

1

Submitted for Publication in {Applied AI; AI in mobile Systems}. Prepared with the

T&F Journal Template.

Context Shadow: An Infrastructure for Context Aware Computing

Martin Jonsson
Department of Computer and Systems Sciences, Stockholm University, Sweden

Patrik Werle
Department of Computer and Systems Sciences, Stockholm University, Sweden

Carl Gustaf Jansson
Department of Computer and Systems Sciences, Stockholm University, Sweden

Address Correspondence to: Martin Jonsson, Dept. of Computer and Systems
Sciences Stockholm University/KTH, Forum 100, 164 40 Kista. Email:
martinj@dsv.su.se

2

Abstract. In ubiquitous computing environments, hardware and
software services will create huge and ubiquitous service spaces.
These service spaces will need to be organized in meaningful ways so
that the services can be easily accessed and utilized by other services
and humans. Context Shadow is a system that makes it possible for
services to ask questions about a person’s current context, and
specifically about what services that are relevant to that context. In
the system, sensors and services are organized in meaningful
collections, creating a searchable topology of context information.

Introduction
Providing information about users’ context to applications could be very useful in
several ways. The behavior of an application can be adapted to make the interaction
more efficient or to increase the ease of use. You can also imagine entirely new types of
applications that are designed specifically to make use of some certain context
information. Under the notion of context aware computing there have been several
attempts both to define what context really is, and how to design applications that use it
(Schilit et al. 1994; Dey 2001)
In this paper context aware computing will be viewed from a ubiquitous or disappearing
computing perspective, a vision firstly described by Mark Weiser (Weiser 1991). More
specifically we will examine how context information can be used in order to design a
specific type of systems that can be described as ubiquitous service environments. The
assumption we make is that our everyday environments will become increasingly more
readable and controllable. This is due to the ability to embed computers into everyday
objects, and to connect them to the Internet. We also see an increasing use of personal
mobile computing artifacts. An overall trend is that we are going from a situation where
a single person interacts with a single computer to a situation where each person carries
several computing devices, and also shares a number of devices with other people.
These new stationary and mobile artifacts will provide different kinds of services either
to a user directly or it will be accessible to other software services over the Internet.
This results in a potentially infinite space of services that are constantly reachable for
humans or other services over the Internet.
Will this new situation in any way affect the design of computer systems that are aimed
to target some specific needs? So far the manufacturers of novel computing devices
(PDAs, projectors, cellulars, etc.) has chosen to design devices very much as atomic
entities to be used mainly by one single user, an approach very similar to the design of
standard PC’s. With this approach software systems can be designed similarly to the
way systems are being designed for standard PC-based technology, meaning standalone
applications, maybe with some backend server support. Some applications might have
to take into account some interoperability issues, such as how to export and import data
to other applications etc. An example might be a calendar application on your PDA, a
standalone application that sometimes is synchronized with the calendar application on
a PC.
A parallel and more radical line of development of these computing devices is to see
them as potential nodes in a larger system; an approach that makes it possible to create
much more flexible and usable systems, since each part could be used in numerous
ways. By sharing devices this way also opens up for the creation of new tools for
collaboration, where the tools can be designed to support groups working together using

3

numerous devices. This approach requires that both the hardware and software in some
ways should be designed to be open for communication with other software parts. On
the hardware side some sort of network connection might be sufficient, a property
already present in most novel computing gadgets. If the devices should be contactable
from other system parts they might also have to be “turned on” to a higher extent than
today, putting new requirements on power consumption, battery life etc.
While the requirements on the hardware design to achieve this vision are rather modest,
the changes in the software design have to be much more extensive. Going from
standalone applications towards a more service oriented view will impose a number of
new problems that has to be dealt with within areas such as security, usability, stability,
etc.

Modelling the new environments
In order to achieve a better understanding of these kinds of highly distributed systems,
one can choose to describe them in terms of ubiquitous service environments or USEs
(Werle et al. 2001) This model describes computing environments that no longer consist
of standalone computers running standalone applications, but rather consists of a
plethora of (independent) services spread out over numerous devices. An instance of a
USE is constituted of a number of elements:

• Services: Software entities performing different kinds of tasks.

• Tools: A service or a composition of services providing a user interface with which
persons can support an activity.

• Devices: Physically standalone containers of hardware resources and services.

• Persons: Human users of the USE, individuals or groups.

• Activity: One or several persons performing a task.

• Physical spaces: The physical environment containing an activity. Includes devices,
furniture, persons, etc.

• Logical spaces: The subset of services and information being used in an activity,
and how they are structured.

Since the new computing environments might consist of a number of persons sharing
both devices and software services, one has to find an appropriate way to delimit the
model, so that only the relevant entities has to be examined. In the USE model this
delimiter is some human activity consisting of one or several persons that are engaged in
some sort of task. Instead of referring to users of the system the notion of persons is
used. We believe that the term user is misleading since the main task of the persons in
question is not mainly to use the system but to actively participate in the current
activity.
The USE model differentiates between the physical space and the logical space of
activity. The physical space concerns the physical environment containing the
supported activity. It includes properties and restrictions of non-technical entities such
as walls and furniture as well as properties and restrictions of the computing devices
within the space. The logical space concerns the software system and the relation
between the different service components. An important reason for the notions of
physical and logical spaces is to enable exclusion of entities that is not relevant to the
activity in focus, thus defining the boundaries of the USE. This might seem like a trivial
task but in a scenario with a broad usage of these kinds of open service environments,
each computing device could contain a great number of services, thereby creating a
truly ubiquitous service environment. Each specific activity uses only a subset of these
services, whereas one service may be shared between different activities. So when
talking about something like today’s applications in such an environment it is rather a
particular combination of services and devices.

4

The computing devices in a USE bridges the physical and logical spaces since an
instance of a service always reside on a physical device. The devices have different
hardware resources that services in the USE might want to utilize, typically some kind
of user interface, such as audio or display functions. The devices can be public, thus
shared and probably stationary installed in some location, or they can be owned by
some person.
The basic building block in a USE is however the actual services. Behind this term
hides a number of different types of software components with rather different
properties. The common broad definition of a service in a USE reads:

“A service is a software component that performs a task for a user
directly or for another service in the USE”

The most central property of a service in a USE is that of accessibility. A service should
be accessible by as many other services as possible over the network, or it should be
easily accessible for a user. The interconnection of services is a key feature making it
possible to create compositions of services that can perform more complex tasks than
the individual services.
Since the web of interconnected services can be hard to comprehend by the users of a
USE, the tool abstraction is also introduced, providing clearly distinguishable
affordances for users to support the targeted activity. Thus a tool is typically a service or
a composition of services that provide some kind of user interface thereby resembling
an ordinary software application.
In order to create systems according to the model presented above, a number of
problems have to be tackled. The most central problems concern how to make the
software service environment open and dynamic, so that independent services can find
each other and co-operate in a meaningful way, all this in a dynamically changing
environment where people and services may come and go.

 Service interoperability
A crucial issue when creating open service environments is what knowledge the
services have about other services and especially knowledge regarding how to use them.
If one assumes full knowledge, each service component knows the communication
protocol (RMI, Corba, SOAP, etc.) as well as the exact API of the services it wants to
use, and also knows exactly what the service does, e.g. it can differentiate between two
services with the same API. In the other end of the spectrum the services know nothing
of each other, and has to figure out both how to use the other services as well as what
the services actually does. We believe that the most fruitful way resides somewhere in
between these two approaches, allowing the services to be loosely coupled. One way to
achieve a loose coupling between services is to assume that the services not only share
communication protocol but also shares a set of simple standard interfaces each
describing a function in a rather general way, such as a file viewer interface that can
receive any file and try do display it to a user in an arbitrary way, or a messaging
interface, that can receive a piece of text an render it to the user in some way, visually or
by audio. These general interfaces can then be combined with dynamically generated
metadata describing the service and the context in which the service resides. This
metadata could concern in which room the service currently resides, and whom it
belongs to.
This approach makes it possible to create both simple services that only have to match
API’s to be able to use another service, as well as more complex services that uses the
provided metadata to make a more thorough analysis of the available services. Since the
metadata could describe not only static properties of the services but also external
dynamic context information, this raises a need for an external system that can collect
and provide this kind of context information to applications.

5

Agents in USEs
Reasoning services or agents can play important roles in the design of a USEs. Agents
could be used both in order to support the basic functionality of the USE, as well as to
provide advanced services to users. Problems related to the basic functionality of the
USE could be the selection of relevant services as well as figuring out what each service
actually do, problems that could be tackled using different kind of reasoning strategies.
Agent based services could also monitor the behaviors of persons in order to try and
identify the occurrence of specific activities, and then try to present an appropriate set of
tools to support that activity.
In order for the agent based services to make these clever decisions they need reliable
information regarding the physical and logical environments. Since USEs are open
systems that can be infinitely extended with new services, persons and places, the
knowledge about the real world and real world entities can not be statically encoded
within the agent, but must be extended and modified by continuously interpreting
information regarding the agent’s computational and physical context. One way to do
this is by connecting the agent directly to different kinds of sensors that could capture
properties of both the physical environment as well as the logical or computational
environment. This approach requires the agent to perform lots of interpretations in order
to extract meaningful information that could be used in some decision making task. In
order to minimize the interpretation effort, the context information could instead be
provided by some external entity that would provide a shared view of the USE
containing dynamically updated representations of users, places and services.

Service discovery
From the discussion above we identify one crucial problem as how to decide what
services that are relevant and meaningful in a specific context and how to exclude
services that are not interesting. This immediately raises the question of what the
properties could be that makes a service relevant to another service. One such property,
which has been used very frequently in context aware applications, is location, or more
precise: proximity (Starner et al. 1997; José et al 1999). It is likely that two compatible
services that are close to each other could “interact” in a meaningful way (Gustafsson
and Jonsson 1999; Pham et al. 2000). The typical example of this is when a person with
some mobile computing equipment enters a new and unknown environment, and has to
get access to some public resources in that environment.
Another property that we se as central is personal association. Many of the services in
use have an owner. This might be the software on your personal computing artifacts
such as laptops or mobile phones, or it might be some agent based service residing on a
server, maybe collecting information for you on the Internet. It seems reasonable to
assume that these services that share owner might benefit from communicating with
each other. Other useful properties that one could use in order to create these
meaningful collections could concern social or organizational relations, such as project
membership etc.

Providing context information in service environments
One way of creating the kind of support described above is to provide the interesting
information through some kind of infrastructure that the different services would share.
It has been pointed out that there is a general need for infrastructure to support
ubiquitous computing environments (Norman 1999; Huang et al. 1999), and specifically
to support context aware computing (Dey et al. 1999). An infrastructure can be
described as a well-established, pervasive, reliable and publicly accessible set of
technologies that act as a support for other systems. There are several reasons why an
infrastructure could be a good approach to provide context information to applications.
Infrastructures generally provide means of sharing information as well as computational
services. In this setting this would include the sharing information about the physical
world collected by different kinds of sensors, as well as information about available
services. An infrastructure can also be seen as a way to decouple the software services

6

from the sensor hardware, making it easier to perform modifications or extensions of the
system. In this paper we present the Context Shadow system, an infrastructure which
provides means to assemble searchable clusters of context information.

The Context Shadow Infrastructure
The aim of the Context Shadow system is to offer a “shadow of the real world” for
software services. By using a simple query API it is possible for the services to acquire
important context information such as information concerning local artifacts, services or
people.
More specifically, the system provides:

1. Support for context aware service discovery.

2. Organization of services and context information in meaningful collections.

3. Context information for applications derived from sensors and other services

4. Refinement of context information.

The Context Shadow system is based on a blackboard architecture where certain stable
entities are represented as context servers. These servers serve as repositories for
context information related to that entity. Typical entities that can be provided with a
context server are persons, locations and groups/projects. A context server contains two
types of data; context information concerning the entity that the server represents and
links to other context servers.
Sensors and applications that provide context information are provided with a simple
communication interface which allows them to post their information to one or several
specified context servers. The context servers are implemented using TSpaces from
IBM (Wyckoff 1998). TSpaces can be described as a network communication buffer
with database capabilities implemented as a tuplespace. TSpaces provides a simple and
robust network interface as well as advanced querying capabilities.

Cross referencing
A key feature of the system is the possibility to establish links or relations between
different context servers. A typical example of this is the detection of a person entering
a room. If either the person detects the room or the room detects the person this results
in that a cross reference is established between the local and personal context server.
This can be done since the location sensors provide references to a location context
server, or in the case of person detection, the person sensor receives references to
personal context servers.
The context servers and the links between them create a searchable web where the
topology changes dynamically. Information about the users’ current context does not
only consist of chunks of information in the context servers, but is also embedded in the
topology of the surrounding web of context servers.

Figure 1. The linked context servers create a searchable space, where the topology of the space is
part of the context information.

7

More static references can also be established. Examples of this can for example be
references describing the relation between locations. There is a general problem
regarding how to represent location in context aware applications. In Context Shadow
there is no structured way of describing locations in terms of hierarchies and distances.
Instead you define “places” in an arbitrary way, and then create relations between these
places. In this way it is possible to create hierarchies when needed, but there is no
requirement for developers to provide a complete or coherent location model. Another
example of references of a more static nature could be references between persons and
projects. By connecting people to each other via a project entity, it is possible to create
CSCW tools with knowledge about meeting history, documents etc.

Figure 2. The context servers are linked with references. By following the links it is possible to
acquire context information from other context servers than your starting point.

Context sensitive service discovery
The Context Shadow system can be used for different kinds of resource and service
discovery tasks. For example, in Fig. 5, a jukebox service is associated with a person.
When the person enters a location, the jukebox service will find a public speaker service
when it queries the infrastructure for that kind of services. The jukebox service might
make queries on a XML description embedded with the speaker service representation,
or it can choose to try and match a specific type name describing the service.

Figure 3. Using Context Shadow, a jukebox service finds a speaker service at the user’s current
location.

Using the built in functionalities of the underlying TSpaces, you can make complex
queries on the data in the context servers. Context Shadow provides an additional API
to search the web of context servers created by the cross references described above.
The queries can be of the type. “Where am I” or “What other people are in the same
location as me” and maybe more useful: “What services of type X are available and
relevant to my current context”.
There is also another powerful way to query the infrastructure using XQL (XML Query
Language). In Context Shadow you can attach an XML document to every entity,
containing various descriptions of the entity. Using XQL you can query the XML

8

description of the entities. This way you can provide a very open interface towards
service developers.
In one of the prototypes described below, Context Shadow was used partly to discover
Jini based services that were relevant at a certain location. In this case the Jini services
described themselves by providing a “service ID object”. The querying service then
used the information from Context Shadow to filter out Jini services that were irrelevant
to the actual context.

Refinement of context data
Any service should be able to use any data posted into a repository. This raises
questions on the format of the data. Different services might want the data in different
formats or at different levels of abstraction. Introducing Context Refiners solves this
problem. A Context Refiner reads data from the context server then transforms it and
adds the new information. The refiners can also be used to handle contradictive data.
One example of such a Context Refiner deals with sensor information about a users
current location. Since a person only can be at one place a time, location data that
differs is contradictive per se. In the implemented refiner each piece of location data
comes with a certainty factor and a timestamp. The Context Refiner uses this
information to calculate the most probable location and then removes the more
improbable location data.

Figure 4. A Context Refiner reads information from a context server, performs some operation or
transformation on the data and then posts the result back to the server.

Example applications
Three implemented prototypes will be described that illustrates the functionality of the
Context Shadow: A messenger service that uses Context Shadow to find public viewer
services, a tool for local teamwork which uses information about the location and
information about people in the room to provide support for collaboration, and finally
an active document service that support document management by using context
information.

Messenger service
With this prototype we wanted to examine how public resources can be used to send a
message to a person. In the prototype an active messenger service actively tries to find
resources near the receiver of the message that can receive the message and display it to
the person. The prototype was used in the following scenario:
1. An active messenger service with a message to a person has migrated to that person’s
laptop. This computer however lacks output resources that the service can use to display
the message.
2a. The person enters a room with a public wall display. The messenger service
discovers this output resource and chooses to display its message on this resource.
2b. The person enters a room where another person sits with his personal computer.
This computer has a public speaker resource. The messenger service discovers the
speaker resource and chooses to play an audio version of the message through the
speakers.

9

The person’s entrance in a room is registered by a camera attached to that person’s
laptop, where the camera reads and recognizes a barcode-like symbol in the ceiling of
the room. The identified symbol is then translated to a reference to the Context Server
representing that room, whereby the sensor service on the laptop establishes a cross
reference between the context servers representing the room and the person.
The active messenger service regularly queries Context Shadow for appropriate display
services. First a query is sent that asks for services at the person’s current location. This
query propagates to other Context Servers using the dynamically established references.
In this case it follows the newly established reference to the Context Server for the
room. If no appropriate services are available there, the query propagates to Context
Servers owned by other persons present in the room, thereby also covering services
owned by those persons. The existing audio and image presentation services constantly
announce their presence to the Context Servers that they are connected to by beaconing
descriptions of themselves. The implemented services were simple wrappers around a
standalone HTML browser and a sound player application that would receive URLs that
they would open using the standalone applications. So when the messaging service
finds one of the service descriptions it interprets it and then uses that service to present
its message.

Tools for local collaboration
There tend to be more and more computer artifacts present at meetings, both personal
mobile devices such as laptops and PDA’s as well as stationary devices such as
projectors. These artifacts however often create more problems than is of aid. One
irritating obstacle is problems with information exchange; a paper you can just reach
across the table, but sharing a document on a computer is often more problematic.
What we did to solve these problems was to create a set of services to enable a seamless
flow of information between computers in a room. The prototype, called fuseONE
(Werle et al. 2001), is an example of a ubiquitous service environment, consisting of a
large number of standalone components. All the services are implemented in Java and
uses Jini technology for service lookup and remote method invocation.
One set of components consists of very simple but useful services that can receive and
display documents of different kinds on the computer where the services reside. What
these services actually do is that they accept arbitrary remote files and instruct the
current operating system to launch the application with which the file’s type is
associated and then open the file. These services are numerous and reside both on
personal and public devices.
Another component is a context sensitive desktop, which makes the services described
above and other services accessible to users via a GUI. This service queries Context
Shadow about what other services that are relevant to its user’s context, then filters out
the irrelevant ones from the desktop. More specifically the context sensitive desktop
queries its owner’s Context Server for (in following order) ”personal” services, local
services and services owned by other persons in the room. Whenever a service is found,
a service description object is returned to the browser application. The application has
already found all Jini services in the network by using the lookup function that comes
with Jini, and uses the service description from Context Shadow to filter out services
that are not available in the actual room.
In this prototype a person identification sensor was used to create the references
between location and personal context servers. The actual sensor is a Dallas
Semiconductors iButton (Dallas Semiconductors 2002), a small button-like computer
memory that the persons actively have to press into a receptor in the room to announce
their presence. The button actually contains the URL reference to its owner’s Context
Server. What happens when the button is placed within the receptor is that the reference
is being put into the Context Server for the room, and a cross-reference is automatically
posted into the person’s personal Context Server.

10

Active Documents
Another type of service that was developed is the Active Document service. The idea of
Active Documents is to take off from the agent-programming paradigm, and turn
documents into autonomous mobile agents and by that give them some useful qualities.
A document should, for example, be aware of its content and the intention with it, and
be aware of the context it is operating in, e.g. its receivers (who, why, preferences about
formats, physical surroundings, etc.). The documents are active in the sense that they
are autonomous (act independently), reactive (react on changes in the environment), and
proactive (have their own goals and plans). One of the main ideas is that the documents
actively should participate in the work and thereby support the work process. In this
prototype the Active Document service can identify when a certain project has gathered
for a meeting, and then actively display information that it has stored from earlier
meetings. The service uses information from Context Shadow about project
membership, the users’ locations, what people are in the room and what services that are
available in the room.
In more detail, the Active Document uses Context Shadow for monitoring people that
are members of the same project as the document. Based on the information given by
Context Shadow, the Active Document tries to find locations where at least two project
members are present for the moment. If it finds such a location, the Active Document
assumes that there is a project meeting taking place! The Active Document now tries to
migrate to that location by asking Context Shadow for the nearest execution
environment available. When it has migrated to a suitable host where it can execute, it
tells Context Shadow that it has entered the room. As the document appear for the
Context Shadow as a person, which for example means that it has its own context
server, the document announces its presence within the room by telling the Context
Shadow that it has entered the room (even if that not always is true in a physical sense)
just as what happens when a person put his iButton into a receptor inside the room. This
mean for example that Context Shadow will include the Active Document when the
context sensitive desktop described above asks for relevant services to show. Now the
Active Document asks Context Shadow for an appropriate public display resource
inside the room. If such a service is available, the document utilizes that public service
to display itself on. If someone clicks on the icon representing the Active Document
service on the desktop, the document is notified about who has clicked. The Active
Document then asks Context Shadow for a suitable resource to display itself on for that
user. Of course, that resource does not have to be available on the same device as the
one that the user clicked on.

Related work
The problem of creating an infrastructure of meaningful assemblies of services was
earlier taken on in the Cooltown project by HP labs (Caswell and Debaty 2000), where
places are provided with a web page. Services that exist in these places can then be
accessed via that web page. The system provides several interesting ways to
automatically assemble the services at a location and then make them accessible through
the web page. The notion of tying services to a location also exists in Context Shadow,
with the difference that in Cooltown the ambition is to make services easily accessible
directly by users, while Context Shadow has the ambition to provide services mainly to
other services.
Another support system, which targets the problem of how to support the design of
context aware applications, is the Context Toolkit system from Georgia Tech (Dey
2001). This is a middleware system with which you can incorporate sensor data in your
applications. The system is built with a widget approach making it possible for
applications to incorporate context data about the same way as you incorporate a GUI
component. This system does not have an explicit infrastructure approach but rather
supports the creation of standalone applications. The Context Toolkit provides much of
the same functionality as the Context Shadow, such as context queries and refinement of
context data. The major difference from the Context Shadow system is that Context

11

Shadow includes other applications as being part of the context, thus providing support
for collaboration between services.
The TEA project presents a system architecture as well as a method to support the
design of context aware systems (Schmidt and Laerhoven 2001). The system
architecture consists of several layers where the bottom layer consists of cues that
represent an abstraction of the sensor-data. The cues are then combined into contexts,
which can be seen as a high level description of the current situation. These context
descriptions can then be fetched by the applications from a tuplespace. The provided
method gives step-by-step support for the choice and assembly of sensors as well as for
the application development. The architecture from TEA is similar to the Context
Toolkit approach in the sense that they both support the development of standalone
applications and that none of them uses shared context servers to represent real world
entities.
The Interactive Workspace project at Stanford University (Fox et al. 2000) uses a
system they call an event heap to enable services in a room to communicate on an event
level. The event heap could be compared with the context servers representing locations
in the Context Shadow system, with the difference that the context servers are not used
for communication between services to the same extent as the event heap. The system
also has no support for combining several event heaps into an infrastructure, nor will the
event heap communicate with services that have other properties than being in the room.

Conclusions
In this paper we have presented the Context Shadow system, which allows applications
to make queries about users’ context. In the system, services and sensors are tied to
context servers representing static entities such as persons or locations. These context
servers are then connected to each other in a dynamic way that provides the context
information with a semantic structure. This novel approach of dealing with context
information provides a number of benefits.
Firstly, the system creates shared representations of persons and places that can be used
by software services. These abstractions are very useful in highly distributed settings,
where services might be distributed over several machines. Choosing an infrastructure
solution like Context Shadow will have the effect that not every service itself has to
collect and maintain all context information that is available. The system simplifies the
creation of context sensitive applications, by taking care of issues such as discovery,
transport and refinement of context data. Yet, Context Shadow is not a centralized
system with all the drawbacks that will bring about. In addition to the advantage of
robustness etc., the distributed design of Context Shadow makes it possible for a person
to have his or hers context server running locally on a laptop and when moving between
different contexts, to establish links from that server to other servers relevant to the
person’s situation. But, if desirable, it is also possible to have all the persons’ context
servers running on a single server machine. In both cases, the Shadow Context system
facilitates a shared and updated view of the environment. This web-like system structure
also results in that the system scales well when new persons, places and sensors are
added to the system.
In the implemented prototypes Context Shadow has been explored for different
purposes. We have for example described how Context Shadow facilitates sharing of
services in different ways. One way is the creation of links between context servers,
which make it possible for Context Shadow to support the propagation of queries to
other related context servers whereby services for example can find other services on
other person’s devices in the same room. We have also showed how not only persons
can modify the structure of the infrastructure (i.e. by putting one’s iButton into a
receptor), but also how active services could do it to announce themselves for persons
and services inside a room. Services can also contribute to the context information by
adding new information that could be based on more low-level information or own
observations.

12

Future work
One future addition to the system will be to extend the interface to the infrastructure to
also handle queries over the HTTP protocol. This would make the infrastructure
independent of programming language, allowing services to post XML-based queries to
a specific URL.
Another extension concerns the creation of new context servers. At the moment new
context servers must be created manually by adding information in a property file. A
first step will be to create a web-based user interface that would allow users to create
new context servers in an easier way. A more radical change would be to create the
ability for context servers to be created in an ad-hoc manner. You could imagine sensors
that detects when two persons are close to each other but can provide no information
about their physical location. In this scenario you would want to create a temporary
location representation only to connect the persons. This context server would disappear
after being used. Finally support for events has been asked for, that could for example
notify a service when a user changes room.

References
Caswell, D. and Debaty, P. 2000. Creating Web Representations for Places. Proceedings of the

2nd International Symposium on Handheld and Ubiquitous Computing (HUC2K),
Bristol, UK, 114-126.

Dallas Semiconductor. 2002. iButton home page [On-line]. Available:http://www.ibutton.com/
Dey, A.K. 2001.Understanding and Using Context. Personal and Ubiquitous Computing 5(1).
Dey, A.K., Abowd, G. and Salber, D.1999. A Context-Based Infrastructure for Smart

Environments. Proceedings of the 1st International Workshop on Managing
Interactions in Smart Environments (MANSE´99), Dublin, Ireland. 114-128.

Fox, A., Johanson, B., Hanrahan, P., Winograd, T. 2000. Integrating Information Appliances into
an Interactive Workspace. IEEE Computer Graphics & Applications, 20(3)

Gustafsson, H. and Jonsson, M. Collaborative Services Using Local and Personal Facts.
Proceedings of the Personal Computing and Communication Workshop, Lund, Sweden.

Huang, A.C., Ling, B.C., Ponnekanti, S. and Fox, A. 1999. Pervasive Computing: What Is It
Good For? Proceedings of the Workshop on Mobile Data Management (MobiDE) in
conjunction with ACM MobiCom '99, Seattle, WA,.

José, R. and Davies, N. 1999. Scalable and Flexible Location-Based Services for Ubiquitous
Information Access. Proceedings of the 1st International Symposium on Handheld and
Ubiquitous Computing (HUC’99), Karlsruhe, Germany. 52-56.

Norman, D. 1999. The invisible computer. Cambridge University Press)
Pham, T., Schneider, G. and Goose, S. 2000. Exploiting Location-Based Composite Devices to

Support and Facilitate Situated Ubiquitous Computing. Proceedings of the 2nd
International Symposium on Handheld and Ubiquitous Computing (HUC2K), Bristol,
UK, 2000. 143-156.

Schilit, B., N. Adams, N., and Want, R. 1994. Context-aware computing applications. First
International Workshop on Mobile Computing Systems and Applications, 85-90.

Schmidt, A., and Van Laerhoven, K.. 2001. How to Build Smart Appliances? IEEE Personal
Communications 8(4), 66-71.

Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May 2000, Available from World
Wide Web: <http://www.w3.org/TR/2000/NOTE-SOAP-20000508/>

Starner, T., Kirsch D., and Assefa, S. 1997 The Locust Swarm: An environmentally-powered,
networkless location and messaging system. Proceedings of the First International
Symposium on Wearable Computers, ISWC’97, Boston, USA.

Weiser, M. 1991.The Computer for the 21 st Century. Scientific America, 265(3), 94-104.
Werle, P.,Kilander, F.,Jonsson, M.,Lönnqvist, P. and Jansson, C. 2001 A Ubiquitous Service

Environment with Active Documents for teamwork support. Proceedings of the
Ubicomp 2001 Conference, Atlanta, Georgia, September 2001.

Wyckoff, P. 1998. Tspaces. IBM Systems J.37(3). 454-474. Available from World Wide Web:
<http://www.almaden.ibm.com /cs/Tspaces>

