
A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 1/3

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 1/3

1.1 Publish/subscribe Pattern

1.1.1 Name and Source
Publish/subscribe Pattern
Page 205-222 in the book "Web Service Patterns: Java Edition" [WSP 03]

1.1.2 Also Known As
-

1.1.3 Type

1.1.4 Intent
To send web service notifications to interested clients about generic events that has originated
from sources that may not provide web service notification mechanisms themselves.

1.1.5 Problem
The basic problem is similar to the observer pattern, i.e. a web service client wants to get
notified about something. The difference is that in this pattern, the real source of the
notifications may not itself provide a web service, and the event or topic that the client is
interested in can therefore also be of a more generic nature than to be associated with a
particular web service business process. For example, a client may want to subscribe to news
and might specify topics of interest, e.g. “sports” or “politics”.

How can a web service client immediately become informed about some generic event or topic
when the actual publishing sources of the events do not provide observable web services
themselves ?

1.1.6 Forces

1.1.7 Solution
The solution assumes that the client itself can provide a web service.

You can use an EventService, which is an intermediate web service dedicated to provide an API
for publisher as well as subscribers. When a publisher publishes some data about some
particular topic, then the EventService delegates the published data to all subscribers that has
subscribed to the topic.

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 2/3

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 2/3

[the occurrence of "<super>" in the diagram is not intentional and will be removed in the final version]

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 3/3

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 3/3

Client – An object that may execute in a stand-alone application, i.e. does not necessarily
execute in the same computer process as SubscriberImpl that may be executing in a web service
engine.

SubscriberImpl – A web service provided by the client that implements the WSDL interface for
subscribers. The URL for this web service is supplied by the client to the EventService as a
parameter in the “addSubscriber” method. When the update method is invoked by the
EventService this object will have to send the notification back to the client object that wanted
the notification and if that client object executes in another computer process within the client
machine the “Physical Tiers pattern” may be necessary to use for the interprocess
communication. However, the objects might actually execute within the same process, for
example if the “Faux implementation pattern” is used. After being notified the Subscriber may
want to get more details from the publisher if it provides a web service, which it not always
does. The diagram does not illustrate the “SubscriberProxy” that will be generated by the
“Subscriber” WSDL and execute at the server communicating with “SubscriberImpl” by
sending SOAP messages.

EventServiceImpl – A web service implementing the EventService WSDL interface. It
maintains lists of web service URL’s for subscribers that have registered for subscription to
particular topics. When a publisher sends a publish message to this EventService it will forward
the data to all subscribers as illustrated in the iteration in the sequence diagram. The diagram
does not illustrate the “EventServiceProxy” that will be generated by the “EventService” WSDL
and execute at the client as well as at the publisher and communicate with “EventServiceImpl”
by sending SOAP messages.

PublisherImpl – A publisher of events or topics that sends new messages to the event service
with information about the topic as well as the published data itself. Note that this object does
not necessarily have to provide a web service itself, but it might do so to provide more
information to the client, which is illustrated in the sequence diagram as an optional message.

1.1.8 Consequences
With this pattern, the client can avoid having to subscribe and unsubscribe to the same topics
from different web service providers, e.g. news service providers with their own web service
implementations.

1.1.9 Related patterns
The “Publish/Subscribe pattern” is similar to the “Observer pattern” which is described in the
problem section above.

The pattern typically needs to be combined with the “Physical Tiers Pattern” or the “Faux
Implementation pattern” since the client object that originated the request may not necessarily
be a web service itself that can listen for incoming SOAP notification messages, nor be a POP
server listening for incoming SMTP messages.

Paul B. Monday [WSP 03] describes the pattern as an extension to the Observer pattern and a
subset of an Event Channel described in OMG’s “Event Service Specification”.

