
A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 1/3

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 1/3

1.1 Faux Implementation Pattern

1.1.1 Name and Source
Faux Implementation Pattern
Page 245-260 in the book "Web Service Patterns: Java Edition" [WSP 03]

1.1.2 Also Known As
-

1.1.3 Type

1.1.4 Intent
To provide a simple lightweight SOAP message listener from within the computer process of a
stand-alone application when it needs to receive notifications from remote web services.

1.1.5 Problem
In some notification patterns, for example Observer or the Publish/subscribe pattern, the client
must provide a web service itself to be able to receive the notifications from another web
service. Typically, a stand-alone application is not bundled with an integrated full-blown web
service engine. If a local but external (from a computer process aspect) web service engine at
the client is used to receive the notifications from another web service, then somehow the local
web service needs to communicate with the stand alone application through an interprocess
protocol, as described in the “Physical Tiers Pattern”. However, if both the stand alone
application and the web service is not written in java or if both is not written in .NET then you
would have to use CORBA or some other rather complicated protocol, and you maybe would
prefer an easier solution.

How can a stand-alone client application, that lacks integrated web service provider features,
receive notifications from a web service ?

1.1.6 Forces

1.1.7 Solution
You can implement a simple web service engine by using a class that executes in a separate
thread and is waiting for incoming socket connections with SOAP messages.

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 2/3

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 2/3

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 3/3

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 3/3

[the occurrence of "<super>" in the diagram is not intentional and will be removed in the final version]

Client – An object in the application that wants to receive a notification through the Subscriber
interface it is implementing. The object creates the FauxWebService in a thread and then when
it subscribes to a topic at an EventService it provides the URL to use for invoking the
FauxWebService when notifications are sent.

FauxWebService – The object runs in a thread with a socket waiting for incoming SOAP
messages, and when such a message is received then the XML will be parsed to receive the
topic and the data to forward to the Client subscriber in the update method.

EventService and PublisherImpl – These objects behaves exactly like they do in the
Publish/subscribe pattern. They do not care about how the client application receives the
notification. In other words, from their point of view, it is irrelevant whether the client uses the
“Faux Implementation Pattern” or the “Physical Tiers Pattern” or even something else.

1.1.8 Consequences
The phrase “faux implementation” implicates that the implementation of the web service is not a
“real” implementation of a web service. However, it can be discussed exactly what should be
considered as a real implementation and what is a faux implementation. For example, a very
easy faux implementation could do nothing more than simply be listening for any incoming
SOAP message without even trying to parse it, but could just be used for triggering a request to
the web service for getting more information about whether something has changed, as an
option to using the “Event Monitor pattern” that continuously requests a web service. If you
keep adding features to the faux implementation until you have implemented a full-blown web
service engine, the question is exactly when did the faux implementation stop being faux ? And
is it even possible to say that there is such a thing as a faux implementation as long as it
implements the interfaces it is supposed to implement ? The answer to that question is not
obvious, but the author of the source book [WSP 03] believes that the answer is yes.

When you implement this pattern, you are probably more or less reinventing the wheel, since
most platforms already have web service engines that might be used instead. The reason for
instead implementing a simple “faux” web engine yourself, is that it may be complicated to
integrate an existing web engine into your application or that you think it would create an
unnecessary large footprint (i.e. storage or run-time memory) to your application.

1.1.9 Related patterns

Instead of using this pattern the “Physical Tiers Pattern” can let a local web service engine
communicate with a stand-alone application by using some interprocess protocol such as Java
RMI or .NET remoting.

