
A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 1/4

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 1/4

1.1 Notifying Thread Manager Pattern

1.1.1 Name and Source
Notifying Thread Manager
Page 108-116 in the book ".NET Patterns: Architecture, Design, and Process " [NET 03]

1.1.2 Also Known As
-

1.1.3 Type

1.1.4 Intent
To let a client invoke a long-running web service call without blocking the client while waiting
for the response, even if the server does not provide a notification mechanism.

1.1.5 Problem
Essentially, after generalizing the originally described problem that only covers “.NET
Windows Forms”, the problem is very similar to the “Event Monitor Pattern”, so you may want
to refer to that pattern for a description of the problem.

How can a web service client invoke a long-running web service call without getting the client
application blocked while waiting for the response ?

1.1.6 Forces

1.1.7 Solution

Let the client implement a callback interface that will be used by another thread at the client
application when the long-running web service method has finished.

The book where this pattern was found is very .NET focused and the pattern discusses how to
notify a .NET “System.Windows.Forms.Control” about when a long-running web service is
finished. Further, the solution to the pattern also includes so called “delegates” which is similar
to a function pointer in some other languages such as C or C++, but a delegate is object-oriented
and thus can not only reference “functions” (i.e. static methods) but also instance methods.
Delegates may be an interesting feature for .NET programmers, but to make the pattern more
generally interesting, i.e. also for a programming language such as java, the delegates and the
Windows control to be notified have been replaced with a solution based on a more generically
applicable callback interface.

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 2/4

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 2/4

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 3/4

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 3/4

Client – A consumer of a long-running web service. It does not invoke the thread nor uses the
web service proxy itself, but it only uses the NotifyingThreadManager. The parameters may
include a unique ID that in the notification later will enable the Client to determine which
invocation has finished, since the Client might trigger many invocations that will execute in
parallel threads.

NotifyingThreadManager – A helper object that provides an API to the Client. It creates the
thread and delegates the parameters from the Client, including a reference to the Client object.
Then it starts the thread with an asynchronous call and returns control to the client without
blocking it as it would do with a synchronous call to a long-running web service.

ThreadClass – A thread that invokes a synchronous call to a long-running web service. When
the web service has finished the thread notifies the client that implements the callback interface.
This notification includes not only the result but also an ID that lets the Client identify which
web service invocation has finished. If the execution of the web service finishes successful then
the “CompleteEvent” method will be invoked, as illustrated in the sequence diagram, but
otherwise an “ExceptionEvent” method will be used instead.

WebService – A proxy object for the long-running web service.

1.1.8 Consequences

If multiple threads can complete and send callbacks at the same time you may need to take care
of synchronization issues. In the original pattern this is done with the thread safe .NET method
“System.Windows.Forms.Control.BeginInvoke(Delegate, Object[])”.

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 4/4

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 4/4

1.1.9 Related patterns

"Event Monitor pattern" and the other notification or polling patterns:

• "Observer pattern for Web Services"

• "Publish/subscribe Pattern"

• "Pollable Thread Manager"

• "Multisync Thread Manager"

