
A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se  1/2 

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se  1/2  

1.1 Multisync Thread Manager Pattern 

1.1.1 Name and Source 
Multisync Thread Manager 
Page 122-125 in the book ".NET Patterns: Architecture, Design, and Process " [NET 03] 

1.1.2 Also Known As 
- 

1.1.3 Type 

1.1.4 Intent 
To let the client choose whether it wants to be notified or to make regularly polling. 

1.1.5 Problem 

Essentially, the problem is similar to the “Event Monitor Pattern”, so you may want to refer to 
that pattern for a description of the problem.  

How can a web service client invoke a long-running web service call without getting the client 
application blocked while waiting for the response ? 

1.1.6 Forces 

1.1.7 Solution 
You can choose to combine the patterns “Notifying Thread Manager” and “Pollable Thread 
Manager” as an alternative to implement only one of them. 

In other words, the class diagram would be the ‘union’ of the diagrams of these two patterns. 
You can create a class “MultisyncThreadManager” with the methods from the both classes 
“PollableThreadManager” and “NotifyingThreadManager” in those two patterns. The client 
class will have to implement the “CallbackInterface”. 

The method “ThreadClass.DoExecution” will have to do two things when it has got the result 
from the “WebService.slowMethod()”. The first thing to do is to save the result in an attribute so 
that it can be returned later (this is the “Pollable Thread” part of the pattern). The other thing to 
do is to notify the Client by calling a method in the “CallbackInterface”, but that must be done 
within an if statement that checks if there is a reference to such a class, i.e. you must check if the 
client has used the “Notifying Thread” part of the pattern by invoking the method 
“MultisyncThreadManager.ExecuteAsync” instead of the method 
“MultisyncThreadManager.BeginExecution”. 

1.1.8 Consequences 

While the pattern provides flexibility by letting the client choose how to use the 
MultisyncThreadManager class, you do not achieve “High Cohesion” when it is used. (“High 
Cohesion” is a so-called GRASP, i.e. “General Responsibility Assignment Software Pattern” 
[Larman 01] ) 



A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se  2/2 

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se  2/2  

1.1.9 Related patterns 

The pattern is a combination of the “Notifying Thread Manager” and “Pollable Thread 
Manager” patterns. The solution implements both these patterns, and the user can choose which 
of these patterns to use. 

 


