
A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 1/4

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 1/4

1.1 Service Directory Pattern

1.1.1 Name and Source
Service Directory Pattern
Page 75-97 in the book "Web Service Patterns: Java Edition" [WSP 03]

1.1.2 Also Known As
-

1.1.3 Type

Architectural design pattern.

1.1.4 Intent

To provide location transparency.

1.1.5 Problem
Web Services is a Service Oriented Architecture (SOA) and one of the intents of a SOA is to
provide location transparency, which means that you want to be able to dynamically locate and
immediately start using a new component that implements the interface that your application
uses, without first being forced to modify your code with the URL for the newly found Web
Service.

How can location transparency be achieved with Web Services ?

1.1.6 Forces

1.1.7 Solution
The solution assumes that the interface your application is using have been registered as a
WSDL interface in an UDDI tModel structure, which refers to the WSDL file in the
<overviewURL> element within the <tModel>.

When you have generated a proxy class that implements a certain WSDL interface described
with a tModel in UDDI, then you can query an UDDI operator for all Web Services that
implement that interface, and you can iterate through them, and for each iteration you get the
URL for the Web Service and then sets that URL to the proxy class (if the generated proxy class
provides some kind of “setURL” method) and invokes the method you want to invoke to the
web service. Consider the “Web Service Interface” pattern if the generated proxy can not be
reused for different web service implementations.

The important thing to note in the diagram below is that neither the “Client” class nor the
“WebService” proxy class are using any static URL for invoking the WebService, but the actual
URL’s for the Web Services implementations (that are implementing the WSDL interface used
by the application) being used are instead found dynamically in runtime by querying an UDDI
server through a proxy object.

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 2/4

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 2/4

[the occurrence of "<super>" in the diagram is not intentional and will be removed in the final
version]

• WebService – A proxy object for a Web Service that is generated from a WSDL
interface as described in the “Architecture Adapter pattern”. Depending on the tool that
generates this proxy class, maybe there will not be any “setURL” method that can
change the URL, but you rather might have to instantiate a new object for each
bindingTemplate in the iteration and supply the url as a parameter to the constructor of
the proxy class, or maybe the url is only hardcoded when the class is generated. In that
case one possibility is to use an interface for the web service. Refer to the section
“related patterns” regarding this issue.

• Client – An object that wants to invoke the Web Service method
“invoke(SomeDataType parameter)” which is a method that is described in a certain
WSDL file that has been registered as a UDDI tModel that refers to the WSDL. In this
example, the Client object invokes that method once for every Web Service in the
UDDI registry that has been defined as implementing this WSDL/tModel, but another
option would be to just invoke the method for the first Web Service found, instead of
iterating through all of them.

• tModelBag – An object representing the UDDI structure <tModelBag> which is a
structure that can be used as container for tModel parameters in UDDI queries. The
example diagram illustrates that you wants to search for Web Services that implements

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 3/4

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 3/4

the WSDL interface that has been registered as a tModel with a certain tModelKey,
which is some unique UUID.

• UDDIproxy – An UDDI server is itself a Web Service with a SOAP API, and this
UDDIproxy class is a proxy class for the SOAP methods defined by UDDI, and it could
be generated from the WSDL describing the UDDI web service, just like any WSDL
file can generate proxy classes, as described in the Architecture Adapter pattern. There
are also some existing class libraries with class structures similar to the UDDI xml
structures, for example UDDI4J is a UDDI class library for java that has a class
“UDDIProxy” (and UDDI4J also has the other three classes to the right of the Client
class in the diagram).

• BindingDetail – An object representing the UDDI structure <bindingDetail> which is
the structure that gets returned when invoking the SOAP method <find_binding> which
is done in the diagram through the UDDI proxy method with the same name.

• BindingTemplate – An object representing the UDDI structure <bindingTemplate> that
is one of the four core UDDI structures, that contains an “accessPoint” which is a URL
you can use for invoking the Web Service.

1.1.8 Consequences

It is probably not very likely in a real world scenario that you would want to use the pattern for
automatically start doing business with unknown companies just because they have added
themselves in the global UDDI Business Registry and submitted a web service that implements
the interface your are searching for in UDDI. It is more likely that you will extend the pattern
so that your application only uses those Web Services that has been manually approved. You
may also want to subscribe for tModels and let an UDDI registry send you notifications when
new Web Services with a certain interface has been added to the registry. Another option, which
would not require any extra application logic, is to use your private UDDI registry that only
contains approved companies, when your application is doing lookups.

1.1.9 Related patterns

This “Service Directory pattern” is used by the “Service-Oriented Architecture pattern” to help
with location transparency.

It is generally better to implement the “Service Factory Pattern” instead of this pattern, since
that pattern avoids the low-level UDDI details used from within the Client objects in this
pattern.

The “Client-Dispatcher-Server pattern” [POSA 96] (CDS) is a generic communication pattern
that just like this “Service Directory pattern” provides location transparency, and just like the
above mentioned “Service Factory” it seems as if the CDS also wants to isolate the lookup code
by saying ‘The code implementing the functional core of a service consumer should be separate
from the code used to establish a connection with service providers’ [POSA 96, page 324].
However, the “Service Factory” is indeed a pattern that provides an extra layer within the client
but when I look at the CDS sequence diagram (quite high-level) the “Dispatcher” class
corresponds to the UDDI web service that often resides in another process boundary and thus
does not correspond to the client-sided class “ServiceFactory” as you might expect from the
above quoted statement. Thus I would rather say that the CDS is more similar to this “Service
Directory pattern” since it does not provide the extra client layer that the “Service Factory” does
to separate the code that establishes the connection. A difference between “Service Directory”
and CDS is that the remote “Dispatcher” object in the CDS tries to establish a communication
link with the server, while the UDDI object in this “Service Directory” does not try to connect to
the web service.

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 4/4

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 4/4

In the sequence diagram above, the generated proxy class is assumed to provide a “setURL”
method that enables the proxy object to be reused for different implementations of the same web
service. However, some WSDL tools maybe do not generate such methods but only generates a
class from a WSDL that includes a hardcoded URL as defined in the WSDL file. Another option
than to reuse the same proxy class with a “setURL” method is to use an interface from the client
that is implemented by different implementations with hardcoded generated URL’s. Refer to the
“Web Service Interface” for a pattern about how to use refactoring to create such an interface if
it is not generated by the WSDL tool.

