
A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se  1/4 

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se  1/4  

1.1 Event Monitor Pattern 

1.1.1 Name and Source 
Event Monitor Pattern 
Page 169-186 in the book "Web Service Patterns: Java Edition" [WSP 03] 

1.1.2 Also Known As 
- 

1.1.3 Type 

Micro-architectural design pattern 

1.1.4 Intent 

To get notified about when a long-running, asynchronously invoked web service has finished, if 
the web service does not provide a notification mechanism or if the client itself can not receive 
SOAP notifications. 

1.1.5 Problem 
When a web service client has started an asynchronous business process it will later want to 
know when the business process has completed and of course also the result of the process. The 
optimal way of getting this information is that the web service will provide a notification 
mechanism that sends a message to the client with all information that the client is interested in. 
However, this solution is not always feasible, since the web service may not provide a 
notification mechanism and it may be difficult to persuade the service provider to modify their 
existing applications to implement web service notification mechanism. Even if the server does 
provide a notification mechanism, it may not support the right kind of detailed information that 
the client wants, since it may be difficult to predict all kinds of information that clients might be 
interested in. Another problem is that a notification mechanism will require the client to also 
provide a web service that can receive messages about the completion of the business process. 

How can a web service client become informed about the result of an asynchronous business 
process if the web service does not provide a notification mechanism or if the client cannot act 
as a web service itself to receive the notifications sent as SOAP messages ? 

1.1.6 Forces 

1.1.7 Solution 

The client application creates an "Event Monitor" that will run in a separate thread and it 
continuously invokes the web service to check for changes that are expected to occur as a result 
of the asynchronous method call. When the "Event Monitor" detects a change it notifies the 
“event observers” that been registered with the "Event Monitor". 



A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se  2/4 

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se  2/4  

 



A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se  3/4 

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se  3/4  

[ the occurrence of "<super>" in the diagram is not intentional and will be removed in the final version ] 

 

EventMonitor – The object that is running in a thread and continuously invokes the web service. 

EventObserver – This interface is implemented by the objects that want to get notified about 
when the observed data has changed. 



A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se  4/4 

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se  4/4  

InfoSnapShot – A helper object for the EventMonitor that encapsulates the data returned from 
the previous web service request and also the logic for comparing the previous data with the 
latest data received from the web service.  

BusinessProcessManager – A client proxy to the web service that, in the sequence diagram 
above, is assumed to already have been started and returned a process ID, as illustrated in the 
sequence diagram for the “Asynchronous Business Process pattern”. 

1.1.8 Consequences 
The appropriate polling frequency may be hard to too predict, and it should be possible to 
configure the frequency, i.e. do not hardcode it. If the frequency is too high there will be a lot of 
unnecessary network traffic. On the other hand, if the frequency is low it may take a lot of time 
to discover the new data, but if it is very important to always have the latest data then the 
EventMonitor should not be used. In some applications though, it may be enough to poll once 
per 24 hours and in such cases the EventMonitor would be an option to consider. 

The ”EventMonitor” should usually not be the first choice when implementing new applications 
with a web service interface, but rather it should be considered as a last resort when integrating 
existing applications that originally were not designed and implemented to provide notification 
mechanisms or when the client itself cannot act as a web service to receive the notifications. 

If multiple client objects will want to observe the same change from the web service, then the 
network traffic can be reduced by letting these client objects, i.e. EventObservers, reuse the 
same EventMonitor to receive notifications instead of letting many EventMonitor objects keep 
invoking the web service. 

The EventMonitor pattern can be useful when it is difficult to add a notification mechanism in 
an EAI (Enterprise Application Integration) scenario, for example when customer data need to 
be replicated between an existing CRM (Customer Relationship Management) system and some 
other existing ERP (Enterprise Resource Planning) system. Then a web service interface can be 
added to both of these systems that can be used by an EventMonitor to detect that data has 
changed in one system and that the other therefore also has to be updated. Adding such 
interfaces can be easier than implementing notification mechanisms in the existing systems. 

1.1.9 Related patterns 
The EventMonitor uses the traditional Observer pattern [GoF 95]. However, since this thesis 
document also describes a pattern that is named as Observer (described in the same book as 
EventMonitor, but I added the suffix “for Web Services” to that Observer pattern name) it 
should be noted that the EventMonitor is a pattern where both the GoF Subject and Observer 
(Observable and EventObserver) are client objects, while the “BusinessProcess” in the 
“Observer pattern for Web Services” is the GoF Subject and is a web service. 

The InfoSnapShot class can be subclassed (or be an interface), if you would want to switch 
between different implementations of how to determine changes, and that would be an 
application of the Strategy pattern [GoF 95]. 

The "Asynchronous Business Process pattern" describes the invocation of a long-running Web 
Service without locking the client process, while this “Event monitor pattern” describes how the 
client then can figure out when such a business process has finished if the client is not able to 
receive a notification from the long-running Web Service when it has finished. 


