

21 pages

The State of Art within Evolution and
Maintenance of Web Services

Mira Kajko-Mattsson

Department of Computer and Systems Sciences
Stockholm University and Royal Institute of Technology

Forum 100
SE 164 40 KISTA, SWEDEN

mira@dsv.su.se

2004-10-05

Document Identifier: SERV-FORV-9

 The State of Art within Evolution and Maintenance Page 2(2)
of Web Services

Abstract

In this report, we study the state of art within the evolution and maintenance of traditional and

web service systems. The study results show that the domain of traditional software evolution
and maintenance is neglected. So far, little has been researched on and published about this
domain. Regarding the evolution and maintenance web services, there is no literature available
whatsoever. Hence, we can not provide any overview of this domain. In an attempt to elicit some
knowledge about it, we suggest an international panel debate to be run at International
Conference on Software Maintenance in September 2004 in Chicago, USA.

 The State of Art within Evolution and Maintenance Page 1(19)
of Web Services

Table of Contents

1 INTRODUCTION... 2
2 SOFTWARE LIFE-CYCLE... 2
3 DEFINITION OF MAINTENANCE.. 3
4 WHAT DO WE MAINTAIN? ... 4
5 MAINTENANCE ORGANISATION... 4
6 WHY DO WE NEED MAINTENANCE? .. 4
7 MAINTENANCE CATEGORIES.. 5
8 MAINTENANCE CATEGORIES WITHIN THE INDUSTRY .. 6
9 WHY IS IT IMPORTANT TO CATEGORISE MAINTENANCE?... 7
10 MAINTENANCE VERSUS DEVELOPMENT ... 8
11 MAINTENANCE IS EXPENSIVE... 10
12 STATUS WITHIN SOFTWARE EVOLUTION AND MAINTENANCE 10

HISTORICAL BACKGROUND OF SOFTWARE MAINTENANCE. ... 10
PROBLEMS .. 12

Choice of an Appropriate Name.. 12
Definition of Maintenance .. 13
Maintenance Categorisation... 13
Disagreement in the Use of Maintenance Terminology.. 14
Shortage of Maintenance Process Models... 14
Measurement of Maintenance Cost ... 15

HOW CAN WE REMEDY THE PROBLEMS?.. 15
13 EVOLUTION AND MAINTENANCE OF WEB SERVICES... 15
REFERENCES.. 17

 The State of Art within Evolution and Maintenance Page 2(19)
of Web Services

1 Introduction

Maintenance is our “Software Cinderella” – a neglected stepsister to Software Development.
We do not appreciate it, but we cannot live without it. The real Cinderella, however, dropped her
shoe only once, and soon after became a queen. Our “Software Cinderella”, on the other hand,
has dropped her shoe(s) many times. Her voyage towards the “royal” recognition has not gained
much success yet.

In recent years, however, the software community has started recognising software
maintenance as a crucial discipline within software engineering. This is due to the fact that we do
maintain more than develop today. Maintenance has become the dominating cost factor in most
of the software organisations, and the majority of IT-professionals work within maintenance.
Despite this, most of the present process models and most of research are still dedicated to
software development. Even at universities, one does not teach maintenance. One teaches
development instead.

In this report, we study the state of art within the evolution and maintenance of traditional and
web service systems. The study results show that the domain of traditional software evolution
and maintenance is neglected. So far, little has been researched on and published about this
domain. Regarding the evolution and maintenance web services, there is no literature available
whatsoever. Hence, we can not provide any overview of this domain.

Due to the fact that nothing has been published about the evolution and maintenance of web
services, we provide an overview of the evolution and maintenance of traditional software
systems. We believe that this overview will provide understanding for why nothing has been done
so far in the context of web services.

The outline of this report is the following. Sections 2-11 present the state of art of traditional
evolution and maintenance. Section 12 provides a historical background of the domain, lists the
problems currently experienced, and makes suggestions for their resolution. Finally, Section 13
describes the state of art within the evolution and maintenance of web services.

2 Software life-cycle

Maintenance is just as old as development. It is one of the major phases of software life cycle,

where a software life cycle begins when a software product is conceived and ends when the
software is no longer available for use. Let us have a look at a coarse-grained outline of a
software life cycle as apprehended by the majority of software community today. It is depicted in
Figure 1. We divide it into three major phases: (1) Software Development, (2) Operation and Software
Evolution and Maintenance, and (3) Retirement. During the development phase, a software
organisation develops a software product from scratch using the requirements stated by the
customer. After being developed and delivered to the customer, the system steps into two parallel
phases, the operation phase and evolution and maintenance phase. While the customer
organisation operates the system, the software organisation supports it with its daily operation.
Meanwhile, the software organisation further develops (evolves) and maintains the system. It
attends to all the customer demands for extending the system with new functionality and for
correcting all problems encountered by the customer during the operation. Finally, when the
system is no longer of use, it gets retired. This means that the customer decides to terminate it
and possibly substitute it with some other newer and better system.

 The State of Art within Evolution and Maintenance Page 3(19)
of Web Services

Figure 1. Major phases of the software life cycle

3 Definition of maintenance

Evolution and maintenance are regarded merely as synonyms today. However, the original term

for this discipline was maintenance. For this reason, let us first concentrate on its definition first.
The subject of evolution will slowly immerse when discussing software maintenance.

Table 1 Definitions of software maintenance

• “…changes that have to be made to computer programs after they
have been delivered to the customer or user (Martin and McClure,
1983).
• “… the performance of those activities required to keep a software
system operational and responsive after it is accepted and placed into
production” (FIPS, 1984).
• “Maintenance covers the life of a software system from the time it
is installed until it is phased out” (von Mayerhauser, 1990).
• “…software product undergoes modification to code and
associated documentation due to a problem or the need for
improvement. The objective is to modify the existing software
product while preserving its integrity (ISO/IEC 12207, 1995).
• “Modification of a software product after delivery, to correct faults,
to improve performance or other attributes, or to adapt the product to
a modified environment” (IEEE Std. 1219-1994).
• “The process of modifying a software system or component after
delivery to correct faults, improve performance or other attributes, or
adapt to a changed environment” (IEEE Std. 610.12-1994).

To define software maintenance has not been an easy task. As depicted in Table 1, various

attempts have been made by individual researchers and standardisation organisations. These
definitions may vary in their contents and wording, however, they advocate one common thing,
the changes made to software systems after they have been delivered to the customer. According
to these definitions, maintenance starts as soon as one has delivered the product to the customer.
All activities before the delivery are not classified as maintenance.

Development Evolution and Maintenance Retirement

 Operation
 Customer
Perspective

 Software
Organisation
Perspective

 The State of Art within Evolution and Maintenance Page 4(19)
of Web Services

4 What do we maintain?

What exactly do we evolve and maintain? Software, you say. What do we mean by software

then? Do we mean software programs or do we mean all kinds of software artefacts specifying a
software system? Software is not only source code and object code. It is more than that. It relates
to any system artefact such as:

• Software system encompassing all kinds of requirements-, design-, code-, testing- and other

specifications.

• Operating procedures containing instructions to set up and use the software systems and

instructions on how to react to system failures.

All these artefacts are evolved and maintained during the software evolution and maintenance

phase.

5 Maintenance organisation

The customer expects some organisation to provide changes to the system during the operation

phase. But, which organisation? This depends. In one case, the original developer continues to
provide all types of support to the customer. In another case, a separate maintenance
organisation takes over the evolution and/or maintenance responsibilities. It may also be the case
that the original developer may continue to enhance the product with new functionality, and
outsource all bug-fixing to some maintenance organisation. Irrespective of who does what, in this
report, we call all these organisations maintenance organisations.

6 Why do we need maintenance?

Why do we need maintenance? If we concentrated on developing high quality products, would

we then need to conduct maintenance? The answer is “no, we would not, but only under the
following conditions:

• Condition 1: The software product that is delivered to the customer is correct.

• Condition 2: The customer is satisfied with the delivered system. He will use it till he gets

tired of it, or till he no longer needs it.

These conditions are unfortunately very utopian today. Several studies have shown that there is
no such thing as a bug-free software (Condition 1). All software that is delivered to the customers
contains defects, the defects that one has not managed to discover when testing or inspecting
software during development. During operation, these defects may or may not show themselves.
If they do, then they must get attended to. If not, then they will stay in the system. Probably it
will never be discovered.

 The State of Art within Evolution and Maintenance Page 5(19)
of Web Services

Concerning the Condition 2, the customer never gets satisfied with the delivered system. Due to
various changes within the organisation, such as hardware/software changes, changes to business
rules, and evolving or declining maturity of the organisation, the customer will feel the need for
modifying his products to suit the new needs. The solution to these needs would of course
depend on the product. If it is a mobile phone, the customer would buy another phone. If it is a
product supporting, for instance, business operation, the customer would prefer to evolve and
maintain the extant product instead of developing or purchasing a new one.

The need for changes described above helps us identify the main goal of software evolution
and maintenance, which is, to make the software products continuously provide the required
service to their customers. Let us illuminate some of the typical scenarios of providing this
continuous service:

• Fixing bugs: While operating the software system, the customer encounters problems. For
instance, the calculating function delivers wrong results when executing certain functions.
To be able to continue using the product, the problems encountered during operation must
get attended to.

• Adapting to environmental changes: Regularly, the organisations change their hardware
and/or software portfolios, such as servers, operating systems. This may affect the
organisations’ software portfolios. Some changes will have to be made to the software
system so that it will be able to run on or co-operate with the new hardware or software.

• Upgrading: Changes within the organisation, changes to its working patterns or changes to
work deliverables require modifications of the present functionality of the supporting
software system. These modifications may mean removing some functionality and replacing
it with some new one, and/or adding some new functionality.

• Improving Performance: a number of system users may have increased in time. This has
strongly affected the system’s performance. One needs to modify the system so that it
executes faster.

• Facilitating future maintenance: Being continuously modified, software systems age.
They grow in size and complexity and their architecture gets gradually undermined. This, in
turn, leads to the fact that maintainers loose their familiarity with the system, and
maintenance becomes a difficult, demanding and costly task. To decrease the maintenance
effort and to make the system more maintainable (easy to change), the maintenance
organisation restructures the whole of or some parts of the system.

7 Maintenance categories

The scenarios depicted in Section 6 show evidence that maintenance is a very complex phase

consisting of diverse activity types. This diversity has lead to the division of maintenance work
into four different maintenance types, usually referred to as maintenance categories. As presented
in Table 2, the IEEE has designated four maintenance types. They are corrective, perfective,
adaptive and preventive. Let us have a look at the IEEE definitions of maintenance categories
and map them onto the meanings attached to them by the software community today.

• Corrective maintenance is defined as maintenance performed to correct faults in hardware or
software. It is mainly understood as the process of resolving software problems reported
by the users of the affected software systems. An example of a software problem might be
the fact that an arm in a robot turns to the right instead of to the left.

 The State of Art within Evolution and Maintenance Page 6(19)
of Web Services

Table 2. IEEE definitions of software maintenance (ANSI/IEEE STD-610.12, 1990)

Corrective maintenance: Maintenance performed to correct faults in
hardware or software.
Adaptive maintenance: Software maintenance performed to make a
computer program usable in a changed environment.
Perfective maintenance: Software maintenance performed to improve the
performance, maintainability, or other attributes of a computer program.
Preventive maintenance: Maintenance performed for the purpose of
preventing problems before they occur.

• Adaptive maintenance is defined as maintenance performed to make a computer program
usable in a changed environment. It is mainly understood as the process of adapting a
software system to the changed environment. For instance, some hardware/software parts
of the industrial robot might be upgraded, and hence, some modification of software might
have to be made in order to accommodate to the new hardware/software upgrades.

• Perfective maintenance is defined as maintenance performed to improve the performance,
maintainability (ease of change), or other attributes of a computer program. It is mainly
understood as the process of adding new features to the extant software system. An
example of new features could be a new sorting function in an industrial robot or a new
algorithm making this robot execute faster.

• Preventive maintenance is defined as maintenance performed for the purpose of preventing
problems before they occur. This usually implies discovering software problems and
attending to them prior to customer complaints. An example might be the case when a
maintenance engineer notices a defect in an already delivered software system. He is sure
that this defect, if executed, will cause operational problems to customers. He decides to
correct the defect and deliver the defect free software to the customers as soon as possible.

8 Maintenance categories within the industry

The maintenance categories presented in Section 7 are the types suggested by the IEEE

standardisation group. They are mainly followed by researchers and students within the academia.
However, they are not easily recognised by software practitioners within the industry. Within the
industry, one mainly distinguishes between two types of activities: development and maintenance.

By maintenance, the software organisations mean all kinds of corrective changes made to the
software system. This corresponds to the IEEE’ view of corrective maintenance. By
development, the software organisations mean:

• New development: Development of a new software system from scratch. This activity
corresponds to the development phase as depicted in Figure 1.

• Continuous development: Further development of an extant software system by extending it
with new functionality or by adapting it to new environment. This corresponds to the
IEEE’s view of perfective and adaptive maintenance, or the term evolution.

 The State of Art within Evolution and Maintenance Page 7(19)
of Web Services

9 Why is it important to categorise maintenance?

It is very important for software organisations to know what exactly happens within

maintenance. This knowledge helps the organisations assess their development and maintenance
activities and the quality of their products. It also helps them understand the distribution of the
resources and make priorities amongst different maintenance tasks.

Making priorities is not easy. Usually, the case is such that corrective and preventive
maintenance are delivered for free, while adaptive and perfective maintenance are additionally
charged for. For this reason, the software organisations should strive to conduct more perfective
and adaptive activities than the corrective and preventive ones. Automatically, our reader would
like to draw the conclusion that all the perfective and adaptive tasks should achieve higher
priority than the corrective and preventive ones. In an ideal situation, the software organisation
should neglect them. The case however is not always such.

Prioritisation must be based on a compromise between the severity of the problems
encountered by the customer, the need and benefits of the new modifications or adaptations, the
easiness to modify the system, and so on. If a customer has encountered a severe problem, a
problem that hinders him from using the system, then of course, he cannot utilise the new
extensions. Every minute of a system failure costs the customer organisation a lot of money. At
its worst, it may jeopardise its business or even human life. The maintenance organisation must
then urgently attend to the software problem. If, on the other hand, the customer has
encountered minor problems, the so-called nuisances, that might be lived with for the time being,
the software organisation may prioritise the requests for enhancements and attend to minor
software problems when it is convenient. Finally, if the software system is highly unmaintainable,
that is, every single change to the system may make system invalid or behave strangely, the
software organisation may have no other choice then to reengineer the whole system and hope
that during this time the customer may wait with extensions and will not encounter any serious
problems.

The task of adding functional requirements to existing systems can be
likened to the architectural work of adding a new room to an existing
building. The design will be severely constrained by the existing
structure, and both the architect and the builders must take care not to
weaken the existing structure when additions are made. Although the
costs of the new room usually will be lower than the costs of constructing
an entirely new building, the costs per square foot may be much higher
because of the need to remove existing walls, reroute plumbing and
electrical circuits and take special care to avoid disrupting the current
site.

Figure 2. The constraints of modifying an existing systems

 The State of Art within Evolution and Maintenance Page 8(19)
of Web Services

10 Maintenance versus development

Maintenance is regarded as a continuation of development. During development, one builds a

completely new system. During maintenance, one changes an existing system. These two
activities seem to have much in common. There are however some fundamental differences
between them. These differences are due to the constraints of the existing system. To understand
these constraints, we invite our reader to follow Jones’s line of reasoning as described in Figure 2.

When designing new changes, the maintainer must always consider the existing system in the
following situations:
• Study the modification requirement: The maintenance engineer must understand what the

customer wants. This activity is both common for development and maintenance. The
difference is that during maintenance, the maintenance engineer must understand the
modification in the context of the extant software system.

• Learn the system or system part(s) to be changed: The maintenance engineer must
investigate the extant system in order to understand its architecture and design. This activity
is typical for maintenance. During development, the engineers do not need to study any
existing system.

• Suggest one or several change designs: Usually, the software engineers must create several
designs. This activity is both common for development and maintenance. The difference is
that during maintenance, one must pay heed to the already extant design.

• Evaluate the design: Evaluate the resources needed to implement the change, the risks that
might appear if the change gets implemented, the side effects of the change and so on. This
activity is both common for development and maintenance. The difference is that during
maintenance, one must not only evaluate the suggestion for change, but also how it affects
other extant parts of the system. For instance, what happens if I change Component X,
containing common functionality utilised by many other components? First of all, one must
know that this component is utilised by other components. Not always, the maintainer knows
it, either because this fact is not documented or because of other reasons. If changes are to be
made to this component, then the maintainer must assess the ripple effect (or side-effect) of
this change. The ripple effect means that changes made to Component X imply changes to
other components, and so on.

• Determine the skills and knowledge to implement the change: Not everybody within
the organisation may conduct all sorts of changes. Hence, one must check whether specific
skills and knowledge are required to manage some types of changes. This activity is both
common for development and maintenance. The difference is that during maintenance, one
must not only possess the expert skills required for the implementation, but also one must
have a good knowledge of the system to be changed.

• Test the change: All the changes must be tested. It is not enough however to only test the
changes. One must also test other parts of the system that have not been changed. One must
do so in order to ensure that the new changes have not introduced new defects into the
system. In other words, one must repeat all the former tests that have been made during
development and former stages of evolution and maintenance. This type of testing is called
“regression testing”:

 The State of Art within Evolution and Maintenance Page 9(19)
of Web Services

20 1008040 60

Elshoff, 1976

Lientz & Swanson,
1980

Alkhatib, 1992

Lauhcian, 1993

New DevelopmentMaintenance
Figure 3. Cost of maintenance (Figure 1.6 in Pigoski, 1997)

20 1008040 60

Elshoff, 1976

Lientz & Swanson,
1980

Alkhatib, 1992

Lauhcian, 1993

New DevelopmentMaintenance

Figure 4. Cost of maintenance (Table 3.1 in Pigoski, 1997).

 The State of Art within Evolution and Maintenance Page 10(19)
of Web Services

100%
 90%
 80%
 70%
 60%
 50%
 40%
 30%
 20%
 10%
 0%

20%

Corrective

25%

Adaptive Perfective Others

50%

5%

Figure 5. One of the studies of the distribution of maintenance cost (Swanson,
1978)

11 Maintenance is Expensive

There is sufficient data indicating that maintenance is an expensive activity and that its cost is

continuously increasing. There is however no agreement on the proportion of the overall
software life cost it takes, and how the cost is distributed across the maintenance types. As
depicted in Figures 3 – 4 published numbers point out that maintenance costs between 40% to
90%.

There are few publications reporting on the cost of each individual maintenance category. The
reported ones are the following (Lientz and Swanson, 1980):
• Corrective maintenance: 16-22% .

• Perfective maintenance: 55%.

• Adaptive maintenance: 25%.

• Preventive maintenance: No data has been published about the cost of this maintenance

category.

12 Status within software evolution and maintenance

Historical Background of Software Maintenance.

For many years, maintenance has not been regarded as glamorous work (Mamone 1994,
Schneidewind 1987). It has been looked upon as a low-prestige and “dirty” activity (Rose 1988).
It has been unpopular and hated by many software engineers (Parikh 1988). Software engineers
preferred to develop new software systems instead of maintaining the old ones. If they started
their career within maintenance, then they quickly changed to development. To work with
maintenance has been akin to having bad breath (Schneidewind 1987). This attitude has caused

 The State of Art within Evolution and Maintenance Page 11(19)
of Web Services

maintenance to become a neglected area (Boehm 1976, Boehm 1988, Swanson 1990, Weinberg,
1988). Maintenance has become a complex, expensive and little understood domain within
software engineering both within the industry and academia (Mamone 1994, Rombach 1992).

In the 70’s and 80’s, some researchers raised protests against this negligence; however, to little
or to no effect (Boehm 1976, Boehm 1988, Parikh 1985, Parikh 1988, Schneidewind 1987).
Software maintenance has been and still is an under-researched activity. For many years, there has
been no common maintenance process framework to follow. Research has been mostly
concentrated on creating development models. The development models, however, are not easily
transferred to a maintenance environment (Lientz 1983). Moreover, maintenance tasks vary a
great deal, which makes it hard to find a common maintenance process model (Mayrhauser
1994). The lack of maintenance process models is one of the main reasons that most of the
changes have been done in an ad hoc manner (Rombach 1992). The engineers had no
instructions for how to infuse changes into the software system.

There has been and there still is deterioration of the quality of the software systems (Chapin
1985, Mamone 1994, Rombach 1992). To some extent, this inadequacy has been due to the fact
that during development, the software systems have rarely been designed for maintenance (to be
readily modified), and that during maintenance the maintenance work has been done in an ad hoc
manner (Parikh 1986, Pari1988). This has contributed to increased program complexity, which, in
turn, has caused difficulties in determining the side effects of changes (Schneidewind 1987). A
typical side-effect happens when you change one line in a common function, and this change
invalids the execution of major parts of the system using this common function.

Maintenance has been viewed as a second class activity, with an admixture of on-the-job
training for beginners and low-status assignments for the outcasts and the fallen (Gunderman
1988). The original developers have not usually maintained their systems. Other less qualified and
less experienced personnel have been assigned to maintenance tasks instead. As a result, it has
been difficult to understand someone else’s code (alien code) (Mamone 1994, Schneidewind
1987). To add zest to it, many maintenance engineers have lacked formal training in performing
software maintenance. Usually, they had to learn on their own. Hence, even simple changes have
become complex ones, often causing severe damage to the system maintained (Freedman et.al.
1988, Lientz 1983).

There has been and there still is high turnover of maintenance staff (Lientz 1983, Takang 1996).
It has been difficult to get good people to work with maintenance (Glass et.al. 1981, Jones 1988).
The opinion has prevailed that maintenance is a dull, inferior, non-creative, non-challenging
activity requiring no more than average intelligence (Foster 1989, Liu 1988). In the past two
decades, however, protests have been raised that maintenance should not be a place for new
hires, trainees, or misfits (Landsbaum et.al. 1992). On the contrary, maintenance requires a great
deal of creativity and ingenuity (Foster at.al. 1989, Jones 1988). Hence, a maintenance engineer
should be a highly skilled, intelligent, and creative diagnostician.

All this points out that software maintenance has been and still is a highly neglected topic. In
the past decade, however, maintenance has been recognised as a crucial discipline within software
engineering. This is mainly due to the fact that maintenance has become the dominating cost
factor in most software organisations. It consumes more than half of the life-cycle resources of
software systems (Arthur 1988, Boehm 1973, Cashman et.al. 1980, Glass et.al. 1981, Jones 1994,
Mills 1976, Moad 1990, deRoze et.al. 1978). Some authors even claim that maintenance
consumes more than 90% of the life-cycle cost (Pigoski 1997).

The cost of maintenance does not decrease. On the contrary, it does and it will increase. There
are many reasons for this. Some of them have already been presented above. The main reason,
however, is the fact that we live in the age of a shift from software development to software

 The State of Art within Evolution and Maintenance Page 12(19)
of Web Services

evolution and maintenance. Rarely does product development start from scratch today. Instead,
emphasis in industry is on further development (evolution) of extant system portfolios.

Problems

In comparison to software development, software maintenance is still an immature area. The
reader who is not sufficiently acquainted with the subject, may not easily distinguish the problems
reigning with this domain (Kajko-Mattsson 2001c). For instance, he may accept the name
“software maintenance”, the IEEE definitions of maintenance and its categories without batting
an eyelid and conclude that they are clear, well-limited, and informative enough. The experienced
reader, on the other hand, may feel somewhat confused and would probably ponder on the
following questions?

• Is the name “maintenance” the right name for this engineering domain?

• When does software maintenance begin and when does it end?

• Where does it fit in the software life cycle?

• How does software maintenance relate to software development?

• What exactly happens during software maintenance?

• Does the term maintenance cover all types of post-delivery changes?

• Aren’t the definitions of maintenance categories too general?

• Are they exhaustive and exclusive?

The experienced reader is definitely right to feel confused. Being still immature, the domain of
software maintenance suffers from many uncertainties and problems today. Some of them are (1)
choice of an appropriate name, (2) definition of maintenance, (3) categorisation of maintenance
activities, (4) disagreement in the use of terminology, (5) lack of maintenance process models,
and (6) measurement problems. These uncertainties and problems greatly contribute to a chaos
presently reigning within the software maintenance domain. In the following sections, we shortly
describe them.

Choice of an Appropriate Name

The term “maintenance” has been regarded as an unpopular name. There has been a debate
going on whether it should be changed or not. This debate started as early as in the eighties, and
it has not ended yet. Should we or should we not call maintenance maintenance?

During this sustained debate on the appropriateness of the term “maintenance”, different terms
have been suggested (Chapin 1985, Ghezzi et.al. 1991, McGregor 1988, Lehman 1980,
Schneidewind 1987). They were the following:

 The State of Art within Evolution and Maintenance Page 13(19)
of Web Services

software support, software evolution, co-evolution, continuation

engineering, production monitoring, systems control, post implementation

development, system tuning, application software support.

These terms have come up in response to the opinion that the term maintenance is a
misnomer. According to Mills, maintenance connotes restoring a device to its original correct
state, but the program is never correct to begin with. All programs have defects. Hence, we
cannot claim that we can restore the system to the original correct state. This view has been
supported by Yourdon, who has shown that large software systems after being delivered still
contain a large number of defects.

Some authors are of the opinion that maintenance should be looked upon as continued
development (Ghezzi et.al. 1991, McGregor 1988, Lehman 1980, Mills 1988, Parikh 1988,
Schneidewind 1987, Schneidewind 1999, Takang 1996). They believe that software systems
always evolve; hence, they are never completed. This could be justified by the fact that the work
of maintenance includes adding features not originally designed in the system, the so-called
enhancements. According to them, enhancements are not maintenance in the conventional sense.
Enhancements involve additional development work to fit into the framework of the existing
software system. Therefore, a more appropriate term for this activity would be “evolution”.

Definition of Maintenance

There has been a disagreement about the definition of software maintenance. Still, there
prevails a controversy on the choice of maintenance scope, its constituents, time span, and on
drawing a dividing line between software development and software maintenance (Pigoski 1997,
Martin 1983, Schneidewind 1987). No wonder that there have been so widely varying estimates
of costs of software maintenance, spanning between 40%-90% of the total software life cycle
cost. The major critique of the IEEE definition was its statement that maintenance is typically a
postdelivery activity (see IEEE’s definition of maintenance in Table 1). According to some
authors, maintenance should start earlier than at the delivery Martin 1983, Pigoski 1997). It
should run in parallel with development. During this time, the maintainers should follow the
development of the system and continually evaluate its maintainability.

Maintenance Categorisation

To add zest to the problem of defining maintenance, there is also a great deal of confusion
concerning the choice and definition of maintenance categories. Protests have been raised against
the IEEE definitions (see IEEE definitions of maintenance categories in Tables 1 and 2). The
IEEE has designated four maintenance categories. They are corrective, perfective, adaptive and
preventive. This categorisation, however, is not mutually exclusive (Chapin 2000b). One study
has revealed that definitions of perfective and preventive maintenance overlap and are differently
understood by the software community (Kajko-Mattsson 2000). For instance, the IEEE suggests
that the improvement of maintainability belongs to perfective maintenance. The software
community, on the other hand, attributes the improvement of maintainability to preventive
maintenance.

There has also come some critique that the IEEE’s definition of maintenance categories is too
general. (Chapin 2000a, Chapin 2000b, Foster et.al. 89). The definitions are not explanatory
enough and may lead to misunderstanding and overlap. For instance, the IEEE definition of
software maintenance states that it is a “modification of a software product after delivery, to correct faults, to

 The State of Art within Evolution and Maintenance Page 14(19)
of Web Services

improve performance or other attributes, or to adapt the product to a modified environment”. Out of this
definition, we may clearly distinguish corrective modifications and adaptive modifications.
However, “other attributies” are not easily understood. Do they concern perfective maintenance?

Chapin claims that the IEEE types of maintenance are not exhaustive and exclusive enough.
They are too much intention based. This means that the choice of the maintenance category
rather depends on the intentions of the classifier than on the objective basis of the changes made
to the system. One and the same maintenance task can be differently classified (e.g., either as
corrective or perfective). Example: Assigning categories to the maintenance tasks can be, for
instance, political. Some major corrective tasks may be classified as perfective maintenance. The
managers may deliverately do this choice. Within perfective maintenance, they do business,
within corrective maintenance they loose business.

Regarding the definition of preventive maintenance, the IEEE does not define preventive
maintenance as a member of an exhaustive set of maintenance types. It rather defines it as a type
that overlaps other types such as perfective, adaptive and corrective. This means that a
maintenance request can be understood as an instance of both perfective and preventive (not-
either-of), or adaptive and preventive, or corrective and preventive.

Disagreement in the Use of Maintenance Terminology

We do not use common maintenance concepts uniformly. We seem to take it for granted that
everyone understands the concepts we are using. However, such is not always the case.
Terminology used by the academia and industry differs greatly (Oman 1998). Even within one
and the same organisation, different terms may be in use for one and the same concept. A good
example of this is the concept of maintenance. For the academia and a few industrial organisations,
maintenance relates to the management of both software problems and enhancements. For the
majority of industrial organisations, however, the management of software enhancements equates
to development (Schneidewind 1987). Another term being frequently abused is error. Many
engineers use it for either a “software problem” or a “defect”, while others use it for totally
different phenomena.

Shortage of Maintenance Process Models

Still today, we do not possess detailed maintenance process models. To the knowledge of the
author of this book, there are only two internationally recognised maintenance standard models –
IEEE 1219 and the newly introduced models such as ISO/IEC FDIS 14764 (ISO 1999) and the
IT Infrastructure Library Service Support Model (ITIL Service Support) (OCG, 2004). The first
tow models however, are very general. The third model is the most detailed model today.

Despite the fact that maintenance categories strongly differ, they propose generic process
models for all the categories. Being too general, these models do not help in acquiring a deep
understanding of the scope of each maintenance category. They do not offer the visibility
required to each type of maintenance work.

The process models are for the most part capability-oriented. They view maintenance mainly
from the perspective the capabilities that the organisations should achieve. An example of a
capability might be “The project follows a written organisational policy for managing the system requirements
allocated to software”.

Listing capabilities, however, is not enough. Such models do not suggest the process activities
and their order. They do not give enough guidance to the organisations on why to implement or
improve their processes. On the contrary, being too terse in their contents and attempting to

 The State of Art within Evolution and Maintenance Page 15(19)
of Web Services

cover all maintenance categories with one and the same process model, they may mislead the
organisations in their process implementation and improvement efforts. Organisations need
suggestions for process activities and thorough explanations of and motivations for
implementing them.

Measurement of Maintenance Cost

The software community unanimously agrees that software maintenance costs are very high
today. Agreement, however, stops at this point. On checking the cost of maintenance in
comparison to development as presented in Chapter 1.10, we arrive at widely varying results. As
already noted above, published numbers point out that maintenance costs between 40% to 90%.

Why does the cost of maintenance vary between 40-90%? Why are there so few reports on the
costs of each individual maintenance category? There may be many answers. One of them is the
already mentioned fact that we do not share a common, deep and objective understanding of
maintenance, of maintenance categories and of their inherent processes. We are not even
unanimous on what maintenance is, on its scope, and on its relationship to development.

How Can We Remedy the Problems?

One way to remedy most of the aforementioned uncertainties and problems is to construct
separate process models for each maintenance category. Maintenance categories do differ too
much in order to be lumped together under one and the same model. We believe that each
maintenance category deserves its own process model (a specialised model). This would offer a
good opportunity to scrutinise the definition of each maintenance category, its name, goal, and
most importantly, this would lead us towards objective understanding and objective
measurement. Specialised models would also aid in agreeing on a single classification system for
each maintenance category and its inherent activities. They should be fine-grained enough in
order to allow maximal visibility into the process. To the knowledge of the author of this thesis,
there is no process model explicitly defined for a particular maintenance category.

Visibility into the maintenance process can be achieved only in cases when the maintenance
work is perceptible, distinguishable and measurable enough throughout the whole life cycle phase
(Kajko-Mattsson 2001b, Swanson 1999). This requires that all of our life-cycle processes are fine-
grained defined, so that insight can be made into the process steps taken, maintenance effort and
resources put in to conduct them, and the effects of building in and preserving maintainability
during different life cycle phases (Kajko-Mattsson 2001a, Kajko-Mattsson 2001b, Swanon 1999).

Fine-grained process models are not enough, however, to aid in maximising the visibility and
objective understanding of maintenance. Each such process must be thoroughly explained and
motivated for. It is only in this way that our processes and their inherent activities may become
perceptible, distinguishable, objectively understood, and objectively measurable.

13 Evolution and Maintenance of Web Services

Web services are highly vulnerable and subject to constant change. Hence, they offer a novel

challenge to software engineering. This challenge has not yet been investigated. From the
evolution and maintenance perspective there are many things that must be examined. These
include the issues of evolution and maintenance processes, products and roles involved within

 The State of Art within Evolution and Maintenance Page 16(19)
of Web Services

the processes, and the organisational changes required for adopting to the web service application
mode.

When browsing through the current research literature, mainly in the IEEE, ACM, Wiley&Sons
databases (KTH 2004), we did not succeed to find any information about this domain. For this
reason, we have decided to suggest a panel debate to International Conference of Software
Maintenance (http://www.cs.iit.edu/~icsm2004). The panel would discuss the following
questons:
• Does evolution and maintenance of web service applications differ from the evolution and

maintenance of traditional software systems? The answer should be given from the product-,
process-, role- or organisational perspective.

• What are the problems encountered during the evolution and maintenance of web services
that are not encountered in the traditional evolution and maintenance?

• Can we remedy these problems and if yes, how?
The panel got accepted and it was lead by the author of this report. The panellists came from

the academia and industry, mainly from Europe and United States. During the panel, one came to
an agreement that little was known about the evolution and maintenance of web services today.
However, some problems were identified and suggestions for how to remedy these problems
were made. These are described in the SERVIAM report: SERV-FORV-10 (Kajko-Mattsson
2004).

 The State of Art within Evolution and Maintenance Page 17(19)
of Web Services

References

Arthur L J, 1988, Software Evolution: The Software Maintenance Challenge, John Wiley & Sons.

Boehm B W, 1976, Software Engineering, IEEE Transactions on Computers, Vol. C-25, No. 12.

Boehm B W, 1988, Software Maintenance, In Parikh G, Techniques of Program and System
Maintenance, QED Information Sciences, Inc., Wellesley, Massachusetts, pp. 51-54.

Cashman P M, Holt A W, 1980, A Communication-Oriented Approach to Structuring the Software
Maintenance Environment, Software Engineering Notes, ACM SIGSOFT, Vol. 5, No. 1, pp. 4-17.

Chapin N, 1885, Software Maintenance: A Different View, In Proceedings, National Computer
Conference, AFIPS Press, Reston, Virginia, Vol. 54, pp. 507-513.

[Chapin N, 2000, Software Maintenance Types – A Fresh View, In Proceedings, IEEE International
Conference on Software Maintenance, pp. 247-252.

Chapin N, 2000, Do We Know What Preventive Maintenance Is?, In Proceedings, IEEE International
Conference on Software Maintenance, pp. 15-17.

Foster J R, Jolly A E P, and Norris M T, 1989, An Overview of Software Maintenance, British Telecom
Technology Journal, Vol. 7, No. 4, pp. 37-46.

Freedman D P, Weinberg G M, 1988, Maintenance Reviews, In Parikh, G, Techniques of Program
and System Maintenance, QED Information Sciences, Inc., pp. 89-92.

Ghezzi C, Jazayeri M, and Mandrioli D, 1991, Fundamentals of Software Engineering, Prentice-Hall
International, Inc., New Jersey,.

Glass R L, Noiseux R A, 1981, Software Maintenance Guidebook, Prentice-Hall.

McGregor B, 1988, Program Maintenance, In Parikh G, Techniques of Program and System
Maintenance, QED Information Sciences, Inc., pp. 149-155.

Gunderman R E, 1988, A Glimpse into a Program Maintenance, In Parikh G, Techniques of Program
and System Maintenance, QED Information Sciences, Inc., pp. 55-59.

ISO/IEC 14764: Information technology – Software Maintenance, Reference Number: ISO/IEC
14764:1999(E).

Jones R R, 1988, Creativity Seen Vital Factor, Even in Maintenance Work, In Parikh, G, Techniques of
Program and System Maintenance, QED Information Sciences, Inc., pp. 83-85.

Kajko-Mattsson M, 2000, Preventive Maintenance! Do We Know What It Is?, In In Proceedings, IEEE
International Conference on Software Maintenance (ICSM 2000), pp. 12-14.

Kajko-Mattsson M, Westblom U, Forssander S, Andersson G, Medin M, Ebarasi S, Fahlgren T,
Johansson S-E, Törnqvist S, Holmgren M, 2001a, Taxonomy of Problem Management Activities, In
Proceedings, IEEE Conference on Software Maintenance and Reengineering, 2001, pp. 1-10.

Kajko-Mattsson M, Forssander S, Olsson U, 2001b, Corrective Maintenance Maturity Model (CM3):
Maintainer’s Education and Training, in Proceedings, IEEE International Conference on Software
Engineering, 2001, pp. 601-619.

Kajko-Mattsson, M, 2001c, Motivating the Corrective Maintenance Maturity Model (CM3), In
Proceedings, Seventh IEEE International Conference on Engineering of Complex Computer
Systems, 2001, pp. 112-117.

 The State of Art within Evolution and Maintenance Page 18(19)
of Web Services

Kajko-Mattsson M, 2004, Evolution and Maintenance of Web Services, SERVIAM Report
(SERV-FORV-RAPP-10).

KTH, 2004, Royal Institute of Technology Library, www.lib.kth.se.

Landsbaum J B, Glass R L, 1992, Measuring and Motivating Maintenance Programmers, Prentice Hall,
Englewood Cliffs, NJ 07632.

Lehman M, 1980, Programs, Life Cycles, and Laws of Software Evolution, Proceedings of the IEEE,
Vol. 68, No. 9.

Lientz B P, 1983, Issues in Software Maintenance, ACM Computing Surveys, Vol. 15, No. 3, pp. 272-
278.

Liu C, 1988, A Look at Software Maintenance, In Parikh G, Techniques of Program and System
Maintenance, QED Information Sciences, Inc., pp. 61-71.

Mamone S, 1994, The IEEE Standard for Software Maintenance, Software Engineering Notes, Vol.
19, No. 1, pp. 75-76.

Martin J, McClure C, 1983, Software Maintenance, The Problem and Its Solutions, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey 07632.

v. Mayrhauser A, 1994, Maintenance and Evolution of Software Products, Advances in Computers,
Academic Press, Inc., Vol. 39, pp. 1-49.

Mills H, 1988, From Development to Maintenance, In Parikh, G, Techniques of Program and System
Maintenance, QED Information Sciences, Inc., p. 86.

Moad J, 1990, Maintaining the Competitive Edge, DATAMATION. 61-6.

OGC, 2004, Office of Government Office, The IT Infrastructure Library Service Support (ITIL
Service Support), HMSO, Licensing Division, St Clements House, 2-16 Colegate, Norwich, NR3
1BQ, United Kingdom.

Oman P W, 1998, Hitting the Moving Target: Trials and Tribulations of Modeling Quality in Evolving
Software Systems, Panel on IEEE International Conference on Software Maintenance, pp. 66-67.

Comment: We refer to prof. Munson’s statement raised during this panel debate
on our inability to define common concepts within software engineering.

Parikh G, 1986, Handbook of Software Maintenance A Treasury of Technical and Managerial Tips,
Techiques, Guidelines, Ideas, Sources, and Case Studies for Efficient, Effective, and Economical Software
Maintenance, John Wiley & Sons.

Parikh G, 1988, Techniques of Program and System Maintenance, QED Information Sciences, Inc.,
Wellesley, Massachusetts.

Pigoski T M, 1997, Practical Software Maintenance, John Wiley & Sons.

DeRoze B, Nyman T, 1978, The Software Life Cycle – A Management and Technological Challenge in the
Department of Defense, IEEE Transactions On Software Engineering, Vol. SE-4, No. 4, pp. 309-
318.

Rombach H D, Ulery B T, Valett J D, 1992, Toward Full Life Cycle Control: Adding Maintenance
Measurement to the SEL, Systems Software, Vol. 18, pp. 125-138.

Rose L A, 1988, Management Considerations and Techniques, In Parikh, G, Techniques of Program
and System Maintenance, QED Information Sciences, Inc., p. 123.

Schneiderwind N, 1987, The State of Software Maintenance, IEEE Transaction on Software
Engineering, Vol. SE-13, No. 3, pp. 303-310.

 The State of Art within Evolution and Maintenance Page 19(19)
of Web Services

Schniedewind N, 1999, Software Maintenance is Nothing More Than Another Form of Development, Panel
1, In Proceedings, IEEE International Conference of Software Maintenance, pp. 63-64.

Swanson B E, 1999, IS Maintainability: Should It Reduce the Maintenance Effort?, ACM SIGCPR, New
Orleans LA, USA.

Takang A A, Grubb P A, 1996, Software Maintenance – Concepts and Practice, International Thomson
Computer Press.

Weinberg G M, 1988, Worst First Maintenance, In Parikh, G, Techniques of Program and System
Maintenance, QED Information Sciences, Inc., pp. 131-133.

