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Abstract

Sequences of event intervals appear in several appli-
cation domains including sign language, sensor net-
works, medicine, human motion databases, and linguis-
tics. Such sequences comprise events that occur at time
intervals and are time stamped at their start and end
time. In this paper, we propose a new method, called
IBSM, for comparing such sequences. IBSM performs
full sequence matching using a vector-based represen-
tation of the original sequence. At each time point an
event vector is computed; hence, the original sequence
is mapped to an ordered set of vectors, which we call
event table. Given two sequences, their event tables are
resized using bilinear interpolation, which ensures they
are of the same size. The resulting event tables are then
compared using the Euclidean distance. In addition, we
propose two techniques for reducing the computational
cost of IBSM when performing nearest neighbor search
in a large database. Extensive experiments on eight real
datasets show that IBSM outperforms existing state-of-
the-art methods in terms of nearest neighbor classifica-
tion accuracy, and by up to two orders of magnitude in
terms of runtime.

1 Introduction

Many application domains are characterized by se-
quences of event intervals, such as sign language [26,27],
medicine [14], geo-informatics [30], cognitive science [5],
linguistics [6], and music informatics [24]. For example,
in sign language, sentences are constructed by events
corresponding to occurrences of various grammatical,
syntactic, and gestural expressions. Such expressions
have a time duration and they may occur concurrently,
hence, sequences of event intervals are formed. More-
over, in medicine [14], patients typically undergo a series
of diagnostic tests and treatements that have a time du-
ration and may also occur concurrently.

The main advantage of event interval sequences over
traditional event sequences, which model series of in-
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stantaneous events, is that they incorporate the notion
of duration in their event representation. Essentially,
sequences of event intervals can be encoded as a collec-
tion of labeled events accompanied by their start and
end time values. An example of a sequence of five la-
beled temporal intervals is shown in Figure 1.

Figure 1: Example of a sequence of five event intervals.
Four event labels are used in this example: A, B, C,
and D. Note that event A occurs twice.

Knowledge discovery tasks have been so far the
main focus of many studies on sequences of event
intervals. Such tasks include mining patterns and
association rules [2, 13, 21, 27], mining semi-interval
partial orders [23], and discovering relationships for
classification [29]. Surprisingly, similarity searching and
matching has received limited attention [15,16].

Here, we study the problem of full sequence match-
ing of sequences of event intervals. Developing robust
methods for solving this problem will facilitate a wide
range of knowledge discovery tasks (such as classifica-
tion and clustering) in a wide range of application do-
mains where such sequences occur, like the ones men-
tioned above. Existing similarity measures on discrete
sequences, such as the Levenshtein distance [18], are not
directly applicable to sequences of event intervals. As
shown by Kostakis et al. [15], mapping a sequence of
event intervals to a discrete event sequence, by consid-
ering only the start and end points of each event interval
and labeling them with the event label that corresponds
to that interval, may lead to a large number of false
matches.

A recent similarity measure, Artemis [15], has
been proposed for similarity matching of event interval
sequences. Each sequence is represented by the set of
temporal relations between all pairs of event intervals.
Given two sequences, and using this representation,
Artemis finds an optimum matching between their pairs
of event intervals by mapping the sequences into a
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Figure 2: Three sequences of two event intervals A and
B. In all sequences the temporal relation between the
events is the same (they are overlapping), though the
time duration of both the intervals and their overlap is
different.

bipartite graph. Then, similarity is inferred using the
Hungarian algorithm. One limitation of this method is
that it only considers the types of temporal relations
in the matching and ignores the actual duration of
the events. For instance, consider the three sequences
shown in Figure 2. Each sequence consists of two event
intervals with the same label and the same temporal
relation: overlap. Hence, Artemis would conclude that
the three sequences are identical. Nonetheless, one
could argue that these sequences differ substantially:
the time durations of the intervals vary among the three
sequences and the time duration of their overlap is also
different.

In this paper, we address this shortcoming of
Artemis and propose a novel method, IBSM (short-
hand for Interval-Based Subsequence Matching), which
performs full sequence matching by: (1) transforming
the compared event-interval sequences to a vector-based
representation, and (2) computing the Euclidean dis-
tance of the new representations of the sequences. The
key novelty of IBSM is that it explicitly takes into ac-
count the time durations of the event intervals in the
sequences and implicitly their temporal relations.

The main contributions of this paper include:

• a robust vector-based representation of event inter-
val sequences that facilitates full sequence match-
ing,

• a novel method, called IBSM, for matching event-
interval sequences that exploits the vector-based
representation by applying bilinear interpolation
and computes the Euclidean distance of the result-
ing sequence representations,

• two techniques based on sampling and alphabet

reduction that speed up the runtime and decrease
the memory requirements of IBSM when performing
nearest neighbor search in a database of event-
interval sequences, and

• an extensive experimental evaluation of IBSM

against two state-of-the art measures on eight real
datasets taken from different application domains,
where IBSM is shown to outperform existing state-
of-the-art methods in 7 out of 8 datasets, in terms
of nearest neighbor classification accuracy, and by
up to two orders of magnitude in terms of runtime.

The remainder of this paper is organized as follows:
in Section 2 we provide the necessary background and
core definitions, whereas in Section 3 we describe the
proposed method. In Section 4, we present two tech-
niques for speeding up nearest neighbor search using
IBSM. Our experimental evaluation and findings are dis-
cussed in Section 5, while Section 6 presents the related
work. Finally, Section 7 concludes the paper and dis-
cusses directions for future work.

2 Background

Let Σ = {E1, . . . , Em} be an alphabet of m event labels.
An event that occurs over a time interval defines an
event interval and an ordered multiset of event intervals
defines an event-interval sequence. Next, we provide a
more formal defintion for these two concepts.

Definition 1. (event interval) An event interval is
defined as a triple S = (E, tstart, tend), where S.E ∈ Σ
and S.tstart, S.tend correspond to the start and end time
of S, respectively. In general, S.tstart ≤ S.tend, where
the equality holds when the event is instantaneous.

Definition 2. (e-sequence) An event-interval se-
quence or e-sequence S={S1, . . . , Sn} is an ordered mul-
tiset of n event intervals. The temporal order of the
event intervals in S is ascending based on their start
time and in the case of ties it is descending based on
their end time. In case of further ties, alphabetical or-
der is used.

The size of an e-sequence S, |S|, is the number of
event intervals in the e-sequence, whereas the length
of S corresponds to the maximum time point in S,
i.e., length(S) = Sn.tend. Recalling the example
in Figure 1 and following the above definitions, we
derive the following e-sequence representation: S =
{(A, 1, 10), (B, 5, 13), (C, 17, 30), (A, 20, 26), (D, 24, 30)}.

We use Allen’s model for temporal logic [3, 4] to
define the relations between two event intervals. Given
two event intervals A and B, we consider seven temporal



relations: meet, match, overlap, left-contain, right-
contain, contain, and follow. These relations are
shown in Figure 3.

The problem we study in this paper is how to assess
the similarity between two e-sequences S and T . A ro-
bust distance measure should take into account several
common characteristics of S and T : (1) common event
labels, (2) pairs of event intervals with the same tempo-
ral relation, (3) the time duration of each event interval
as well as the duration of each temporal relation.

Figure 3: Seven temporal relations between two event-
intervals.

3 IBSM: Interval-Based Sequence Matching

We introduce a novel approach, called IBSM (Interval-
Based Sequence Matching), for performing e-sequence
matching between two e-sequences. Each e-sequence
S is mapped to its corresponding resized event table
representation, which is computed in two phases: (a)
S is converted to an event table AS , and then (b)
AS is resized to yield the final representation of S.
Finally, IBSM computes the Euclidean distance of these
representations. As shown in Section 3.3, IBSM performs
e-sequence matching in time linear to the length of the
e-sequences.

3.1 Event table representation Firstly, we assume
that at each point in time all events may appear
simultaneously. More than that, even multiple instances
of one event are allowed to happen concurrently at a
specific time point. Hence, given an e-sequence S and
a time point t, some events in Σ may be active and
some may be not. We use an event vector to record this
information.

Definition 3. (active event interval) An event in-
terval S = (E, tstart, tend) is active at time point t if
and only if

S.tstart ≤ t ≤ S.tend

Definition 4. (event vector) Given an e-sequence
S = {S1, . . . , Sn} and a time point t, the event vector
VtS of S at time t is a vector of size |Σ|, where each value

VtS(i) is a non-negative integer that records how many
event intervals with label Ei ∈ Σ are active at time t.

Therefore, for each time point t ∈
[1, . . . , length(S)], the corresponding event vector
VtS is computed and recorded as a column in the event
table AS .

Definition 5. (event table) Given an e-sequence
S = {S1, . . . , Sn} its corresponding event table AS is a
matrix of size |Σ| × length(S), where AS(i, j) = VjS(i),
for i ∈ [1, . . .Σ] and j ∈ [1, . . . length(S)].

In other words, each e-sequence S is represented by
event table AS , where each cell (i, j) of the table reflects
the number of times the i-th event in Σ appears at the
j-th time point in S.

3.2 Resizing the event table The next step of
our method is to ensure that the tables of the two e-
sequences S and T under comparison are of the same
size. To achieve this, we use a rezising parameter γ.
Typically, γ is set to the maximum time point between
the two e-sequences, that is

γ = max{length(S), length(T )}.

Note that, in case we are computing pair-wise distances
of more than two e-sequences, γ is set to the maximum
e-sequence length.

Definition 6. (γ-resized event table) Given an
event table AS and a resizing parameter γ, the γ-rezised
event table AγS is computed by resizing AS to γ using
bilinear interpolation.

Consequently, after this step is executed, S and T
are represented by their γ-resized event tables AγS and
AγT , respectively, which are of the same size |Σ| x γ.

The final step of IBSM is to compute the distance
of the resulting γ-resized event tables of S and T . The
distance measure used is the Euclidean distance, and it
is computed as follows:

(3.1) D(S, T ) =

√√√√ |Σ|∑
i=1

γ∑
j=1

(AγS(i, j)−AγT (i, j))2

3.3 Complexity The online computational com-
plexity of IBSM is linear to the length of the e-sequences.
This is a significant improvement over the existing
state-of-the-art Artemis method [15], which is cubic
to the e-sequence length. More specifically, given two
e-sequences S, T , defined over an event alphabet Σ,
and a resizing parameter γ, the online computational



time and space complexity of IBSM is O(|Σ| × γ). Re-
garding the pre-processing step, the method requires
O(|Σ| × length(S)) and O(|Σ| × length(T )) time and
space for computing and resizing the event tables for S
and T , respectively.

4 Nearest neighbor search using IBSM

IBSM can be used for nearest neighbor search in an
e-sequence database, i.e., a collection of e-sequences.
Let DB be an e-sequence database. Given a query e-
sequence Q we want to find the nearest neighbor of Q
in DB. Despite the linear complexity of IBSM, which
already achieves over an order of magnitude speedup
compared to the state-of-the-art Artemis method, it
depends on the lengths of the e-sequences in DB
as well as the alphabet size |Σ|. Thus, we next
introduce two techniques for speeding up IBSM for
nearest neighbor search, that can achieve significant
speedups by reducing the e-sequence lengths as well as
the alphabet size.

4.1 Speedup by sampling The first speedup tech-
nique that can be applied is to reduce the number of
columns of the γ-resized event tables of the e-sequences
in DB. Given the γ-resized event table AγS of each e-
sequence S ∈ DB, we perform uniform sampling on the
columns of AγS with a sampling period equal to δ. This
results in including only columns 1, 1+δ, 1+2δ, 1+3δ, . . .
from AγS .

More formally, we consider the following set of
columns:

{j + 1|j ∈ [0, γ) and mod(j, δ) = 0}.

Sampling results in a reduction on the columns of AγS
expressed by the sampling rate r ∈ [0, 1] given by

(4.2) r =
dγδ e
γ
.

Effectively, the number of columns in AγS is reduced
from γ to dγδ e, which implies that each γ-resized event
table is reduced to r × 100% of its original size.

4.2 Speedup by alphabet reduction We pressent
a second speedup technique that reduces the number of
rows of the γ-resized event tables of the e-sequences in
DB. The key idea is to reduce the size of the alphabet
Σ. Specifically, given a γ-resized event table AγS of γ
columns, for each event Ei ∈ Σ, the fraction of non-
zero occurrences of Ei in row i of the table, denoted as
h(Ei, A

γ
S), is given by

h(Ei, A
γ
S) =

1

γ

γ∑
j=1

I(AγS(i, j)),

where I(·) is an indicator function such that

I(x) =

{
0 if x = 0
1 otherwise

Definition 7. (event density) Given a database DB
of e-sequences defined over an alphabet Σ, the event
density H(Ei, DB) of each Ei ∈ Σ in DB is defined
as follows:

H(Ei, DB) =
1

|DB|
∑

S∈DB
h(Ei, A

γ
S).

In other words, the event density of Ei in DB
expresses the average fraction of non-zero occurrences
of Ei in the γ-resized event tables of the e-sequences in
DB.

The alphabet reduction technique we propose here
computes the density of each event Ei ∈ Σ in DB and
removes Ei from Σ, if

H(Ei, DB) < ε , where ε ∈ [0, 1].

Practically, ε is a threshold placed on the average
frequency of event Ei in DB. If Ei appears in less than
ε × 100% of the columns of the γ-resized event tables
in DB, on average, then it is removed from Σ. The
intuition behind this technique is that event labels that
appear more frequently in active event intervals in DB
are those that mostly characterize the e-sequences in
DB.

Therefore, the ratio of the reduced alphabet size
over the initial size, called the alphabet reduction rate
s ∈ [0, 1], is given by

(4.3) s = 1− |{Ei ∈ Σ|H(Ei, DB) < ε}|
|Σ|

.

Effectively, the number of rows in AγS is reduced
from |Σ| to s|Σ|, which implies that each γ-resized
event table is reduced to s× 100% of its original size.

In the description of the two previous techniques
we assumed that each technique is applied to the
original γ-resized event table. To speed up IBSM we
apply both techniques and finally compute the distance
of the reduced event tables using Equation 3.1. As
a result, the overall benefit gained by applying both
techniques is a total reduction of each γ-resized event
table to r × s× 100% of its original size.

5 Experiments

In this section we present the experimental setup and
results evaluating the performance of IBSM.



5.1 Experimental Setup In our experiments we
used eight real datasets, and compared IBSM with two
competitor methods in terms of 1-NN classification
accuracy and runtime.

5.1.1 Datasets Our eight real datasets were taken
from various application domains. A summary of the
statistics for each dataset is shown in Table 1. Below,
we describe each dataset in more detail:

• ASL-BU [27]. Event labels correspond to gram-
matical or syntactic forms (e.g., wh-word, wh-
question, verb, noun, etc.) as well as facial or ges-
tural expressions (e.g., head tilt right, rapid head
shake, eyebrow raise, etc.). An e-sequence is an
expression of a sentence using sign language.

• ASL-BU2. This is the newest version of ASL-
BU. The structure is the same as that of ASL-BU
but this dataset contains a large number of new e-
sequences and versions of the previous ones that are
improved in terms of annotation, where additional
labels have been introduced.

• Auslan [23]. The e-sequences were derived from
the Australian Sign Language dataset available
in the UCI repository 1. Each event interval
represents a word like girl or right.

• Blocks [23]. Event labels correspond to visual
primitives obtained from videos of a human hand
stacking colored blocks and describe which blocks
are touched as well as the actions of the hand
(e.g., contacts blue or red, attached hand red, etc.).
Each e-sequence represents one of eight different
scenarios including atomic actions, such as pickup,
or complete scenarios, such as assemble.

• Context [23]. Event labels were derived from
categoric and numeric data describing the context
of a mobile device carried by humans in different
situations. Each e-sequence represents one of five
different scenarios such as street or meeting.

• Hepatitis [28] The dataset contains information
about patients who have either Hepatitis B or Hep-
atitis C. The event intervals represent the results of
63 regular tests. Each e-sequence describes a series
of tests taken by a patient.

• Pioneer [23]. This dataset was constructed from
the Pioneer-1 dataset available in the UCI repos-
itory 2. Event intervals correspond to the input

1http://www.ics.uci.edu/ mlearn/MLRepository.html
2http://archive.ics.uci.edu/ml/

provided by the robot sensors. Each e-sequence in
the dataset describes one of three scenarios: grip-
per, move, turn.

• Skating [23]. Event intervals describe muscle
activity and leg position of 6 professional In-Line
Speed Skaters during controlled tests at 7 different
speeds on a treadmill. Each e-sequence represents
a complete movement cycle.

5.1.2 Methods We compared these methods:

• IBSM: we experimented with and without sampling
and alphabet reduction.

• Artemis [15]: the state-of-the-art method for sim-
ilarity mathing of e-sequences.

• DTW-based [15]: the baseline approach which
Artemis has been compared to. Each e-sequence is
mapped to a set of vectors. Each vector keeps track
of the number of times each event label appears,
and is created only for these time points where a
change occurs, i.e., when one or more event inter-
vals become active or inactive. The dimensions are
combined using the root mean square.

5.1.3 Evaluation We computed the 1-NN classifica-
tion accuracy for each method and dataset. For each
dataset, each e-sequence was considered to be a query
Q and the distance from the remaining e-sequences in
the dataset was computed. The class label of the 1-NN
e-sequence was compared to that of Q. In case of ties,
a majority scheme was followed.

To be more specific, let DB be the set of e-
sequences in a dataset. For each query Q ∈ DB, we
computed its distance D(Q,S) against each e-sequence
S ∈ DB\Q. Note that D(·) corresponds to the distance
function used by each of the three methods. Let DQ =
{D(Q,S)|∀S ∈ DB \Q} be the set of distances of Q to
DB \Q and NNQ = min(DQ) the distance of the 1-NN
of Q in DB\Q. If there is only one e-sequence in DB\Q
with distance NNQ from Q then we just compare the
class labels of the two e-sequences. If there is more than
one e-sequence with that distance, then we consider the
union of all classes of these e-sequences and report the
majority class as the class of the nearest neighbor.

In the results reported in Section 5.2, the classifica-
tion accuracy for each dataset is defined as the percent-
age of the total number of e-sequences of the dataset
that were correctly classified.

The methods have been implemented in Matlab on
an AMD Opteron 8220 SE processor running at 2.8GHz.



Table 1: Dataset Statistics

Dataset # of e-sequence size # of # of max e-seq. interval size
e-seq. min. max. average labels classes length mean stdev min max

ASL-BU 873 3 40 17 216 9 5901 594 590 3 4468
ASL-BU2 1839 4 93 23 254 7 14968 669 808 3 9967
Auslan2 200 9 20 12 12 10 30 20 12 1 30
Blocks 210 3 12 6 8 8 123 17 12 1 57
Context 240 47 149 81 54 5 284 69 81 1 284
Hepatitis 498 15 592 108 63 2 7555 634 1093 1 7555
Pioneer 160 36 89 56 92 3 80 36 21 1 80
Skating 530 27 143 44 41 6 6829 576 672 1 6829

5.2 Experimental Results Next, we present our
experimental findings in terms of classification accuracy
and runtime.

5.2.1 Classification accuracy We first evaluated
the performance of IBSM in terms of 1-NN classification
accuracy on the eight datasets and compared it to that
of Artemis and DTW-based. For this erxperiment, we
did not apply the speedup techniques for IBSM, i.e.,
we set the sampling period δ = 1 and the alphabet
reduction threshold ε = 0. In Table 2 we can see that
IBSM is a clear winner in all datasets except for the
Pioneer dataset. The results strongly suggest that when
comparing e-sequences it is essential to take into account
the interval durations along with the relation types
(which is what IBSM does), since the 1-NN classification
accuracy can be substantially improved.

Next, we studied the effect of sampling and alpha-
bet reduction on the accuracy of IBSM when performing
nearest neighbor search. We first experimented on dif-
ferent sampling rates r keeping the alphabet size fixed
to |Σ|. In Figure 4, we show the performance of IBSM in
terms of 1-NN classification accuracy for different sam-
pling rates, compared to Artemis and DTW-based. We
observed that for all datasets a sampling rate of r = 10%
suffices to maintain the original 1-NN classification ac-
curacy (i.e., without sampling). Note that for ASL-BU,
ASL-BU2, Hepatitis, and Skating the rate was ≈ 0.9%.

In addition, we experimented on different alphabet
reduction rates while maintaing the sampling rate con-
stant. Using the result of the previous experiment, we
fixed the sampling rate to r = 10%, and varied the al-
phabet reduction rate s. The results are shown in Figure
5. Observe that the effect of s on the 1-NN classifica-
tion accuracy varies per dataset. Specifically, ASL-BU,
Blocks, and Skating can tolerate a reduction down to
s = 40% without significant drop in the accuracy, while
for Hepatitis and Pioneer the original accuracy is man-
taintaned until s drops down to 30%. The results are
quite worse for Context, where s = 50%, and Auslan2,

where s = 70%. Finally, ASL-BU2 shows the best per-
formance as it can tolerate an alphabet reduction down
to s = 10% without significant loss in terms of 1-NN
classification accuracy.

Table 2: 1-NN classification accuracy. For IBSM neither
sampling nor aplhabet reduction have been applied.

Dataset IBSM Artemis DTW

ASL-BU 90.1 79.56 43.58
ASL-BU2 82.2 80.53 77.25
Auslan2 39.5 28.5 22
Blocks 100 99 87
Context 97.08 90 89
Hepatitis 77.91 72.09 74.03
Pioneer 93.75 97.5 93
Skating 97.74 84 77

We conclude that in the majority of the datasets
applying a sampling rate r of 10% and reducing the
alphabet size by 50%, hence reducing the computational
cost by a factor of 95%, can still maintain a 1-NN
classification accuracy that is higher than that of the
competitor methods for 7 out of 8 datasets.

Table 3: Runtime in seconds. We show the average
total runtime (including pre-processing and matching)
for comparing all pairs of e-sequences within a dataset.
For IBSM neither sampling nor alphabet reduction have
been applied.

Dataset IBSM Artemis DTW

ASL-BU 81.34 1915.97 190.89
ASL-BU2 659.73 14018.08 2140.47
Auslan2 0.94 9.64 2.73
Blocks 0.79 22.20 1.56
Context 5.53 121.66 9.56
Hepatitis 27.96 537.16 58.23
Pioneer 8.76 98.41 25.48
Skating 14.96 259.63 39.90
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(b) ASL-BU2
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(c) Auslan2
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(e) Context
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(f) Hepatitis
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(g) Pioneer
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Figure 4: Comparison of IBSM, Artemis, and DTW-based

for different sampling rates r. No alphabet reduction
was applied (ε = 0). The flat lines are used to indicate
the 1-NN accuracy of the two competitor methods and
IBSM without sampling.
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(a) ASL-BU
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(b) ASL-BU2
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1−NN classification accuracy vs. alphabet reduction rate for Auslan2
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(c) Auslan2
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1−NN classification accuracy vs. alphabet reduction rate for Blocks

 

 

IBSM without sampling
IBSM with alphabet reduction
Artemis
DTW

(d) Blocks
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1−NN classification accuracy vs. alphabet reduction rate for Context
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(e) Context
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1−NN classification accuracy vs. alphabet reduction rate for Hepatitis

 

 

IBSM without sampling
IBSM with alphabet reduction
Artemis
DTW

(f) Hepatitis
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(g) Pioneer
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Figure 5: Comparison of IBSM, Artemis, and DTW-based

for different alphabet reduction rates s. Note that the
sampling rate for IBSM was fixed to r = 10%. The flat
lines are used to indicate the 1-NN accuracy of the two
competitor methods and IBSM without sampling.



5.2.2 Runtime Finally, we benchmarked the meth-
ods in terms of runtime. The results are shown in Table
3. Note that for IBSM neither sampling nor alphabet
reduction have been applied. For each dataset, we show
the average total runtime (including pre-processing and
matching) for comparing all pairs of e-sequences for
each dataset. It turns out that IBSM is a clear win-
ner in all cases achieving up to two orders of magnitude
speedup against Artemis. This speedup becomes signif-
icantly higher (by at least another order of magnitude)
when applying sampling and alphabet reduction. Due
to space limitations we have not included these results
in the paper.

6 Related Work

Existing work on temporal interval sequences has so far
been focusing merely on frequent pattern and associa-
tion rule mining. Several approaches [19, 31] consider
discovering frequent intervals in databases, where in-
tervals appear sequentially and are not labeled, while
others [9] consider temporally annotated sequential pat-
terns where transitions from one event to another have a
time duration. A graph-based approach [12] represents
each temporal pattern by considering only two types of
relations between event-intervals (follow and overlap).
In Ale et al. [2], the lifetime of an item is defined as
the time between its first and last occurrence and the
support is calculated with respect to this interval.

A large variety of Apriori-based techniques [1,7,10,
11, 13, 17, 20] for finding temporal patterns, episodes,
and association rules on interval-based event sequences
have been proposed. BFS-based and DFS-based ap-
proaches [25–27, 32] apply efficient pruning techniques,
thus reducing the inherent exponential complexity of
the mining problem, while a non-ambiguous hierarchi-
cal representation of interval-based event sequences has
been proposed by Patel et al. [33] for frequent pat-
tern mining. In addition, there has been some recent
work on mining semi-partial orders of time intervals [23],
while an efficient method for mining closed patterns of
interval-based events has been proposed [8].

Recent work on margin-closed patterns [22, 23] fo-
cuses on significantly reducing the number of reported
patterns by favoring longer patterns and suppressing
shorter patterns with similar frequencies. A unifying
view of temporal concepts and data models has been for-
mulated in [21] to enable categorization of existing ap-
proaches to unsupervised pattern mining from symbolic
temporal data; time point-based methods and interval-
based methods as well as univariate and multivariate
methods are considered.

A thorough survey of the literature on pattern min-
ing from event-interval sequences is beyond the scope

of this paper as the problem studied here is funda-
mentally different. To the best of our knowledge, the
only existing principled method for comparing event-
interval sequences is Artemis [15]. A baseline approach,
DTW-based, which is described in Kostakis et al. [15],
is based on an event-interval sequence representation
that is vector-based, however, due to its contruction,
it fails to take into consideration all pair-wise tempo-
ral relations [15]. Finally, a matrix-based representa-
tion [16] has been proposed for comparing event-interval
sequences. Unfortunately this representation is ambigu-
ous, i.e., two different event-interval sequences may have
the same matrix representation, and hence it is not con-
sidered further in this paper.

7 Conclusions

We have proposed a novel method for full matching of
sequences of interval-based events. The novelty of the
method against existing approaches is the fact that it
considers both temporal relations and duration of the
event intervals in the e-sequences. The method con-
verts the original sequences to an event table representa-
tion and then computes a Euclidean-based distance be-
tween the event tables. Additionally, we have proposed
two techniques for speeding up IBSM when used for
nearest neighbor search in large e-sequence databases.
We provided an extensive experimental evaluation of
IBSM against two state-of-the-art methods on eight real
datasets. The performance of our method in terms of
1-NN classification accuracy and runtime is significantly
better than the two competitors. Directions for future
work include the exlporation of additional speedup tech-
niques as well as the theoretical analysis of the proper-
ties of the proposed method.
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