
System Internals

M
ik

ic
a

B
 K

oc
ic

K

TH
, I

D
20

13
, 2

01
0-

11
-3

0

Kryptofon
Secure VoIP Phone

This application was written as a final project of
KTH course ID2013 Internetprogrammering I

i

Kryptofon Internals

Contents

Program Organization ... 1

Packages..1

Class Diagrams ... 3

CryptoPhoneApp Class ..3
Cipher Engine Classes..4
PBX Client Classes ...5
Datagram Channel and Protocol Data Unit Classes ..6
Remote Peer and Call Context Classes..7

The Protocol.. 8

TCP Message Format...9
UDP Datagrams ...16

ii

Kryptofon Internals

 Program Organization

1

Kryptofon Internals

Program Organization
Kryptofon requires Java Runtime Environment 1.6 (JRE6) system libraries or later,
including Java Cryptography Extension (JCE).

Beside its own packages, Kryptofon uses also Base64, a public domain Java class
providing Base64 encoding and decoding (seee http://iharder.net/base64). The
Base64 class is incorporated in source code as a part of program build.

Packages
Kryptofon classes are grouped in the following packages:

• default Contains single GUI front-end class derived from JFrame
• audio Implements audio interfaces and CODECs
• crypto Application-wide cryptographic functions
• pbx Functionality of the private branch exchange (PBX)
• protocol Implementation of the Peer-to-Peer protocol over datagram channel
• ui Package with components extending Swing GUI
• utils Utilities to handle base64 encoding, log and octet buffers

Package audio
The audio package contains classed that encapsulates audio interfaces and CODECs.

• class AbstractCODEC
Base class for CODECs that can convert to and from PCM.

• class AudioBuffer
Encapsulates the concept of an audio buffer with a time-stamp.

• class AudioCodecAlaw
Converts a 16-bit linear PCM stream from and to 8-bit A-law.

• class AudioCodecUlaw
Converts a 16-bit linear PCM stream from and to 8-bit u-law.

• interface AudioInterface
The abstract audio interface.

• class AudioInterfacePCM
Implements the audio interface for 16-bit signed linear audio (PCM_SIGNED).

Package crypto
The crypto package contains classes providing cryptographic functions.

• class AsymmetricCipher
Implements asymmetric cipher with public and private keys used to retrieve secret
key (used for symmetric ciphering of peer-to-peer datagram packets) from remote
peer.

• class CipherEngine
Common ciphering engine (for the whole application) providing: a) Asymmetric
ciphering: used for signing/verification and encryption/decryption of secret key
used in symmetric ciphering. b) Symmetric ciphering: used for encryption/
decryption of PDUs and secret chat text messages.

• class NamedKeyPair
Encapsulates a public/private key pair together with some comment (textual
description) that describes them like type, owner, time-stamp etc.

• class NamedPublicKey
Encapsulates a public key together with some comment (textual description) that
describes it (like type, owner, time-stamp etc.)

Program Organization

2

Kryptofon Internals

• class PublicEncryptor
Implements public part of the asymmetric cipher (with public key) used to send
encrypted local secret key (used for symmetric ciphering of peer-to-peer datagram
packets) to remote peer.

• class SymmetricCipher
Instances of the Symmetric cipher class arew used to cipher peer-to-peer datagram
packets.

Package pbx
The pbx package provides functionality of the private branch exchange (PBX).

• class PBXClient
Encapsulates rudimentary functionality of a PBX to list and invite users (peers) to
plain and secured calls.

Package protocol
The protocol package provides peer-to-peer protocol over datagram channel.

• class CallContext
Deals with all the packets that are part of a specific call.

• class DatagramChannel
Binds the UDP port.

• class ProtocolDataUnit
Represents a Protocol Data Unit (PDU).

• class RemotePeer
Encapsulates context of the remote peer establishing link between UDP channel
and CallContext.

• class VoicePDU
The PDU that carries voice payload.

• class VoicePDUSender
Takes captured audio and sends it to the remote peer via UDP channel.

Package ui
The UI package contains extensions to Swing GUI.

• class JImageButton
JButton with transparent images and no borders.

• class JSecState
Image indicating security state (unsecured/secured-unverified/secured-trusted).

Package utils
The utils package contains classes needed to handle Base64 encoding/decoding, octet
buffers and common application log.

• class Base64
Provides Base64 encoding and decoding of the byte arrays, streams and objects.

• class OctetBuffer
Encapsulates binary payload that can be manipulated on the octet (byte) level.

• enum Log
Common application message logger facility (static implementation).

 Class Diagrams

3

Kryptofon Internals

Class Diagrams

CryptoPhoneApp Class

class CryptPhoneApp
Encapsulates the Swing based GUI front-end of the
Kryptofon application that implements simple VoIP
phone and chat client with encrypted peer-to-peer
communication.

Class Diagrams

4

Kryptofon Internals

Cipher Engine Classes

class CipherEngine
Common ciphering engine (for the whole
application)

class SymmetricCipher
Instances of the Symmetric cipher class are used to
cipher peer-to-peer datagram packets.
Cipher's secret key is exchanged using asymmetric
cipher.

class AssymmetricCipher
Implements asymmetric cipher with public and
private keys used to retrieve secret key (used for
symmetric ciphering of peer-to-peer datagram
packets) from remote peer. Remote peer sends its
secret key encrypted with our public key.

class PublicEncryptor
Implements public part of the asymmetric cipher
(with public key) used to send encrypted local secret
key (used for symmetric ciphering of peer-to-peer
datagram packets) to remote peer. The class holds
also list of authorized public keys, which is used to
verify signed objects received from peers.

 Class Diagrams

5

Kryptofon Internals

PBX Client Classes

class PBXClient
Encapsulates rudimentary functionality
of a PBX to list and invite users (peers) to
secure calls. The instances of PBXClient
class expects to be connected to plain
public chat server that distributes
(broadcasts user messages terminated by
the new-line) to all other connected users
(possible Kryptofon peers).
Communication with the upper layer
(which owns instance of the PBXClient) is
done using call-backs over the
PBXClient.Context interface.

Class Diagrams

6

Kryptofon Internals

Datagram Channel and Protocol Data Unit Classes

class DatagramChannel
Binds the UDP port. Each peer is associated with one
DatagramChannel object.

class ProtocolDataUnit
Represents a Protocol Data Unit (PDU) transferred in
via datagram channel.

class VoicePDU
The PDU that carries voice payload.

 Class Diagrams

7

Kryptofon Internals

Remote Peer and Call Context Classes

class RemotePeer
Encapsulates the link between the UDP
channel and a CallContext. UDP
channel receives packets from all
remote peers and dispatches them to
particular RemotePeer handler.
RemotePeer might have multiple calls
in real PBX, howerever, this
implementation allows only single
CallContext per RemotePeer.

class DatagramChannel
Binds the UDP port. Each peer is
associated with one DatagramChannel
object.

class CallContext
Deals with all the packets that are part
of a specific call. The thing to remember
is that a received message contains
fields with the senders viewpoint so
source is the far end and dest is us. in
the reply the oposite is true: source is us
and dest is them.

The Protocol

8

Kryptofon Internals

The Protocol
This chapter presents the protocol and message formats exchanged between Kryptofon
peers.

Kryptofon peers exchange PBX related messages via chat server and TCP stream. TCP
messages are plain text messages delimited with new-line character (ASCII LF or CR).

The voice media is transferred as UDP datagrams, and referred in documentation as
Protocol Data Units (PDUs). In the current implementation, Kryptofon uses PDUs to
transfer voice payloads only. However, it is intention that future Kryptofon releases use
UDP PDUs to transfer also PBX messages between peers (thus solving one of the major
issues of the current implementation – the NAT traversal).

Typical Call Scenario
The following schematic diagram shows typical call scenario between two Kryptofon
users, Alice and Bob.

Alice Chat Server Bob

connect

connect

Alice :: invite Bob
Alice :: invite Bob

Bob :: ring Alice

Bob :: accept Alice
Bob :: accept Alice

Bob :: ring Alice

Bob :: bye Alice

Alice and Bob connects to
chat server

Alice lists
connected users

Alice invites Bob to a call.
Both Alice and Bob
receive alerting signal
(ringing tone)

Bob accepts Alice’s call

Alice and Bob talk

Bob clears the call

Alice :: imsg Bob
Alice :: imsg Bob Alice sends encrypted

message to Alice

Bob :: alive

Alice :: list
Alice :: list

Bob :: alive

Encrypted voice PDUs

Bob :: bye Alice

 The Protocol

9

Kryptofon Internals

TCP Message Format
Kryptofon TCP messages consist of line of text terminated by the new-character (either
CR, LF or both). TCP messages are used to transfer both user’s text messages and
Kryptofon peers’ control messages. The generic TCP message format is:

 generic-message = [local-UserID "::"] text-message LF
 | [local-UserID "::"] "[$]" control-message LF
 ;

where tokens are separated by white-spaces and the text message is any text not
starting with the token "[$]".

The local-UserID is identifier of the transmitting Kryptofon peer. In case that the local
user ID is missing, it is replaced with the value "[Anonymous]".

Kryptofon peer will not respond to messages from anonymous users.

Kryptofon recognizes following control messages: LIST, ALIVE, INVITE, RING,
ACCEPT, BYE and IMSG:

 control-message = list-message
 | alive-message
 | invite-message
 | ring-message
 | accept-message
 | bye-message
 | imsg-message
 ;

In the following example, Alice broadcasts text message to all connected users.

Alice Chat Server Clients

Alice :: Hello there! Alice sends text message
to all connected users

chat server broadcasts
the message to all clients . . .

Alice :: Hello there!

Example

The Protocol

10

Kryptofon Internals

LIST
The format of the LIST message is:

 list-message = "LIST" [username-regex]

The LIST message is used to poll remote Kryptofon peers connected to the chat server.

After receiving the LIST, all connected Kryptofon peers with user ID matching provided
regular expression in username-regex should respond with the ALIVE message.

If the optional username-regex is missing, all Kryptofon users should reply with the
ALIVE control message.

ALIVE
The format of the ALIVE message is:

 alive-message = "ALIVE"

The ALIVE control message is send by Kryptofon after receiving LIST message. It is
used to indicate presence of the Kryptofon peer on the chat server.

In the following example, Alice polls all present Kryptofon users and Bob’s Kryptofon
responds to the poll.

Alice Chat Server Bob

Alice :: [$] LIST Alice lists
connected users

Bob :: [$] ALIVE

Alice :: [$] LIST

Bob :: [$] ALIVE
Bob’s Kryptofon
responds to request

chat server broadcasts
LIST message to all clients . . .

Example

 The Protocol

11

Kryptofon Internals

INVITE
The format of the INVITE message is:

 invite-message = "INVITE" remote-UserID
 local-IP-address local-UDP-port
 [public-key] ;

Kryptofon sends INVITE message to invite remote peer remote-username to a call.

The remote user ID is the username of the invited Kryptofon peer to a call.

The local IP address and local UDP port references the transmitting Kryptofon’s
datagram endpoint listening for receiving voice PDUs.

The optional public key is sender’s public key 1) signed with the private key then 2)
serialized, 3) gzip-compressed and 4) encoded as Base64 string.

If the public key is missing, the invitation is to a plain (non-encrypted) call.

In the following example, Alice invites Bob to an encrypted call.

Alice :: [$] INVITE Bob 130.237.161.23 47000
H4sIAAAAAAAAAFvzloG1uIhBKiuxLFGvODW5tCizpFIvODM9LzXFPykrNbmE8//eDC2bq/+ZGJi
jGdiT8/NKUvNKShiYop2iGTiLgQoTS0qLUgsZ6hgYfRh4SjJSE3PS84GmZOSWMAj5gMzVz0nMS9
...
c6wcfE8qWbrii23nsmLDYFT/vC3/l5JMvlzLeP79Y+tHtxo4lgkzzuVeLuKhNdzoZU1MorurhWf
HXdvnMaXoy4alXy4Ut9lcf2HND4HzcnRIG7mAPR8NyYCoARhQAqbXet8UCAAA=

Alice Chat Server Bob

Alice :: [$] INVITE Bob Alice invites
Bob to a call

Alice :: [$] INVITE Bob

Example

The Protocol

12

Kryptofon Internals

RING
The format of the INVITE message is:

 ring-message = "RING" remote-UserID
 local-IP-address local-UDP-port
 [public -key] ;

Kryptofon sends RING message in respond to remote peer’s INVITE message to indicate
that the remote peer’s user is alerted (ringing). In auto-answer mode, remote peer may
send ACCEPT message immediately without preceding RING message.

The remote user ID is the username of the inviting Kryptofon peer.

The local IP address and local UDP port references the transmitting Kryptofon’s
datagram endpoint listening for receiving voice PDUs.

The optional public key is sender’s public key 1) signed with the private key then 2)
serialized, 3) gzip-compressed and 4) encoded as Base64 string.

In the following example, Alice invites Bob to an encrypted call.

Alice :: [$] INVITE Bob 130.237.161.23 47000
H4sIAAAAAAAAAFvzloG1uIhBKiuxLFGvODW5tCizpFIvODM9LzXFPykrNbmE8//eDC2bq/+ZGJi
jGdiT8/NKUvNKShiYop2iGTiLgQoTS0qLUgsZ6hgYfRh4SjJSE3PS84GmZOSWMAj5gMzVz0nMS9
...
c6wcfE8qWbrii23nsmLDYFT/vC3/l5JMvlzLeP79Y+tHtxo4lgkzzuVeLuKhNdzoZU1MorurhWf
HXdvnMaXoy4alXy4Ut9lcf2HND4HzcnRIG7mAPR8NyYCoARhQAqbXet8UCAAA=

Bob :: [$] RING Alice 130.237.161.173 47000
H4sIAAAAAAAAAFvzloG1uIhBKiuxLFGvODW5tCizpFIvODM9LzXFPykrNbmE8//eDC2bq/+ZGJi
jGdiT8/NKUvNKShiYop2iGTiLgQoTS0qLUgsZ6hgYfRh4SjJSE3PS84GmZOSWMAj5gMzVz0nMS9
...
Mu5WlxcVxr5+JLvT/YDurlsfDIOSKde51I+OSmPI/5m1tgRN+CR2Yd/uHIa/a5fezzn35fe+o6z
bRyc0dd4qbSo9MXtNhGvRXyOP8ItbHL5JLGLiDPRwNy4GpABhRAO+hOJjFAgAA

Alice Chat Server Bob

Alice :: [$] INVITE Bob Alice invites
Bob to a call

Bob :: [$] RING Alice

Alice :: [$] INVITE Bob

Bob :: [$] RING Alice
Bob’s Kryptofon
responds that the user is
alerted

Example

 The Protocol

13

Kryptofon Internals

ACCEPT
The format of the ACCEPT message is:

 accept-message = "ACCEPT" remote-UserID
 local-IP-address local-UDP-port
 [secret-key] ;

Kryptofon sends ACCEPT message in respond to INVITE message when Kryptofon’s
user answers the call. In auto-answer mode, remote peer may send ACCEPT message
without preceding RING message.

The remote user ID is the username of the invited Kryptofon peer to a call.

The local IP address and local UDP port references the transmitting Kryptofon’s
datagram endpoint listening for receiving voice PDUs.

The optional secret key is sender’s symmetric secret key that will be used for encryption
of voice PDUs and IMSGs. It is 1) signed with the sender’s private key, 2) serialized, 3)
CBC encrypted with receiver’s public-key, 4) gzip-compressed and 5) encoded as Base64
string. If the secret key is missing, the accepted call will be a plain (non-encrypted) call.

In the following example, Bob accepts Alice’s invitation to an encrypted call.

Bob :: [$] ACCEPT Alice 130.237.161.173 47000
H4sIAAAAAAAAAAEAAv/9i6yVy5yOoFSrozg1TUXJYLS/MXzLUFv5iKw4es5c0g+vOC7H9x0buCn
EndTVJG5x6HcY7cGp2mr9B7ayQD+lIwx0j6DDZ7eYVKD77I3uOVyks6OB6Mm0A5/aCp12Qn6EzX
...
TlmcsHRiA1bGu1UvvHjHBW/eHecxAWvlqiimnefC3+7uCbvyZebNLikKJYgl+tyyOR4EOVd7/AW
vPVTZyIHR1wLlXSq7ms4u8x6R2gim5nykAAIAAA==

Alice Chat Server Bob

Alice :: [$] INVITE Bob Alice invites Bob to an
encrypted call and
Bob’s Kryptofon responds
that Bob user is alerted

Bob :: [$] ACCEPT Alice

Alice :: [$] INVITE Bob

Bob :: [$] RING Alice

Bob answers
Alice’s call

Bob :: [$] ACCEPT Alice

Bob :: [$] RING Alice

Exchange of encrypted PDUs and IMSGs

Example

The Protocol

14

Kryptofon Internals

BYE
The format of the BYE message is:

 bye-message = "BYE" remote-UserID
 [local-IP-address local-UDP-port] ;

Kryptofon sends BYE message to clear down existing call or reject invitation to a call.

In the following example, Bob rejects Alice’s invitation to non encrypted call.

Alice :: [$] INVITE Bob 130.237.161.23 47000

Bob :: [$] BYE Alice

Alice Chat Server Bob

Alice :: [$] INVITE Bob Alice invites
Bob to a call but
Bob refuses the invitation

Alice :: [$] INVITE Bob

Bob :: [$] BYE Alice
Bob :: [$] BYE Alice

Example

 The Protocol

15

Kryptofon Internals

IMSG
The format of the IMSG message is:

 imsg-message = "IMSG" remote-UserID encrypted-message ;

Kryptofon sends IMSG message during the secured (encrypted).

Before encrypting user’s text message, Kryptofon appends random 1024-bit preamble to
original user’s text. Compound message is then encrypted with the symmetric cipher
and the common secret key exchanged during ACCEPT of the call. Message is then gzip-
ed and sent encoded as Base64 string.

In the following example, Alice sends encrypted instant message to Bob during a call.

Alice :: [$] IMSG Bob
OhqJn/SD+WTWlLCbYnOvtaSH9Rvpz69v7lD7iRPNV5gNPp4Ky4x07r4WfJijXhpy2AHaNO3OOAc
4v1ixR3pXpAQLQOL6pkLTJK+YuNPJMeh1dcVCdQ8lNJWVRihPb+uL9lH09LO4LouFWgl+1oFQOr
...
JpUs2q06h1bIt9QskbqEYTrCRBSHLXrW78wt+HQYiOnE9VI/zNI8qBVyFemJN4/mnBCqnW2sP1O
2q/TBe0oMR5yIpyac2tPvHKm0kRiJonicMHTaMtuQqs6amGJH5ELvUbHhE3t2J40Aa+12tGUw==

Alice Chat Server Bob

Alice :: [$] IMSG Bob Alice sends to Bob
encrypted message

Alice :: [$] IMSG Bob

Example

The Protocol

16

Kryptofon Internals

UDP Datagrams
The UDP packets exchanged between two Kryptofon peers are called Protocol Data
Units (PDUs). The PDU octets are encoded and sent in network order, i.e. MSB first.

The general format of the PDU is given in the following diagram:

Source Call Number
The source call number is the 15-bit value that specifies the call number the
transmitting peer uses to identify this call.

Destination Call Number
The destination call number is the 15-bit value that specifies the call number the
transmitting peer uses to reference the call at the remote peer. This number is the same
as the remote peer's source call number. The destination call number uniquely identifies
a call on the remote peer. The source call number uniquely identifies the call on the local
peer.

Time-stamp
The time-stamp field contains a 32-bit time-stamp maintained by a peer for a given call.
The time-stamp is an incrementally increasing representation of the number of
milliseconds since the first transmission of the call.

Outbound Sequence Number
Upon initialization of a call, its value is 0. It increases incrementally as PDUs are sent.
When the counter overflows, it resets to 0.

Inbound Sequence Number
Upon initialization of a call, its value is 0. It increases incrementally as PDUs are
received. At any time, the inbound sequence number of a call represents the next
expected inbound stream sequence number. When the counter overflows, it resets to 0.

Protocol Data Unit Type and Subclass
The PDU type and subclass fields identify the kind of the payload carried by the PDU.

The Voice PDU is identified by PDU type 0x02, currently having only three subclasses:

• 0x01 16-bit linear little-endian
• 0x02 G.711 A-Law
• 0x03 G.711 u-Law

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|1| Source Call Number |0| Destination Call Number |
+-+
| Time-Stamp |
+-+
| Out Seq No | In Seq No |0| PDU Type | Subclass |
+-+
| |
: Payload :
| |
+-+

 The Protocol

17

Kryptofon Internals

Encrypted PDUs
Random 64-bit preamble is added to PDUs before encryption using cipher-block
chaining. After decryption, random preamble is discarded.

Protocol Overhead
Protocol overhead is 40 octets per PDU consisting of

• 12 octets for PDU header

• 8 octets for UDP header

• 20 octets for IP header.

For example, for 8 kHz sampling rate with 160 samples of A-Law encoded payload per
one PDU (transferred 50 times per second), the committed information rate is 200 * 8
bits * 50 Hz i.e. 80 kbit/s one-way.

Depending on symmetric ciphering algorithm used, encryption adds additional overhead
of at least 20 octets giving total 88 kbit/s for A-Law payload.

