
A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 1/4

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 1/4

1.1 Business Object Collection Pattern

1.1.1 Name and Source
Business Object Collection Pattern
Page 115-130 in the book "Web Service Patterns: Java Edition" [WSP 03]

1.1.2 Also Known As
-

1.1.3 Type

Micro-architectural design pattern.

1.1.4 Intent

To provide an interoperable web service that represents a collection of business objects that can
be updated and queried in multiple ways, without exposing technical or language specific
features to the clients.

1.1.5 Problem
A business collection containing business object can easily be updated in a typical object-
oriented language such as java or c# by getting a reference to the object from the collection and
then updating the object. You do not then also need to invoke an extra method call to update the
object in the collection since the collection are referring to the same instance you were updating.
In web services however, you do not get any remote references but all objects sent over SOAP
from the server are instead reconstructed at the client as local instances with the data copied
from the server. Further, when you are programming within your object-oriented language, there
usually exist general and dynamic collection classes that can be used for adding and removing
objects, but these generic classes may contain any kind of object and after retrieving these
objects from the collection they will typically have to be downcasted when you want to invoke
methods on them unless you just want to invoke a very general method that exists in the general
baseclass such as “java.lang.Object”, if you would be programming in java. If you try to expose
these kind of general collection classes to the clients there is a risk of problem e.g. if the clients
are not using an object-oriented language and thus do not have the concept of classes and
downcasting, but still are supposed to iterate such a collection and then downcast the retrieved
objects when iterating the collection.

Often the number of potential objects in a collection is huge, and therefore you frequently want
to provide some kind of filtering mechanism, i.e. you implement different query methods that
can retrieve a subset of the business objects in a collection. If you are using an object-oriented
language such as java or c# you can overload these query methods, i.e. the methods can have the
same name but just differ by the number of parameters and their types. However, all kind of
clients may not support method overloading, and WSDL 2.0 will not support overloading. To
avoid overloading in the query methods you might then be tempted to only use one query
method where the parameter is a string with a SQL (Structured Query Language) where clause,
but that would not be very flexible since the clients would have to know low-level technical
details of your implementation including database structure and you would not be able to easily
change implementation without affecting the client applications, e.g. you might want to change
the implementation from using a relational database to instead using an object database and use
OQL (Object Query Language) instead of SQL as the query language.

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 2/4

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 2/4

When you are deleting or updating an existing object from the collection you also need a
mechanism to tell the server which object you want to delete or update, considering that SOAP
is a stateless protocol and you therefore can not rely on object references.

How can a web service represent a business object collection that can be updated and also
queried in multiple ways while being interoperable and not exposing any technical or language
specific features to the clients ?

1.1.6 Forces

1.1.7 Solution

• If the client changes a business object in a business collection, the collection must also
provide methods that let the client submit the updated data back to the server. The
reason is that the objects will not be remote proxies but they will be copies of the data,
as described in the “Business Object pattern”. Actually, a business object collection may
be considered as a business object that contains other business objects as the non-
primitive objects being discusses in the previous “Business Object pattern”. The
necessary submitting back to the server is illustrated in the diagram below by the fact
that it is not enough for the Client to invoke the method “clientProduct.setPrice” but it
must also invoke the method “ProductCatalog.update” for the data to also be changed at
the server.

• Type safe arrays should be used as parameters and return types instead of language
specific collection classes or interfaces. For example, in the diagram below you can see
that the “ProductCatalog.getProductsP” method return an array “Product[]” instead of
something like “java.util.List”.

• Methods for querying collections are often overloaded within implementations, but you
should not overload web service methods, i.e. do not expose methods that only differ by
parameter types. WSDL 1.1 supports operation overloading but WSDL 2.0 will not,
according to the “WSDL 2.0 Working Draft 2004-03-26”. Another reason that the
method name should also differ is that all programming languages do not support
overloading. For example, in the diagram below you may use method overloading
within your implementation and have many methods named “getProducts” in the
“Persistence” class, but in the Web Service interface the methods must have different
names, for example a method “getProductsP” may return a collection with all products
within a certain price interval, while a method “getProductsN” may return a collection
with products that have a name containing some substring provided as parameter.

• In the interfaces for querying a collection, do not expose any technical details to the
clients but instead use general concepts in the interface that might be implemented in
different ways. For example, if you would let the web service clients use a method call
such as “getProductsByUsingAnSQLwhereClause(‘prodtable.price >= 100 and
prodtable.price <= 200’)” then you would get problems if you e.g. are implementing in
java and would want to change your implementation from JDBC to JDO. An
implementation with SQL code in the client would also violate the “Layers” pattern.
[POSA 96]. As indicated in the sequence diagram below, the clients should instead be
able to make a method call like “getProductsP(100, 200)” where the parameters are the
min and max value for the price.

• Each business object within the collection should have a unique key (“Identity Field”
[PEAA 02]) that can be used for identifying the object when it is going to be updated or
deleted. The usage of the product key is illustrated in the diagram below within the
method “Persistence.update” and the value of the id key may be used in an sql where
clause statement in the “save” method. The value of the id will typically (but not

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 3/4

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 3/4

necessarily) be the primary key for an entity in a relational database. In a query the id
will be returned within the SOAP response body, and then reconstructed at the client by
the proxy class. When the client later submits the entity back to the server the same id
will be contained in the SOAP request message, and then reconstructed again at the
server when the SOAP body is parsed. As illustrated in the diagram below, the product
objects at the server will somehow have to be recreated in the SOAP message since
SOAP is a stateless protocol, although not necessarily by invoking constructor calls as
in the diagram but the products could instead be picked up from an object pool with
product instances.

The sequence diagram below illustrates a use case where the price of a product is increased with
5% for each product within a certain price interval. The products are business objects and the
product catalog that contains the products is a business object collection. Note that the solution
in the example should not be used in the real world because it is bad from a performance point
of view, since you should not do many RPC (remote procedure calls) like SOAP invocations in
a loop, but rather let the data to be submitted in a value object according to the “Data Transfer
Object pattern”. The purpose of the RPC in the iteration is just to illustrate the discussed
concepts above, such as using type safe arrays and submitting changes back to the server.

[the occurrence of "<super>" in the diagram is not intentional and will be removed in the final version]

Client – A client class that uses the business object collection proxy class for getting and
updating business objects within the collection by submitting the local object changes back to
the server.

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 4/4

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 4/4

ProductCatalog<<Client Proxy>> – A client proxy object that locally represents the business
object collection exposed as a web service. It communicates with the ProductCatalog<<Web
Service>> by sending and receiving SOAP messages.

ProductCatalog<<Web Service>> – A business object collection exposed as a web service. It
communicates with the ProductCatalog<< Client Proxy>> by sending and receiving SOAP
messages. Typically the collection will not actually contain all the business objects in the
collection but instead provide query methods that can retrieve a subset of these objects.

Persistence – A server sided class that is responsible for the technical implementation that
retrieves and saves objects to and from some persistent storage. Typically this class uses SQL
for mapping business object to a row in a relational database. Instead of letting the
ProductCatalog (business object collection) be dependent on one such persistence class, you
may use an interface instead and let a factory class create an object that implements the
interface, for example an RDB implementation. This is being described in the “Data Access
Object pattern” [CJP 03].

Product<<Server>> – A business object in the business object collection (ProductCatalog). The
objects typically only live within an object invocation, even though they also might exist within
an object pool. This is because of the fact that SOAP messages are stateless in nature and does
not support remote references but the data is only copied in the SOAP XML messages.

Product<<Client>> – A business object that is a local copy of the corresponding business object
at the server. Changes to this local object does not automatically update the server sided
business object but it must be submitted back to the server. The class ProductCatalog<<Client
Proxy>> can convert this object to an XML structure sent with SOAP to the server.

1.1.8 Consequences
Different clients can retrieve copies of business objects from the collection but the pattern does
not provide any mechanism for notifying other clients when their current copy of the data has
been changed by some other client.

Since a business object collection can contain very many business objects you can get
significant performance problems if you do not provide query methods that retrieves subsets of
the collection. Therefore junior programmers should be informed of this potential problem to
make sure that they will not ignore or forget it until the problem shows up in a production
release when the number of objects can be much bigger than during tests.

1.1.9 Related patterns

This pattern is similar to the “Business Object pattern” since a business object collection may be
considered as a business object that contains other business objects as the non-primitive objects
being discusses in the “Business Object pattern”.

Usually it is better to expose more coarse-grained objects and methods representing business
processes, e.g. to use the “Business Process (Composition) pattern”, instead of exposing a
business object collection as a web service.

