

From defensive to offensive datadriven engineering – data strategy, examples of defensive and offensive data

management activities, method for identify AI solutions, and AI in healthcare

Erik Perjons

Department of Computer and Systems Sciences

Stockholm University

Questions

- What is a data strategy?
- What should a data strategy include?
- Why do organisations need a data strategy?

Data strategy

What is a data strategy?

 A data strategy - is a plan to organize, manage and govern the data assets in an organization

What is the core of the data strategy?

• The **data strategy** needs to:

1) clarify the **goal of the data strategy** for organizations

2) given the goal, provide data management activities

What is the core of the data strategy?

 DalleMule & Davenport (2017) claim that an organization's data strategy should have a proper balance between offensive and defensive activities

Defensive part of the data strategy

Goals for the <u>defensive part</u> of the data strategy:

 Ensure data security, privacy, integrity, quality, regulatory compliance, and governance

Data management <u>defensive activities</u>:

- Ensuring that data is in compliance with regulations
- Introduce data access control
- Detect and limit fraud and theft
- Ensure data integrity of data flows
- Provide a single source of truth

Offensive part of the data strategy

Goals for the offensive part of the data strategy:

• Improve innovation, the competitive position and increase profitability, revenue, and customer satisfaction

Data management offensive activities:

- Generate customer insights by using data analysis, advanced data modelling and data science (including AI) work
- Integrate customer and market data for supporting decision making
- Include real time analysis

The proper balance depends on a number of factors

- Market competition and dynamic
- Regulatory environment

External factors

Offensive activities

The proper balance depends on a number of factors

- Market competition and dynamic
- Regulatory environment
- The overall strategy of the organisation
- Maturity of data management
- Centralized or decentralized data management
- Size of data budget

External factors

Internal factors

Focusing on just defensive activities can inhibit flexibility

 There is a risk that organisation focus too much on defensive activities – and data is not transformed into info that can be used by organizations strategically

SSOT and **MVOT**

- The data strategy can include both defensive and offensive activities by introducing:
 - a single source of truth (SSOT) and
 - a multiple version of the truth (MVOT)
- Therefore, the framework could be seen as a **SSOT-MVOT model**

Singe source of truth (SSOT)

 Singe source of truth (SSOT) - is a repository that contains one authorative copy of crucial data, such as customers, suppliers and product details (often called the master data)

More about SSOT

- SSOT requires data governance activities to ensure that the data is accurate and timely so that data can be relied on for both <u>defensive</u> and <u>offensive</u> activities
- For example customers, suppliers and product details need to be specified in an agreed-upon way - supported by, for example a master data management system

More about SSOT

- If a SSOT does not exist the company may not understand:
 - what the relationships to customers and suppliers are
 - what details are correct about its customers, suppliers and products
- SSOT is often implemented by introducing 1) a master data management system or 2) decide which systems are the master for different types of data

Multiple versions of truth (MVOT)

- Multiple versions of truth (MVOT) provide different data for different business units
- MVOT is based on a SSOT but adapted to different units' need.
- That is, SSOT data have to be transformed, enriched and adapted to be useful for the different needs – for example, use different attributes for different concepts

More about MVOT

- For example, the marketing and financial department are both interested in ad spending
- The marketing department is interested in the effectiveness of advertise product and services
- The financial department is interested cash flow, for example, when the invoices were payed
- That is, different departments are interested in different numbers, and therefore, their reports differs

The need for MVOT

 According to DalleMule and Davenport (2017), the need for SSOT is well understood, but not the need for MVOT is not

The need for MVOT

- Different business units have different needs
- Therefore, SSOT data need to be transformed, enriched and adapted for different business unit
- MVOT is the result such business-specific transformation
- However, MVOT must diverge from SSOT in a carefully controlled way otherwise siloed and uncontrolled MVOT will be created

Centralized or a decentralized data management?

- If an organization should devolop a centralized or a decentralized data management depends on the organizations poisition on the offence-defence spectrum.
- Organisations with a defensive strategy usually prefer a centralized data management
- Organization with a offensive strategy has a more decentralised data management, where Unit Chief Data Officers have responsibility to MVOT and an Enterprise Chief Data Officer owns the SSOT

The elements of data strategy

	Defensive	Offensive
Key objectives	Ensure data security, privacy, integrity, quality, regulatory complience, and governance	Improve innovation, competitive position and profitability
Core activities	Activities that optimize data quality, data extraction, standarization, storage, access	Activities that optimize data analytics, modeling, visualization, transformation and enrichment
Data management orientation	Focus on control	Focus on flexibility
Enabling architecture	Single source of truth (SSOT)	Multiple sources of truth (MVOT)

Data governance – focusing on a defensive data strategy – but is a good base for an offensive as well

Data governance

- Data governance aims to move data from an ungoverned state to a governed state, meaning:
 - data shall be owned
 - data shall be understood, inventoried and quality checked as well as corrected when data-related issues appear
 - data shall be wisely used

Governed data

• Governed data require:

- standardized business names
- standardized business definitions
- specified rules for data creation specifying what is needed for creating certain data
- specified rules for usage of the data specifying for which purpose the certain data can or cannot be used
- specified rules of data quality (in order to achieve and check such quality)
- documented physical location of the physical instances of the data
- specified data governors and data stewards responsible for the data

Drivers for moving data to a governed state

Data science – focusing on an offensive data strategy

How to identify new data-driven solutions, including AI, in an organization?

Method for identifying, architecting and developing data-driven solutions, including AI, in an organization

Method for identifying, architecting and developing data-driven solutions, including AI solutions

- The method is presented in Schmarzo (2013) and are developed for big data – not explicitly for AI, but I have adapted it for AI as well
- Problem addressed by the adapted method: It is not clear for organizations how they can identify, architect and develop AI, big data and other data-driven - solutions
- Therefore, there is a need of a solution engineering method supporting the organizations addressing this problem

Method for identifying, architecting and developing data-driven solutions, including AI solutions

 Understand what make the organization successful

 now, and in the future

 3. Brainstorm how AI can support a business initiative or an opportunity in focus 5. Validate the feasibility of the AI enhanced initiative (and the including use cases)

$$\bigvee \qquad \bigtriangledown$$

2. Understand key business initiatives or opportunities

 \int

4. Break down the business initiative into use cases where AI is used – and for each use case define requirements \downarrow

6. Design och implement the solution

Step 1: Understand the organisation

 Understand what make the organization successful – now, and in the future

(Schmarzo: Understand how the organisation makes money)

- Identify the <u>most important strategic nouns</u> and <u>understand how they drive success</u>, and envision how they, in the future, can drive further success
- Examples of important strategic nouns:
 - the major products and services
 - the revenue and cost drivers
 - the key issues to address
 - the key processes and activities
 - the business stakeholders and their roles
 - the major IT systems and their roles

Step 2: Understand ongoing business initiatives

2. Understand key business initiatives or opportunities

(Schmarzo: Understand your organisation's key business initiatives) Identify and understand ongoing key initiatives or opportunities, based on step 1, but also based on:

- Reading business reports, such as annual reports
- Reading presentations by executives
- Interviewing key employees

Step 3: Brainstorm about AI impact

3. Brainstorm how Al can impact a business initiative or an opportunity

(Schmarzo: Brainstorm big data business impact)

Four ways that AI, big data and advanced analytics can impact a business initiative or an opportunity:

- "Mining" more detailed transaction data
- Integrate unstructured internal and external data for more accurate and complete decision
- Improve real time delivery of data for more timely decision
- Apply different forms of predictive analytics to uncover causalty hidden in the data – for more actionable and predictive decision

Step 4: Design use cases where AI is used

4. Break down the business initiative into use cases where AI is used – and for each use case define requirements

(Schmarzo: Break down the business initiative into use cases)

Design use cases where AI, big data and analytics could enhance a business initiative in focus, and specify the following for each use case:

- targeted stakeholders, including their roles and responsibilies
- business questions that the stakeholders try to answer
 - business decisions that the stakeholders try to make
 - requirements on data and data analysis algorithms/models as well as user experiences
 - design key performance indicators (in order to make it possinle to measure the success of the use case)

Step 4: Design use cases where AI is used

4. Break down the business initiative into use cases where AI is used – and for each use case define requirements

(Schmarzo: Break down the business initiative into use cases)

Design use cases where AI, big data and analytics could responsibili • busine prioritize among the use cases y the busine enhance a business initiative in focus, and following for each use case:

- - that the stakeholders try to answer
 - busines decisions that the stakeholders try to make
 - requirements on data and data analysis algorithms/models as well as user experiences
 - design key performance indicators (in order to make it possinle to measure the success of the use case)

Step 5: Validate the AI enhanced initiative and included use cases

5. Validate the feasibility of the AI enhanced initiative - and the including use cases

(Schmarzo: Prove out the use case)

Validate the feasibility of the AI enhanced initiative (and the including use cases) by deploy data and technology (like a prototype), and for the initiative:

- Carry out a ROI/cost-benefit analysis
- Perform a feasibiliy study:
 - Make a plan to manage data manage source systems, transformations, cleaning of data, decide master data, etc
 - Make a plan to test and fine tune analytical models
 - Develop mockups and wireframes to help the stakeholders understand the solution and its role in the daily business processes

Step 6: Design and implement the solution

6. Design och implement the solution

(Schmarzo: Design and implement the big data solutions)

Design, plan for and implement the solution in form of one or a set of use cases, including, for example:

- Capture and the store the data needed, including internal and external data, structured and unstructured data.
- Capture and the store additional data about customers, products and operations, for further data analysis. This data is mainly found outside the existing business processes.
- Implement real-time data access when required.
- Implement the AI solution

AI in healthcare

AI in healthcare - benefits and issues

Why AI in healtcare?

- AI has the **potential to transform healthcare** since healtcare is producing **a large amount of clinical and administrative data**
- This large amount of data can be used for analysis
- Moreover, research studies have shown that AI can carry out many key healthcare activities better than, or as well as, humans, such as diagnosing diseases, for example by analyzing radiology images

AI is sparsely implemented

- Today, AI solutions are sparsely implemented in practical healthcare
- Existing AI solutions are mainly supporting the individual functions in healthcare, like radiology and pathology image analysis

Why is AI sparsely implemented? 1(2)

According to Davenport and Kalakota (2019), **two major reasons for AI being sparsely implemented in practical healthcare** are:

- AI solutions are focusing on limited tasks and are rarely integrated into the clinical processes
- Moreover, AI is not implemented in electronic record systems (EHR). Therefore, AI is not part of the system that most healthcare personnel use for their day-to-day work

(Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future healthcare journal, 6(2), 94)

Why is AI sparsely implemented? 2(2)

Panch et al. (2014) add additional important reasons for AI being sparsely implemented in practical healthcare are:

- Healthcare systems are complex and fragmented, and will not easily change as a result of new technology
- Healthcare organisations lack the capacity to collect the necessary training data of sufficient quality while also respecting ethical principles and legal constraints

(Panch, T., Mattie, H., & Celi, L. A. (2019). The "inconvenient truth" about AI in healthcare. NPJ digital medicine, 2(1), 1-3.)

AI technologies in healthcare

AI technologies in healthcare

Note, according to Devenport and Kalakota (2019), AI is not one technology, but rather a collection of them.

Examples pf AI technologies:

- Machine learning
- Natural language processing
- Rule based expert system
- Physical robots
- Robotic process automation

Machine learning

- <u>Traditional machine learning</u> is the most common application in healthcare. This application is mostly using <u>supervised learning</u>, which requires a <u>training datasets</u> to be used to be able to do the work
- Supervised learning systems are <u>supporting the making of diagnosis</u>, and <u>predicting</u> <u>what treatment protocols</u> are likely to be successful for a patient, <u>based on various</u> <u>patient attributes</u> and the <u>treatment context</u>

Neural network and deep learning

- A more complex form of supervised machine learning is the <u>neural network</u>. Neural network make use of a <u>network of variables</u> that associate inputs with outputs and create weights on these associations, in order to predict outcome
- A neural network can also have variables on many different so called hidden layers,
 called <u>deep neural network or deep learning</u>
- Deep learning has been very successful for identifying <u>clinically relevant features in</u>
 <u>imaging data</u> beyond what can be perceived by the human eye
- **Deep learning** is also increasingly used for **speech recognition in NLP**, see next slide

(Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future healthcare journal, 6(2), 94)

Natural language processing

- <u>Natural language processing (NLP)</u> aims to make sense of human language. NLP includes application such as <u>speech recognition, text analysis, translation</u>.
- In healthcare, NLP can, for example, be used for <u>analyzing unstructured clinical notes</u> and supporting the <u>transformation from speech to text</u>

Rule based expert system 1(2)

- <u>Rule based expert system</u> require human experts and knowledge engineers to construct a series of rules in a particular knowledge domain, which will be the base for the expert system
- Rule based expert systems in healthcare are the base for many clinical decision support system
- Rule based expert systems are also be <u>part of many medical record systems</u> (i.e. EHR systems), for example, they provide functionality to warn for <u>drug-to-drug interactions</u>, and <u>support the physician of making diagnoses</u>

Rule based expert system 2(2)

The limitation of rule based expert systems:

- Rule based expert systems work well if the rules are not so many.
- However, **if number of rules is over several thousand, it is hard to maintain the rules**, for example, **the rules soon start to conflict with each other.**
- Moreover, **if the knowledge domain changes**, **rules need to change**, **which may be timeconsuming**, especially if the rules are many, and related on each other
- Therefore, due to this limitations, rule based expert systems are being replaced by systems based on ML algorithms

Physical robots

- <u>Physical robots</u> perform pre-defined tasks in factories and warehouses, like lifting and assembling objects
- Applied in healthcare are <u>surgical robots</u> which can improve the surgeons ability to see and make tasks more precise
- Moreover, physical robots are also becoming more intelligent, as other AI capabilities are being embedded in their operating systems.

Robotic process automation (RPA)

- <u>Robotic process automation (RPA)</u> record the keyboard and mouse actions of a human being, and repeat these actions automatically
- RPA does not involve physical robots instead RPA is a form of software
- RPA act like a semi-intelligent user of the systems, following a script or a set of rules based on actions done by human beings
- RPA can be used in healthcare for <u>updating patient records</u>, <u>billing or other administrative tasks</u>
- Moreover, RPA can be used in combination with other technologies, for example <u>combining image</u> <u>recognition and RPA</u>, where RPA can be used for extract data from the recognitions of images and update EHR system with this data

(Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. *Future healthcare journal*, 6(2), 94)

AI technolgies can be combined

- AI technologies are being more and more combined and integrated, for example:
 - physical robots are getting AI-based features
 - image recognition is being integrated with RPA.

AI application areas in healthcare

AI application areas

Example of AI application areas in healthcare:

- Diagnosis and treatment
- Patient engagement and adherence
- Administrative activities

(Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future healthcare journal, 6(2), 94)

Diagnosis and treatment 1(3)

- IBM's Watson has received a lot of attention for its application in diagnosis and treatment area, particularly cancer diagnosis and treatment
- Watson consisted of a set of 'cognitive services', employing a combination of machine learning and NLP technologies
- However, **IBM's Watson's application in healthcare has not been a success**:
 - Watson has not been able to handle different types of cancer
 - Watson has also been hard to integrate into care processes and systems

Diagnosis and treatment 2(3)

Other examples of the use of AI for diagnosis and treatment:

 Several organizations work on ML based solutions to better understand the <u>how</u> <u>different genetic variants of humans will response to different treatments</u>,

such as drugs and protocols.

 Organizations are also working on ML based solution to predict populations at risk of particular diseases, high-risk conditions or to predict hospital readmission

(Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future healthcare journal, 6(2), 94)

Diagnosis and treatment 3(3)

Drawbacks of using AI in the application of diagnosis and treatment:

- To embed AI-based diagnosis and treatment recommendations into clinical workflows and EHR systems has not been successful
- According to Davenport and Kalakota (2019), "such integration issues have probably been a greater barrier to broad implementation of AI than any inability to provide accurate and effective recommendations"

Patient engagement and adherence 1(2) Stockholms universitet

- Patients engagement in their own well-being and care are important for receiving better outcome in healthcare
- The major problem is that the patient may not make necessary behavioral adjustment, that is, does not follow a course of treatment or take the prescribed drugs

Patient engagement and adherence 2(2) Stockholms universitet

• Therefore, <u>ML and business rules engines can be used to support patient</u>

engagement and adherence, by:

- sending message alert to patients,
- providing targeted content given the patients' status and characteristics,
- tailoring recommendations by comparing patient data to other effective treatment pathways for similar cohorts
- nudging patient behavior in a more anticipatory way

Administrative activities

Different AI technologies can be used for administrative tasks:

• **RPA can be used for a variety of applications in healthcare**, like **managing medical**

<u>records</u>

- NLP can be applied in <u>chatbots for patient interaction</u>
- **ML could be used to <u>verify whether millions of insurance claims are correct</u>, for example, by applying probabilistic matching of data across different databases**

Healthcare workers

- According to Davenport and Kalakota (2019) estimate that it will take 20 years before will see any substantial change in healthcare employment due to AI
- Instead, there is also the possibility that new jobs for working with AI technologies are created

(Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future healthcare journal, 6(2), 94)

- The area where **most healthcare jobs will be automated** are those dealing with **digital information, radiology and pathology**
- However, for example, not even radiologist jobs will not disappear in the

near future, and maybe not in the long term either - see next slides

Implication for radiology 1(2)

- Today, radiology AI systems can only perform single tasks.
- Radiology AI systems cannot fully identify all potential findings in medical images.
 Radiologist are still needed for that
- Radiologists also do a lot of other thing than just read and interpret images:
 - radiologists relate findings from images to other medical records and test results
 - radiologists **consult with other physicians** regarding diagnosis and treatment
 - radiologists discuss procedures and results with patients
 - radiologists define the technical parameters of imaging examinations. The parameters need to be tailored to the patient's condition

(Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future healthcare journal, 6(2), 94)

Implication for radiology 2(2)

- Moreover, for employing full scale AI-based image work:
 - clinical processes need to be changed, which will take time
 - an aggregated repository of radiology images is required for training the AI system, but such an aggregated repository is lacking today
 - changes in medical regulation and health insurance contracts for automated image analysis are needed

A brief summary

To summarize 1(2)

- The greatest challenge to AI is to ensure its adoption in daily clinical practice.
- There are a number of challenges to overcome to achieve this.
- Therefore, Davenport and Kalakota (2019) estimate that we will see a limited use

of AI in clinical practice within 5 years and more extensive use within 10

To summarize 2(2)

- Moreover, "AI systems will not replace human clinicians on a large scale, but rather will augment their efforts to care for patients".
- According to Davenport and Kalakota (2019) it might take 20 years before will

see any substantial change in healthcare employment