
A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 1/4

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 1/4

1.1 Asynchronous Business Process Pattern

1.1.1 Name and Source
Asynchronous Business Process pattern
Page 153-167 in the book "Web Service Patterns: Java Edition" [WSP 03]

1.1.2 Also Known As
-

1.1.3 Type

Micro-architectural design pattern

1.1.4 Intent

To let the client execute a long-running Web Service and return quickly without locking the
client process.

1.1.5 Problem

Human users of an application GUI, e.g. a web browser, do seldom have more patience than to
wait for 10 seconds until they get some kind of response. However, the entire business process
does not necessarily have to be finished within such a short period of time but often it is
acceptable to get a notification later about the result e.g. an email message. It is also a desirable
feature to be able to check the current state of a long-running business process that may involve
many different web services from different companies as one aggregated business process
exposed as a Web Service.

How can you provide a long-running business process as a web service that returns quickly
without blocking the client, while also letting the client be able to check the current state of the
business process ?

1.1.6 Forces

1.1.7 Solution

You can expose a business process manager as the web service instead of letting the long-
running business process class itself be a web service. The responsibility of the manager class is
to start the business process in a separate thread and quickly return a unique process identifier to
the client. That kind of identifier is described in the "Correlation Identifier pattern" [EIP 03].
The manager class also provides an interface that enables the client to query the manager about
the current state or progress of the business process. The state of the process should be stored
persistently to enable recovery of a process, since a process can be very long-running and some
of the involved servers used from the business activities may crash or for other reasons have to
be restarted before the process has finished. The state can be handled by the business process
itself or by some business activity or business object class, instead of using a separate process
state object.

For example, a business process for ordering a product, may have the business object “Order”
that also plays the role of the process state object, and it may have a status method that e.g.
defines whether the order has yet been delivered or not. The identifier of the “Order” (e.g. the
primary key of the order row in an RDB) might also be used as the identifier to the entire
process that the client uses later for checking the status of the business process. Then the web

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 2/4

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 2/4

service process manager for the asynchronous business process can delegate a “getStatus”
invocation to the “getStatus” method of the business object “Order”.

The only new or modified classes in the class diagram below, compared to the pattern “Business
Process (Composition)”, are BusinessProcessManager, ProcessState and BusinessProcessImpl.

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 3/4

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 3/4

[the occurrence of "<super>" in the diagram is not intentional and will be removed in the final version]

BusinessProxy – An architecture adapter generated from WSDL.

BusinessProcessManager –A web service that starts a business process in a thread and then
quickly returns a unique process identifier to the client. It also provides an interface that returns
the current status of the business process when the client supplies a business process identifier.
Instead of creating a thread object, as indicated in the diagram, a thread instance could be picked
from a thread pool to avoid expensive object instantiation.

BusinessProcessImpl – A class that runs a business process in a thread and also provides a status
method. To avoid cluttering, the diagram does not illustrate the execute messages sent to the
business activities while the thread executes within the “startThread” method. These messages
are illustrated in the sequence diagram for the “Business Process (Composition) pattern”.

ProcessState – A class that manages the information about the current status of the business
process. This does not necessarily have to be a separate class but business objects or maybe the
common data object might instead provide the status information about the business process.
The state should be persistent to be able to recover the process if some of the involved servers
has to be restarted before the process has completed.

1.1.8 Consequences

Use a synchronous business process if you are sure that the process will finish before the client
user has lost patience about getting a response. In other words, use an asynchronous business
process only if necessary, since a synchronous API makes the client programming simpler.

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 4/4

A pre-release (version 2004-07-26) of a section from a masters thesis by Tomas Johansson, tojo@kth.se 4/4

The client must be able to interpret the possible status codes, e.g. the web service provider may
provide a class with constants used as status codes.

The business process identifier returned from the initial invocation has to be saved at the client
and it could e.g. be saved as a cookie if a web browser is used as client to the web service.

For performance reasons, it is better to use a thread pool that contains reusable thread instances
instead of instantiating new threads for every invocation of a business process.

A business process can include multiple external web services being called from your own
business activities. Make sure you understand the identifiers and data being used by these
external services and how these will affect the status of your own process.

An asynchronous business process is different from a thread of execution in a programming
language since a business process can span different web services and also the length of
applications, i.e. the servers can be restarted and the process should still be able to continue.
Therefore a long-running business process should persist the state at some appropriate
checkpoints within the process to enable recovery of the process.

1.1.9 Related patterns

The “Asynchronous Business Process pattern” (ABP) extends the “Business Process
(Composition) pattern” (BPC) with the two classes BusinessProcessManager and ProcessState,
though the state of the process might be maintained by the business process itself or some
business activity class instead of using a dedicated process state class. Another difference is that
the BusinessProcessImpl has a different role in ABP where it now starts a long running business
process in another thread, while the class was exposed as a web service in the BPC pattern.

The client that executes an asynchronous business process will want to know when the business
process has completed and that can be done by either a polling or a notifying mechanism and it
is described with the polling patterns “Event monitor” or “Pollable Thread Manager”, or the
notifying patterns “Observer” or “Notifying Thread Manager”. The “getStatus” method in the
sequence diagram above is part of a polling mechanism.

Even though the “Service Activator Pattern” (SAP) [CJP 03] is a java specific pattern
describing how to use JMS (Java Message Service) for invoking business services
asynchronously, it is still similar to this ABP pattern for Web Services. The “ServiceActivator”
in SAP is an object that is executing in a separate thread and invokes the business
services/activities, i.e. it is corresponding to the “BusinessProcessImpl” object in ABP. The SAP
also includes a notifying mechanism, which is not included in the ABP but instead separately
described by some of the notifying patterns mentioned in the previous paragraph.

