
 Subproject Literature Survey

10 pages

Serviam Literature Survey

Part III

Web Service Design

2004-02-12

Martin Henkel

SERVIAM-LIT-03

Version 1.3

 Subproject Literature Survey

Table of Contents
1 INTRODUCTION...1
2 SELECTING SERVICE SCOPE...1

2.1 GUIDELINES BASED ON STATIC ASPECTS ..1
2.2 GUIDELINES BASED ON DYNAMIC ASPECTS ..2
2.3 SUMMARY ...2

3 DESIGNING INTERFACES ...3
3.1 METHOD CENTRIC INTERFACES ...3
3.2 MESSAGE CENTRIC INTERFACES ...3
3.3 CONSTRAINED INTERFACES...4
3.4 SUMMARY ...4

4 SUMMARIZED SOURCES...5
Web Service Patterns: Java Edition ...5
Web Services are not Distributed Objects ..5
Web Services Interaction Models, Part I: Current Practice...5
Web Services Architecture ..6

4.1 SHORT PAPERS...6
The four Major Constraints to Loosely Coupled Web Services ..6
How to design a service-oriented architecture using Web services..6
The Enterprise Service Bus: Making Web Services Safe for Application Integration7

5 REFERENCES ..7
5.1 BOOKS...7
5.2 ARTICLES ..7

Literature Survey – Web Service Design Page 1(1)

1 Introduction
Many view web services as a next step of evolution from components and object-oriented

development. This view is not surprising since components are often described as providing
services via their interfaces (Allen, 1998). Components separation of interface from
implementation (Cheesman, 2001) is also one aspect that corresponds with web services
separation of interface description (WSDL) from its implementation. However, even if
components, objects and services do share some basic concepts many authors consider it to be a
mistake to design web services in the same way as components and objects (Allen, 1998)
(Monday, 2003) (Piccinelli, 2001).

Web services as a technology have been in use a couple of years now. Knowledge on how to
(and how not to) design web services is starting to be documented. This chapter gives an
overview of the state-of-art regarding web service design, as found in industry as well as academic
publications.

In order to give an overview of the state-of art, three views of service design can be examined:

§ Service scope deals with how to select a suitable amount of functionality to implement as a

web service (this is sometimes called service granularity).
§ Designing interfaces describes current high-level approaches to he selection of individual

web services operations and messages (parameters).
§ Web service interaction models describe common communication patterns for web services,

e.g. the exchange of SOAP messages.

The first two views (service scope and interface design) is described in this document, the third
view (interaction models) is described in part 4 of the literature survey.

Some of the design principles found in the literature are widely agreed upon as being “best
practice” while there exist a lot of controversy regarding others.

2 Selecting Service Scope
Designers of objects-oriented databases have a deceptive simple task; map each concept in the

domain to a class in the database, a 1:1 mapping. However, this kind of mapping from business
domain into parts of an IT system is not as simple when building systems based on web services,
there is no simple 1:1 mapping. There exist several loosely defined guidelines that can be applied
selecting the scope of a web service. Commonly, these guidelines are based on either dynamic or
static aspects of the business.

2.1 Guidelines Based on Static Aspects
Guidelines based on static aspects describe how services should be identified with input from the

concepts in the business domain using a domain model/information model. Example of such an
approach to design is constructing a web service for each business object/concept in the business
domain (Monday, 2003). This will result in one service for “Customer”, one for “Product” etc.
However, this approach taken literally is discouraged for large-scale systems (Monday, 2003), the
services will commonly be to fine grained using this approach. A design principle lent from
component-based methods (Cheesman, 2001) is to select a few central concepts from the domain
model and create a service for each of them. These central concepts are sometimes referred to as
“focus classes”, or “strong entities” (Connolly, 1998), basic heuristics how to select these exists.
Compared to using only the concepts, this approach of selecting central concepts will result in

Literature Survey – Web Service Design Page 2(2)

more coarse-grained services. This will also result in that component and services have the same
granularity. The authors that use this approach, thus consider components to be a good basis for
building services (Arsanjani, 2003).

2.2 Guidelines Based on Dynamic Aspects
Guidelines based on dynamic aspects of the business, such as business processes are often

recommended when selecting services (Monday, 2003) (Dumas, 2001) (Channabasavaih, 2003)
(Wald, 2001). An example of this approach is to create a web service for each major business
process, such as “purchasing”. This will give the services a higher granularity, compared to having
services correspond to objects (Vinoski, 2002). The following “dynamic” business aspects have
been suggested as a starting point for building services:

§ Business processes (Dumas, 2001)
§ Business functions (Channabasavaih, 2003)
§ Business use cases (Sundblad, 2003)

An interesting side note is that most of the sources recommended a “dynamic” design
perspective, although this approach have since long been considered to create systems that are
not easy to extend (Parnas, 1972).

2.3 Summary
The following table (table 1) summarizes the various high level “guidelines” described

previously.

Basic design principle A service corresponds to a Example of services

Business Process Purchasing
Business Use case Search for Orders

Dynamic

Business Function Create Order Statistics
Central concept, “focus class” Order (including order

rows, order statistics)
Static

Business object Order
Table 1, Overview of high-level design approaches for selecting service scope

Since processes can be broken down into sub processes, the statement that “each service

should correspond to a single business process” does not clearly define the granularity of a
service. Although not precisely defined the above guidelines can give a hint of what is considered
to be the right granularity for web services.

A typical layered architecture uses both the dynamic and structural approach to service design.
Commonly a structural design is used for a “data access” layer (sometimes called the entity layer),
while a dynamic design approach is used as a packaging layer on top of the data access layer. The
appropriate design approach is thus highly dependent on the type of service that is going to be
constructed.

Literature Survey – Web Service Design Page 3(3)

3 Designing Interfaces
From the beginning the basic web service protocol SOAP was designed to be simple way to do

remote procedure calls (RPC) over the Internet. The similarity between SOAP and earlier
distributed communication protocols such as CORBA and DCOM made SOAP easier to
understand and implement. This similarity also affected the design of web service interfaces,
services where designed with “RPC style” or “method centric” interfaces, with clearly separated
operations and well-defined parameters (Vogels, 2003). However method centric interface design
is not the only design approach suggested as a “good” way to design interfaces. Other “message
centric” styles suggest that the design should focus more on the design of the messages in the
system, and that the interfaces should contain a comparable small set of operations (Prescod,
2002). This discussion about method versus message centric design has caused some controversy.
Some authors argue that the method centric design should not be applied when designing web
services (Arsanjani, 2002) (Orchard, 2003).

3.1 Method centric interfaces
As mentioned earlier method centric, or RPC style design, is the common way to design

interfaces in distributed systems based on components or distributed object technology. RPC
style design results in relatively large set of operations for each service interface, each operation
performing a certain function. However the RPC style design of interfaces has several drawbacks
when applied in an environment where several separated applications need to communicate
(Chappell, 2002). The RPC style design can cause tightly coupled interfaces, where each client
needs to know the exact definition of the service interface. When the interface changes all service
clients need to be updated, which might cause a lot of extra work in large systems.

WSDL are central for describing method centric interfaces, while the use of XML schema to
describe the parameter structures is “optional”. WSDL files are important because they describe
the operation that the interface supports and the parameters that the operations can handle. Most
development tools support the creating of WSDL files from a language specific definition of the
service interface (e.g. a Java interface). The need for using XML schemas can be considerably
lessened by using standardized XML object serialization (“SOAP Section 5 encoding”). However,
the use of this encoding scheme is considered deprecated.

3.2 Message Centric Interfaces
Message centric design promotes the use of message structures instead of operations. Taken to

the extreme message centric design can result in web service interfaces with only one method
“send(msg)”. The call semantic is the embedded in the message sent to the web service. This
approach has several advantages. Firstly, the interface is fixed, changes are only made to the
message structure. Secondly, messages can be handled by intermediate parties (such as message
queues) without them having to know the details of the interface. However, a message centric
design makes it difficult to interpret and understand the functionality provided by a service.

The usage of message centric interfaces requires that all messages are described by using XML
schema. Therefore, schema design is a central activity when designing message oriented systems.
However, WSDL plays a minor part when dealing with pure message oriented interfaces. In the
extreme case there simply are no operations that need to be described by using WSDL. Note that
this is precisely the opposite of method centric interfaces, where WSDL plays a major role, and
XML Schema a minor.

Literature Survey – Web Service Design Page 4(4)

3.3 Constrained Interfaces
Constrained interfaces (Orchard, 2003) are interfaces that adhere to a fixed set of standardized

operations. An example of a constrained interface is HTTP. HTTP defines the operations PUT,
POST, GET and DELETE. These operations are then applied to resources, located with Unified
Resource Locators (URLs). Using only the four operations it is possible to build large distributed
systems. Since the interface is standardized, this design has the same advantages as the message
centric design. The interface does not have to be updated. Compared to the message centric
approach constrained interfaces do provide a course grained overview of the service
functionality. For example, it’s easy to identify that resources that support the “DELETE”
operation in HTTP can be deleted.

3.4 Summary
The decision to use a message centric or method centric approach can be affected by the choice

of protocols, architecture and products. Below is an example of a protocol, an architecture and a
middleware product and how they support the interface design approaches:

Product. Message oriented middleware (MOM) products, are solely based on the message centric
approach. Communication with a service is seen solely as a message exchange where the semantic
is entirely encoded in the messages.

Protocol. SOAP supports using both document base and RPC based encoding. Document based
encoding are meant to be used for services that are designed with constrained or message based
interfaces. SOAP-RPC is meant to be used with services using a method centric approach. When
using SOAP-RPC the method and parameter names of the called method is encoded into the
exchanged SOAP messages.

Architecture. The architecture Representational State Transfer (REST) promotes the use of
HTTP and its basic operations for building large-scale distributed systems (Fielding, 2000). Thus,
REST is an example of an architecture that is based on a constrained interface.

The three examples are summarized in Figure 1, below.

Fig 1. Approaches to interface design
Generally, most sources recommend a message centric design for web services. A message

centric design promotes loosely coupled services, which is desirable in situation where interface
changes are expensive (commonly in B2B scenarios). However, a method centric design is better
suited for well-controlled environments such as building single applications deployed in an
intranet.

Message centric Constrained Method centric

MOM REST SOAP-RPC

SOAP-Document

Literature Survey – Web Service Design Page 5(5)

4 Summarized Sources
In this section short summaries of resources that discuss the design of web services are

presented. These sources have been selected for inclusion here because they contain important
insights, and/or they document the current state of art regarding the design of web services.
These sources, and others, have been used as an input to the overview. Other sources used for
the overview are listed in the references section.

Web Service Patterns: Java Edition
Paul B. Monday, Apress 2003.
In this book Paul B. Monday starts with pointing out that conventional object-oriented design

might not be the ideal choice for building web services. According to the author the design of
web services requires that the business logic is divided into domain objects and “process” objects
that perform the manipulation of data (page 32). However, this distinction is not the main point
of the book, and is thus not described in detail.

The contribution is instead the 15 architectural patterns that are presented. These patterns can
roughly be divided into three categories: Basic service structure, Infrastructure, and Messaging.

The basic service structure patterns describe four basic types of web services: Business object,
Business Object Collection, Business Process and Asynchronous Business process. The
difference between these types of services is the concepts they represents (object and process
respectively), the type of service hence affect its granularity.

Infrastructure patterns describe how to implement physical architecture tiers in Java. The book is
very focused on Java, so the in the code example Java Remote Method Invocation (RMI) is used
to communicate between tiers.

The messaging patterns describe how to implement the well-known patterns such as publish-
subscribe, partial population and data-transfer objects (DTOs, sometimes referred to as “Value
objects”).

Web Services are not Distributed Objects
Werner Vogels, IEEE Internet Computing, Volume: 7, Issue: 6, 2003, Page: 59- 66
In this article Werner Vogels discuss several common misconceptions about web services.

These misconceptions can cause sub-optimal design of web service based systems. The main
misconceptions are the following:

Web services are just like distributed objects. Systems based on distributed objects (or stateful
COM/EJB components) have the notion of object references, object factories and object
instances. These notions do not exist in systems build with web services. Web services do not
have any state, nor factories to create instances.

Web Services are RPC for the Internet. The focus of RPC protocols is to relay procedure calls over a
network, this includes serializing attribute values and return values. According to the author web
services do not exhibit this focus on methods and parameters. The focus of web services is
instead on the document that is passed on each web service request. Web services are thus
document-oriented in nature, rather than RPC or object-oriented. (This argument assumes that
the deprecated SOAP-RPC is not used for web service communication.)

Web Services need HTTP. The author points out that HTTP is just one of the protocols that can
be used as transport protocol.

Web Services Interaction Models, Part I: Current Practice
S. Vinoski, IEEE Internet Computing, Volume: 6, Issue: 3, 2002, Page: 89- 91

Literature Survey – Web Service Design Page 6(6)

In this article Steve Vinoski (chief architect, IONA) describe problems that arise when using
Web services as interfaces to legacy systems. Basically the problems arise when the legacy system
uses a stateful interaction model. The author point out two solutions to this problem (holding
state in the web service address URI or let the web service make the state persistent between
calls), neither approach is recommended. The author instead suggests that the level of abstraction
must be raised for web services. A web service should be implemented at the level of business
process flows and business documents rather than mirroring the underlying legacy system
structure.

Web Services Architecture
David Booth et. al, W3C Working Draft August 2003, www.w3.org
This W3C draft identifies the major concepts needed to describe web service architectures.

The draft document is intended as a “guide to the community”, and can also be used to test that
the concepts used in an architecture conforms to their proposed definitions.

4.1 Short papers

The four Major Constraints to Loosely Coupled Web Services
 David Orchard (BEA), Webservices.org, 2003,

http:///www.webservices.org/index.php/article/articleprint/1246/-1/24/ Accessed 2004-01-
15.

In this short paper ten different techniques that can be applied to achieve loose coupling is
discussed. These ten techniques can be applied to overcome the four constraints of loosely
coupled web services:

Extensibility and versioning. Here the author points out that constrained interfaces (interfaces with
a small, predefined set of methods) are easier to extend with new functionality without changing
the interfaces. Rather than adding operations to the “constrained interface” the information
structures that are sent as parameters to the methods can be changed.

Late binding is an essential feature for building loosely coupled web services, since it allows the
target of a method call to be decided at runtime. The author goes further than this, and also
suggests that standardized interfaces would enable software systems to handle a wide variety of
decisions in runtime. An example is security, standardized interfaces would enable systems to
switch security features at runtime. In this case the security mechanisms are “lately bound” to the
running service.

Asynchronous calls are essential to archive loose coupling. In order to use asynchronous call both
systems need to know the address of each other, this addressing issue (and others) is being solved
by the WS-Addressing standard and discussed in the WS-Callback white paper from BEA.

How to design a service-oriented architecture using Web services
Chris McManaman, www.znet.com.au, 2003
In this short article the author present several practical tips on how to build service oriented

systems, these tips are from a real-world project. First, using XSLT for message transformation in
highly recommended. Secondly the need for dynamic invocation, possibly by using an internal
UDDI registry is recommended. Thirdly a tool to debug SOAP messages is considered
invaluable.

Literature Survey – Web Service Design Page 7(7)

The Enterprise Service Bus: Making Web Services Safe for Application
Integration

Ronan Bradley (Polarlake), Webservices.org, 2003,
http:///www.webservices.org/index.php/article/articleprint/1048/-1/24/ Accessed 2004-01-
14.

In this paper four problem areas are identified when designing systems that handle SOAP
documents; validation, enrichment (extending existing messages with additional content),
transformation and exception handling. The author suggests that these four problems as well as
“technology gaps” can be mitigated by using a Message Oriented Middleware (MOM).

5 References

5.1 Books
Allen, P., and Frost, S., 1998, “Component-Based Development for Enterprise Systems:
Applying the Select Perspective,” Cambridge University Press.

Cheesman, J., and Daniels, J., “UML Components”, Addison-Wesley 2001.

Connolly, T. and Begg, C., “Database Systems”, Third Edition, Addison-Wesley 2002.

Monday, P.B, “Web Service Patterns: Java Edition“, Apress 2003.

Sundblad, S. and Sundblad P., “Design Patterns for Scalable Microsoft .NET Applications”,
Sundblad&Sundblad 2003. Sample chapter accessible from www.2xsundblad.com.

5.2 Articles
Arsanjani, A., “Developing and Integrating Enterprise Components and Services”,
Communications of the ACM, October 2002, Vol. 45, No. 10.

Channabasavaih, K., Holley, K., Tuggle, E. M., “Migrating to a service-oriented architecture,
Part2”, IBM developerworks, December 2003, http://www-
106.ibm.com/developerworks/webservices/library/ws-migratesoa2/, Accessed 16 January 2004.

Chappell, D, “Asynchronous Web Services and the Enterprise Service Bus”, WebServices.org
June 2002, www.webservices.org/index.php/article/articleprint/352/-1/24/, Accessed 15
January 2004.

Dumas, M., O’Sullivan, J., Heravizadeh, M., Edmond, D., and Ter Hofstede, A., “Towards a
Semantic Framework for Service Description,” Proceedings of the 9th IFIP Conference on
Database Semantics, 2001.

Fielding, R. T., “Architectural Styles and the Design of Network-based Software Architectures”,
Doctoral dissertation, University of California, Irvine, 2000.

Orchard, D., “The four Major Constraints to Loosely Coupled Web Services”, Webservices.org
2003, http:///www.webservices.org/index.php/article/articleprint/1246/-1/24/, Accessed 15
January 2004.

Parnas, D., “On the Criteria to be Used in Decomposing Systems Into Modules”,
Communications of the ACM, December 1972.

Piccinelli, G., Salle, M., Zirpins, C., “Service-Oriented Modelling for e-Business Application
Components”, HP Labs Technical Report HPL-2001-123, June 2001.

Literature Survey – Web Service Design Page 8(8)

Prescod, P., “Second Generation Web Services”, February 6, 2002,
www.xml.com/pub/a/2002/02/06/rest.html, accessed 13 January 2004.

Vinoski, S., “Web Services Interaction Models, Part I: Current Practice”, IEEE Internet
Computing, Volume: 6, Issue: 3, 2002, Page: 89- 91.

Vogels, W., “Web services are not distributed objects“, IEEE Internet Computing, Volume: 7,
Issue: 6, 2003, Page: 59- 66.

Wald, E., and Stammers, E., “Out of the Alligator Pool: A Service-Oriented Approach to
Application Development,” EAI Journal, March 2001.

