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ABSTRACT

We propose a novel subsequence matching framework thatsallo
for gaps in both the query and target sequences, variablehmat
ing tolerance levels efficiently tuned for each query andetse-
quence, and also constrains the maximum match length. Using
this framework, a space and time efficient dynamic programgmi

method is developed: given a short query sequence and a Iargé3

database, our method identifies the subsequence of theadatab
that best matches the query, and further bounds the numisenef
secutive gaps in both sequences. In addition, it allows $ee to
constrain the minimum number of matching elements between a
query and a database sequence. We show that the proposextimeth
is highly applicable to music retrieval. Music pieces arpree
sented by 2-dimensional time series, where each dimensikis h
information about the pitch and duration of each note, retbyey.
Atruntime, the query song is transformed to the same 2-dsineal
representation. We present an extensive experimentalatiah

using synthetic and hummed queries on a large music database

Our method outperforms, in terms of accuracy, several Dieda
subsequence matching methods—uwith the same time complexit
and a probabilistic model-based method.

1. INTRODUCTION

Finding the best matching subsequence to a query has been at

tracting the attention of both database and data mining aamim
ties for the last few decades. The problemsobsequence match-

ing is defined as follows: given a query sequence and a database

of sequences, identify the subsequence in the databaseedsiat
matches the query. Achieving efficient subsequence magdian
important problem in domains where the target sequencesauch
longer than the queries, and where the best subsequencle foiatc
a query can start and end at any position in the database.

A large number of Dynamic Programming (DP) [1] based dis-
tance or similarity measures perform similarity searchewuesal
application domains including time series, categoricgusaces,
multimedia data, etc. Nonetheless, there are still manlicgtion
domains, such as music retrieval, where these methods adi-no
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rectly applicable or have very poor retrieval accuracy See. 5),
since in many cases several properties and characterigtite
specific domain are ignored. In this paper, we focus on timese
subsequence matching and approach the problem from the musi
retrieval perspective: suppose you hear a song but you taeno
call its name; one solution is to hum a short part of the sorty an
erform a search on a large music repository to find the song yo
are looking for or even songs with similar melody. The maskta
of a Query-By-HummingQBH) system is, given a hummed query
song, to search a music database for fhi@nost similar songs.
This directly maps to subsequence matching as the hummeyd que
is typically a very small part of the target sequence.

Let us now see how time series subsequence matching can be
applied to QBH. Every piece of music is a sequence of notes cha
acterized by &ey, that defines the standard pattern of allowed inter-
vals that the sequence of notes should conform with, atedng@q
that regulates the speed of the music piece. HEethconsists of
two parts: thepitch and theduration A pitch intervalis the dis-
tance between two pitches. In western music the smallesh pit
interval is calledsemitongatonecomprises two consecutive semi-
tones, and the interval df2 semitones is calledctave Another
important term igranspositioni.e., the action of shifting a melody
of a piece written in a specific key to another key. Finalleréh
is a discrimination betweemonophonicandpolyphonicmusic; in
the latter case it is possible for two or more notes to soumalilsi
taneously, as opposed to the former case. Here, we consier-m
phonic music, as in QBH we deal with melodies hummed by users.
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(a) Part of the music score.

(b) Representation using pitch intervals and I0IR.
Figure 1: Example of the music score and its 2-dimensional time series
representation. I0IR is the duration ratio of two consecutive notes.

Pitch and duration are two distinctive factors for a musicpi
and they should both be used for efficient music representf2b].
We could have two or more songs that share similar note freque
cies (i.e., pitch values) but their melodies vary due déferindi-
vidual pitch durations. Hence, if, for instance, only pitstused to
represent a music song, there is a high risk of erroneoustghma
ing two songs. Several existing approaches are hampereleby t
fact that they only consider pitch in their representatignoring



note durations [21]. In this work, we take into account batchp accuracy in applications such as time series mining andiélas
and duration. Melodies are defined2adimensional time series of  cation [14]. Other DP-based methods allow for gaps in thgnali

notes of arbitrary length, where one dimension represéiats and ment, e.g., LCSS [19]. All these methods, however, are desig
the other duration (see Fig. 1 for an example). for whole sequence matching. SPRING [27] is a DP-based rdetho
~ P that finds the subsequences of evolving numerical streaasita
N’ \\. R closest to a query in constant space, and time linear to tladalse
/ | Vo size (for short queries). Some of these DP methods can bedppl
s | g ek to QBH. Similar DP-based methods exist for string matchitigy [
i i f-f\‘ 28], though they are not in the scope of this paper.
S — wance X | | LN (A Zhu et al. [33] developed an efficient lower-bound for DTW.
WArE S@@—f;ﬂ'ﬁ‘-’iﬂ@“ﬂﬂqi | - This method, however, is designed for whole sequence rmagchi
DB > disd2z5<— v and is not directly applicable to subsequence matchingchwis

e —— our focus. The same problem remains in several other DRibase
methods [21]. Such methods could be retrofitted by perfogmin
. a sliding window search over the database. Nonetheless,apic
. In order to gqarantee robgst and m.eanllngful subsequenahmat proach would be computationally expensive requiring oneof-
ing for a potentially very noisy domain, like QBH, severaf@ma-  ytation per window. Two methods for subsequence matcHing [
eters shoulq be considered. First, when.hummlng a sondtslig 13] implicitly account for local adjustments of tempo, tighuthey
or more serious errors may occur due to instant or temporyy K 4re not transposition invariant. SPRING seems promisin@®H

Figure 2: SMBGT: error-tolerant matching is denoted ase-match.

or tempo loss, respectively. Thus, the matching methodldf®i  4ng thus it is further studied in this paper. Moreover, thét Ed
error-tolerant, otherwise there may be false negatives during the gjstance [17] has been used for music retrieval with severd
retrieval. In addition, the method should allow skippinguamber ations [16]. Here, we study its most recent version [31]. aidire-

of elements in both query and target sequences. Thismagueow  mentioned DP methods, however, fail to handle noise impbged
produce very long matching subsequences with large gapaebat users. Several LCSS-based approaches [2, 3, 29] can eoferat-
the matching elements. To solve this problem, we shouldtcains ming noise, though the fact that no bounds are imposed tolthe a

the length of the matching subsequence, e.g., to be atmesiere lowed gaps may result in a large number of false positivesnwhe
7 is tuned appropriately for the application domain. Alscetisure |Q| << |X|. The approach of Han et al. [10] is based on uni-
that the matching subsequences will include as many ma@@itn  t5rm segmentation and sliding windows, which requires ter to
ements as possible, an additional constraint should besetpto manually select the length of the segments and is theretsrgen-

the minimum number of matching elements. However, comstrai  sitive to the actual behavior of the data and can efficienaiydte
ing the number of matching elements may decrease the numbery\y near exacmatching. Another approach has been proposed [7,
of candidate matches. Specifically, if we have prior knoged  157that deals withvhole query matchingnd a bounded number of
about the singing skills of the person who produced the hudnme gaps only in the target sequence. Besides, none of the sesapes
queries, we can tighten or loosen this constraint for stangeak accounts for note duration, i.e., they are proposed fonledsional
hummers, respectively. Moreover, we can bound the numbek of  sequences. Moreover, some approaches embed transpasition
lowed consecutive gaps in both query and target sequenbésh W yariance as a cost function in the DP computation [6, 16ugho
provides a setting that also controls the expansion of thiehed with not attractive runtime.
subsequences during the DP computation. Furthermoren-gram-based methods for music retrieval [8, 29]
Our first contribution is a subsequence matching framewuak t 5| 1o handle noisy queries efficiently as they are desigoedear
allows for a constrained number gapson both query and target  gyact matching. Also, several probabilistic methods (HM#sed)
sequencesvariable tolerance levelsin the matching (tolerances  have peen developed for speech recognition and musicuatj2s,
are functions of the query and target elements), and a nmatchi 23, 25, 31]. However, they are computationally expensive tdu
range that constrains the maximum match length. In addition, a e required training, and creating models to represestyts of

similarity measureSMBGT, is proposed, which given a que¢y music in a large database is a very tough task.

and a target sequence (with |Q| << |X]) finds the subsequence Regarding the representation schemes developed for massic r
of X that best matche. Gaps are allowed in the alignment and  yjeval, a common trend is to represent notes by encodingtbelr
can be bounded on both query and target sequences €nda pitch [21]. The combination of pitch and duration though rmes
respectively). Moreover, the maximum match lengttiires well music retrieval as it holds more information for each notieaffy,

as the minimum number of matching elements are constramed (i this paper, we study monophonic music rather than polgigho

r andJ respectively). An example 8MBGT is shown in Fig. 2. [30, 32], as it directly applies to QBH.

Our second contribution is an extensa@mparative evaluation
on QBH of several DP-based methods and a probabilistic model
based method, where their retrieval accuracy and runtisteidsed 3. PROBLEM SETTING
on real (hummed by humans) and synthetic queries. Simifagrex ; ; :
imentation is performed for the proposed methods showieg th 3.1 REpresentmg Musical Pieces

superiority in terms of accuracy against these DP and mioaisid _There are two common ways of expressing pitch: gagolute

is an integer betweehand127 with 0 representingause—and (b)
pitch interval which is the frequency difference between two ad-

2. RELATED WORK jacent notes. Three common ways to encode duration [22)a)e:
Several DP methods exist farhole sequence matchimgclud- Inter-Onset-IntervallOl) defined as the difference in time onsets

ing Dynamic Time Warping (DTW) [15] and variants (e.g., cDTW of two adjacent notes, (BPDI Ratio (IOIR), defined as the ratio of

[26], EDR [4], ERP [5]) that are robust to misalignments ainukt 10Is of two adjacent notes, with the IOIR of the last note édoa

warps, and some (e.g., DTW, cDTW) can achieve high retrieval 1, and (c)Log IOl Ratio(LoglOIR), being the logarithm of IOIR.



For the 2-dimensional time series representation, we dersil
two combinations of encoding schemépitch interval, IOIR and
(pitch interval, LoglOIR. With these combinations we deal with
note transitions, saving much computational time as we tbae
to check for possible transpositions of a melody, nor do we ha

scale in time when compared to other melodies. An example of

the (pitch interval, IOIR representation of the song of Fig. 1(a)
is shown in Fig. 1(b). Also, pitch intervals were quantized-i
11,11] by applying moduld2 [29]. This quantization corresponds
to two octaves, a reasonable range in which human pitch cen flu
tuate while singing. Regarding time, LoglOIR was quantiethe
closest integer or the closest valudr2, 2] [22].

3.2 Definitions

Let X = {x1,...,z,} be a time series that represents a music
piece, wherg X | denotes the size of . Eachz; = (2, 2}) € X
is a pair of real values, where;? andz’; correspond to pitch and
duration information respectively, and are representeédguany

in Q[2:6]. Range constraint = 6 clearly holds forX[3:8], while
all matching elements in the two subsequences differ by &t ino
(e =1). Thus, pai{Q[2 : 6], X[3 : 8]}, is SM BGT(Q.X).

3.3 Problem Formulation

Problem (Subsequence Matching)Given a databasP B with
N sequences of arbitrary lengths, a query sequéh@nd positive
integersé andr, find setS = {Xj[ts : te]|X; € DB} of the
top-K subsequences with:

|[SMBGT(Q, X;[ts : te])| > 0. (3)

It should be mentioned that each database sequence coedribu
with only one subsequenc;|ts : te] to S. Note the additional
constraintte — ts < r which is by definition included in SMBGT.

4. SUBSEQUENCE MATCHING
WITH GAPS-RANGE-TOLERANCES

of the schemes described in Sec. 3.1. A music database is a set \We present a novel subsequence matching framework thatis mo

of time seriesDB = {X1,...,Xn~}, whereN is the number of
music pieces inDB. A subsequencef X, denoted asX[ts :

te] = {s,...,xee}, IS @ set of elements fronX appearing in
the same order as iX. The first element of the subsequence is
z¢s and the last iscc. Note thatX|[ts : te] is not necessarily
continuous, i.e., gaps are allowed to occur by skipping elgmof
X. LetQ = {q,...,qn} be another time series with the same
representation a&. Consider the following definitions:

DEFINITION 1. (Variable error-tolerant match) We say that;
€ @ andz; € X match with variable-toleranceand denote it as
qi m{ x;, if, we use absolute or relative tolerance, and for a set of
constraintse’ = {e/, e/ }:

e (i) = fp(a?) andel (i, 5) = fr(ai, @5), (L)
where f, is a function ofy? and f. a set of constraints og;, z;.

Note that in Definition 1/, ¢/ can also be two constants. In
most application domains sequences are numerical, thysaba-
bility for outliers increases, which is the case for QBH wéasers
are prone to instant humming errors [23]. Hence, it is imipezdo
allow for flexible error-tolerant matches. In Sec. 5.1.3 visxdss
an instantiation of this definition for the QBH application.

DEFINITION 2. (Common bounded-gapped subsequence) Con-
sider two subsequencéHtsi:ter] and X [ts2:tes] of equal length.
LetGo andGx denote the indices of those elementg)iand X,
respectively, that are included in the corresponding sghseces.
If Qr; Re T, VT € G, Vv €Gx,i=1,..., |QQ|, and

@)

then, pair{Q[tsi:te1], X[ts2:tes]} defines acommon bounded-
gapped subsequencé @ and X. The longest such subsequence
satisfyingtes — ts2 < ris calledSM BGT(Q,X).

Tig1 — T < B, Yig1 — 7 <

Example: Le) = {6, 3,10,5,3,2,9}, X ={1,1,3,4,6,9,2,3,
1}. Consider subsequencg|2:6] with Go = {2,4, 5,6}, which
corresponds to sequent®, 5, 3, 2}, and X [3:8] with Gx = {3, 4,
7,8}, which corresponds t¢3, 4, 2, 3}. Also, assume the follow-
ing parameter setting: = 1 (absolute tolerance}y = 2, 8 = 1,

tivated by QBH. One of the novelties of our framework is that
it considers variable error-tolerant matches without eyiplg a
probabilistic model [11, 23] (Sec. 5.1.3). In addition, iloas
gaps in both the query and target sequences during thenmnadigt,
constrains the maximum match range in the target sequende, a
bounds the minimum number of matched elements. To the best of
our knowledge, this is the first subsequence matching apprbat
considers all the above aspects and, as shown in the expgsime
outperforms—in terms of accuracy—existing methods by aer
order of magnitude on hummed queries.

4.1 SMBGT: Subsequence Matching
with Bounded Gaps and Tolerances

To solve the problem presented in Sec. 3.3 we progdsBGT
a novel method for subsequence matching. SMBGT bounds the
number of consecutive gaps allowedhoth X andQ by two pos-
itive integersa and 3, respectively, allows for variable tolerance
levels in the matching, constrains the matching range, andds
the minimum number of matching elements. The intuition behi
allowing gaps in both sequences is to deal with serious humgmi
errors that are likely to occur due to temporary key/temss lor
significant instant note loss (more than the acceptableatiode).
Thus, we should be able to skip these elements. We will refar t
special case of SMBGT whereand are set to infinity as SMGT,
i.e., no constraints are imposed on the length of the allayegxs.

4.1.1 Computation

Consider an “alignment array of size(|Q| + 1) * (| X| + 1),
where@, X are the compared sequenc®s.€ {1,...,|Q|} and

vj € {1,...,|X]|}, the recursive computation for SMGT is:
aO,j = Oandaiyo = O7 (4)
ai-1,5-1+1 Jf qo~f
G = i ®)
max {a;-1,,a:;-1} ,otherwise.

An additional matrixs keeps for each cetl; ; the start point of its
best alignment, i; ;, and is updated according to the transitions.
For both SMGT and SMBGT, the computationis performed
in an online fashion and the space complexit9ig§Q)|) as they do
not need to store the whole matrix Instead, twol-dimensional

andr = 6. Clearly, the two subsequences are of the same length, atarrays are usedyrev, cur, to track the scorespfev.value and

most two (v = 2) consecutive gaps occur iKi—between the sec-
ond and third elements i [3:8]—and at most oned = 1) con-
secutive gap occurs i@Q—between the first and second elements

cur.value) and start pointsgfrev.start and cur.start) of two
consecutive columns; — 1, j, of a, since having the values of
columny — 1 of a suffices to compute column The goal is to be



able to matchany subsequence @ with any subsequence in the
database. According to the above recursion, whenever aroatc
curs the score on the alignment path is increaseq bgherwise the
maximum score of the two adjacent (left, top) cells is intestiwith
no extra transition penalty. In case of a tie, we choose #mesition
that corresponds to the subsequence with the most recerniaita
since this subsequence includes a smaller number of gajgViin
BGT, the recursion four is modified to include constraints and
B. Thus, when a mismatch occurs at positi@ry), a;,; stores the
largest number of matched elements that can be propagatied ve
cally or horizontally, while not violatingr and3. This is checked
by an additional step, calle@-opagation (Sec. 4.1.2).

Algorithm 1: FunctionUpdate() for SM GT andSM BGT.

Input: query@Q, targetX, column index;j, arraycur, andd.
Output: current best matchest.

1 begin
2 /I return the value and start point of the cell with the maximu
value in cur.
3 {lmawylstar't} = mal‘{cur};
4 lien = J — lstart + 1,
5 bien = bestena — beststart + 15
6 if best == null A lymae > 6 then
7 | bestyaive = lmax; beststart = lstart; besteng = J;
8 end
9 else if
lmaz > bestyqiue V (lmaz == bestyaiue N blen > llen) then
10 | bestyaiue = lmaz; beststart = lstart; bestenqg = 3,
11 en
12 end

Algorithm 2: FunctionReset() for SMGT.

Input: queryQ, targetX, column indexj, arraycur, tolerancee/,
and match range.
Output: updated colummrur.

1 begin

2 for i < 1to|Q|do

3 if 7 — cur;.start + 1 == r then

4 if q; %f x; then cur;.value = 1,

5 else //determine the appropriate transition and return the
value and start point.

6 {cur;.value, cur;.start} = check(cur, prev);

7 end

8 end

9 end

The maximum length of the database subsequence with thegong
common bounded-gapped subsequence is constraingdhy the
minimum matching score by (Sec. 3.3). Notice that during the
computation,best = (bestyaiue, beststart, bestend) keeps track
of the current best solution, withest, ... being the value of the
best match, anéleststart, bestena the start and end points of that
match, respectivelybest is updated as shown in Alg. 1 taking into
account. Atthe end of the computatidrest corresponds to the lo-
cation of SMBGTQ, X) in X. Finally, givenK, SMBGT reports

Q, respectively. Two versions of these array§ (., Ais,.. and
BreY,, BSi,) are used corresponding toev and cur, respec-
tively. Suppose that the value for c€l, j) (i.e., cur;) is being
computed angropagation() is triggered due to a mismatch be-
tweeng; andx;. This function will check whether the value of an
adjacent (left or top) cell can be inherited. jif- A2/°", (i) < «
then left propagation is allowed. Similarlyii- By, (i—1) < 8,
top propagation is allowed. We always choose the propayétet
inherits the highest value in matrix. In case bothprev; (i.e.,
a;,j—1) and cur;—1 (i.e., a;—1,;) can be propagated, we choose
max {prev;.value, cur;—1.value}. If no propagation is possible,
cur;.value = 0 andcur;.start = 0, so that another match can
start at this point. In case of a tie, we choose the transttian
leads to the subsequence with the most recent start poiftisas t
subsequence includes a smaller number of gaps.

Algorithm 3: SMBGT.

Input: queryQ, targetX, gap constraints: and 3, tolerancee/,
match range:, and parametek .
Output: priority queues.

1 begin
2 S = null,
3 for ¢t «+ 1to|DB|do
4 bestygiue = 0; beststart = 0;
5 for j + 1to |X¢| do
6 for ¢ « 1to|Q|do
7 if ¢; ~! x; then
8 cur;.value = prev;_1.value + 1;
9 cur;.start = prev;_1.start,
10 end
11 else
12 | cur; = propagation(i, j, Astart, Bstart);
13 end
14 end
15 best = Update(j, cur);
16 cur = Reselp(j, cur, Astart, Bstart);
17 end
18 Updategueue (S, best, K);
19 end
20 end

4.1.3 Eliminating Large Matches

Regarding SMGT, due to constrainit is necessary to perform
an additional step (calledeset()) in order to avoid expanding
matching subsequences whose length &nd thus are not going
to be included in the final set of toR- matches. After computing
cur and updatingest, we scancur to detect those cells that cor-
respond to subsequence matches with length equalThis elim-
ination is performed by functionheck() which returns the new
value and corresponding start point for each cell. Henaegdich
cell (i,7), if ¢; ~f x;, thencur; (that corresponds to that cell)
is set tol. Otherwise, it is checked whether inheriting the value
of the left (prev;—1) or top (curi—1) cell may lead to a violation
of r. The value of the left cell can be inherited if the subseqaenc

the K database sequences, where the longest common boundediength that corresponds to that cell is less than 1. The intuition

gapped subsequences occur. To keep track of these subsesjuen
priority queueS is maintained and updated accordingly using func-
tion Updategqueue (). When a new candidate subsequence is found,
S is updated if it contains less thdk elements or if the new can-
didate match has a higher score than any offhsubsequences in
S. The main steps of SMBGT are shown in Alg. 3.

4.1.2 Propagation

Two additional arraysdstar: and Bs:art, are used to determine
the direction of the propagation (left or top). Thus, for leaell
(,7), Astart and Bstart Store the latest match positionshand

is that if the corresponding length is equatte 1 this subsequence
would have already been reported as a candidate matctroand
thus we should not expand it further. Moreover, the valudefiop
cell can never be equal g as the elimination is performed ear
from top to bottom. Thus, the value of the top cell can alwags b
inherited. If both values can be inherited, we select thesitin
with the highest value and in case of a tie the transition ldeds
to the subsequence with the most recent start point. If ntsitra
tion is possiblecheck() returns0 as the cell and start point value.
The main steps of functioReset() can be seenin Alg. 2. In SM-
BGT the reset function that has to be triggered (caledetz())



is similar to Reset() with an additional propagation check in case
of a mismatch betweeg; andz;. If no propagation is possible
the value and start point of the cell are sedt@therwise they are
updated accordingly. In particular, in the case of a top agap
tion, the value of the top cell is inherited by the current.céh
the case of a left propagation, it should be ensured thatytmoa
lead to a subsequence that violatdghe length of the subsequence
that corresponds to the left cell is less thar 1). Finally, if both
propagations are possible, we perform the one leading teuhe
sequence with the highest score and in case of a tie we petifierm
one that leads to the subsequence with the most recent statt p

4.2 Example of SMBGT

Consider the following example: 16} = {0, —4,1,2, —2} and
X =1{0,0,-4,3,0,2,—3,1}. We want to find SMBGTQ, X),
witha = 2,8 = 1,6 = 3, andr = |Q| = 5. For simplicity, we
consider only the pitch dimension and do not impose any nrajch
tolerance. We show four matrices: (d)which is the alignment
array used for the DP computation, @which contains for each

cell of a the start point of the best matching subsequence that ends

on that cell, (3)Astart, @and (4) Bstart, Which are the additional
matrices used by functiopropagation(). Following Eq. 4 and
Algorithm 3 (Appendix), the first 6 columns of all four mats
are shown in Fig. 3 (a). At this phase, colutnontains cells that
will trigger function Reset (). Consider rows of column6. The
start point of the subsequence that corresponds to thatratpio-
sition 2, which gives a subsequence of len@gth- 2 +1 =5 = r.
Thus, this cell should be reset. Singe= z; = 2 (match), the
new value of that cell should be Let us check the next row of

column6. The length of the corresponding subsequence is now

6 — 2+ 1 =5 = r, however in this case; # z;, thus we should
check whether any propagation is possible. Regarding thyertap-
agationj — A%;*" (i) = 6 — 0 > «; hence left propagation is not
allowed. Also,i — Bgi,,+(i —1) = 5 —4 =1 = 3, hence top
propagation is allowed, and the new value of ¢éll6) is set to

1. Notice thats, Astart, and Bsiqr+ are updated accordingly. The
new matrices are now reset and are shown in Fig. 3 (b). Clearly
bestyaiue = 3, beststart = 2, andbesteng = 6.

The time complexity of both SMGT and SMBGT B(|Q||X]).
Also, none of the two measures is metric (see Appendix A.1).

5. EXPERIMENTS

We performed an extensive comparative evaluation of skvera
DP-based methods and HMMs with SMGT and SMBGT on QBH
by studying their accuracy and runtime on hummed and syinthet
queries, showing the superiority of the proposed methods.

5.1 Experimental Setup

5.1.1 Data

We created a music database of 5643 freely available on the we
MIDI files that cover various music genres. We also generaied
synthetic query sets (100 queries per set) of lengths betwae
and 137: Qo, Q.10, Q.20, Q.30, Q.40, aNd Q) 50. Qo contained
exact segments of the database, whjley — Q 50 were generated
by adding noise to each query@y. For all queries we randomly
modified 10, 20, 30, 40, and 50% of their corresponding tinmiese
in both dimensions. Noise was added to existing query elésnen
without insertions or deletions. Moreover, in all noisy gusets we
allowed at most 3 consecutive elements to be replaced witly no
values. Also, we used a set 800 hummed queries of lengths
betweenl4 and76. More details can be found in Appendix A.4.

5.1.2 Evaluation

We studied five DP-based methods that can be applied to music
retrieval: SPRING [27], Edit distance-based [31], two DBaAsed
[11, 13] (denotedTW,, DTW.), and a gapped-based approach
[12] (denoted II. et al.). The first four are designed for athgence
matching whereas the fifth performsole querymatching. In our
experiments, Edit has been slightly modified to deal withIGi&
and quantizations, while for Il. et al. a more elastic vanshas
been used, suitable for subsequence matching and supots b
constant and variable tolerance. Both Il. et al. and SPRINGW
modified to allow for varyingr. These methods are sketched in
Appendix A.2. Moreover, since probabilistic methods haeerb
applied to music retrieval, for completeness, we also comtiee
DP methods with an HMM-based approach where each database
sequence is modeled by an HMM (see Appendix A.3 for details).
Our evaluation strategy was organized as follows: we fistetethe
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Figure 3: DP matrices for SMBGT (a) before and (b) after reset.

robustness of all methods with respect to noise using thihstio
query sets; those methods that achieved a reasonably high re
(> 90%) even for high noise level$5(0%) were further tested on
hummed queries where the noise level can be much higherifSpec
ically, we evaluated the performance of Il. etal., SPRINGit His-
tance, DTW, DTW,, SMGT, and SMBGT on synthetic and real
queries, in terms akcall, mean reciprocal rank (MRRY], andav-
erage rank (AR)The top& answers were returned. Recall is the
percentage of queries for which the correct answer is amioag t
top-K results. MRR is the mean inverse rank of all queries in their
top-K results. If the right answer is not included in the resulient
the inverse rank i8. The rank of a query is the number of matches
(i.e., database sequences) with similarity/distanceevatueast as
high/low as that of the correct match (including the corraatch).
The average rank of a query set is the average rank of allepieri
in the set. All three measures are essential for the evaluati

a QBH method, as the first one (recall) shows how succesgul th
method is in finding the correct answer among the Kopwhereas
MRR and average rank indicate if there is room for improveimen
in terms of recall when decreasidg. For all methods we tried
all variations and parameter settings; in the experimeetsaport
those variations that achieved the best performance. Ewpets
were run on an AMD Opterof220 SE processor at 2.8GHz, and
implemented in C++.

5.1.3 Variable Tolerances - Instantiation
For QBH, a reasonable definition faﬁ is the following:

el (i) = [¢P * t], witht = 0.2, 0.25, 0.5. (6)



ForeJ, both absolute and relative tolerances were studied. iRelat
tolerance has been extended as follows:

ap/(L+e) <qf <apx(L+6),q0 x>0,
ap/(L+e)) >l > ap«(1+€),q¢ 2, <0.

@)
®)

This was necessary for this application, since by definitiershould
distinguish between positive and negative values of pittérvals.

To define an appropriate form fef. (i, j) we should differenti-
ate between IOIR and LoglOIR. After having people hum sdvera
pieces of different kinds of music, we observed a tendencyak-
ing duration ratios smaller, even half of their actual valu€his is
reasonable, as users care more about singing melodies ¢hamn b
exact in tempo. Also, we should account for cases of queties a
slower tempos. Thus, for IOIR, we define:

el (i,j) = {zj <2xgq;, xj —q; > —0.5}. 9)
Negative values may occur in the case of LoglOIR, thus:
0<l Tgr) < 1},1 7> 0.
6f(7,7j) _ { = ng(CC:/qz) = }7 OgTQIJ = (10)
{lloga(x’ /qi)| < 1}, logaz’ < 0.

As the logarithmic values get smaller, the difference ifosagets
smaller as well. Notice that the two formsdf(i, j) shown in Eq.
9 and Eqg. 10 are appropriate for the QBH application studied i
this paper.

Nonetheless, the proposed variable tolerance framewgegaisric
and can be used for other application domains, even with liere
mensions, after defining an appropriate formdbr

5.2 Experimental Results on Synthetic Queries

5.2.1 Parameters

For the methods that consideiin their computation (SPRING,
Il et al., SMGT, and SMBGT) we set= |Q|, as due to the query
sets’ construction, the desirable match will not exceed vhhe.
Taking into account the noise levels of the query sets, in SVIB
and SMGT$ was set td.9, 0.7, 0.6, 0.5, 0.35, and0.3 times the
length of each query in the six query sefs, — Q 50, respectively.
We selected these gradually decreasinglues, so as to be elastic
enough as noise increases, and avoid false dismissals. Yee-ex
mented withe = 8 = 3, as we know that the maximum number of
gaps in all query sets is 3, thus allowing SMBGT to capturséhe
gaps. Also, we tried both tolerance schemes, i.e., conatahtari-
able (Eq. 6). For all synthetic query sets SMBGT achievetetst
accuracy for variable absolute tolerance wite- 0.2, SMGT for
variable absolute tolerance with= 0.5, and Il. et al. for constant
relative tolerance witl, = 1 ande, = 4. Regarding the HMM
method, we conducted extensive experimental evaluatisimge
the effect of all of its parameters. The number of stdtévaried
from 1 to 10, and the best accuracy was achieved/foe 5; train-
ing for M > 10 were prohibitive in terms of training runtime and
memory consumption.

The observation distribution of the states we experimenii¢l
was Gaussian (which is common). Finally, the pseudocoestsd
for the unobserved data were 0.001, 0.01, and 0.1 to 5 with ste
0.2. The best accuracy was achieved for 0.1. For more ds&ls
Appendix A.5.3.

We tested several values fé¢, ranging from 5 to 150, for all
synthetic query sets. In QBH, however, high valuegomay not
be practical as users may not be willing to look at a large remob
candidate songs to identify the targeted one; we chose arrable
value (K" = 20) to report the accuracy, regardless of noise level.

5.2.2 Representation

We observed that, as the noise level increases, the repaesen
tions achieving the highest recall per DP-based method suibset
of the representations of lower noise levels. The best sepita-
tions for synthetic queries wefenod12, I0IR and (pitch interval,
IOIR) while the latter is also the representation leading to high-
est accuracies for hummed queries (Sec. 5.3). This showththa
simpler the representations, the more promising they seebe t
in QBH. The representation used for the HMM method—Ileading
to the smallest possible alphabet size—w@md12, LoglOIR in
[—2,2]). For more details see Appendix A.5.3.

5.2.3 Accuracy

Regarding the 100 exact querieQ), all DP-based methods
achieved 100% recall, with MRR and average rank 1 for top-5,
except for DTW, which did not exceed a recall of 96% even for
K = 250. The HMM method, achieved 96% recall for top-5, with
MRR 0.95 and average rank 1.22, and recall 100% for top-150.
SMBGT, SMGT, and Edit distance performed best, and behaved
similarly for all query sets. Even fap s, their recall is 97, 96, and
97%, respectively. Fig. 4(left) shows an overview of thesdifigs.

For more detailed results see Tables 1, 2, 3, 4, and 5 in Append
A.5.1. The reason for the high recall of Edit distance is thato
elements do not match, it will increase the total matchirgeby

at most 1, while for the remaining intact elements this saatke

not be affected. On the contrary, the recall of all other cetibqr
methods degrades with noise. SPRING and the HMM method be-
have similarly forQ .10, @Q .20, and@ 3o presenting a recall of more
than 91%, but further increasing the noise level resultssmaoth
degradation for SPRING and a sharp one for the HMM method. For
Q .50 their recall is only 75 and 56%, respectively. The accurdcy o
DTW. and Il. et al. degrades very sharply when adding noise,
achieving for@ 4o 27 and 53% recall, and fa 5o 7 and 32%,
respectively. The latter method presents such behavisit,vaill
sooner stop its computation when not being able to find a nfatch

a query element. SMBGT significantly outperforms Il. et althw

«a = [ due to its additional ability to skip query elements. DJW
performs worst for all noise levels (0% recall 19r50), and this be-
haviour, along with that of DTW, is justified by the fact that they
implicitly embed time by allowing it to adjust locally, anday are
unable to skip non-matching elements, as they force therigio. a
For both of them, the value of parametglEq. 17) achieving their
best recall was 2. SPRING explicitly accounts for duratiofori-
mation in its computation, thus it can tolerate higher ntésels as
opposed to DTWand DTW.. Referring to MRR and average rank,
the same conclusions hold, with SMBGT, SMGT and Edit distanc
remaining close to 1 for all noise levels, which is expectedhe
other competitors identify fewer correct answers in the kop

5.2.4 Time

We observed that the average execution time per query length
for all methods increased linearly to the query length. DTWés
the fastest of all DP-based methods, however, achievingvthst
accuracy. DTW, SMBGT, SMGT, and Edit distance showed neg-
ligible differences to each other, while SPRING and DI Were
faster than the aforementioned methods, since they havepesi
computation scheme compared to the other methods. Il. et al.
was the most computationally expensive method, while theVHM
was the fastest one. Nevertheless, the training time foH¥&s
was close to 14 hours due to their high complexity, which & pr
hibitive, not to mention the significant degradation in aecy for
high noise levels. For more details refer to Fig. 6.



5.3 Experimental Results on Hummed Queries

The methods that showed to be noise-tolerant even for hiigle no
levels of 50%, i.e., SMBGT, SMGT, and Edit distance, weré&fer
evaluated for the hummed query set, since possibly noneeof th
elements of the correct song will be intact, due to hummimgrsr
and noise introduced by the recording procedure (Appendba)

5.3.1 Tolerance

In Fig. 4(middle and right) (and also Table 7 in Appendix A)5.
we see the results for absolute tolerance for SMBGT and SMGT,
with ¢t = 0.2 andt = 0.25 (Eqg. 6), respectively, which achieved
the best accuracy. For any tolerance scheme, small corestdnt
variablet made our methods perform better than for greater values,
with variablet being better. Moreover, absolute tolerance always
outperformed relative tolerance in all experiments. Fanegle,
fort = 0.2 and K = 10, relative tolerance was 33% worse than
absolute. Regarding Edit distance, no tolerance can beedefin

5.3.2 Tuning Parameters

We experimented with parametersa, andg, for 6 = 0. First,
we studied the effect ofin SMGT where no constraint is imposed
on the number of consecutive gaps. Increasingtarting from
r = |Q|, we observe that the recall of SMGT increases, unt#
1.2x|Q]|, after which the recall degrades. Interestingly, setting
oo leads to a recall of 0%. This is not surprising since incirggsi
r without any additional constraint in the number of gaps ltsso
a larger number of erroneous candidate matches. (see Tdibte 6
detailed results). We also studied the influencex@ind g for the
extreme case of = oo for SMBGT. Testing all pairs of values
in [2, 8], the recall was significantly improved and the best recall
was achieved foor = 8 = 4 (51% for K = 50), as shown in Fig.
4(middle). Then, in order to capture the impact-@ombined with
« ands, we gradually decreased the valueraind tested all pairs
of o, B € [2, 8]. The best accuracy was achieveddor 5, 8 = 6,
andr = 1.2 x|Q)|, verifying the need for skipping elements in both
target and query. In Fig. 4(middle) we also show how accuiscy
improved when varying from 1.2 to 2, fora = 5 and = 6.

5.3.3 Accuracy

Fig. 4(right) shows that our methods are at least 30 timdsehig
in recall than Edit distance fakK = 50, while SMBGT achieves
10% higher recall than SMGT faK” = 5, and 15% forK = 10
and K = 20. The recall of Edit distance is 0% even far = 10.
The values reported in Fig. 4(right) are achieved ffoe= 1.2,
a = 5andps = 6 (for SMBGT), andd = 0 for all K. Regarding
MRR, SMBGT outperforms Edit distance by more than two orders
of magnitude forK’ = 50, while SMGT achieves worse MRR than
SMBGT, as these measures are influenced by the recall (see als
Table 7). The values of MRR faK < 50 are very close to those
of K = 50, and hence we do not report them. Increasig>
50 may improve the recall of all methods, though, tradikigfor
higher recall will increase retrieval cost as more datakageences
will be reported. Our goal, in QBH, is to achieve high recall b
reporting as few candidates as possible. Hencekfoe 5-50 the
proposed methods clearly offer higher recall. Finally, estéd the
impact of§ on recall for the best combination of parameters for
SMBGT. Increasing), even foré = 0.5 % |@Q] and K = 50 the
recall does not decrease, while further increasing it makeall
worse. For example, faf = 0.6 = |Q)| it degrades to 28%, and for
0 = 0.7%|Q| to 9%, whenK = 5. This behavior indicates that the
recall on the hummed queries for which the correct song apdea
in the top#" was not influenced by requesting more elements of
the targeted sequences to match to theirs. In other wordseth

hummed queries were very similar to the targeted songsnigad

to the conclusion that if, in QBH, the users are singing wmkl in
pitch and time)y can be set, for example, to 0.5, resulting in fewer
false positive candidates.

5.4 Lessons Learned

Concluding our experimentation we learned the following)) (
due to their inherent lack of flexibility most of the existisgbse-
guence matching methods cannot handle high noise levei®asms
in the synthetic experiments, hence they completely fdilimmed
queries as opposed to SMBGT and SMGT. Among all competi-
tor methods Edit showed to be the most promising, however, fo
hummed queries it was at lea times lower in recall, forK =
50, than SMGT and SMBGT. For smallég, e.g., K = 10,
SMBGT achieved up td5% higher recall than SMGT, which shows
that imposing boundsx and g is indeed useful, (2) variable-
tolerance always achieved better accuracy than constatérance,
(3) « and 5 were tuned by trying all possible combinations in a
small range reasonable to QBH and reporting the one withake b
accuracy. In applications where this range is prohibiyivalge,
cross validation could be used, @jnay be tuned according to the
singing skills of the hummers andshould not exceed the query
length by more than a factor af2, (5) simple representations fa-
vor DP-based methods, (6) all DP-based methods have sirailar
trieval time complexity (with small variations) while HMMare
faster, though the required training is computationallpensive.

6. CONCLUSIONS

Motivated by QBH we proposed a subsequence matching frame-
work, which allows for gaps in both query and target sequence
variable tolerance levels in the matching of elements, ant ¢
strains the maximum match length and the minimum number of
matched elements. Our framework was shown to outperform sev
eral DP-based subsequence matching methods and a modédl-bas
probabilistic method in terms of accuracy, after extensxper-
imental evaluation on a large music database using hummetd an
synthetic queries. Directions for future work include itegtthe
performance of the proposed methods in other applicatiomadtts.
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APPENDIX
A. APPENDIX

We provide some additional material and further details on o
work. The content of this section is organized as followsAp
pendix A.1 we prove that SMBGT is non-metric (this holds for
SMGT as well); in Appendix A.2 and A.3 we present the DP-based
competitors and the probabilistic approach, respectitbbt have
been benchmarked and tested against our two proposed ragthod
in Appendix A.4 we provide additional description of thealased
in our experimentation; finally, in Appendix A.5 we includense
additional experimental results on accuracy, runtime rapdesen-
tation.

A.l SMBGT

THEOREM 1. SMBGT is not metric.

PROOF We prove this theorem by showing that SMBGT does
not follow the triangle inequality. Consider the followitigree 1-
dimensional time series{; = {3, 2}, X2 = {4}, X3 = {2,2,1}.
Assumee-tolerance fixed tal, r = oo, § = 0, anda = 8 =
1. ThenSMBGT (X1, X2) = 1, SMBGT (X2, X3) = 0, and
SMBGT (X1, X3) = 2. However,SM BGT (X1, X2) +
SMBGT(XQ,Xg) < SMBGT(XhXS). O

A.2 DP-based Methods

DP-based methods typically use an “alignment arragf size
(1Q] + 1) * (] X| + 1), where@, X are the compared sequences.
Forl < < |Q|andl < j < |X|, each celu; ; represents either
the minimum cost for aligning subsequencesbfind X ending
ats andj, respectively, or the maximum number of their matched
elements, depending on whether we use a distance or similari
measure.

A.2.1 Editdistance-based

The most recent variation of the Edit distance [31] between t
sequences) and X, with slight extensions to deal with LoglOIR

and quantizations, is computed as follows:
0 andai,o = 1, (11)

min {ai-1,; +1,ai-1 + 1, ai—1-1 + w(gi, ;) },

ao,j
Qij

wherew(g;, z;) is defined as:

1 qi, — Tj 1 )
w(qi,xj) = 5* {'W]%a]npge'} +3 « DurationCost (12)
. - minden e b goroR,
DurationCost = max {_qy:r .} (13)
| Dur%;i;:flj??‘ange |7 fOI’ LOglOIR

PitchRange and DurationRange correspond, respectively, to
the maximum pitch interval and LoglOIR range in DB. Afteis
computed, this method reporsin;{aq) ;}, i.e., the minimum
cost of aligningQ with the subsequence &f ending at positior.

A.2.2 SPRING

SPRING [27] uses an additional matrixwhich keeps for each
cell a; ; the start point of its current best alignment. The recursive
computation ofz; ; is:

ao,; = O0anda;o = oo, (14)
Qij = w(qi7 xj) + dpest, (15)
dvest = min{ai—1,j,ai;-1,ai-1,j-1}, (16)

with w(g;, z;) being theL, norm ofg; andz;. The same initial-
ization is used fom;,; and at each iteration the start point of the
element that was used to produtg,; is propagated. Finally, after
a is computed, SPRING reporisin;{a|q| ; }-

A.2.3 DTW tempo scaling

The next two methods were developed to measure the melodic
similarity of two sequence§ and X without using tempo infor-
mation directly, though allowing to locally adjust the teorgt cer-
tain positions. We refer to them asnple(DTW,) [13] and com-
plex (DT'W.) [11]. Both methods share the same initial condition,
shown in Eq. 17, where the simple scheme has been slightly mod
ified to conform with the complex scheme. The recursionster t
simple and complex scaling schemes are shown in Eq. 18 and Eq.
19, respectively.

aop,j = 0 andai,o =ai—1,0 +¢, (17)
aij = w(qi,,r;,) +min{ai—1j-1,ai-1,-2,ai-2;-1}, (18)
Ai—1,5—1

ai—2,j—1 +w(qi—1,,j,)
a;—1,5—-2 + w(qip7 xjflp)

a;,j = min

+w(qi,,xj,). (19)

Note thatc is a user-defined positive integer andq;,,, z;,) =
|qi,, — x;,|. Finally, both schemes repattin;{aq),;}-

A.2.4 lliopoulos et al.

The method by lliopoulos et al. [12] performs whole query
matching, by demanding all points ¢J to match within a con-
stante-tolerance in a subsequence Xf and allows for a limited
number of gaps only in the target sequence. A DP computation
is performed, where every match is rewarded with a scorg, of
whereas, whenever a mismatch occurs betwgandz ;, it checks
whether the best matching value found so farggrcan be propa-
gated without exceeding gaps inX.

In our experiments, we have developed a more elastic version
of this method suitable for subsequence matching. Firshgles
database scan identifies all possible start points of thdidare
matches. These start points correspond to the first quenyeglie
according to the tolerance scheme. Then, for each canditiete
method performs the DP computation described above. In addi
tion, the whole query matching requirement is eliminatedewa
non-matched query elememtis met, instead of ignoring the query
subsequencé)[1 : i] matched so far, we considé€}[1 : i] as a
candidate match. The rationale behind this is that it wowddab
too tight constraint to demand all query elements to matcK in
In a realistic situation, as in QBH, humming errors mightwcc
that, in the original setting, would immediately eliminatndidate
matches with even a mismatch due to a single falsely hummied no

A.3 Probabilistic Method

An HMM [18, 25] is a doubly stochastic process that contains a
finite set of states. Each state emits/observes one symbeti lzm
a probability distribution, and transitions between staee regu-
lated by the so-callettansition probabilities More formally, an
HMM is defined by: (1)M distinct states, (2] distinct symbols
that can be observed at each state, i.e., the discrete alphap
setT = {t;;} of transition probabilities, wheré;; = Pls; =
jlsi—1 = 1i],1 < 4,5 < M, wheres, is the state at timé. This
implies that the current state depends only on the predecess
(first order Markov chain assumption), (4) sBt= {e;(k)} of
the probabilities of observation symbols at statevheree; (k) =
Plos = k|st = j], whereo; is the observed symbol at tinte



and (5) sefl = {x,} of prior probabilities, wherer; = P[s; =
jlh1<ji<M.

When an HMM is trained from a set of sequences it reflects the
probabilistic relations of symbols within the sequencesve a
database of sequences, if we had a probabilistic model fdr ea
individual sequence or group of homogeneous sequencefuie ¢
transform the query matching problem to a probability caltton
of each model having generated a sequence (g@@ryln other
words, we would be looking for the model which maximizes the
log-likelihood of the query sequence.

Taking advantage of the training phase of HMMs is not that tri
ial when the database contains a large number of heterogeneo

sequences. In QBH the database may contain a large number of

songs covering a wide range of music styles, as happens with o
data. This would impose high heterogeneity in the databede a
there would be no implication about any kind of correlatiat b
tween the sequences. Consequently, forming groups ofagimil
sequences which can then be represented by HMMs (after train
ing), or even combining HMMs by constructing mixture models
would lead to unexpected and meaningless results. If, itrast)

the database consists of homogeneous sequences (e.@ ,patisi
terns) then HMMs could be highly applicable for, e.g., eatal or
classification [24]. Thus, itis obvious that the most readda and
fairest approach would be to model each database sequetite wi
one HMM [23], which is in fact the approach we adopted in this
paper. Notice that accounting for more sequences per HMMdvou
achieve at most the performance of this approach, as in theefo
case each HMM would try to model the behavior of several uncor
related database sequences, while in the latter the HMMiised

to model the structure of each database sequence.

A.4 Data

A.4.1 Database

Our database covers various music genres such as blues, rock

pop, classical, jazz, themes from movies and tv series. &ch e
MIDI (comprising16 channels) and channel, we extracted the high-
est pitch at every time clicka{l-channels extractiofi29])*. Then,

we converted tuplegpitch, click) to (pitch interval, IOIR, result-

ing in 40891 time series. This pre-processing procedure was done
offline and only once, guaranteeing that there is no chanoass-

ing a melody existing in any channel of a song.

A.4.2 Synthetic Queries

The pitch interval of the noisy elements was changedtbyc
[3, 8] (integer), as we wanted the noise to range within one octave.
This simulates the error performed by a human when singiog@ s
by memory as well as the intrinsic noise that may be added by an
audio processing tool. An erroneous interval of 3 to 8 semeito
i.e., 1.5to 4 tones, is very reasonable.

Regarding the IOIR dimension, eagh was modified bytk €
[2, 4] (real), so that several reasonable variations of duraiing
could be simulated, and also be outside the bounds desdriped
Eq. 9, avoiding any bias against our proposed methods. k& cas
of a negative value in IOIR, it is reset to a very small realipos
tive value, as duration ratios should be positive. Moreoieall
noisy query sets we allowed at most 3 consecutive elemerus to
replaced with noisy values. This is because in QBH we do not ex
pect to have many consecutive matching errors, or else itdnma
hard to identify the correct target for short queries.

1In the extraction process we excluded channel 10, sincaiitésl
for drums and cannot offer any musical information in QBH.

Table 1: Accuracy of all methods for query setQ. 10 and K = 20

Accuracy
Methods | Recall (%) | MRR | AR Repr.
SMBGT 100 1 1 1-8
SMGT 99 0.99 12 | 1,2,4-6,8
DTW 15 0.1265| 18.2 15
DTW . 95 0.9198| 2.23 15
Edit 100 1 1 1,2,6
SPRING 100 0.995 | 1.01| 2,468
Il. etal. 99 0.9523| 1.33 1,5
HMM 98 0.9054| 1.72 3

Table 2: Accuracy of all methods for query setQ oo and K = 20

Accuracy
Methods | Recall (%) | MRR AR Repr.
SMBGT 100 1 1 1-8
SMGT 99 0.99 12 | 1,256
DTW ¢ 1 0.0005| 20.98 5
DTW. 89 0.8479| 3.48 5
Edit 99 0.99 1.2 1
SPRING 95 0.9357| 2.98 2,6,8
II. etal. 93 0.8802| 3.02 15
HMM 95 0.8953| 2.14 3
Table 3: Accuracy of all methods for query setQ 30 and K = 20
Accuracy
Methods | Recall (%) | MRR | AR Repr.
SMBGT 100 1 1 1,2,5,6
SMGT 97 0.97 16 | 1,256
DTW 1 0.01 | 20.8 5
DTW. 69 0.6304 | 7.49 5
Edit 100 0.9833] 1.11 1
SPRING 91 0.8778| 5.2 2,6,8
II. etal. 71 0.5803| 7.8 5
HMM 93 0.7974 | 3.09 3
Table 4: Accuracy of all methods for query setQ 40 and K = 20
Accuracy
Methods | Recall (%) | MRR AR Repr.
SMBGT 99 0.9745| 1.27 | 25,6
SMGT 96 0.9381| 1.9 5
DTW 0 0 21 -
DTW . 27 0.2514 | 15.89 5
Edit 98 0.9664 | 1.47 1
SPRING 86 0.7906| 7.84 6,8
II. etal. 53 0.3759 | 11.34 5
HMM 76 0.5538| 7.57 3
Table 5: Accuracy of all methods for query setQ 50 and K = 20
Accuracy
Methods | Recall (%) | MRR AR Repr.
SMBGT 97 0.9487| 1.71 | 2,56
SMGT 96 0.9241| 1.97 5
DTW 0 0 21 -
DTW . 7 0.0427| 19.92 5
Edit 97 0.9366| 1.88 1
SPRING 75 0.638 | 14.51 6
II. etal. 32 0.2072| 15.44 5
HMM 56 0.369 | 11.53 3

A.4.3 Hummed Queries

To evaluate the methods in QBH,males were asked to hum
25 songs (each). Two of them were musically trained with middle
and low level studies in the piano and the guitar, while thedth
and fourth had no musical background. Melodies were hummed
in a microphone and then converted to MIDI using &ieff mu-
sic composer-version 29) a well-known tool commonly used for

2http://www.akoff.com/music-composer.html.



evaluating QBH systems (e.g., by Zhu et al. [33]). All-chalsn
extraction was applied to the queries to obtain the sames+epr
sentation with the database. The query set covered sevemal g
res of music, such as classical (“Fur Elise”), blues (“Hiday”),
jazz (“Strangers in the Night”), rock 'n’ roll (“Rock Arounthe
Clock™), rock (“Fly Away”), country (“Hey Good Lookin”), ad
romantic songs (“What a Wonderful World").

Selecting the final set of hummed queries involved manual pro
cess. Apart from the mistakes that a user can make, any record
ing procedure may introduce noise in both pitch and duratidn
ter listening to the MIDI of each hummed song, noise had been
introduced, especially in pitch. Consequently, users loadum
each song several times before selecting the version wéthetist
amount of noise, i.e., the one whose melody sounded as cldise t
target as possible. Furthermore, users were asked to angidg
with lyrics and also to sing close to the microphone.

A.5 Experimental Results

A.5.1 Accuracy
The results of the performance evaluation of the proposeti-me

ods with respect to accuracy, for all synthetic query seesshown
in Tables 1, 2, 3, 4, and 5.

Table 6: Recall of SMGT for various top-K and ranges for the
hummed queries

Recall (%)

r QI | 11[Q] | 1.2]Q] | 1.5[Q] | 2]Q] | o0
K=5 32 31 34 31 30 0
K=10 | 38 40 42 36 40 0
K =20 | 41 46 48 44 42 0
K =50 | 47 52 62 57 56 0

MRR for synthetic query sets vs. matching methods
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Figure 5: Accuracy of the proposed methods vs. DP and HMM meth-
ods for K = 20 in terms of MRR for synthetic queries.

Table 7: Recall and MRR of the proposed methods vs. Edit distance
for the hummed queries (K = 50)

Accuracy
Methods | Recall (%) | MRR Tol.
SMBGT 67 0.3661| abs. 0.2
SMGT 62 0.2956 | abs. 0.25
Edit 2 0.0012 -

A.5.2 Runtime

In Fig. 6 we show the average execution time for all methods
per query length conforming with the complexities of the noels.

For DP-based methods the time complexityi§ Q|| X |) whereas
for Il etal. itis O(|X| + |Q||X|?). Training an HMM for a
sequenceX is O(W|X|M?), and computing the log-likelihood of
a queryQ being generated by an HMM @&(|Q|M?), whereW is
the number of iterations of the Baum-Welch [25] algorithm.

Runtime for varying query lengths
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Figure 6: Average execution time for all methods per query length.

A.5.3 Representation

For synthetic queries we observe that, as the noise leveldses,
the representations (Table 8) achieving the highest reealDP-
based method are a subset of the representations of lowse noi
levels (Tables 1, 2, 3, 4, 5). An example can be seen for SPRING
where inQ .10 the highest recall is achieved for 2, 4, 6, and 8, in
Q.20 and Q 3o for 2, 6, 8, and INQ .40 and Q 5o for 6, 8 and 6,
respectively. Moreover, representations 1 and 5 appeat imos
all synthetic query sets, and 5 is also the representatiadirlig
to highest accuracies for hummed queries. The latter shioats t
the simpler the representations, the more promising thesnge
be in QBH. The representation used for the HMM method, which
leads to the smallest possible alphabet size, is 3. Eacloptie
cartesian product of the two dimensions pitch interval attbris
encoded by one symbol, resulting in 115 discrete symbolecte
ing a small alphabet size implies that each state does netitd
account too many symbols (so as to observe/emit one of tteemd),
hence, it becomes more likely for a query to be generated dy th
targeted sequence, if there is not much noise in it. Thisdsise
the approach is probabilistic and every symbol is assignedna
zero probability of being emitted at each state. Followirgaas-
sian distribution with meap = 58 for representatio (Table 8),
which is the mean of the symbols’ distribution over the data)
and varying the standard deviatisnHMMs performed better than
randomly selecting the probability values of emitting agynbol
at each state.

Table 8: Code numbers for representations
Code number | Representation
(mod12, IOIR
(mod12, LogIOIR
(mod12, LoglOIR in[—2, 2]))
(mod12, LogIOIR quantized to closest integer
(pitch interval, IOIR
(
(
(

pitch interval, LoglOIR
pitch interval, LogIOIR in[—2, 2]))
pitch interval, quantized to closest integer
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