
A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 1/5

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 1/5

1.1 Business Process (Composition) Pattern

1.1.1 Name and Source
Business Process (Composition) pattern
Page 131-151 in the book "Web Service Patterns: Java Edition" [WSP 03]

1.1.2 Also Known As
-

1.1.3 Type

Micro-architectural design pattern.

1.1.4 Intent

To provide guidance for combining business activities into a Web Service with a well defined,
large-grained and flat interface.

1.1.5 Problem

A business process is composed of one or more business activities, where each business activity
also might be a business process aggregating other activities. Large business processes can
involve multiple companies and it may be necessary to coordinate the business activities within
the process, i.e. one activity may need input from another activity within the process.

A business process should be defined with a coarse-grained interface since you want to use few
remote invocations to minimize network communication overhead. The interface should also be
flat and not expose an object-oriented model since you do not want to impose dependencies to
the clients of your object model. Clients also may have problem to use object-oriented models if
the client language is not object-oriented. Another problem with object models is that the client
objects are recreated with data sent in SOAP messages and they are not remote references. This
will require extra steps in the programming to update the data back to the server, as described in
the business object and business object collection patterns.

How can a flat and interoperable coarse-grained business process be designed to enable
aggregation of web services and automatic execution of business activities through a generic
interface, while also being able to exchange data between the activities participating in the
process ?

1.1.6 Forces

1.1.7 Solution

To achieve the wanted flatness of the interface you can, for example, instead of using an array
of objects you can use multiple arrays with primitive data types, which of course should have
the same length, and the data at the corresponding indexes should represent properties of the
same object. For example, instead of defining a parameter that is an array of person objects you
can use multiple parameters, e.g. one array of strings with the names, and one array of integers
with the ages of the people, and so on.

To enable automatic execution of the aggregated business activities within a process, a
composite (GoF) structure can be used. Such activities with a generic interface might be defined

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 2/5

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 2/5

in a declarative manner rather than programming, to then be executed within a general execution
engine. The interface should provide at least one method that will execute the activity, and that
method can be considered as the Execute method in the command (GoF) pattern.

The common data that needs to be shared can be implemented with a reference to a data object
that is sent to the constructor of each BusinessActivity that may need it.

The elements in the diagram below do not necessarily have to be considered as classes. For
example the class BusinessProcessImpl might instead be a BPEL (Business Process Execution
Languages) file, which is an XML file that defines a sequence of business activities and data
relationships. That file could then execute in a so-called BPEL container.

BusinessProcess – An interface generated from WSDL or extracted from a web service
implementation (as in “Web Service Interface pattern”), but after that generation it probably
(depending of what tool is used for generation) must be modified to also extend the
BusinessActivity interface.

BusinessProcessImpl – A Web Service that implements the BusinessProcess interface by
aggregating a list of business activities that together will fulfill the task of the business process.
Often a business process Web Service will implement many different interfaces built for
different customers. A simple implementation might do nothing more than just executing all
activities, but the class also may contain much more complicated logic e.g. code that handles
transactions. The choice of which next activity to execute may depend on data collected in
execution of previous activities.

BusinessActivity – A business activity represents a unit of work and is the base interface for
each activity or process, corresponding to the interface Component in the GoF composite
pattern. It defines at least one “execute” method (GoF command) that may be executed by the
BusinessProcessImpl while iterating through the list of the aggregated business activities.

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 3/5

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 3/5

BusinessActivityImpl1 & BusinessActivityImpl2 – Examples of business activities that can be
included in the list of activities defined and executed by BusinessProcessImpl. Some of these
activities can contain the implementation themselves while others may be delegating to other
“receivers” (GoF command pattern) e.g. some activities may call other web services.

Data – The common pool of data that the business process and activities use for exchanging
data. The data object can be constructed within the BusinessProcessImpl and can then be used as
constructor parameter to the BusinessActivityImpl objects when these also are constructed from
BusinessProcessImpl.

[the occurrence of "<super>" in the diagram is not intentional and will be removed in the final version]

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 4/5

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 4/5

1.1.8 Consequences

Usually methods are somewhat self-documenting when you use relevant method names, but if
you use a hash table for the common data object, it is important to document the keys and values
that are expected to be set as preconditions to the different activities within a process.

One aspect to consider when business processes are discussed is the structure of a business
process, and another aspect is how to standardize the interfaces used in business processes. This
pattern only discusses the structure of a business process, and not the problem of how to
standardize the interfaces used in business processes. In the future you can expect a large
number of standardized business process interfaces accessible through tModels registered in
UDDI.

In general, I do not believe that the common business activity interface in the pattern will be
very meaningful. Business processes are usually not as simple as in the example above where all
activities can execute from within an iteration. If they can, then indeed polymorphism will be
useful to reuse code by invoking the “execute” method in the common interface while simply
iterating the activities. However, often certain activities within a process can run in parallel
processes while some activities will have to be synchronized at certain checkpoints. Branching
statements (if/else or switch) may also be used for executing some activities only under certain
conditions. In other words, it will typically not be possible to treat the activities uniformly and
therefore the common interface will not be as useful, because when you will have to do
programming for a specific class then you might just as well invoke methods with different
signatures.

Business processes can be quite complicated if you are going to do the programming yourself
and it is probably a good idea to learn BPEL (Business Process Execution Language) and use a
graphical tool to draw the business activities in the process and let the tool generate the XML
that in a declarative manner defines the execution sequence including branching and
synchronization of parallel activities, and the data to be exchanged between activities. When
you are finished with the BPEL XML file, you deploy it into a BPEL execution engine that then
may generate classes and interfaces and/or use reflection to be able to automatically invoke the
business activities as defined in the business process described by a BPEL file.

1.1.9 Related patterns

As described above, this “Business Process (Composition) pattern” can aggregate many
business activities. The “Application Service pattern” [CJP 03] is another pattern that provides a
coarse-grained API for aggregated behavior and coordination of multiple business objects or
external services, i.e. web services.

This pattern can more or less be considered as an example of the GoF macrocommand pattern,
which is a combination of the GoF composite and the GoF command patterns. The business
process pattern provides coordination between the different business activities (commands)
through a common data object. This data object maybe could be considered as a “Receiver”
object in the command pattern, although the individual commands (business activities) may also
use other true receiver objects than the common data object and those receivers are typically
different for the different activities. One difference though, compared with the GoF
Macrocommand, is that GoF says that “MacroCommand has no explicit receiver, because the
commands it sequences define their own receiver” while the data object in the Business process
also can be used by the “BusinessProcessImpl” (the “MacroCommand”) which also may contain
more logic than simply executing a sequence of BusinessActivities/Commands.

The GoF diagrams (macrocommand, composite and command) below shows the following
corresponding classes, when compared with classes in this “Business Process (Composition)
pattern”.

BusinessActivity = Command

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 5/5

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 5/5

BusinessProcessImpl = MacroCommand/Composite

BusinessActivityImpl = ConcreteCommand/Leaf

The GoF Macrocommand pattern (Command + Composite)

The GoF Composite pattern

The GoF Command pattern

