
A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 1/3

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 1/3

1.1 Pollable Thread Manager Pattern

1.1.1 Name and Source
Pollable Thread Manager
Page 116-122 in the book ".NET Patterns: Architecture, Design, and Process " [NET 03]

1.1.2 Also Known As
-

1.1.3 Type

1.1.4 Intent
To provide a framework for executing a long-running method and periodically check if it has
completed.

1.1.5 Problem
Essentially, the problem is very similar to the “Event Monitor Pattern”, so you may want to refer
to that pattern for a description of the problem.

How can a web service client invoke a long-running web service call without getting the client
application blocked while waiting for the response ?

1.1.6 Forces

1.1.7 Solution

Create a Pollable Thread Manager class that will invoke an asynchronous call to a thread class
running in a separate thread. This thread class will then invoke a synchronous Web Service
method and will save the result in an attribute that can be returned later to the Client through the
Pollable Thread Manager. The Client then has to continuously invoke the method
“WaitForCompletion” of the Pollable Thread Manager that each time waits for a while to see if
the thread will complete. When that method returns “AsyncReturn.CompletedSuccessfully” the
Client can invoke “GetResult” to finally get the result from the long-running web service.

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 2/3

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 2/3

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 3/3

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 3/3

[the occurrence of "<super>" in the diagram is not intentional and will be removed in the final version]

Client – An object that periodically checks for completion. Maybe the programming language or
class library you are using provides some kind of timer feature that can be set to regularly
invoke the method “PollableThreadManager.WaitForCompletion”.

PollableThreadManager – An object that creates and starts the thread where the web service
invocation will be done.

ThreadClass – A thread object with a method “DoExecution” that runs in a separate thread, and
the code will probably run within a try/catch clause if the programming language supports that
kind of error handling. If an error is catched then the “isError” method will return true when it
will be invoked from the Pollable Thread Manager (The public and asynchronous message
“DoExecution” to the thread class corresponds to the “start” method in a java thread which is
implemented with the “run” method and invoked by the start method).

WebService – A proxy object for the long-running web service.

ASyncReturn – An enumeration, or a class with constants, that defines status values, e.g. one
value for successful completion and one value for failure. As an option to this class or
enumeration, the method “PollableThreadManager.WaitForCompletion” might instead return an
integer between 0 and 100 that represents an estimation of how many percent of the
“WebService.slowMethod” that has executed. However, such an estimation can probably not be
done easily from the client without some help method from the web service itself.

1.1.8 Consequences

1.1.9 Related patterns

"Event Monitor pattern" and the other notification or polling patterns:

• "Observer pattern for Web Services"

• "Publish/subscribe Pattern"

• "Notifying Thread Manager"

• "Multisync Thread Manager"

