
A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 1/4

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 1/4

1.1 Chained Service Factory Pattern

1.1.1 Name and Source
Chained Service Factory
Page 143-152 in the book ".NET Patterns: Architecture, Design, and Process" [NET 03]

1.1.2 Also Known As
Note that this pattern have a similar name to the "Service Factory" pattern, but that pattern is
very different as described in the related patterns section.

1.1.3 Type

1.1.4 Intent

To provide a general and loosely coupled Web Service interface that will not have to be
modified in the future.

1.1.5 Problem

If you are using strongly typed RPC methods, then all clients will have to be updated if
something is changed at the web service. For example, if you are a service provider that want to
add another parameter to a web service method then you will probably not be able to simply add
an extra method, since WSDL 2.0 removes the operation overloading that was supported by
WSDL 1.1. You will instead have to change the existing method but that would force all clients
to update their implementations, even though they maybe are not interested in using the new
parameter that was added to your method.

How can you avoid having to change all clients when you want to make some change to your
web services ?

1.1.6 Forces

1.1.7 Solution
Instead of using RPC methods with strongly typed parameters you can expose a web service
with a generic datatype, e.g. XML, which includes not only the parameter values, but also
metadata about what actual service methods to invoke.

The general Web Service method is both a “factory” and “delegator” i.e. it first uses metadata to
choose the right Façade to instantiate, and then it can use other metadata as parameters when the
Façade method is invoked.

The book where this pattern was found is very .NET focused and uses a .NET Dataset as the
generic datatype while claiming that “Using DataSets provides the architecture with the most
flexible alternative”. I do not believe in that statement and assume that Sun Microsystems also
would disagree. Therefore XML is used here instead of the Microsoft DataSet .

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 2/4

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 2/4

The “GetFacade” method in the web service class parses the XML to determine which Façade to
instantiate based on the metadata in the XML, similar to the method
“PacketTranslator.GetService” at page 150 in the source book that gets the information from a
DataSet. The switch-statements in the “Execute” web service method at page 149-150 may
instead be put into a “GetFacade” method as in the diagram above, to become a parameterized
Factory Method [GoF 95].

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 3/4

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 3/4

[the occurrence of "<super>" in the diagram is not intentional and will be removed in the final version]

Client – A web service proxy object that sends a SOAP message with general XML rather than
XML content that will be translated to a strongly typed RPC message.

ChainedServiceFactory – A general web service implementation that will parse the metadata in
the XML to determine which actual class that the client wants to invoke. In other words, the
ServiceFactory chooses which ConreteFaçade to delegate the message to.

Façade – A façade object that will continue to parse the XML content to determine more details
about the requested invocation, i.e. which method to invoke and the values of the parameters.

1.1.8 Consequences
The pattern can support a set of completely different services by using the Chained Service
Factory as a central controller that also would make it easy to handle http monitoring and
measuring of the system load in one place.

The pattern will be more complicated to use for the clients compared to using strongly typed
RPC objects generated from WSDL, since they will have to construct general XML content to
send as parameters and also they may have to parse the XML content in a SOAP response
message.

The untyped and general interface will provide useless semantic compared to RPC methods with
meaningful method names and typed parameters. For example, if java is used, the only
parameter to the web service may be the ”org.w3c.Document” interface. With such an untyped
interface you will not be able to get much help from the compiler to detect errors in the expected
metadata parameter, but instead may get runtime errors.

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 4/4

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 4/4

1.1.9 Related patterns

The “Chained Service Factory” and “Unchained Service Factory” are almost the same.
“Chained” means that hardcoded control statements is used in the ServiceFactory to instantiate
predefined Façade classes. ”Unchained” instead uses reflection to choose which Facade to be
instantiated based on the metadata in the XML-parameter.

This thesis document include one "Service Factory" found in one book and two other patterns
named "Chained Service Factory" and "Unchained Service Factory" that were found in another
book. Unfortunately, the "Service Factory" is very different from the "Chained/Unchained
Service Factory" patterns. The "Service Factory" is a client sided pattern that creates a Web
Service proxy for the client, while the "Chained/Unchained Service Factory" is a server sided
pattern that creates a so called facade that will be invoked for taking care of the request from the
client.

The concept of including metadata with information about what service method to invoke, is
similar to the “Format Indicator pattern” [EIP 03].

If you compare this “Chained Service Factory pattern” with the J2EE patterns “Front
Controller” [CJP 03] (FC) and “Application Controller” [CJP 03] (AC) then the FC is the SOAP
engine that delegates the incoming request to the “ChainedServiceFactory”, which is similar to
the “action management” part of the AC that chooses and invokes the request-processing
components. In the AC pattern these components are called targets but are corresponding to the
facades above in this pattern.

