arla                  | Dairy            | Low fat             | Roof ridge<br>pack | 1 liter | 23 cm  | 7 cm   | 7 cm   | 23x7x7             | 0,5 %          |
| Product class<br>SKU_Number (NK)                       | 2          | 7 310865<br>001795 | Green<br>Milk   | Milk with<br>vitamin D and<br>1,5% fat       | Arla                  | Dairy            | Plain               | Brick pack         | 1 liter | 16 cm  | 6,5 cm | 9,5 cm | 16x6,5x<br>9,5     | 1,5 %          |
| Suppier<br>Package_Type<br>Volume                      | 3          | 7 310865<br>000156 | Red Milk        | Milk with<br>vitamin D and<br>3% fat         | Arla                  | Dairy            | Plain               | Brick pack         | 1 liter | 16 cm  | 6,5 cm | 9,5 cm | 16x6,5x<br>9,5     | 3 %            |
| Height<br>Width<br>Depth                               | 4          | 7 300170<br>062642 | Green<br>Milk   | Local Milk with<br>vitamin D and<br>1,5% fat | Coop<br>Änglam<br>ark | Dairy            | Ecological          | Roof ridge<br>pack | 1 liter | 23 cm  | 7 cm   | 7 cm   | 23x7x7             | 1,5 %          |
| Height-Weight-Deptht                                   |            |                    |                 |                                              |                       |                  |                     |                    |         |        |        |        |                    |                |

#### **Dimensions**

- Use surrogate key as primary key to keep history in if natural keys are changing in the organization
- How to identify attributes:
  - "we do not measure them, we usually know them"
  - usually text fields, with discrete values, e.g., the flavor of a product, the size of a product
- Denormalization is no problem since the ETL process ensure the data quality, and no advanced calculations (only filtering) are made on the dimensions



| Product_D            |  |
|----------------------|--|
| ProductKey (PK)      |  |
| Product_Name         |  |
| Product Description  |  |
| Product property     |  |
| Product class        |  |
| SKU_Number (NK)      |  |
| Supplier             |  |
| Package_Type         |  |
| Volume               |  |
| Height               |  |
| Width                |  |
| Depth                |  |
| Height-Weight-Deptht |  |
| Fat_Content          |  |

#### Dimensions

- Use column names/labels that are easy to understand
- Use names/lables of the values that are easy to understand

The end users will see these names/labels interacting with the system using an OLAP tool

Product

| ProductKey | SKU                | Product<br>Name | Product<br>Description                       | Supplier              | Product<br>Class | Product<br>Property | Package<br>Type    | Volume  | Height | Widht  | Depth  | Height-<br>Widtht-<br>Deptht | Fat<br>content |
|------------|--------------------|-----------------|----------------------------------------------|-----------------------|------------------|---------------------|--------------------|---------|--------|--------|--------|------------------------------|----------------|
| 1          | 7 310865<br>001191 | Blue Milk       | Milk with<br>vitamin D and<br>0,5% fat       | Arla                  | Dairy            | Low fat             | Roof ridge<br>pack | 1 liter | 23 cm  | 7 cm   | 7 cm   | 23x7x7                       | 0,5 %          |
| 2          | 7 310865<br>001795 | Green<br>Milk   | Milk with<br>vitamin D and<br>1,5% fat       | Arla                  | Dairy            | Plain               | Brick pack         | 1 liter | 16 cm  | 6,5 cm | 9,5 cm | 16x6,5x<br>9,5               | 1,5 %          |
| 3          | 7 310865<br>000156 | Red Milk        | Milk with<br>vitamin D and<br>3% fat         | Arla                  | Dairy            | Plain               | Brick pack         | 1 liter | 16 cm  | 6,5 cm | 9,5 cm | 16x6,5x<br>9,5               | 3 %            |
| 4          | 7 300170<br>062642 | Green<br>Milk   | Local Milk with<br>vitamin D and<br>1,5% fat | Coop<br>Änglam<br>ark | Dairy            | Ecological          | Roof ridge<br>pack | 1 liter | 23 cm  | 7 cm   | 7 cm   | 23x7x7                       | 1,5 %          |





- Another dimension: Store dimension
- A geographic dimension every store has a location
- Dimensions have hierarchies we can roll up and drill down on geographic attributes

| Store_D        |
|----------------|
| Store_Key (PK) |
| Store_Name     |
| Store_Nr (NK)  |
| Street_Adress  |
| City           |
| Country        |
| State          |
| Zip_Code       |
| Manager        |
|                |



#### **Dimensional hierarchies**





## **Dimensional hierarchies**

- A hierarchy is a directed tree which nodes are dimensional attribute values/elements
- There is a many-to-one relationship between the
  - nodes in the hierarchy







# **Dimensional Fact Model (DFM)**

• Dimensional Fact Model (DFM) is graphical formalism

showing:

- Facts in the fact table
- Hierarchies of the dimensional tables
- Developed by Golfarelli & Rizzo





• Date dimension – most star schema has a date

dimension

|          |            | Full Date<br>Descript<br>ion | Day<br>of<br>W e | Calend<br>ar<br>Month | Calend<br>ar<br>Quarter | Calend<br>ar Year | Fiscal Year<br>Month | Holiday     | Weekd<br>ay<br>Indicator |
|----------|------------|------------------------------|------------------|-----------------------|-------------------------|-------------------|----------------------|-------------|--------------------------|
|          |            |                              | ek               |                       |                         |                   | Indicator            |             |                          |
| Date Key | Date       |                              |                  |                       |                         |                   |                      |             |                          |
| 20130101 | 01/01/2013 | January 01, 2013             | Tuesday          | January               | Q1                      | 2013              | F2013-01             | Holiday     | Weekday                  |
| 20130102 | 01/02/2013 | January 02, 2013             | Wednesday        | January               | Q1                      | 2013              | F2013-01             | Non-Holiday | Weekday                  |
| 20130103 | 01/03/2013 | January 03, 2013             | Thursday         | January               | Q1                      | 2013              | F2013-01             | Non-Holiday | Weekday                  |
| 20130104 | 01/04/2013 | January 04, 2013             | Friday           | January               | Q1                      | 2013              | F2013-01             | Non-Holiday | Weekday                  |
| 20130105 | 01/05/2013 | January 05, 2013             | Saturday         | January               | Q1                      | 2013              | F2013-01             | Non-Holiday | Weekday                  |
| 20130106 | 01/06/2013 | January 06, 2013             | Sunday           | January               | Q1                      | 2013              | F2013-01             | Non-Holiday | Weekday                  |
| 20130107 | 01/07/2013 | January 07, 2013             | Monday           | January               | Q1                      | 2013              | F2013-01             | Non-Holiday | Weekday                  |
| 20130108 | 01/08/2013 | January 08, 2013             | Tuesday          | January               | Q1                      | 2013              | F2013-01             | Non-Holiday | Weekday                  |

| Date Dimension                |
|-------------------------------|
| Date Key (PK)                 |
| Date                          |
| Full Date Description         |
| Day of Week                   |
| Day Number in Calendar Month  |
| Day Number in Calendar Year   |
| Day Number in Fiscal Month    |
| Day Number in Fiscal Year     |
| Last Day in Month Indicator   |
| Calendar Week Ending Date     |
| Calendar Week Number in Year  |
| Calendar Month Name           |
| Calendar Month Number in Year |
| Calendar Year-Month (YYYY-MM) |
| Calendar Quarter              |
| Calendar Year-Quarter         |
| Calendar Year                 |
|                               |
| Fiscal Week Number In Year    |
| Fiscal Month Number in Veer   |
| Fiscal Worth North            |
| Fiscal Quarter                |
| Fiscal Vear-Quarter           |
| Fiscal Half Vear              |
| Fiscal Vear                   |
| Holiday Indicator             |
| Weekday Indicator             |
| SQL Date Stamp                |
|                               |



- The data can be populated in advance.
- It has one meaningful key (intelligent/smart key).
  That is, it does not have any surrogate key due to performance, ease of use, partitioning reasons

| Date Dimension                |
|-------------------------------|
| Date Key (PK)                 |
| Date                          |
| Full Date Description         |
| Day of Week                   |
| Day Number in Calendar Month  |
| Day Number in Calendar Year   |
| Day Number in Fiscal Month    |
| Day Number in Fiscal Year     |
| Last Day in Month Indicator   |
| Calendar Week Ending Date     |
| Calendar Week Number in Year  |
| Calendar Month Name           |
| Calendar Month Number in Year |
| Calendar Year-Month (YYYY-MM) |
| Calendar Quarter              |
| Calendar Year-Quarter         |
| Calendar Year                 |
| Fiscal Week                   |
| Fiscal Week Number in Year    |
| Fiscal Month                  |
| Fiscal Month Number in Year   |
| Fiscal Year-Month             |
| Fiscal Quarter                |
| Fiscal Year-Quarter           |
| Fiscal Half Year              |
| Fiscal Year                   |
| Holiday Indicator             |
| Weekday Indicator             |
| SQL Date Stamp                |
|                               |



• A fiscal year (or financial year, or sometimes budget **year**) is the period used by governments for accounting and budget purposes, which varies between countries. It is also used for financial reporting by business and other organizations. Laws in many jurisdiction require company financial reports to be prepared and published on an annual basis, but generally do *not* require the reporting period to align with the calender year (1 January to 31 December). (Wikipedia)



- Time dimension may exists in a dimensional model
- Time should not be part of the date dimension
- The time can be populated in advance grain can be seconds, minutes, or hours
- If you do not need to roll-up on time, from second to minutes, from minutes to hours – the time can be stored in the fact table



# **Step 4. Identify the facts**

- Establishing what we want to measure, that is, the process metrics or key performance indicators (KPI)
- How to identify the facts?
  - "something not known in advance" (Note, the values of the dimensions we know in advance)
  - an observation
  - many facts (but not all) have numerical values



# **Step 4. Identify the facts**

- What facts shall we choose for our case study?
- What can we find out of a PoS?
  - The number of products?
  - The total width of the products?
  - The total sum of the products



# **Step 4. Identify the facts**

- What facts shall we choose for our case study?
- What can we find out of a PoS?

  - The total width of the products?
  - The total sum of the products ------> Sales Dollar Amount

| Point of Sales F    |           |          |  |  |  |  |  |  |
|---------------------|-----------|----------|--|--|--|--|--|--|
| Product Key         | : Integer | (PK, FK) |  |  |  |  |  |  |
| DateKey             | : Integer | (PK, FK) |  |  |  |  |  |  |
| StoreKey            | : Integer | (PK, FK) |  |  |  |  |  |  |
| Sales Quantity      | : Integer | (fact)   |  |  |  |  |  |  |
| Sales Dollar Amount | : Integer | (fact)   |  |  |  |  |  |  |



# **Two kind of facts**

- There are two kinds of fact table attributes:
  - **Classification attributes:** Keys that captures the dimensions of the process
    - Keys are usually represented in integer form and do not require much memory space
  - Facts: Attributes that captures the measures of the process
    - Facts are often numeric properties and can usually be represented as integers
    - Contrast to dimensional attributes which are usually long text strings

| Point               | Point of Sales F |         |          |  |  |  |  |  |  |
|---------------------|------------------|---------|----------|--|--|--|--|--|--|
| ProductKey          | :                | Integer | (PK, FK) |  |  |  |  |  |  |
| DateKey             | :                | Integer | (PK, FK) |  |  |  |  |  |  |
| StoreKey            | :                | Integer | (PK, FK) |  |  |  |  |  |  |
| Sales Quantity      | :                | Integer | (fact)   |  |  |  |  |  |  |
| Sales Dollar Amount | :                | Integer | (fact)   |  |  |  |  |  |  |
|                     |                  |         |          |  |  |  |  |  |  |



# **Sparse fact tables important**

- It is important to have a sparse fact table since it is critical to the memory space consumption of the data warehouse calculations
- The Primary key for the fact table is a concatenated key consisting of the foreign keys to (several of) its dimensions
- Use surrogate keys in the dimension to avoid to end up with text/strings as foreign

keys in the fact table

| Point of Sales F    |         |      |          |  |  |  |  |  |
|---------------------|---------|------|----------|--|--|--|--|--|
| Product Key         | : linte | eger | (PK, FK) |  |  |  |  |  |
| DateKey             | : linte | eger | (PK, FK) |  |  |  |  |  |
| StoreKey            | : linte | eger | (PK, FK) |  |  |  |  |  |
| Sales Quant it y    | : linte | eger | (fact)   |  |  |  |  |  |
| Sales Dollar Amount | : linte | eger | (fact)   |  |  |  |  |  |



#### The final star schema



Full Date Description Day Number in Calendar Month Day Number in Calendar Year Day Number in Fiscal Month Day Number in Fiscal Year Last Day in Month Indicator Calendar Week Ending Date Calendar Week Number in Year Calendar Month Name Calendar Month Number in Year Calendar Year-Month (YYYY-MM) Calendar Quarter Calendar Year-Quarter **Fiscal Week Number in Year** Fiscal Month Number in Year Fiscal Year-Month Fiscal Year-Quarter Holiday Indicator Weekday Indicator SQL Date Stamp

#### The final star schema





#### A family of stars







#### There are many processes

• There are many business processes. Therefore, we need many stars

schemas. Therefore, We need an enterprise architecture, called the

**Enterprise Data Warehouse Bus Architecture** 



### **Enterprise Data Warehouse Bus Matrix**

- Enterprise Data Warehouse Bus Matrix
  - Rows represent business processes
  - Columns represent dimensions
  - A dimension that is shared among several business processes is called conformed dimension
  - It is a good idea to create a list of core dimensions early
- Benefits:
  - The matrix delivers the big picture perspective, regardless of database or technology preferences.

|                                                                                                                                                                   | COMMON DIMENSIONS |         |           |       |           |          |          |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|-----------|-------|-----------|----------|----------|--|--|--|
| BUSINESS PROCESSES<br>asue Purchase Orders<br>teceive Warehouse Deliveries<br>Varehouse Inventory<br>Receive Store Deliveries<br>astore Inventory<br>Retail Sales | Date              | Product | Warehoues | Store | Promotion | Customer | Employee |  |  |  |
| Issue Purchase Orders                                                                                                                                             | X                 | Х       | Х         |       |           |          |          |  |  |  |
| Receive Warehouse Deliveries                                                                                                                                      | X                 | Х       | х         |       |           | 0        | x        |  |  |  |
| Warehouse Inventory                                                                                                                                               | X                 | Х       | х         |       |           |          |          |  |  |  |
| Receive Store Deliveries                                                                                                                                          | X                 | х       | Х         | х     |           |          | х        |  |  |  |
| Store Inventory                                                                                                                                                   | X                 | Х       |           | x     | 1         | 0 0      |          |  |  |  |
| Retail Sales                                                                                                                                                      | X                 | х       |           | х     | x         | х        | х        |  |  |  |
| Retail Sales Forecast                                                                                                                                             | X                 | Х       |           | х     |           |          |          |  |  |  |
| Retail Promotion Tracking                                                                                                                                         | X                 | х       |           | х     | х         | 1        |          |  |  |  |
| Customer Returns                                                                                                                                                  | X                 | Х       | 3         | X     | Х         | Х        | x        |  |  |  |
| Returns to Vendor                                                                                                                                                 | X                 | Х       |           | Х     |           |          | х        |  |  |  |
| Frequent Shopper Sign-Ups                                                                                                                                         | X                 |         |           | x     |           | Х        | х        |  |  |  |

#### **Enterprise Data Warehouse Bus Matrix**

• Enterprise Data Warehouse Bus Matrix



#### **Enterprise Data Warehouse Bus Matrix**

- Conformed dimensions the same dimensions are used by several facts
- Thereby, it possible to join different star schemas if needed

|                              | COMMON DIMENSIONS |         |           |       |           |          |          |  |  |  |
|------------------------------|-------------------|---------|-----------|-------|-----------|----------|----------|--|--|--|
| BUSINESS PROCESSES           | Date              | Product | Warehouse | Store | Promotion | Customer | Employee |  |  |  |
| Issue Purchase Orders        | X                 | х       | х         |       |           |          |          |  |  |  |
| Receive Warehouse Deliveries | X                 | Х       | х         |       |           |          | x        |  |  |  |
| Warehouse Inventory          | X                 | х       | х         |       |           |          |          |  |  |  |
| Receive Store Deliveries     | X                 | Х       | Х         | х     |           |          | х        |  |  |  |
| Store Inventory              | X                 | Х       |           | х     |           | 0.00     |          |  |  |  |
| Retail Sales                 | X                 | Х       |           | х     | X         | Х        | х        |  |  |  |
| Retail Sales Forecast        | X                 | Х       |           | х     |           |          |          |  |  |  |
| Retail Promotion Tracking    | х                 | Х       |           | х     | Х         | 1        |          |  |  |  |
| Customer Returns             | X                 | Х       |           | х     | X         | Х        | x        |  |  |  |
| Returns to Vendor            | X                 | Х       |           | х     |           |          | х        |  |  |  |
| Frequent Shopper Sign-Ups    | X                 |         |           | х     |           | Х        | х        |  |  |  |