
 Subproject Architecture

8 pages

Architectural Case: SEB
2004-04-02

Martin Henkel

SERVIAM-ARC-04

Version 1.5

Architectural Case: SEB

Table of Contents
1 INTRODUCTION 1

1.1 PROBLEM OVERVIEW 1
1.2 SOLUTION OVERVIEW 1

1.2.1 Development Method 2
1.2.2 The SSEK Protocol 2
1.2.3 The EXA Message Server 2

2 SERVICE DESIGN 3
3 COMMUNICATION 4
4 WEB SERVICE TECHNOLOGY 5
5 SUCCESS FACTORS 5
6 REFERENCES 6

Architectural Case: SEB Page 1(6)

1 Introduction
This document gives an overview of the architecture that SEB Trygg-Liv utilises to provide

Web Services to its insurance brokers. The description is based on a presentation by Peder
Nateus, Lars Patala and Johan Lidö. The purpose of this document is to give a broad overview of
the architecture, so that Serviam project members and others can get new ideas on how to
construct their own architecture for Web services. The description follows the Serviam
architecture description template.

The rest of this introduction will describe the problem that the architecture aims to solve, and
give a brief overview of the solution. The following sections will describe certain aspects of the
solution, such as design principles for services and the use of Web service technologies.

1.1 Problem Overview
SEB is, among other things, provider of insurances that are sold by numerous insurance

brokers. All these brokers need access to SEB systems in order to market, sell and change
insurances for the end customers. In this case the end customers are commonly organisations
that provide the insurances as benefits for their employees. From the beginning SEB, the
insurance brokers and the end customer where communicating using ordinary mail and fax. Two
changes in the business required increased (IT) system support for these tasks. Firstly, the
amount of manual transactions where gradually increasing due to changes customer behaviour
(frequent updates in the insurances became common). Secondly, the biggest insurance brokers
and their biggest end customers required direct connection to SEB systems in order to be able to
manage their insurances in an efficient way.

Another aspect that required a new look at the integration possibilities were that the largest
insurance brokers needed access to not only SEB systems, but to other providers of insurances as
well (such as Skandia). As usual when dealing with insurance information, a communication
solution would need to the secure.

All these aspects can be summarized into two key needs:

§ The existing IT assets in the form of systems needed to be externally useable.
§ An access channel was needed to enable secure access for insurance brokers.

Basically, the first need required an internal architecture that allowed access to existing systems

without rewriting or performing extensive changes to the systems. The second need required a
communication protocol that was platform and language neutral.

1.2 Solution Overview
As mentioned above SEB was in need of a secure communication protocol and an internal

architecture that enabled structured access to their internal systems. Since there are many
organisations interested in having a secure connection to their insurance brokers the secure
communication protocol was developed together with key players in the insurance domain, the
companies Skandia Liv, Länsförsäkringar, Alecta, Aspispronia, Danica, Folksam and SPP. The
created protocol is dubbed “Specifikation av säker elektronisk kommunikation mellan aktörer i
försäkringsbranschen”, SSEK.

The architectural solution to enable external access to internal systems was to create a
centralised message-handling system, the EXA system.

Architectural Case: SEB Page 2(6)

1.2.1 Development Method
The architecture has been developed in a tight cooperation between business experts and IT-

architects. The solution has gradually been refined as a result from discussions and experiments.
This way of working closely resembles methods and ideas for system development proposed by
Agile Methodologies (such as XP, eXtreme Programming) as articulated in the Agile Manifesto
(Beck, 2001).

The SSEK protocol is also a result of the work of a small group. This only reinforces the
argument that architecture work is best done in small groups with a strong motivation and clear
goal.

1.2.2 The SSEK Protocol
The SSEK is an open specification for secure communication based on Web service and XML

standards. The fundament of the protocol is to use XML SOAP messages sent over a SSL
secured channel.

SSEK is very well described at www.ssek.org (se reference SSEK). So SSEK will not be
described in detail in this document. However, to give a hint of the SSEK scope the following
SSEK features can be mentioned:

§ Identification of how to handle unique transaction identifiers.
§ Specification of how to apply XML signatures to digitally sign documents.
§ Identifies common error codes (SOAP Faults) that both parties need to handle.
§ Definition of four security levels and their mandated use of signatures and SSL client

and server certificates.

It should be noted that the above features are not specified in the current Web service

standards, thus the SSEK specification is very valuable as a basis for establishing secure Web
service connections.

1.2.3 The EXA Message Server
The SSEK specification enables secure message exchange between the insurance broker and

SEB. When the messages arrive at SEB they need to be routed to the back-end system. These
back-end systems uses different communication protocols, thus before routing the SOAP
messages to the appropriate system they need to be transformed into the respective system native
communication format. Another problem that needed to be dealt with was that one incoming
message might result in numerous messages sent to the back-end systems. Thus, there was a need
for a “middle-man” that handled message transformations, message splitting and message joining
(this functionality roughly corresponds to the integration patterns “Channel adapter”, “Conten-
based router” and “Splitter” (Hohpe, 2004)). Figure 1 shows an overview of the solution.

Architectural Case: SEB Page 3(6)

Figure 1, Overview of the solution

Besides acting as an advanced router for external (SOAP) messages the EXA server also acts as

an internal communication bridge between internal systems. To summarize, the EXA server has
the following main functions:

§ Façade for handling incoming SOAP request.
§ Communication adapter, the server has functionality to handle the various internal

communications protocols.
§ Router for requests, passes the request to the appropriate back-end system
§ Provides a platform for deploying services that split and merge requests.

The EXA server is a custom ISAPI extension running inside the Microsoft Internet
Information Services (IIS) web server. The services that run inside EXA are modules built in
C++.

The next chapter takes a closer look at the design of the EXA server and the services running
inside it.

2 Service Design
The actual services provided by SEB are executed by the back-end servers. However, the EXA

server has the capability of combining the functionality of several back-end systems and provide
the combined functionality as a “composite service”. These services can then be called by using
SOAP messages.

The scope of the (composite) services provided by EXA is to a large extent dictated by the
back-end systems. Thus the services granularity is very similar to that provided by the back-end
systems. The services running inside EXA have constrained interfaces (Orchard, 2003)(Henkel,
2004). This means that all services have the same methods in their interfaces, se table 1 for a brief
an somewhat simplified description of the methods.

EXA S1

S2

...

SSEK

Insurance
broker

SSEK Security
Server

EXA message
processor, running

services Back-end
systems

SEB Trygg-Liv

HTTP
SOAP

HTTP
SSL

SOAP

Native

Architectural Case: SEB Page 4(6)

Method Name Basic Functionality
In(XMLMsg)
Return:
TransactionList

When called, this method prepares the messages that
are to be sent to the back-end systems. These messages
are put in a transaction list (the return value
TransactionList). The method has access to the
incoming XML message (via the parameter XMLMsg).

Note that the In method does not call the back-end
systems directly, instead the EXA server will use the
information in TransactionList to call the systems
when the In method has finished.

Out()
Return: Response

This method is called after the transactions listed in
the TransactionList are (successfully) executed. This
gives the service an opportunity to modify the returned
response.

Sec(SecurityInfo) This method performs an individual security check
for the service. This method gives the service a
possibility to check that the security level is high
enough for the request. This method is called before
the In method.

Note that the EXA server performs a generic security
check. Thus, the Sec method is only implemented in
those services that require special security features.

Table 1, The constrained service interface used by all services.

This interface design requires that the incoming message contains details describing the
requested function (i.e. CreateInsurance), along with the information required to perform the
function (i.e. CustomerNumber).

Having the same interface design on all service interfaces enables the server to handle the
services and request in a generic way. For example, the server can perform authentication on
incoming requests prior to passing the request to the “in” method of the service.

3 Communication
The services hosted in the EXA server are synchronous. However, by allowing call-backs to the

requestor, the system can provide the same functionality as an asynchronous call. The following
sequence describes how asynchronous calls are “simulated” by the server:

1) A request is received.
2) After a security check, The EXA server relays the request to a service via the service In

method.
3) The service sends an asynchronous message to a back-end system (via the TransactionList).
4) The service returns a simple “request received” response to the requestor (via the service

Out method, called by the EXA server).
5) When finished, the backend system calls the EXA server to deliver the response.
6) The response is sent to the requestor.

This “asynchronous” sequence is used for services that need to call slow back-end systems.

Architectural Case: SEB Page 5(6)

4 Web Service Technology
As mentioned earlier, the SSEK specification relies on Web service standards such as SOAP.

The EXA server also uses SOAP for the incoming request.
Currently the architecture does not include a UDDI registry. The reason for this is that there

are not enough services to justify the use of UDDI, currently there are about 10 Web services
running in the EXA server.

Another Web Service standard that is not used is WSDL. The services all have the same
interface, so there little need of WSDL. Instead the services “interface definition” consist of the
message structures that each service can handle.

Table 2, below, gives an overview of which parts of the web service technology stack
(Donaldsson, 2003) the described solution utilises.

Layer Standards The SEB Tryg-liv solution
Service
composition/
Process

BPEL4WS The service implementation running inside the
EXA server contains the process flow for a request,
implemented in C++.

Composable service
assurance

WS-Transaction, WS-
Coordination, WS-
Reliable Messaging,
WS- Security

The SSEK protocol, based on XML-Signatures and
SSL is used to create a secure channel.
Parts of WS-Security are used in SSEK.
Transactions are not used.

Description WSDL, XSD, UDDI Not used
Messaging SOAP, XML SOAP is used
Transports HTTP, HTTPS,

SMTP
HTTPS is used in SSEK

Table 2, Use of the web service stack

5 Success Factors
The following points summarise why the SEB Trygg-liv solution was successful:

§ A small team of business and technical expertise enabled rapid development and
refinement of the architecture.

§ Focus on technical protocol issues, rather than business aspects, made it possible for
competing organisations to jointly define a protocol specification, SSEK.

§ A single entry point to all back-end systems enabled a structured approach to exposing
existing systems as services.

§ Separating generic functionality such as authentication, logging and protocol
translations from the service implementation makes it easy to add more services later
on. This generic functionally was put into a server framework (the EXA server).

Architectural Case: SEB Page 6(6)

6 References
Beck, K., et al., “The Agile Manifesto”, http://www.agilemanifesto.org/, 2001, accessed 2 April
2004.

Donaldsson, F., Storey, T., Lovering, B., Shewchuck, B., Secure, Reliable, Transacted Web
Services: Architecture and Composition,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnwebsrv/html/wsOverView.asp, September 2003, Accessed 13 April 2004.

Henkel, M., “Serviam Literature Survey Part III, Web Service Design”, Document “SERVIAM-
LIT-03, 2004-02-12”, Accessible from www.serviam.se.

Hophe, G., Woolf, B., “Enterprise Integration Patterens”, Addison-Wesley, 2004.

Orchard, D., “The four Major Constraints to Loosely Coupled Web Services”, Webservices.org
2003, http:///www.webservices.org/index.php/article/articleprint/1246/-1/24/, Accessed 15
January 2004.

SSEK Specification,
http://www.ssek.org/docs/Spec_av_saker_ekommunikation_i_forsakringsbranschen.pdf (also
available in English), 2003, Accessed 2 April 2004.

