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Abstract 

 

In the last few decades, the process of deregulation has brought changes to European 

electricity industries. Wholesale markets for electricity have been introduced, and the 

need for modeling electricity prices has become an important aspect of risk 

management. Consequently, decision makers require an adequate representation of 

uncertainty to develop hedging strategies. The aim of this work is to model hourly 

spot electricity prices in Austria and Spain to obtain weekly forecasts to be used for 

subsequent risk management as part of a stochastic programming framework. A 

SARMA-GARCH model is obtained for each market and presents satisfactory results 

in terms of adjustment and forecast performance. We propose some alternative 

models for comparison purposes and find that a simple SARMA model presents 

better forecast performance on average for the analyzed periods. 
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1. Introduction 
 

In the last few decades, the process of deregulation has brought sweeping changes to 

European electricity markets. The electricity industry used to be state regulated until the early 

1990s due to its “natural monopoly” characteristics, which necessitated tight coordination 

between generation and transmission. However, when structural reforms started to take place 

worldwide motivated by the desire to improve economic efficiency, vertically integrated 

monopolies were partitioned into potentially competitive generation and retailing sectors with 

transmission and distribution functions remaining under the auspices of regulated entities. The 

resulting deregulated paradigm uses market prices to coordinate electricity generation and 

transmission in a decentralized manner and relies upon derivatives markets to facilitate risk 

management. Since wholesale prices are highly volatile, they require appropriate analysis along 

with sophisticated modeling of decisions for subsequent risk management, which was not 

necessary in the era of vertical integration. Wilson (2002) examines economic issues that have 

emerged in the context of electricity industry deregulation including the focus on the extent of 

reliance on markets, the detailed design of forward and spot markets, and the allocation of risks. 

Hyman (2010) expounds on the latter theme by positing that restructuring has effectively shifted 

risk onto consumers. Hence, combined with the recent impetus for transitioning to a more 

sustainable energy system, deregulation requires not only large power companies but also energy 

consumers at the building level to seek enhanced decision support in order improve energy 

efficiency without incurring exorbitant costs or risks. 

Modeling spot prices is a key element of decision making and strategic planning. 

Depending on the temporal horizon, the importance of the study of electricity pricing behavior 
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could be related to profitability and planning analysis, to derivatives contracts’ pricing, or to 

short-term forecasts (Serati et al., 2007). The need for electricity price modeling has, thus, 

become an important aspect of risk management in this industry for generators, retailers, and 

consumers as well as a source of information for government policymakers. 

Motivated by this background, our work presents time-series models to analyze hourly 

spot electricity prices in Austria and Spain, which could be used for subsequent scenario 

generation as part of a stochastic-programming-based approach to decision making under 

uncertainty (Conejo et al., 2010). Ultimately, a decision-support system (DSS) that enables 

building owners to make efficiency-improving retrofits to their structures and to install new 

energy equipment would require a means of assessing the performance of these investments. 

While owners of small-scale facilities are not likely to have the expertise to conduct such 

analyses, a developer of such a DSS would require them as inputs. Consequently, an 

engineering-economic analysis as in Kumbaroğlu and Madlener (2012) could be carried out 

using the price forecasts. Our objective here is to develop, fit, and test statistical models of 

electricity prices, obtain short-term forecasts for one week-ahead periods, and provide 

information to facilitate the development of such a DSS.  We propose a combination of seasonal 

autoregressive moving-average (SARMA) and generalized autoregressive conditional 

heteroskedasticity (GARCH) models based on an entire hourly time series, using a more 

parsimonious model for the autoregressive part and a longer sample period than the ones 

presented by Contreras et al. (2003) and Garcia et al. (2005). SARMA attempts to capture the 

linear relationship between actual and past values in the time series, besides the seasonal pattern. 

Additionally, GARCH models the volatility characteristics present in financial time series. This 

forecasting model could be used together with an optimization tool in order to form the basis of a 
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DSS that small-scale consumers could use to make robust strategic or operational decisions 

under uncertain prices. 

Unlike other commodities, electricity is distinctive because of its limited storability and 

transportability. These characteristics are reflected in electricity price time series, which present 

stylized facts that cannot be completely described by models developed for other storable 

commodities or financial securities. For example, Serati et al. (2007) and Härdle and Trück 

(2010) describe the observed characteristics:   

1. Seasonality on an annual, weekly, and hourly basis 

Different types of seasonality can be detected in electricity prices: annual, related to the 

seasons during the year and to the economic and social activities during different months; 

weekly, related to working days and weekends; and intraday cycles, related to variations 

among different hours of the day. 

2. Mean reversion 

Mean reversion is also observed, which may reflect long-run average costs of generation 

(Koopman et al., 2007). Many studies have analyzed this feature in financial and 

commodities markets, e.g., in electricity markets (Lucia and Schwartz, 2002; Huisman et 

al., 2007).  

3. Extreme volatility 

Electricity prices exhibit high volatility in both hourly and daily data. The non-storable 

nature of electricity means that its price volatility is much higher than that for any other 

traditional commodities and that for financial markets. According to Serati et al. (2007) 

and Härdle and Trück (2010), daily price volatility can be as high as 50% compared to 

3% for oil and 5% for gas (Serati et al., 2007). As is typical in financial markets, 
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volatility clusters can be observed when analyzing return time series, i.e., volatility may 

be high for certain periods and low for others (Tsay, 2010), thereby suggesting time-

varying conditional volatility. 

4. Price jumps and spikes 

In electricity prices, spikes can be caused both by supply- and demand-side shocks, e.g., 

generation outages and occurrence of extreme loads. Spikes can be attributed to the low 

level of flexibility in energy markets, determined by the non-storability of power and by 

the high dependence on local and temporal supply and demand conditions (Serati et al., 

2007). Network capacity constraints also exacerbate this effect (Cuaresma et al., 2004).  

 

There is another phenomenon specific to electricity markets: negative and zero prices. 

Generally, negative prices occur for only a short period and mainly at night. They can happen, 

for instance, because inflexible generators, e.g., nuclear power plants or district heating facilities, 

are too costly to shut down, thereby causing an imbalance during night hours (Sewalt and de 

Jong, 2003). This situation becomes a problem when modeling prices and should receive proper 

treatment, e.g., by either simply excluding these observations or shifting prices to zero level or 

working with a transformation that deals with negative prices (Schneider, 2011). The presence of 

renewable sources and cogeneration also reduces prices because of the effects of public support 

policies. This information would be important as explanatory variables to improve forecasting 

models (Gelabert et al., 2011).  

In this work, our first aim is to obtain parsimonious models for representative European 

electricity markets. We focus on Austria and Spain since they would allow us to examine prices 

in two different climate regions, i.e., Continental and Maritime, respectively. Furthermore, 

although the literature is more focused on multiple pools as in U.S. and Nordic Power 
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Exchanges, there are some papers analyzing Spanish market but not many focusing on the 

Austrian market. Second, the intraday seasonal pattern is modeled stochastically using SARMA 

for this periodicity. A SARMA model with terms of higher orders in the seasonal part is 

analyzed to take into account the weekly seasonality. Third, to capture the conditional volatility 

heteroskedasticity observed in the series, we specify a GARCH model to be combined with the 

SARMA. Therefore, a SARMA-GARCH methodology is used to model hourly electricity prices. 

The linear dependence is treated by a SARMA model using Box and Jenkins (1970), while the 

conditional volatility heteroskedasticity behavior is captured by a GARCH model proposed by 

Bollerslev (1986).  The adjusted models for both countries are very similar, even though the data 

for each country present different characteristics of volatility, i.e., the Austrian data are more 

volatile than the Spanish. Due to the volatility characteristics of the time series, the SARMA-

GARCH model fits the data better than the simple SARMA one. Finally, we compare SARMA 

and SARMA-GARCH models in terms of forecasting for both countries, but there is no gain 

from using the GARCH model , although the SARMA-GARCH is the best-fit model from the in-

sample data. On average for the analyzed forecasts, a simple SARMA model presents slightly 

better performance in terms of forecast errors than SARMA-GARCH for Spain. For Austria, the 

difference is greater, which can be related to higher volatility in this country’s electricity market 

compared to Spain. The rest of this paper is structured as follows. Section 2 presents a literature 

review of the extant time-series models used for electricity prices. Section 3 describes the 

methodology used in this paper. Section 4 summarizes the data, and Section 5 presents the 

results of the time-series analyses. Section 6 provides the conclusions, discusses the work’s 

limitations, and provides directions for future research in this area. 
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2. Literature Review 

 

The literature on electricity price modeling is very rich. Different models have been 

proposed based on the aforementioned observed stylized facts.  According to Serati et al. (2007), 

considering the methodologies used in this field of research, three main classes can be built: 

autoregressive models, jump-diffusion and regime-switching models, and volatility models. The 

authors mention that although many papers on this subject have been published, there is not one 

specific model supported by empirical evidence. In fact, the suitability of models depends on the 

nature of the markets as well as on the scope of the underlying decision-making problem. The 

models differ in the data frequency used (usually daily or hourly), time-series transformation 

(usually logarithms of prices or log-returns), the treatment of seasonality (deterministic or 

stochastic), and the techniques used including continuous stochastic processes, discrete time-

series models, or alternative models to handle with the aforementioned characteristics. Serati et 

al. (2007) and Higgs and Worthington (2008) present an extensive survey of the existent 

literature. The representative papers mentioned in this work can be summarized as follows in 

Table 1. 

Table 1 – Papers and main results 

Paper Market  Frequency Model Seasonality 

treatment 

Main results 

Lucia and 

Schwartz 

(2002) 

Nordic 

electricity 

market  

Daily One-factor mean-

reverting 

stochastic 

process or two-

factor stochastic 

process (mean-

reverting process 

and GBM) 

Deterministic 

function  

The modeling is done for the 

purposes of pricing 

derivatives. Seasonal patterns 

are crucial in explaining the 

term structure of futures 

prices at the Nord Pool. 

Accurate estimation of 

seasonal pattern as the annual 

frequency requires large time 

series. The volatility is 

consistently different between 

cold and warm seasons.  
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Contreras et 

al. (2003) 

Spanish and 

Californian 

electricity 

markets 

Hourly ARIMA models Seasonal 

patterns 

considered in 

high order 

ARMA terms 

The paper uses ARIMA 

models. Spanish market 

shows more volatility in 

general and needs data from 

the previous five hours. In 

California market, the model 

needs data from the previous 

two hours. 

Garcia et al. 

(2005) 

Spanish and 

Californian 

electricity 

markets 

Hourly AR models of 

high orders + 

GARCH  

Seasonal 

patterns 

considered in 

high-order AR 

terms 

The authors propose an AR-

GARCH model to forecast 

using AR terms of very high 

orders (more than lag 500) 

and GARCH (1,3). The 

results are better than using 

an ARIMA model. Adding 

demand as an explanatory 

variable improves the 

forecast. 

Higgs and 

Worthington 

(2005) 

Australian 

electricity 

market 

Half-hour 

data 

AR(1) + GARCH 

model and 

variations 

Seasonal 

treatment in the 

volatility 

process 

The paper investigates 

intraday price volatility 

process. The asymmetric 

skewed Student APARCH 

specification is the one that 

produces the best results in 

most cases analyzed. 

Significant asymmetric 

responses are also observed. 

Thomas and 

Mitchell 

(2005) 

Australian 

electricity 

market 

Half-hour 

data 

ARMA-GARCH 

model and 

variations 

(TARCH, 

EGARCH and 

PARCH) 

Deterministic 

function  

The authors compare the 

efficiency of four different 

GARCH model specifications 

to describe volatility 

processes by incorporating 

seasonal effects and spikes in 

the conditional mean. 

Significant ARCH effects are 

observed, and asymmetric 

volatility response is 

detected. The estimated GED 

parameter confirms fat-tailed 

properties.  

Weron and 

Misiorek 

(2005) 

Californian 

power 

market  

Hourly ARMA and 

ARMAX 

(including 

system loads and 

plant data as 

exogenous 

variable) 

Dummies to 

account for 

weekly 

seasonality. 

Seasonal 

patterns also 

considered in 

high order AR 

terms  

The authors aim to study 

simple time-series models 

and assess their forecast 

performance. The best results 

are obtained for pure ARX 

models, with lagged terms in 

24, 48, and 168. Dummies are 

used for Mondays, Saturdays, 

and Sundays 

Huisman et 

al. (2007) 

Dutch, 

German, and 

French 

wholesale 

power 

markets 

Hourly Stochastic 

component 

modeled as 

mean-reverting 

process 

Deterministic 

function  

The authors argue that 

dynamics of hourly prices do 

not behave as a time-series 

process and propose a panel 

model for hourly electricity 

prices. Each hourly series 
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exhibits hourly specific 

mean-reversion parameters. 

Prices in peak-hours are 

highly correlated among each 

other (the same is valid for 

off-peak hours) 

Karakatsani 

and Bunn 

(2008) 

 

British 

energy 

market 

Half-hour 

data 

Time-varying 

coefficients 

regression model 

Trigonometric 

function with 

time-varying 

coefficients 

The authors propose a 

regression model to allow for 

a continuously adaptive price 

structure. The drivers are 

demand level, slope, 

curvature and volatility, 

margin, scarcity, learning, 

spread, seasonality, and trend. 

Each half-hour price time 

series is modeled separately.  

They also propose a regime-

switching approach as an 

extension and compare some 

alternative models with a 

simple AR model. Price 

models representing market 

fundamentals and time-

varying effects exhibit better 

forecasting performance. 

Ming et al. 

(2008) 

American 

PJM market 

Hourly SARIMA model 

+GARCH 

Seasonal 

patterns 

considered in 

high-order AR 

terms 

The authors propose to divide 

the constant day series into 

working-day series and 

holiday series. 

SARIMA+GARCH models 

are established separately. 

This approach increases the 

forecasting precision in the 

presented example. 

Bisaglia et 

al. (2010) 

French, 

Austrian, 

and Spanish 

electricity 

markets 

Hourly Autoregressive-

GARCH and 

Markov-

switching models 

Deterministic 

function  

The authors extend a model 

under panel framework 

specifying a GARCH 

structure, introducing cross-

lagged correlation through 

VAR-type specification and 

spikes through Markov 

regime-switching models. 

They obtain improvements 

from GARCH in the day-

ahead forecast and from VAR 

and MS models in longer 

horizons. 

Heydari and 

Siddiqui 

(2010) 

British 

energy 

markets 

Daily Different linear 

stochastic 

processes 

(including mean-

reverting process, 

ABM and GBM) 

and non-linear 

stochastic models 

to account for the 

spikes 

Deterministic 

function  

The objective is valuation of 

a gas-fired power plant. 

Among linear stochastic 

models, the mean-reverting 

one is the best-fit and 

presents the best out-of-

sample forecasting 

performance. Taking into 

account the existence of 

spikes, the non-linear models 
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provide more accurate long-

term decision-making, even 

though leading to large 

RMSEs when compared to 

historical data. 

Montero et 

al. (2011) 

Spanish 

electricity 

market 

Daily T-ARSV  and 

GARCH 

variations 

Deterministic 

function  

The authors focus on 

modeling asymmetric 

patterns of the volatility of 

electricity spot prices. They 

compare a T-ARSV 

(threshold autoregressive 

stochastic volatility model) 

with four GARCH-type 

specifications. Asymmetric 

responses have been detected 

as a traditional leverage 

effect. 

Peña (2012) German, 

French, and 

Spanish 

markets 

Hourly Periodic 

autoregressive 

models  

Dummies for 

weekdays and 

stochastic 

seasonality 

treated in 

periodic 

autoregressive 

elements 

The author proposes an 

autoregressive periodic panel 

model, using an individual 

model for each hour of the 

day. For individual prices, the 

autoregressive periodic model 

present better results than 

standard auto-regressive 

mean-reverting processes. 

Moreover, modeling all 

hourly prices jointly as a 

panel, periodic components 

models fit data better than 

non-periodic models. 

 

Continuous stochastic processes have also been used to model the main characteristics of 

electricity prices such as mean reversion and spikes. Lucia and Schwartz (2002) express daily 

spot prices and logarithms of spot prices as a sum of two components: a deterministic part to 

model the seasonality and a stochastic part, for which they propose either a one-factor mean-

reverting stochastic process or a two-factor stochastic process combining a mean-reverting 

process and geometric Brownian motion (GBM) to model the correlation between spot and 

futures prices. Heydari and Siddiqui (2010) also propose the decomposition of logarithms of 

prices by modeling the stochastic part as different linear stochastic processes and using non-

linear stochastic models to account for the spikes. Huisman et al. (2007) work with separate 

hourly prices series, one for each hour of the day, and propose the same decomposition for all 
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hours (into a deterministic seasonal function and stochastic part, which is modeled as a mean-

reverting process). They identify mean-reversion parameters for each hour of the day.    

Traditional time-series models are also frequent in the literature, based on autoregressive 

moving-average (ARMA) Box-Jenkins models. Moreover, since time-varying conditional 

volatility is shown to be a stylized fact in electricity price time-series, many authors propose the 

application of GARCH models as shown in Table 1. Bisaglia et al. (2010) also decompose 

hourly prices into a deterministic part, to model the seasonality, and a stochastic part, described 

by autoregressive-GARCH and Markov-switching models. Weron and Misiorek (2005) study 

simple ARMA and ARMAX (including system loads as exogenous variables) models using 

logarithmic transformation for hourly prices. The dependence in the AR part is related to 

observations in lags 24, 48, and 168. They also use weekly seasonal dummies to account for 

seasonality as a deterministic function. Contreras et al. (2003) use ARIMA models, and Garcia et 

al. (2005) find that an AR-GARCH model forecasts hourly electricity prices better than an 

ARMA one. In both cases, the AR part is modeled with very high orders, i.e., considering lags 

greater than 500, in order to capture seasonal patterns. On the other hand, Ming et al. (2008) 

propose a SARIMA-GARCH for logarithms of prices with lower orders, i.e., the autoregressive 

part includes lags until 27. Peña (2012) alternatively proposes a periodic autoregressive model 

for each hourly series, i.e., one for each hour of the day, as well as modeling hourly prices jointly 

as a panel. His results suggest that autoregressive models with periodic components better 

describe hourly series than standard autoregressive models. Moreover, he recommends using the 

panel with all twenty-four hourly prices as the underlying process instead of the prices at a 

specific hour. Thomas and Mitchell (2005) analyze the five regions of Australia’s National 

Electricity Market using a six-year sample of high-frequency half-hourly time series, which is 

broader than previous work for Australia. They argue that a larger database is necessary to 
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understand better the volatility process. They use dummy variables to treat seasonality, spikes, and 

negative prices. Afterwards, basic GARCH-type models are tested (GARCH, exponential GARCH, 

threshold GARCH, and power ARCH) to consider the evidence of asymmetric effects in the 

volatility process as also observed by Higgs and Worthington (2005) and Montero et al. (2011). 

Thomas and Mitchell (2005) mention the difficulty of attaining the wide-sense stationarity condition 

of the GARCH model given by a constraint in the coefficients’ values of the model. Another feature 

is that a non-Gaussian distribution for conditional error terms is used. Other alternative models to 

explain and forecast electricity prices are also present in the literature, such as the time-varying 

coefficients regression model presented by Karakatsani and Bunn (2008), where the price 

depends on fundamental factors or drivers. 

Our interest is in handling high-frequency data, i.e., hourly electricity prices. In the 

European Energy Exchange (EEX), for example, the spot price is an hourly contract with 

physical delivery, and each day is divided into twenty-four hourly contracts (Härdle and Trück, 

2010). In the day-ahead markets, prices for all hours of the next day are determined at the same 

time. Some authors model each hour time-series separately, while others treat as an entire time 

series in sequence. There are some arguments that hourly prices cannot be treated as a pure time-

series process because of the specific structure of day-ahead markets (Härdle and Trück, 2004; 

Huisman et al., 2007). Huisman et al. (2007) and Peña (2012) propose a panel model, thereby 

resulting in one model for each hour of the day and a cross-sectional correlation matrix. 

Karakatsani and Bunn (2008) also propose modeling each intraday trading period separately due 

to distinct price profiles. On the other hand, many authors present models using an entire twenty-

four-hour series, where observations are taken in sequence (Contreras et al., 2003; Weron and 

Misiorek, 2005; Thomas and Mitchell, 2005). An advantage in this case is that it is possible to 

work with only one model for every hour in a day, and the correlation between the hours can be 
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treated within the same model. Cuaresma et al. (2004) present models based on both approaches. 

Using data from the Leipzig Power Exchange, they obtain better forecasting properties when 

modeling each hour separately. Sewalt and de Jong (2003) mention that when modeling hourly 

prices, it is important to capture the interdependencies in different hours during the same day and 

between equivalent hours on different days. 

Summarizing the applications presented in several papers, which analyze markets in the 

US and Europe, it can be said that the time span used for both in-sample (to estimate unknown 

parameters) and out-of-sample (to assess forecasting performance) periods varies a lot. As for the 

forecast period, up to one week forecasts are normally chosen. Given this background, the 

contribution of this paper is twofold. First, we propose a parsimonious model, which is easy to 

implement, in order to obtain hourly prices forecasts for a week, using high-frequency data of 

five years in Spanish and Austrian markets, based on hourly time series. Second, we compare 

some models to analyze the benefits in terms of adjustment and forecasting of combining a 

GARCH model with a simple SARMA one and of using high-order terms in the seasonal part to 

account for intraday and weekly seasonality. The resulting forecasting model would be 

appropriate to use as an input to an operational or strategic DSS. 

 

3. Methodology: SARMA-GARCH Model Approach 
 

As is customary in electricity price modeling, in order to obtain a more stable variance, 

we propose working with the logarithmic transformation, i.e.: 

 �� = ��� �� 

 
(1)  
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where �� is the spot electricity price for hour t. A traditional time-series analysis begins by fitting 

an ARMA(p,q) model and examining the behavior of the error term. A general model is given 

by: 

 Φ	
��� = Θ�
���� (2)  

where L is the lag operator, Φ	
�� and Θ�
�� are polynomials of degrees p and q, respectively, 

ϵ� is a N (0,��) disturbance term, and y�	is a stationary time series. More specifically, we have 

the following polynomials: 

 Φ	
�� = 1 − ��� − ���� − ⋯ − �	�	 (3)  

and 

 Θ�
�� = 1 + ��� + ���� + ⋯ + ���� (4)  

 

Since it is desirable for � to be a stationary series, we normally work with log-return 

series, which is equivalent to obtaining the first difference of the logarithmic series. It is common 

to assume that returns are weakly stationary, and this characteristic can be checked through 

statistical tests, e.g., unit root tests (Tsay, 2010). When working with electricity prices, it may be 

necessary to consider seasonal stationarity. In this case, we need to take differences in seasonal 

periods as well. 

A linear time-series model can be characterized by its autocorrelation function (ACF), 

i.e., the cross-correlation of a series. Modeling it makes use of the sample ACF to capture the 

linear dynamics of the data. The sample ACF calculates the autocorrelation for different lags 

providing information about linear dependence and for model identification. For financial time 

series, in general, an AR(p) term is enough to capture the linear dependence. The order (p,q) of 
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an ARMA model in financial applications depends on the frequency of the series and is defined 

from ACF and partial ACF (PACF) analyses. For electricity prices, it is necessary to use a 

seasonal ARMA model to capture the seasonality.  

Also, it is well known that although volatility is not directly observable, there are some 

specific characteristics observed in financial returns time series, such as the volatility-clustering 

effect (Tsay, 2010). After fitting an ARMA model, the presence of volatility clusters suggests 

that, besides modeling the linear dependence, it is necessary to study the volatility, for which a 

GARCH model is proposed in conjunction with a SARMA one. The conditional variance is 

given by: 

 E����|!�"�# = ��� (5)  

where I�"� is the information available until time t-1. The residuals for Eq. (2) and the variance 

equation can be written as: 

 ϵ� = σ�η� (6)  

 ��� = '( + ) '*��"*�+
*,�

+ ) -.��".�/
.,�

 

 

(7)  

where η�	 ∼ N
0,1�	4. 4. 6. and  ∑ α9 +:9,� ∑ β<=<,� < 1 to guarantee that unconditional variance is 

finite. 

In order to obtain the parameters of the models and to analyze the forecast performance, 

the dataset is split into two periods. Using an in-sample period, the unknown parameters for the 

models are estimated. The forecast is obtained and analyzed for the out-of-sample period. Under 

this framework, SARMA and SARMA-GARCH models are proposed based on the data series’ 
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characteristics. The best model is chosen considering the AIC (Akaike information criterion) and 

BIC (Bayesian information criterion, also known as the Schwarz criterion), which are measures 

of the relative goodness-of-fit of statistical models and residual diagnostics. 

From the fitted models, we forecast prices in the out-of-sample period. To verify forecast 

performance, aggregate error measures such as the mean absolute error (MAE) and the root 

mean squared error (RMSE) are used for 168 steps-ahead, i.e., one week ahead. The MAE and 

RMSE are defined by: 

 ?@A = ∑ 	|B�|CD�EF�,CD�168  
(8)  

 

 I?JA = K∑ 		B��CD�EF�,CD�168  

(9)  

 

where  B� = �� − �L�	is the forecast error, i.e., the difference between the actual price �� and the 

forecasted price �L� at time t. The measures can be calculated for different origins of time, where 

N is the length of the observed data period and N+1 is the first observation in the chosen week to 

be forecasted. We use the two aforementioned methodologies to analyze the forecast 

performance.  

Two types of prediction methods may be used: dynamic and static using the Eviews 

software (Brooks, 2008). The dynamic method calculates multi-step forecasts starting from the 

first period in the forecast sample. Therefore, the dynamic prediction uses forecasted prices for 

each hour given the last observation at time t before the 168-hour period to be analyzed. This 
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measure is used to analyze the forecast performance for a week-ahead period. The forecasted 

price at time t+s  is given by: 

 

 �L�D/ = E���D/	|�� 	#							M = 1	N�	168 (10) 

By contrast, the static method calculates a sequence of one-step-ahead forecasts, rolling the 

sample forecast one after each forecast (Brooks, 2008). In this case, static prediction calculates 

the forecasted price given the last most updated observation, i.e., each forecast within the period 

of 168 hours is given one step-ahead.  Since the actual values are used in each forecast, this 

measure can be used to verify the model adjustment. The forecasted price at time t+s is given by: 

 

 �L�D/ = E���D/	|��D/"�	#							M = 1	N�	168 

 

(11) 

The present model can be applied to complete hourly time series, thereby providing one 

model to all hours of the day, or to twenty-four separate time series, one for each hour of the day, 

which will result in twenty-four different models. In this paper, we propose modeling one entire 

time series. Using this approach, it is possible to work with only one model for every hour in a 

day.  

 

4. Electricity Hourly Prices Data 

4.1.  Spanish Market Data 
 

For the Spanish market, a total of 42,720 hourly observations over five years of 

electricity spot prices in €/MWh are available from www.omel.es. The sample period begins on 

January 1, 2007 and ends on November 15, 2011. There are five missing values and 379 zeros. 

Besides the 384 missing/zero values, there are also very low prices in the sample. For example, 
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84 values that are equal or less than €1/MWh are detected. The dataset is split into two periods: 

in-sample (January 1, 2007 to December 31, 2010), which has 35,064 hourly observations, and 

out-of-sample (January 1, 2011 to November 15, 2011), which has 7,656 hourly observations. 

Thus, there is: (i) one entire series with 42,720 hourly observations and descriptive statistics 

presented in Table 2, and (ii) twenty-four separate series for each hour of the day with 1,780 

daily observations.  Descriptive statistics by hour are presented in Table 3. 

 
Table 2 – Summary of descriptive statistics for Spanish electricity prices (entire series) 

Statistic Value 

Mean (€/MWh) 45.38 

Standard Deviation (€/MWh) 16.37 

Variance 268.1 

Skewness 0.24 

Kurtosis 3.55 

Number of observations 42720 

 

 

Table 3 – Summary of descriptive statistics for Spanish electricity prices (twenty-four hours) 

Statistic Value 

 hr 1 hr 2 hr 3 hr 4 hr 5 hr 6 hr 7 hr 8 hr 9 hr 10 hr 11 hr 12 

Mean 

(€/MWh) 

44.79 40.25 35.88 34.03 32.59 33.69 37.80 42.70 44.76 47.22 49.98 50.18 

Std. Dev. 

(€/MWh) 

13.51 13.63 14.05 14.18 14.08 13.81 13.98 14.69 15.91 15.80 15.78 15.59 

Variance 182.4 185.8 197.3 201.0 198.2 190.6 195.5 215.8 253.1 249.7 249.1 243.2 

Skewness 0.14 -0.04 -0.19 -0.20 -0.18 -0.23 -0.25 0.01 0.04 0.19 0.31 0.33 

Kurtosis 3.43 3.54 3.26 3.03 2.89 3.00 3.31 3.40 3.39 3.38 3.42 3.41 

# of obs. 1780 1780 1780 1780 1780 1780 1780 1780 1780 1780 1780 1780 
 

Statistic Value 

 hr 13 hr 14 hr 15 hr 16 hr 17 hr 18 hr 19 hr 20 hr 21 hr 22 hr 23 hr 24 

Mean 

(€/MWh) 

50.90 49.76 46.74 45.61 45.37 46.85 49.66 52.75 54.16 55.70 51.11 46.71 

Std. Dev. 

(€/MWh) 

15.38 15.37 14.49 14.58 15.00 15.27 16.50 17.53 16.77 15.65 14.34 14.42 

Variance 236.5 236.2 209.9 212.7 225.1 233.3 272.3 307.1 281.2 244.8 205.7 208.0 

Skewness 0.33 0.29 0.24 0.10 0.10 0.20 0.56 0.57 0.58 0.68 0.52 0.27 

Kurtosis 3.45 3.43 3.45 3.45 3.42 3.31 3.41 3.01 2.78 3.32 3.03 3.27 

# of obs. 1780 1780 1780 1780 1780 1780 1780 1780 1780 1780 1780 1780 
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4.2.  Austrian Market Data 
 

For Austria, a total of 43,080 hourly observations over five years of electricity spot prices 

in €/MWh are available from www.exaa.at. The sample period begins on January 1, 2007 and 

ends on November 30, 2011. There are five missing values in addition to very low prices in the 

sample. For example, 184 values that are equal or less than €1/MWh were detected. The dataset 

is again split into two periods: in-sample (January 1, 2007 to December 31, 2010), which has 

35,064 hourly observations, and out-of-sample (January 1, 2011 to November 30, 2011), which 

has 8,016 hourly observations. Considering the dataset provided by EXAA, there is again: (i) one 

entire series with 43,080 hourly observations, for which the descriptive statistics are presented in 

Table 4, and (ii) twenty-four separate series for each hour of the day with 1,795 daily 

observations, for which the descriptive statistics are presented in Table 5. 

 
Table 4 – Summary of descriptive statistics for Austrian electricity prices (entire series) 

Statistic Value 

Mean (€/MWh) 48.20 

Standard Deviation (€/MWh) 23.92 

Variance 572.32 

Skewness 2.40 

Kurtosis 25.67 

Number of observations 43080 

 

Table 5 – Summary of descriptive statistics for Austrian electricity prices (twenty-four series) 

Statistic Electricity price 

 hr 1 hr 2 hr 3 hr 4 hr 5 hr 6 hr 7 hr 8 hr 9 hr 10 hr 11 hr 12 

Mean (€/MWh) 37.23 32.72 29.32 26.90 27.24 31.68 38.51 50.55 55.44 58.81 61.17 64.79 

Std. Dev. (€/MWh) 12.37 12.34 12.41 12.31 12.47 13.40 17.50 24.16 23.75 23.74 24.29 27.30 

Variance 153.0 152.3 154.1 151.6 155.6 179.6 306.4 583.8 564.2 563.5 590.2 745.1 

Skewness 0.17 0.02 -0.03 0.08 0.07 -0.08 -0.01 0.57 0.88 1.31 1.60 1.97 

Kurtosis 2.86 2.67 2.56 2.43 2.48 2.72 2.78 3.71 4.74 5.95 6.80 8.76 

# of obs. 1795 1795 1795 1795 1795 1795 1795 1795 1795 1795 1795 1795 
 

Statistic Electricity price 
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 hr 13 hr 14 hr 15 hr 16 hr 17 hr 18 hr 19 hr 20 hr 21 hr 22 hr 23 hr 24 

Mean (€/MWh) 60.41 56.93 53.72 51.17 51.39 57.86 61.72 59.02 54.09 48.56 47.18 40.43 

Std. Dev. (€/MWh) 22.45 21.86 21.38 20.47 21.63 34.35 33.82 23.64 18.25 14.72 13.52 12.10 

Variance 503.9 478.0 456.9 418.9 468.0 1179.7 1143.7 558.9 333.1 216.5 182.9 146.4 

Skewness 1.55 1.39 1.32 1.24 1.54 5.51 5.03 2.05 1.02 0.75 0.45 0.29 

Kurtosis 6.60 5.92 5.66 5.32 7.18 55.83 49.25 13.57 4.75 3.87 3.20 2.99 

# of obs. 1795 1795 1795 1795 1795 1795 1795 1795 1795 1795 1795 1795 

 

Even though the Austrian data include fewer zeros and fewer very low values than the 

Spanish ones, the Austrian market is more volatile. In particular, its standard deviation is higher: 

23.92 as opposed to 16.37 for Spanish data. When comparing the twenty-four separate hourly 

series in terms of volatility, the behavior of these hourly series for the Spanish market is very 

similar. Volatility varies from 13.51 (hour 1) to 17.53 (hour 20). On the other hand, there is 

considerable difference among the volatilities of the twenty-four series in Austria market, 

varying between 12.31 (hour 4) to 34.35 (hour 18). This information could be taken into account 

when modeling twenty-four hours separately. 

 

5. SARMA-GARCH Model Results 

 

5.1.  Spain 

 

Because of the outliers, a database treatment is performed by detecting data with extreme 

low outliers, e.g., points where price equals to 0, in order to obtain reliable forecasts. 

Considering the log-return series for each hour of the day, points more than five standard 

deviations away from the mean are filtered. The data related to the day of this observation are 

then replaced by the corresponding data of the day before. This replacement involves less than 

5% of the data. Figures 1(a) and 1(b) present the original price and log return time series, 
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respectively. Figures 2(a) and 2(b) present the treated price and log return time series for the 

treated data, respectively. 

 

 
(a) Electricity price (€/MWh) (b) Electricity log-return (%/hour) 

  

Observations (hours) Observations (hours) 

Fig. 1 - Spanish prices and log-return series 

(a) Treated electricity price (€/MWh) (b) Treated electricity log-return (%/hour) 

  

Observations (hours) Observations (hours) 

 

Fig. 2 - Spanish treated prices and log return series 

 

 

The sample ACF for the electricity prices in Figure 3(a) illustrates the existence of spikes 

at lags equal to 24 and multiples, thereby revealing intraday seasonality. In order to obtain both 
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stationarity and seasonal stationarity, a first differentiation and a periodic differentiation of order 

24 for log prices are taken. Figure 3(b) presents the corresponding autocorrelation function after 

differentiations. Thus, the series to be modeled is given by: 

 � = 
1 � ��
1 � ��O������ 
 

 

(12) 

(a) ACF for prices (b) ACF for log prices after differentiations 

  

Fig. 3 – ACF for Spanish treated prices and differentiated prices 

 

Following the methodology of modeling the linear dependence by a seasonal ARMA and 

the conditional variance by a GARCH model, the parameters of the models are estimated using 

in-sample period data, from January 1, 2007, hour 1, to December 31, 2010, hour 24. It is worth 

mentioning that GARCH coefficients are estimated subject to coefficient constraints in order to 

guarantee stationarity, as given by Equation (7). 

 We first analyze simple SARMA models with no conditional volatility treatment. The 

results are presented in Table 10 in the Appendix. Among the first models tested, the 

SARMA(2,2)x(1,1)24 one is a good choice according to AIC and BIC criteria besides the log-

likelihood function value. However, to treat the autocorrelation in lag 168, which is related to 

weekly seasonality, we test some models adding higher-order terms for the seasonal part. The 
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best-fit model is a SARMA(2,2)x(7,7)24. We decide to keep it parsimonious and use just the 

terms related to first and seventh orders for autoregressive and moving average components in 

the seasonal part. 

When adding a GARCH model to treat the conditional volatility, the best-fit model for 

the series is a SARMA(2,2)x(7,7)24+GARCH(2,2) according to AIC and BIC criteria. The 

estimation results are presented in Table 6 including the coefficients’ values and statistical 

significance information. Additional information for other models tested is presented in Tables 

11 and 12 in the Appendix. 

 
Table 6 – Estimated parameters for SARMA(2,2)x(7,7)24-GARCH(2,2) in entire hourly series 

Variable Coefficient Std. Error z-Statistic Prob.   

AR(1) 1.189895 0.004756 250.1797 0.0000 

AR(2) -0.330872 0.004793 -69.02608 0.0000 

SAR(24) 0.183809 0.003622 50.74288 0.0000 

SAR(168) 0.257128 0.003210 80.11340 0.0000 

MA(1) -1.223857 0.000218 -5607.858 0.0000 

MA(2) 0.225591 0.000240 938.1322 0.0000 

SMA(24) -0.863156 0.002085 -414.0352 0.0000 

SMA(168) -0.039954 0.001910 -20.91510 0.0000 

C 8.78E-06     --     --     -- 

ARCH(1) 0.305713 0.002182 140.0918 0.0000 

ARCH(2) -0.293537 0.002265 -129.6199 0.0000 

GARCH(1) 1.426945 0.000640 2230.291 0.0000 

GARCH(2) -0.440086 0.000825 -533.1623 0.0000 

 

The equations for the SARMA-GARCH model are: 

 
1 − P�� − P����
1 − Φ�O��O − Φ�EF��EF��= 
1 + ��� + �����
1 + Θ�O��O + Θ�EF��EF��� 
(13) 

 

 ��� = 'Q + '���"�� + '���"�� + -���"�� + -���"��  

 

(14) 

 

where  
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P� 		= 1.189895  �� 		= −1.223857  

P� 	= −0.330872  �� 		= 0.225591  

Φ�O = 0.183809  Θ�O = −0.863156  

Φ�EF = 0.257128  Θ�EF = −0.039954  

  

'Q = 8.78E − 06   

'� = 0.305713  -� = 1.426945  

'� = −0.293537  -� = −0.440086  

 

Analyzing the residuals, they are not normal due to high kurtosis. The histogram for the 

residuals is presented in Figure 13 in the Appendix. The presence of outliers is the most 

important cause of this effect. Even modeling the errors as fat-tailed distributions in the GARCH 

model, such as Student’s t-distribution and Generalized Error Distribution (GED), is not enough 

to obtain normally distributed errors. The residuals show that the seasonality is well captured by 

the SARMA model.  As mentioned, we use seasonal AR and MA terms of order 7 in the seasonal 

part to take into account the weekly seasonality. We decide to keep a parsimonious model by 

using seasonal terms AR and MA for periods 24 and 168. As analyzed before, the corresponding 

SARMA (2,2)x(7,7)24 model turns to be a better choice, according to AIC and BIC, compared to 

the SARMA(2,2)x(1,1)24 one, and the same is observed when including the GARCH(2,2) model. 

An alternative to treating different cycles would be to include dummies to capture seasonality 

other than the one modeled by SARMA or to work with a double SARMA model (Mohamed et 

al.,,2011)., which extends the polynomial functions of the ARMA models to include multiple 

seasonal periods. Contreras et al. (2003) also present this possibility in a general formulation. 
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After having obtained the fitted model, we analyze the model adjustment and the forecast 

performance for the twenty-four hours of each day in the next week. Table 7 presents the MAE 

and RMSE measures for one week in each month of the out-of-sample year of 2011, 168 steps-

ahead. The weeks for forecasting results are chosen considering periods in which there are not 

treated data during the week for prediction.
1
 Table 6 also presents the standard deviation for each 

week varying from 3.95 to 11.94. 

 
Table 7 – Forecast performance for dynamic and static forecast  

Month Week Std. 

deviation 

(€/MWh) 

Static 168 steps-

ahead forecast 

(€/MWh) 

Dynamic 168 steps-

ahead forecast 

(€/MWh) 

   RMSE MAE RMSE MAE 

January 17/01/2011 - 23/01/2011 11.94 5.46 3.80 9.39 7.60 

February 01/02/2011 - 07/02/2011 5.76 1.93 1.45 3.68 2.72 

March 20/03/2011 - 26/03/2011 7.06 2.20 1.63 3.82 3.14 

April 24/04/2011 - 30/04/2011 7.04 2.71 1.87 6.21 4.57 

May 25/05/2011 - 31/05/2011 4.32 1.32 0.97 3.39 2.37 

June 24/06/2011 - 30/06/2011 7.69 2.74 1.60 6.23 3.45 

July 25/07/2011 - 31/07/2011 5.50 1.94 1.33 3.78 3.07 

August 25/08/2011 - 31/08/2011 3.95 1.48 1.14 2.55 2.16 

September 24/09/2011 - 30/09/2011 7.64 2.09 1.53 4.74 3.92 

October 17/10/2011 - 23/10/2011 11.06 2.63 2.04 8.46 6.10 

 

The static forecast is more related to the model adjustment, while the dynamic forecast is 

more related to the performance of the model prediction for a one-week period. Both adjustment 

and forecast performances are affected by the volatility in the chosen week. The results are better 

for the weeks with lower standard deviation, such as the ones analyzed in February, May, July, 

and August. For the weeks with higher volatility, such as the ones analyzed in January and 

October, the errors from dynamic forecasting are higher. The model is stable when providing 

forecasts even if we begin from different observations. For example, Figures 4 and 5 show the 

                                                 
1
 There is not an example for November because it was not possible to choose a week according to the criteria of 

treated data. 
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results for the chosen weeks in January and June, respectively. Results for both prediction 

methods are shown. 

Since the dynamic method calculates multi-step forecasts starting from the first period in 

the forecast sample, compared to the static method, which calculates one-step-ahead forecasts, 

the uncertainty is higher in the first case, thereby leading to higher standard deviations for each 

period. By contrast, since static forecasts are calculated based on updated observations for each 

period, they represent better the data’s behavior during the chosen week. The dynamic forecast is 

the one that produces the information about prediction during one week based on the last 

observation of the previous week. This forecast is better behaved because it does not consider the 

updated data. 

 

Dynamic forecast (€/MWh) Static forecast (€/MWh) 

  

Fig. 4 – Forecasted prices for January week 
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Fig. 5 – Forecasted prices for June week 

 

We also compare some models in terms of forecast performance using simple SARMA or 

jointly estimating SARMA-GARCH models. We can also compare with the case in which 

SARMA with lower order is used. Taking the same weeks we analyzed previously, the results 

are shown in Table 13 in the Appendix. Average results are compared in the graph presented in 

Figure 6. 
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Fig. 6 – Average RMSE and MAE for Spain 

 

Comparing the results above, when we add an additional term of order 168 to capture the 

weekly seasonality through the SARMA model in hourly data, the forecast results from 

SARMA(2,2)x(7,7) are improved for all weeks compared to SARMA(2,2)x(1,1). On the other 

hand, we do not obtain gain of using a combined a SARMA-GARCH when compared to a 

simple SARMA(2,2)x(7,7) in terms of forecast performance measured through RMSE and MAE. 

In some cases (and on average for the chosen weeks given the dynamic approach) the simple 

SARMA model forecast is better than the one using a jointly estimated GARCH model. Even 

though the SARMA-GARCH better fits to the in-sample data, this is not reflected in the forecast 

performance to the database with which we are working. This could be related to different 

causes, such as the in-sample and out-of-sample periods used, or to differences in estimated 

coefficients for the SARMA parts, which are very similar except for the seasonal moving 
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average term in 168. Nevertheless, the use of the GARCH model is important for understanding 

the behavior of the volatility. 

Instead of working with only one model for the entire hourly series, one alternative is to 

propose twenty-four different models, one for each hour of the day. In this case, we would work 

with twenty-four separate time series, and the dynamic forecast methodology for a week would 

result in seven-steps-ahead forecasts against the 168-steps-ahead we obtained.  

 

5.2.  Austria 

 

The same treatment used for outliers in the Spanish data is applied to those in Austrian 

data. Figures 7(a) and 7(b) present the original price and log-return time series, respectively. 

Figures 8(a) and 8(b) present the treated price and log return time series, respectively. 

 

(a) Electricity price (€/MWh) (b) Electricity log-return (%/hour) 

  

Fig. 7 - Austrian prices and log-return series 

(a) Treated electricity price (€/MWh) (b) Treated electricity log-return (%/hour) 
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Fig. 8 - Austrian treated prices and log return series 

 

Figure 9(a) presents the sample ACF for the electricity prices and the existence of spikes 

at lags equal to 24 and multiples revealing an intraday seasonality. A first differentiation and a 

periodic differentiation of order 24 for log prices are taken again, and Figure 9(b) presents the 

corresponding autocorrelation function after differentiations. Thus, the series to be modeled is 

given by: 

 � � 
1 � ��
1 � ��O������ (1)  

 

(a) ACF for prices (b) ACF for log prices after differentiations 

  

Fig. 9 – ACF for Spanish treated prices and differentiated prices 

The parameters of the models are also estimated using an in-sample period data, from 
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We analyze again simple SARMA models with no conditional volatility treatment. The 

results are presented in Table 14 in the Appendix. Among the first models tested for both simple 

and seasonal ARIMA, the SARMA(2,2)x(1,1)24 one is a good choice for Austria data as it was 

for Spanish data. As before, to treat the autocorrelation in lag 168, we test some models adding 

higher-order terms for the seasonal part. The best-fit model is the SARMA(2,2)x(7,7)24 using 

again terms related only to first and seventh orders for autoregressive and moving average 

components. 

When adding a GARCH model to treat the conditional volatility, the best-fit model for 

the series is a SARMA(2,2)x(7,7)24+GARCH(2,1) using AIC and BIC criteria. The estimation 

results are presented in Table 8 including the coefficients’ values and statistical significance 

information. Additional information on other models tested is given in Tables 15 and 16 in the 

Appendix. 

Table 8 – Estimated parameters for SARMA-GARCH in entire hourly series 

 

Variable Coefficient Std. Error z-Statistic Prob.   

AR(1) 0.810440 0.034670 23.37566 0.0000 

AR(2)
2
 -0.001654 0.029230 -0.056590 0.9549 

SAR(24) 0.267774 0.001733 154.4779 0.0000 

SAR(168) 0.339055 0.000993 341.3417 0.0000 

MA(1) -0.840037 0.034450 -24.38439 0.0000 

MA(2) -0.124447 0.033301 -3.737093 0.0002 

SMA(24) -0.934969 0.000644 -1451.261 0.0000 

SMA(168) -0.061386 0.000655 -93.73916 0.0000 

C 0.002155     --     --     -- 

ARCH(1) 0.394946 0.002542 155.3507 0.0000 

ARCH(2) 0.102260 0.004840 21.12821 0.0000 

GARCH(1) 0.359625 0.005362 67.06480 0.0000 

 

 

                                                 
2
 Even though the AR(2) coefficient is not significant, when we remove it from the model, the results for AIC, BIC, 

and likelihood function are worse. 
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For both Spanish and Austrian data, the orders of the best-fit models are very similar, 

except for an additional term in the GARCH specification. The equations for the model, 

including SARMA-GARCH terms, are: 

 
1 − P�� − P����
1 − Φ�O��O − Φ�EF��EF��= 
1 + ��� + �����
1 + Θ�O��O + Θ�EF��EF��� 
 

(2)  

 ��� = 'Q + '���"�� + '���"�� + -���"��  

 

(3)  

   where  

 

P� 		=	0.810440	 �� 		=	-0.840037	
P� 	 =	-0.001654	 �� 		 =-0.124447	
Φ�O =	0.267774	 Θ�O =-0.934969	
Φ�EF =0.339055	 Θ�EF =-0.061386	
  

'Q = 0.002155			  

'� = 0.394946		  

'� =0.102260	  

-� = 0.359625		  

 

Analyzing the residuals, they are not normal due to high kurtosis, which is higher than 

that observed for Spanish data. The histogram for the residuals is presented in Figure 14 in the 

Appendix. As done with Spanish data, we attempt to model the errors as fat-tailed distributions 

in the GARCH model, but it is not enough to obtain normally distributed errors. The situation 

can be attributed to the presence of outliers. Analyzing the ACF for standardized residuals, the 
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same behavior observed for Spanish data is present here for Austrian data, i.e., the seasonality is 

well captured by the SARMA model. 

 

The forecast performance methodology is the same used before. Table 10 presents the 

MAE and RMSE measures for one week in each month of the out-of-sample year of 2011, 168 

steps-ahead. The weeks are chosen for periods in which there are no treated data. Table 9 also 

presents the standard deviation for each week, varying from 9.11 to 15.67. 

 

Table 9 – Forecast performance for dynamic and static forecast 

Month Week Std. 

deviation 

(€/MWh) 

Static 168 steps-

ahead forecast 

(€/MWh) 

Dynamic 168 steps-

ahead forecast 

(€/MWh) 

   RMSE MAE RMSE MAE 

January 25/01/2011-31/01/2011 9.11 2.11 1.50 7.74 6.40 

February 22/02/2011-28/02/2011 9.93 2.09 1.63 5.30 4.06 

March 20/03/2011-26/03/2011 9.30 2.45 1.81 8.06 6.64 

April 24/04/2011-30/04/2011 11.52 2.30 1.72 8.17 7.30 

May 25/05/2011-31/05/2011 10.05 2.01 1.54 7.61 5.86 

June 24/06/2011-30/06/2011 10.05 2.16 1.59 6.38 5.24 

July 17/07/2011-23/07/2011 10.56 2.25 1.60 6.18 4.64 

August 25/08/2011-31/08/2011 12.42 2.34 1.69 9.40 7.54 

September 24/09/2011-30/09/2011 11.61 2.02 1.51 5.40 3.94 

October 25/10/2011-31/10/2011 12.13 2.41 1.76 5.13 4.15 

November 24/11/2011-30/11/2011 15.67 2.54 1.85 10.76 8.22 

 

 

Weeks with high standard deviations, such as the one chosen in November, tend to 

present worse forecast results, but this is not as apparent for Austrian data as it is for Spanish 

data. Except for this week in November, the analysis in Austria involves weeks that present 

similar standard deviations, from 9.11 to 12.42, and there is not a direct relation between the 

standard deviation and the forecast errors.  
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The volatility is higher for Austrian data than for Spanish data, as observed in the 

previous analysis. Comparing the results for both countries, the RMSE and MAE measures based 

on static forecasts are similar on average, representing the adjustment of the models. However, 

the RMSE and MAE measures for dynamic forecasts are higher on average for Austrian data 

because of the higher volatility level. 

The model is stable when providing forecasts beginning with different observations. 

Figures 10 and 11 show the results for the chosen weeks in January and June, respectively. 

Again, both prediction methods are considered. The same observations for Spanish forecast 

graphs related to dynamic and static forecast can be applied to Austrian data. 

 

Dynamic forecast (€/MWh) Static forecast (€/MWh) 

  

Fig. 10 – Forecasted prices for January week 
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Fig. 11 – Forecasted prices for June week 

 

 Taking the best-fit SARMA and SARMA-GARCH models, we can compare them in 

terms of forecasts for Austrian data as we did for Spanish data. The results are shown in Table 17 

in the Appendix. Average results are compared in the graph presented in Figure 12. Again, when 

we add an additional term of order 168 to capture the weekly seasonality through the SARMA 

model in hourly data, the forecasted results from SARMA(2,2)x(7,7) present great improvement 

for almost all the weeks we analyze in comparison to SARMA(2,2)x(1,1). On the other hand, 

comparing SARMA(2,2)x(7,7) and the corresponding SARMA-GARCH, the simple SARMA 

model forecast is better than the one using a combined GARCH on average for the chosen 

weeks, as it happens for Spanish data. Again, this could be related to different causes, such as the 

periods used as in-sample and out-of-sample, and to differences in estimated coefficients for the 

SARMA parts, which are higher than observed for Spain, specially comparing the coefficients’ 

values for autoregressive and moving average terms. For Austrian data, which are more volatile 

than the Spanish ones, the difference in the forecast errors between both models is greater.  

 

0

40

80

120

160

200

24 25 26 27 28 29 30

M6

D_JUN ± 2 S.E.

0

40

80

120

160

200

24 25 26 27 28 29 30

M6

S_JUN ± 2 S.E.

days (week in jun) 
days (week in jun) 



36 

 

 

Fig. 12 – Average RMSE and MAE for Austria 

 

6. Conclusions 

The ongoing deregulation of electricity industries worldwide is beginning to expose 

producers, retailers, and consumers alike to uncertain prices. Concomitant pressures to improve 

energy efficiency as part of global climate change commitments further necessitate the 

development of better models for decision making under uncertainty. While large power 

companies may have the expertise to adapt to such a transition, consumers, especially small-

scale ones at the building level, will require additional decision support in order to retrofit or to 

upgrade installed equipment at reasonable cost without exacerbated exposure to risk. Thus, a 

comparison of methods for analyzing electricity prices is desirable. Subsequently, scenarios 

based on such analyses could be used as inputs to a customized DSS for risk management. 
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Following a time-series methodology (Contreras et al., 2003; Garcia et al. 2005), we 

model electricity prices in order to provide a basis for subsequent risk management. We focus on 

SARMA-GARCH models for hourly time series. The models are fitted for Spanish and Austrian 

markets, and the results are satisfactory in terms of model adjustment and forecast performance. 

In both cases, among the SARMA models tested, the SARMA(2,2)x(1,1)24 one treats the 

intraday seasonality, but a better choice to treat the weekly seasonality is the SARMA(2,2)x(7,7) 

24 one. To keep a parsimonious model, the seasonal part presents just the terms related to first 

and seventh orders for autoregressive and moving average terms. We obtain consistent GARCH 

models under the coefficient constraints to guarantee wide-sense stationarity for Spanish and 

Austrian data. Comparing the results, the adjustment of the models for each country is very 

similar. However, since Austrian data present higher volatility, the forecast performance is 

slightly better for Spanish data. We also compare the forecast performance for each country 

using SARMA and SARMA-GARCH models. The results are very similar and, even though the 

SARMA-GARCH presents better adjustment characteristics, this is not reflected in forecast 

performances. On average for the analyzed weeks, for both countries, the simple SARMA 

models present lower forecast errors than the corresponding SARMA-GARCH ones. 

Some improvements can be made to the model and will be implemented in future work. 

First, the ACF shows significant values for lags around 168, representing weekly seasonality. As 

mentioned, electricity prices present three cycles: annual, weekly, and intraday. In the proposed 

SARMA model, the SARMA period is related to intraday seasonality, while the weekly 

seasonality is treated using corresponding lagged terms. One alternative would be to use a double 

SARMA to treat directly the weekly seasonality. The annual seasonality treatment could also be 

considered in the SARMA model, which would produce a model with higher orders. Instead of 
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stochastic treatment, another alternative is to model weekly and annual seasonality as a 

deterministic function as indicated in the literature, thereby leaving the intraday pattern treatment 

in the SARMA. The log-prices can be decomposed in a deterministic seasonal part, to be 

modeled using dummies or trigonometric functions, and a stochastic SARMA-GARCH model. 

Moreover, even using fat-tailed distributions for error terms, the residuals are non-Gaussian. This 

can be attributed to the presence of outliers, which should be directly modeled alternatively. 

Dummy variables to control the outlier observations or another alternative to model jumps 

separately can also be implemented. Finally, considering the forecast performance, an extension 

of this work would be to compare the results we obtain with the ones from separate models for 

twenty-four different price series, one for each hour of the day. The model we use is built based 

on the complete hourly time series, which allows working with only one model for every hour of 

the day. However, to obtain seven-day period forecasts, for the proposed model, we need 168-

steps-ahead forecast against seven-steps-ahead when working with twenty-four separate models. 

The forecast performance should, thus, be compared. 
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Table 10 – Alternative models for Spanish data 

Model AIC BIC LL 

SARMA(1,1)x(1,1)24 -1.72 -1.72 30207.28 

SARMA(2,2)x(1,1)24 -1.84 -1.84 32205.8 

SARMA(2,2)x(2,2)24 -1.84 -1.84 32208.6 

SARMA(3,3)x(1,1)24 -1.84 -1.84 32253.3 

SARMA(1,1)x(2,2)24 -1.73 -1.73 30202.3 

SARMA(1,1)x(3,3)24 -1.73 -1.73 30185.7 

SARMA(1,1)x(4,4)24 -1.75 -1.75 30520.3 

SARMA(2,2)x(3,3)24 -1.84 -1.84 32190.6 

SARMA(2,2)x(7,7)24* -1.88 -1.88 32840.8 

SARMA(2,2)x(7,7)24 ** -1.88 -1.88 32847.4 

SARMA(1,1)x(1,1)24 + GARCH(1,1) -2.36 -2.36 41386.5 

SARMA(2,2)x(1,1)24 + GARCH(1,1) -2.39 -2.39 41909.3 

SARMA(2,2)x(2,2)24 + GARCH(1,1) -2.39 -2.39 41935.2 

SARMA(1,1)x(1,1)24  + GARCH(2,1) -2.33 -2.33 40796.6 

SARMA(2,2)x(1,1)24  + GARCH(2,1) -2.40 -2.39 42052.1 

SARMA(2,2)x(2,2)24  + GARCH(2,1) -2.43 -2.42 42541.9 

SARMA(1,1)x(1,1)24  + GARCH(2,2) -2.30 -2.30 40355.3 

SARMA(2,2)x(1,1)24  + GARCH(2,2) -2.46 -2.45 43090.4 

SARMA(2,2)x(2,2)24  + GARCH(2,2) -2.46 -2.46 43116.5 

SARMA(2,2)x(7,7)24* + GARCH(1,1) -2.43 -2.43 42450.3 

SARMA(2,2)x(7,7)24*  + GARCH(2,1) -2.50 -2.49 43607.4 

SARMA(2,2)x(7,7)24*  + GARCH(2,2) -2.52 -2.52 43977.5 

*Seasonal terms for AR(24), AR(168), MA(24), MA(168)  

** Seasonal terms for AR(24), AR(48), AR(168), MA(24), MA(48) MA(168) 

 

Fitting only a SARMA model before considering the GARCH part, the best-fit models, 

are given by SARMA(2,2)x(1,1)24 considering AIC and BIC and keeping parsimonious models, 

when the weekly seasonality is not included, and by SARMA(2,2)x(7,7)24, to treat the ACF 

observed in lag 168 related to weekly seasonality, reminding that in the latter case only terms of 

first and seventh orders are used in the seasonal part. When including the GARCH model, the 

best-fit model was the SARMA(2,2)x(7,7)24+GARCH(2,2). Figure 13 presents the histogram for 

standardized residuals (skewness of -0.39 and kurtosis of 10.96). 
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Fig. 13 – Histogram for standardized residuals (Spain)  

 

 Besides the estimated parameters for SARMA(2,2)x(7,7) 24-GARCH(2,2), which are 

shown in the text, the ones for SARMA(2,2)x(1,1)24 and SARMA(2,2)x(7,7)24 are given in the 

tables below. 

Table 11 – Estimated parameters for SARMA (2,2)x(1,1)24 – Spanish data 

Variable Coefficient Std. Error t-Statistic Prob.   

AR(1) 1.208732 0.023585 51.24916 0.0000 

AR(2) -0.368038 0.019728 -18.65519 0.0000 

SAR(24) 0.216567 0.006921 31.29316 0.0000 

MA(1) -1.207390 0.024984 -48.32602 0.0000 

MA(2) 0.207581 0.024979 8.310117 0.0000 

SMA(24) -0.834499 0.003912 -213.3055 0.0000 

 

Table 12 – Estimated parameters for SARMA (2,2)x(7,7)24 – Spanish data 

Variable Coefficient Std. Error t-Statistic Prob.   

AR(1) 1.206598 0.026278 45.91670 0.0000 

AR(2) -0.365502 0.021777 -16.78396 0.0000 

SAR(24) 0.209610 0.006368 32.91528 0.0000 

SAR(168) 0.271118 0.005989 45.27073 0.0000 

MA(1) -1.228789 0.027703 -44.35511 0.0000 

MA(2) 0.230997 0.027650 8.354381 0.0000 

SMA(24) -0.839896 0.003809 -220.5284 0.0000 

SMA(168) -0.130293 0.003730 -34.93549 0.0000 

 

The forecast performance of the three models are presented in Table 13. 
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Table 13 – Forecast performance for SARMA and SARMA-GARCH models 

 
Month Week SARMA(2,2)x(1,1) SARMA(2,2)x(7,7) SARMA(2,2)x(7,7)+     

GARCH(2,2) 

  Static 

forecast 

Dynamic 

forecast 

Static 

forecast 

Dynamic 

forecast 

Static 

forecast 

Dynamic 

forecast 

  RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

January 17/01/2011 - 

23/01/2011 

5.44 3.77 9.37 7.78 5.32 3.70 8.88 6.88 5.46 3.80 9.39 7.60 

February 01/02/2011 - 

07/02/2011 

2.00 1.53 5.11 3.95 1.97 1.51 3.99 2.86 1.93 1.45 3.68 2.72 

March 20/03/2011 - 

26/03/2011 

2.31 1.72 4.57 3.45 2.25 1.67 4.24 3.42 2.20 1.63 3.82 3.14 

April 24/04/2011 - 

30/04/2011 

2.67 1.80 6.09 4.57 2.62 1.81 5.89 4.33 2.71 1.87 6.21 4.57 

May 25/05/2011 - 

31/05/2011 

1.51 1.09 3.50 2.51 1.45 1.08 3.43 2.6 1.32 0.97 3.39 2.37 

June 24/06/2011 - 

30/06/2011 

2.81 1.70 6.34 3.82 2.72 1.63 5.66 3.27 2.74 1.60 6.23 3.45 

July 25/07/2011 - 

31/07/2011 

2.03 1.38 4.06 3.15 1.93 1.32 3.58 2.77 1.94 1.33 3.78 3.07 

August 25/08/2011 - 

31/08/2011 

1.56 1.20 2.89 2.44 1.51 1.17 2.58 2.18 1.48 1.14 2.55 2.16 

September 24/09/2011 - 

30/09/2011 

2.22 1.66 5.49 4.61 2.09 1.54 4.63 3.92 2.09 1.53 4.74 3.92 

October 17/10/2011 - 

23/10/2011 

2.92 2.26 9.35 7.01 2.73 2.09 8.43 6.15 2.63 2.04 8.46 6.10 

Average  2.55 1.81 5.68 4.33 2.46 1.75 5.13 3.84 2.45 1.74 5.23 3.91 

 

Using Austrian data, some additional models presented the following results: 

 

 
Table 14  – Alternative models for Austrian data 

Model AIC BIC LL 

SARMA(1,1)x(1,1)24 -1.24 -1.24 21751.4 

SARMA(2,2)x(1,1)24 -1.30 -1.30 22793.7 

SARMA(2,2)x(2,2)24 -1.30 -1.30 22799.2 

SARMA(3,3)x(1,1)24 -1.30 -1.30 22808.9 

SARMA(1,1)x(2,2)24 -1.24 -1.24 21757 

SARMA(1,1)x(3,3)24 -1.24 -1.24 21758.4 

SARMA(1,1)x(4,4)24 -1.26 -1.26 22030.5 

SARMA(2,2)x(3,3)24 -1.30 -1.30 22803.2 

SARMA(2,2)x(7,7)24* -1.36 -1.36 23821.4 
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SARMA(2,2)x(7,7)24**  -1.37 -1.36 23848.8 

SARMA(1,1)x(1,1)24 + GARCH(1,1) -1.87 -1.87 32812 

SARMA(2,2)x(1,1)24 + GARCH(1,1) -1.88 -1.88 33031.4 

SARMA(2,2)x(2,2)24  + GARCH(1,1) -1.89 -1.89 33044.4 

SARMA(2,2)x(7,7)24* + GARCH(1,1) -1.88 -1.88 32792.2 

SARMA(1,1)x(1,1)24 + GARCH(2,1) -1.87 -1.87 32819.1 

SARMA(2,2)x(1,1)24 + GARCH(2,1) -1.70 -1.70 29823.1 

SARMA(2,2)x(2,2)24 + GARCH(2,1) -1.89 -1.89 33087.8 

SARMA(2,2)x(7,7)24* + GARCH(2,1) -1.95 -1.95 34060.1 

SARMA(2,2)x(7,7)24*+ GARCH(2,1) -1.34 -1.34 23350.2 

SARMA(1,1)x(1,1)24 + GARCH(2,2) -1.81 -1.81 31705.1 

SARMA(2,2)x(1,1)24 + GARCH(2,2) -1.34 -1.34 23448.9 

SARMA(2,2)x(2,2)24 + GARCH(2,2) -1.89 -1.89 33145.1 

SARMA(2,2)x(7,7)24* + GARCH(2,2) -1.89 -1.88 32902.3 

SARMA(2,2)x(7,7)24* + GARCH(2,2) -1.89 -1.88 33002.9 

*Seasonal terms for AR(24), AR(168), MA(24), MA(168)  

** Seasonal terms for AR(24), AR(48), AR(168), MA(24), MA(48) MA(168) 

 

Again, as observed for Spanish data, fitting only a SARMA model before considering the 

GARCH part, the best-fit model is given by SARMA(2,2)x(1,1)24, when the weekly seasonality 

is not included, and by SARMA(2,2)x(7,7)24, to treat the ACF observed in lag 168 related to 

weekly seasonality, reminding that in the latter case only terms of first and seventh orders are 

used in the seasonal part. When including the GARCH model, the model 

SARMA(2,2)X(2,2)24+GARCH(2,1) was the best-fit one. Figure 14 presents the histogram for 

standardized residuals (skewness of -1.37 and kurtosis of 33.73). 
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Fig. 14 – Histogram for standardized residuals (Austria)  

 The estimated parameters for SARMA(2,2)x(1,1)24 and SARMA(2,2)x(7,7)24 are given in 

the tables below. 

Table 15 – Estimated parameters for SARMA (2,2)x(1,1)24 – Austrian data 

 

Variable Coefficient Std. Error t-Statistic Prob.   

AR(1) 1.106258 0.007145 154.8195 0.0000 

AR(2) -0.206689 0.006855 -30.14980 0.0000 

SAR(24) 0.244788 0.005856 41.80421 0.0000 

MA(1) -1.051754 0.005035 -208.8825 0.0000 

MA(2) 0.052033 0.005035 10.33404 0.0000 

SMA(24) -0.931963 0.002174 -428.7369 0.0000 

 
Table 16 – Estimated parameters for SARMA (2,2)x(7,7)24 – Austrian data 

Variable Coefficient Std. Error t-Statistic Prob.   

AR(1) 1.087901 0.044008 24.72068 0.0000 

AR(2) -0.201137 0.039143 -5.138455 0.0000 

SAR(24) 0.247345 0.005805 42.60579 0.0000 

SAR(168) 0.307716 0.005196 59.22002 0.0000 

MA(1) -1.092958 0.044754 -24.42130 0.0000 

MA(2) 0.094461 0.044699 2.113255 0.0346 

SMA(24) -0.932932 0.002951 -316.1383 0.0000 

SMA(168) -0.060217 0.002897 -20.78614 0.0000 

 

The forecast performance of the three models are presented in Table 17. 
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Table 17 – Forecast performance for SARMA and SARMA-GARCH models 

Month Week SARMA(2,2)x(1,1) SARMA(2,2)x(7,7) SARMA(2,2)x(7,7)+     

 GARCH(2,1) 

  Static 

forecast 

Dynamic 

forecast 

Static 

forecast 

Dynamic 

forecast 

Static 

forecast 

Dynamic  

forecast 

  RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

January 25/01/2011-

31/01/2011 

2.78 2.10 9.08 7.57 2.04 1.45 4.50 3.57 2.11 1.50 7.74 6.40 

February 22/02/2011-

28/02/2011 

2.45 1.84 7.05 6.22 2.07 1.61 5.33 4.45 2.09 1.63 5.30 4.06 

March 20/03/2011-

26/03/2011 

2.47 1.74 5.88 4.35 2.41 1.76 6.24 5.19 2.45 1.81 8.06 6.64 

April 24/04/2011-

30/04/2011 

2.31 1.73 9.87 7.46 2.22 1.66 8.75 6.70 2.30 1.72 8.17 7.30 

May 25/05/2011-

31/05/2011 

2.00 1.46 7.35 5.34 1.93 1.45 6.90 5.23 2.01 1.54 7.61 5.86 

June 24/06/2011-

30/06/2011 

2.47 1.70 5.75 4.27 2.12 1.55 3.98 3.16 2.16 1.59 6.38 5.24 

July 17/07/2011-

23/07/2011 

2.33 1.62 7.54 5.53 2.20 1.57 6.55 4.78 2.25 1.60 6.18 4.64 

August 25/08/2011-

31/08/2011 

2.48 1.80 9.46 7.97 2.32 1.67 7.20 5.74 2.34 1.69 9.40 7.54 

September 24/09/2011-

31/09/2011 

2.18 1.57 6.90 5.45 1.99 1.49 5.51 4.17 2.02 1.51 5.40 3.94 

October 25/10/2011-

31/10/2011 

2.68 1.98 6.55 5.30 2.43 1.78 4.90 4.00 2.41 1.76 5.13 4.15 

November  24/11/2011-

30/11/2011 

2.66 1.90 10.16 6.97 2.43 1.80 8.96 6.33 2.54 1.85 10.76 8.22 

Average   2.44 1.77 7.78 6.04 2.20 1.62 6.26 4.85 2.24 1.66 7.29 5.82 

 


