
D5.1 Draft specifications for services and tools EC FP7 Project 260041

Project Number 260041

SUPPORTING ACTION

EnRiMa
Energy Efficiency and Risk Management

in Public Buildings

Deliverable 5.1: Draft specifications for
services and tools

Start date of the project: October 1, 2010

Duration: 42 months

Organisation name of lead contractor for this deliverable: SU

Revision: 20, final public, June 28, 2012

Project funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

D5.1 Draft specifications for services and tools EC FP7 Project 260041

2 / 45

Contents

List of figures ... 4

List of acronyms ... 5

Executive summary .. 6

1 Introduction .. 7

1.1 Architectural views .. 7

1.2 Architecture requirements and views .. 8

1.2.1 Functional business requirements .. 8

1.2.2 Non-functional business requirements ... 9

2 Part I - System architecture specification ... 10

2.1 Module view .. 10

2.1.1 Overview of modules ... 10

2.1.2 User interface ... 12

2.1.2.1 User interface module ... 12

2.1.2.2 Form framework ... 13

2.1.2.3 Graph tool ... 14

2.1.3 Engine ... 15

2.1.3.1 DSS Kernel ... 15

2.1.3.2 Solver manager ... 19

2.1.3.3 Scenario generation tool ... 20

2.1.3.4 Data wrapper ... 20

2.1.3.5 Database .. 21

2.2 Information view ... 21

2.3 Workflow view .. 24

2.3.1 Stakeholder and user types ... 24

2.3.2 Sequence of activities ... 25

3 Part II - System technical design specification .. 27

3.1 Communication / protocol view .. 27

3.1.1 Web browser to user interface .. 27

3.1.2 User interface to DSS Kernel ... 28

3.1.3 DSS Kernel to solver manager and scenario generation tool 28

3.1.4 Data wrapper to external data sources .. 29

3.2 Dynamic view .. 29

3.2.1 Use case “Scenario generation” ... 29

3.2.2 Use case “Strategic planning” .. 30

3.2.3 Use case “Data provision for strategic planning” .. 32

D5.1 Draft specifications for services and tools EC FP7 Project 260041

3 / 45

3.2.3.1 Alternative 1 – Automatic upload via an external source 32

3.2.3.2 Alternative 2 – Manual upload of data via the user interface 33

3.3 Deployment view ... 35

3.3.1 Deployment for development and internal tests ... 35

3.3.2 Deployment for test sites .. 35

3.3.3 Possible deployments for production ... 36

3.4 Validating the architecture by prototypes .. 37

3.4.1 User interface and kernel communication prototype ... 37

3.4.2 Data wrapper architectural prototype ... 39

3.4.3 User interface, graph tool and framework architectural prototypes 40

3.4.4 Solver manager and scenario generation architectural prototypes 42

4 Conclusion .. 43

Acknowledgements .. 44

References .. 45

D5.1 Draft specifications for services and tools EC FP7 Project 260041

4 / 45

List of figures

Figure 2-1 Overview of the architecture .. 10

Figure 2-2 Overview of the user interface architecture .. 12

Figure 2-3 Overview of DSS Engine architecture ... 15

Figure 2-4 The DSS Kernel components ... 16

Figure 2-5 DSS Kernel layers .. 17

Figure 2-6 DSS Kernel web services ... 17

Figure 2-7 Examples of technology for the kernel clients ... 18

Figure 2-8: Information model ... 23

Figure 2-9: Generic sequence of activities for using EnRiMa DSS ... 25

Figure 2-10: Screen prototype for displaying results of running the operational module 26

Figure 3-1: Overview of protocols ... 27

Figure 3-2: Scenario generation ... 30

Figure 3-3: Strategic planning .. 32

Figure 3-4: Automatic upload from BMS .. 33

Figure 3-5: Manual upload of data ... 34

Figure 3-6: Excerpt of the WSDL used for the communication test .. 38

Figure 3-7: The communication test, running in the Eclipse development environment 39

Figure 3-8: Excerpt from the file showing weather information from the site 39

Figure 3-9: External data from site, shown in a Sankey diagram .. 40

Figure 3-10: Form framework and graph tool .. 41

file:///D:/MartinWork/Projekt/EnRiMa%202010/WP5/EnRiMa-D51-ArchitectureSpecV19(ForSubmission).docx%23_Toc328688759

D5.1 Draft specifications for services and tools EC FP7 Project 260041

5 / 45

List of acronyms

AJAX Asynchronous JavaScript and XML

API Application Programing Interface

BMS Building Management System

CSS Cascading Style Sheets

DoW Description of Work

DSS Decision Support System

DTO Data Transfer Object

FTP File Transfer Protocol

GAMS General Algebraic Modeling System

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hyper Text Transfer Protocol

JAXB Java Architecture for XML Binding

JAX-WS Java Architecture for Web Services

OXM Object-to-XML Mapping

SMS Symbolic Model Specification

UML Unified Modelling Language

UML Unified Modelling Language

WS Web Service

WSDL Web Service Description Language

XML Extensible Markup Language

XSD XML Schema Description

D5.1 Draft specifications for services and tools EC FP7 Project 260041

6 / 45

Executive summary

This deliverable specifies the architecture for services and tools to be used within the EnRiMa

project in the construction of the EnRiMa Decision Support System (DSS). The architecture

describes the main software modules of the DSS and their relations. Furthermore, the type of

services provided by each module is specified as well as the tools to be used for their

construction. This deliverable consists of two main parts:

Part I, the system architecture specification, describes the main modules of the system, their

responsibilities within the architecture as well as their inbound and outbound information

flows. From a user perspective the system will be used as a highly interactive web application.

To ensure an interactive user experience the Vaadin open source web application framework

has been selected as a tool for development. The user interface will allow the integration of

graph tools, such as Google Visualizations and other tools for displaying information. This

allows creating a rich user interface by combing existing tools in a mash-up way. The overall

information integrity and optimization algorithms will be handled by the DSS engine, hosted

on an open source Apache server. The engine will make use of a solver manager and scenario

generation tool for the optimization tasks. The existing building ICT infrastructure will be

handled by a data wrapper module. Part I also contains a refined information model and a

workflow description.

Part II, the system technical design specification, details how the system modules will interact

in order to fulfil the business requirements. The interactions are described both in the form of

selection of communication protocols for the interconnection of modules and step-by-step

descriptions of the types of interactions that the system will handle. The most prominent

protocol used in the architecture will be XML based web services, allowing the main modules

to interact in a loosely coupled fashion. The architecture was validated using a set of

architectural prototypes, each prototype addressing a particular aspect of the architecture

design.

The architecture as presented in this deliverable is designed to meet the requirements as

defined in deliverable D4.1, Requirement Analysis. The architecture will be further refined as

the project progresses.

D5.1 Draft specifications for services and tools EC FP7 Project 260041

7 / 45

1 Introduction

The purpose of deliverable is to provide an overview of the software architecture of the

EnRiMa decision support system. Based on this document the architecture will be refined and

implemented in the final EnRiMa DSS. In this deliverable software architecture is referred to

as the general structure of the software system, as seen from a software development

perspective. Thus, the architecture will serve as an important blueprint when implementing

the system. Of special interest when describing software architecture is the use and

combination of software modules. This document gives an overview of the software modules

constituting the EnRiMa DSS, their responsibilities (i.e. what they should do) and how they

should interact with other modules.

This deliverable is structured according to a set of architectural views, each view describing a

subset of the system architecture. The architecture views are constructed so that the final

system will be able to fulfill a set of requirements. In the EnRiMa project the general

requirements on the DSS are described in Deliverable 4.1, Requirement Analysis (IIASA et

al, 2011). D4.1 describes the requirements on the operational and strategic decisions that the

system needs to support, as well as defines scenarios (use cases) outlining the use of the

system. This deliverable defines a set of modules that taken together are able to support the

requirement as outlined in D4.1. The relation between the architecture and system

requirements is further described in Section 1.2, Architecture requirements and views.

The software development process adopted by the EnRiMa development team is highly

iterative and incremental, following the principles of modern information system development

approaches which embraces agile, incremental and iterative development (Ambler and Lines,

2012). This means that we do not see requirements and designs as complete and frozen.

Instead, we consider the current versions of D4.1 and D5.1 merely containing the initial set of

requirements that we have planned to implement for the first prototype version of the EnRiMa

DSS during the validation of which new requirements and users’ needs will be discovered and

subsequently implemented. .

1.1 Architectural views

The architecture of a software system can be described using several different views. Each

view describes a certain aspect of the architecture. The overall architecture is given by

combing the views. In accordance with the DoW this deliverable is divided into two parts; a

system architecture specification and a system technical design specification. Each of these

parts and the constituent architectural views are described below.

Part I – System architecture specification

The system architecture specification describes the main modules of the system, the

information structures that are to be handled and gives an overview of the activities that the

user performs when interacting with the system. For the purpose of describing the software

architecture the following views are described in Part I of this deliverable:

 Module view – Describes the logical static structure in the form of modules and their

input and output, as seen from a software perspective.

 Information view – Describes the main information structures that the system need to

handle.

D5.1 Draft specifications for services and tools EC FP7 Project 260041

8 / 45

 Workflow view – Describes the main activities that the user performs when interacting

with the system.

Part II – System technical design specification

The system technical design specification describes how the modules of the system will

interact in order to produce the desired result. This part of the deliverable is organized

according to three views:

 Communication/protocol view – Describes the generic way the modules communicate,

with a particular focus the used protocols

 Dynamic view – Describes how the modules interact.

 Deployment view – Describes how the modules are allocated to hardware components,

that is, which computers that will run which software components.

The system technical design specification also contains a description of how the modules of

the architecture were validated by the use of architectural prototypes.

1.2 Architecture requirements and views

An architecture design is developed to fit certain business and technology requirements. The

software modules defined in the architecture will interact in order to provide solutions for

each requirement. Before going into details on each of the architectural modules and views we

discuss the types of requirements that influenced the design of the architecture. We divide this

description into functional and non-functional business requirements. Note, that here we use

“business requirements” as synonym to “organizational requirements”.

1.2.1 Functional business requirements

Functional business requirements refer to requirements put on the functionality of the system.

Typically the functional requirements express a goal that the user has in the form of

something that the user would like to achieve with the system. The functional business

requirements can be expressed as use cases or in plain text. In the case of the EnRiMa project

the requirements are described by a combination of text and use cases. This description of

functional business requirements is available in Deliverable 4.1, Requirement Analysis

(IIASA et al., 2011). These requirements will not be repeated here; instead we provide an

overview of how the architectural views relate to the requirements.

While a software architecture is designed to follow the functional requirements, it does not

usually contain explicit associations depicting how a certain module addresses each specific

requirement. This is due to the fact that a software architecture description, as in this

deliverable, describes the main modules of the system and their relations. Adding functional

requirements that can be addressed by existing modules in the architecture thus does not

change the architecture. For example, the EnRiMa DSS will handle the storage of both

operational and strategic symbolic model specifications by the use of the same database

system module.

The architecture described in this deliverable is designed to meet the requirement as described

in deliverable D4.1. To provide a link between the requirements in D4.1 and the architecture,

the dynamic architectural view in Section 3.2 describes how use cases (from D4.1), are

D5.1 Draft specifications for services and tools EC FP7 Project 260041

9 / 45

realized by the architecture components of the system. Moreover the information view

contains an updated information model that shows how the information in the system will be

structured to meet the data requirements, and the storage of the users choice of objectives and

parameters. This is referred to as the handling of decisions and objectives in D4.1. Integration

requirements are covered by a specific module in the module view, the Data wrapper module.

The general requirements as stated in the D4.1 will be discussed as a part of the non-

functional requirements section.

1.2.2 Non-functional business requirements

A non-functional requirement refers to how the system provides the functionality (Gorton,

2006). Commonly, a non-functional business requirement affects the whole system and the

way it is delivered or perceived by its users. In principle, non-functional requirements can be

seen as quality properties of the system. For example, the. standard ISO/IEC 9126-1 defines a

number of such properties for software products. The most important non-functional aspects

that affected the design of the architecture are discussed below.

Modularity and extensibility. The architecture need to be flexible so that it is possible to

extend it to cover new needs, for example when adding new test-sites. The architecture should

support this by having clearly separated modules (see the module view) and by

interconnecting these modules with well-known protocols (see the communication view).

Performance and scalability. The prototype DSS as produced during the EnRiMa project is

addressing two test-sites, with a few users each, thus the current need for scalability is low.

However, the architecture and the tool to be used for constructing each module (see the

module view) is selected with consideration that it can manage at least 100 users per

installation (see the deployment view for a description of deployment options). The

architecture is designed to allow for a responsive performance. That is, a request should take

less than 8 seconds to complete, this is in line with guidelines for response times for complex

tasks (Shneiderman and Plaisant, 2010). However due to the nature of the DSS, optimizations

can take longer (hours). Deliverable D4.1 outlines data sizes (max 250MB per site) and

transactional frequencies (max 2/sec) with which the architecture is designed to comply.

Security. The system will handle data that are owned by the building managers, such as the

building temperature and energy consumption. The different site data will be kept separated

by the use of user authentication and authorization (this is the responsibility of the DSS

Kernel module, see the module view). Moreover the use of well-known tools such as Vaadin

for the Form framework module (see the module view), and the options to use secure

protocols (see the communication view) addresses common Web application vulnerabilities.

In the following the architecture of the EnRiMa DSS will be detailed. First, the System

architecture specification (Part I) describes the main modules. Secondly, the System technical

design specification (Part II) describes the module interactions, and their deployment.

D5.1 Draft specifications for services and tools EC FP7 Project 260041

10 / 45

2 Part I - System architecture specification

In this part, the system architecture specification, the main constituents of the system in form

of software modules will be described. The focus in this part is thus to describe the systems

static structure, the dynamic behavior of the system will be described in Part II, system

technical design specification.

2.1 Module view

2.1.1 Overview of modules

The overall architecture of the EnRiMa DSS follows the common approach of having three

principal layers (Fowler, 2003): presentation, domain logic, and data source. In the Figure

2-1 these layers are realized through the user interface (presentation), DSS Engine kernel

(domain logic) and database (data source). The figure illustrates the overall EnRiMa DSS

architecture using the Unified Modeling Language (UML) component diagram notation

(OMG, 2011). The notation uses small circles and half circles to denote application

programming interfaces (APIs), while the arrows show flow of control and information. The

users will use web browsers to connect to the user interface module.

Figure 2-1 Overview of the architecture

Before describing details of each of the modules, the role and contents of each part in the

architecture will be briefly summarized below.

The user interface consists of the modules responsible for the interaction with the user. The

user will access the DSS via a Web browser. Central to the user interface layer is the user

interface module, which will run on a Web server. The user interface module produces the

graphical components as seen by the user. The user interface will consist of regular and

custom-made interface elements, such as buttons, tables, tabs etc. To aid in the presentation of

these elements the user interface module will make use of a form engine module and a graph

Scenario gen. tool

DSS Kernel

Form
framework

Graph tool
User interface

Data
wrapper

Database Building mgr
system/Ext sources

Solver manager

D5.1 Draft specifications for services and tools EC FP7 Project 260041

11 / 45

tool module. By the use of these tools it will be possible to create a composite application that

combines various user interface elements.

The engine is the backbone of the DSS, providing services, each through one of the DSS

modules, namely the kernel, solver manager, and scenario generator tool. The kernel

provides the set of harmonized services that enable integration of all heterogeneous

components into the DSS. The scenario generation tool provides realizations for the stochastic

parameters for a scenario tree, which is then used for stochastic optimization. The solver

manager provides solutions of the stochastic optimization problems. The kernel will make use

of a database module to store information.

The DSS will interface with external data sources such as external building management

systems as well as other external systems serving weather and energy price data via data

wrapper modules.

As stated above, each layer consists of several modules. A module, as it is used here, denotes

a logical software unit designed for a certain coherent task. The purpose of dividing the

system into modules is to make it easier to develop and maintain. One of the goals when

dividing a system into modules is that each module should be responsible for a certain well-

defined area of functionality. This is called module cohesion and it should be high, meaning

that each module is as single purpose as possible. At the same time module dependencies with

other modules in the system should be kept to a minimum, i.e. avoiding unnecessary message

pathways. This is called module coupling and it should be kept low. We have applied the

design principles of low coupling and high cohesion (Ghezzi et al., 2002) to the architecture

of the EnRiMa DSS.

For a description of the modules in the architecture the following template is used:

Responsibility. This describes the main idea/function of the module; this should be a cohesive

set of functionality.

Input/output. The main information structures that the module works with, and its formats.

Selected technology. The tools/framework/platform chosen for implementation.

In the following sections each module will be described according to the above template.

D5.1 Draft specifications for services and tools EC FP7 Project 260041

12 / 45

2.1.2 User interface

The user interface layer consists of three main modules; the user interface module, form

framework and the graph tool module. The central part is the user interface module that uses

the form framework and the graph tool to create a graphical user interface. The three modules

will all run in the same web server. Figure 2-2 illustrates, using a simplified UML component

diagram, the main relationships within the user interface. Note that the user interface module

is divided into view, controller, model objects and proxy parts, which will be further

explained in the next section.

Figure 2-2 Overview of the user interface architecture

2.1.2.1 User interface module

Responsibility. The user interface module will provide a Web based user interface that lets the

user view and modify data, as well as navigate between datasets. The user interface triggers

the kernel when the user instructs the system to change data, delete data, run optimizations,

etc. No calculations or data transformations are performed as part of the user interface

module. While the persistent data are handled by the engine, the user interface module needs

to handle session states. This means that user-made selections, and other screen states will be

handled by the user interface until the information is sent to the engine for permanent storage.

Internally the user interface module will be structured into objects according to the object-

oriented architecture patterns Model-View-Controller (MVC) (Krausner & Pope, 1988), and

the Proxy pattern (Gamma et al., 1994), see Figure 2-2. The most central pattern to the design

is the MVC pattern. The view (V) objects of the user interface module will deal with the

graphical presentation (such as panels, tables and fields). The view objects will be making use

of the form framework and the graph tool modules for the actual graphical representation of

the user interface in a web browser. The form framework will be able to sent event, for

example when the user clicks a button, to the view objects. The controller objects (C) will

Form
framework

Graph tool

User interface module

DSS user interface

Views

Controllers
Model
objects

Proxy

DSS Kernel

Web browser

D5.1 Draft specifications for services and tools EC FP7 Project 260041

13 / 45

coordinate the actions between different view objects, for example when the user switches

between different screens of the application. The model (M) objects contain the data that are

going to be shown to the user. By the use of a data-binding mechanism, the form framework

module can retrieve the information to be displayed from the model objects. The model

objects will be fetched by the controller by the use of the proxy. The proxy can retrieve the

needed data from the kernel via XML web service calls and then convert it into model objects

suitable for handling within the user interface module. Thus the model objects will also be

used as a form of Data Transfer Objects (DTOs).

Input/output interface.

The user will access this module by using a web browser. The interface to this module will be

via a web browser based user interface only. Examples of user requests includes:

 Displaying, and enabling modification of site information

 Displaying diagrams, with the use of the graph tool module

 Enable the user to upload of data, e.g., in the form of text files which are sent to the

kernel module.

Technically the web browser will send hypertext transfer protocol (HTTP) requests to the user

interface module, and the user interface module will respond with HTML, CSS and JavaScript

code. The form framework module will produce the actual HTML and CSS sent to the user’s

web browser.

The user selection and modification to the data will be sent to the kernel (using web services.

Selected technology.

The user interface module will be created using the Vaadin Java framework, as described in

the form framework module. This means that the user interface module will be implemented

using the Java programming language, and deployed as a Java Servlet in a web server. While

developing, the user interface module will run in the Jetty servlet environment. When

deploying the user interface for access by non-developers the user interface module will be

deployed in the open source Apache Tomcat web server.

To convert the user interface internal Java objects (model objects) into XML an Object-to

XML Mapping tool (OXM) will be used. Furthermore, Java API for XML Web Services

(JAX-WS) will be used for accessing the web services of the kernel module.

Java was chosen as the main programming environment for the user interface because it is

well suited for creating rich internet applications with the use of the Vaadin framework.

Moreover, it is easy to get access to the kernel web services via Java.

2.1.2.2 Form framework

Responsibility. The form framework is responsible for providing generic functionality that

displays common user interface components, and for handling the direct input from the user.

The framework contains buttons, tables, field, tabs, and other constructs that the user interface

puts together to form the specific user interface of the EnRiMa DSS.

Input/output interface.

- Input: The selected framework, Vaadin, contains programming interfaces that make it

possible for the user interface module to build forms/screens. These programming interfaces

are accessible directly via the framework API: thus, no separate server is needed for

deploying the framework.

D5.1 Draft specifications for services and tools EC FP7 Project 260041

14 / 45

- Output: The framework produces HTML, CSS and JavaScript code that are sent to the user’s

web browser for display. Moreover, in order for the user interface module to react to user

actions, such as, clicking a button, the user interface module can get callbacks on specific

Java event interfaces.

Selected technology.

The open-source Vaadin java framework will be used as form framework. Vaadin allows

creating advanced, highly interactive web applications without the need for the developers to

handle HTML, CSS or JavaScript. In particular, Vaadin contains a large set of pre-made user

interface components that can be incorporated in a Vaadin java project. Browser compatibility

is ensured because Vaadin supports the main desktop web browsers on the market; Google

Chrome, Internet Explorer and Mozilla Firefox. Vaadin is also compatible with the popular

mobile browsers Google Android (for Android devices) and Apple Safari (for iOS devices).

Vaadin is built on top of Google Web Toolkit (GWT).

Vaadin was selected as framework because it allows the developers to focus on the main logic

of the user interface, rather than manually writing HTML, CSS and JavaScript. Moreover

Vaadin takes care of differences in web browsers, which could otherwise be a time consuming

task.

2.1.2.3 Graph tool

Responsibility. The graph tool module will display advanced graphs in the web based user

interface. Example of graphs includes stacked line charts and Sankey diagrams. The module

should contain no calculations, i.e., it will be given pre-formatted data suitable for display.

Input/output interface.

- Input: The module will have an interface for each type of diagram that should be displayed.

As input parameters java objects will be used. The Java objects will be either the same as used

in the main user interface module (that is, its model classes) or generic objects representing

arrays of data to be displayed.

- Output: The output will be presentation objects suitable for inclusion in the forms produced

by the Vaadin framework as used in the user interface module. For example, the result of the

graph module can be a Vaadin Custom Component that is easy to display when using the

Vaadin framework.

Selected technology.

The graph tool will partially be built on top of products that are integrated into the DSS. The

necessary configuration and extension of these products will be done within the project.

For displaying most graphs the VisualizationForVaadin add-on will be used. It is a Vaadin

integrated variant of Google Visualization. The reason for choosing VisualizationsForVaadin

is its integration with Vaadin, and that VisualizationForVaadin supports different graph types

as needed in the project.

For displaying Sankey diagrams a number of tools have been examined. Most likely to be

used are SankeyVis or Tamc Sankey tools. SankeyVis is a Sankey diagram generator written

in Java, while Tamc Sankey is a JavaScript library. Depending on the project needs, there also

is an option not to generate the Sankey diagrams dynamically, but to use more generic static

Sankey diagrams instead. For example, in the architectural prototype for the data wrapper

module a static diagram was used (see Section 3.4.2, Data wrapper architectural prototype).

D5.1 Draft specifications for services and tools EC FP7 Project 260041

15 / 45

2.1.3 Engine

The DSS engine has a modular structure illustrated in Figure 2-3, and is designed to make it

reusable for other buildings without substantial software modifications. The engine’s

components are described in subsequent sections.

Figure 2-3 Overview of DSS Engine architecture

2.1.3.1 DSS Kernel

Responsibility: The DSS Kernel (hereafter referred to as the kernel) is responsible for

providing functionality needed by the Web Services (WSs) specified below. Therefore, the

kernel is responsible for providing state-less services requested by the DSS users through the

user interface or through the data wrapper, solver manager and scenario generation tool

modules. The kernel also includes "back-office" applications needed for actual

implementation of WSs, such as, checking consistency of the provided data with the SMS,

organizing the data provided as Data Transfer Objects (DTOs) into structures suitable for

effective handling by the data warehouse (implemented in a DBMS), organizing data from the

data warehouse into DTOs used by WSs, user handling, access control, and preparing data for

diverse reports for developers and users.

The kernel, in order to process the wide scope of WSs effectively and be reusable, has

modular structure illustrated in Figure 2-4. We first summarize the communication with and

within the kernel. The kernel is accessed by the external components through WSs;

components of the kernel developed in Java programming language communicate through

Java methods, while those developed in C++ communicate through WSs. Below, we briefly

summarize the function and characteristics of each component:

D5.1 Draft specifications for services and tools EC FP7 Project 260041

16 / 45

Figure 2-4 The DSS Kernel components

1) Web services: The web services publish the contract (as the WSDL file) through

lightweight application service (Tomcat) and the endpoints implement the web-services

through calling the service adapter.

2) Service adapter: Adapt web services with the internal data services; transform formats

between web services domain objects and database domain objects; make the data service

to be transparent (a black box) for other components

3) Web services domain: The DTOs based on the contract (WSDL file) are used for

generating objects through an Object/XML mapping (OXM) tool (e.g., JAX-WS, JIBX,

XStream, gSoap). The tools also generate classes for applications consuming WSs in other

components (including user interface, solver, scenario generator, and wrapper on external

data sources).

4) Database domain: The Java Persistence API (JPA) entity objects generated based on the

database schema through Object-relational mapping tools (Hibernate, Eclipse link,

Toplink, etc)

5) Data services: Transactional business logic, read/store data from/to DBMS through JPA

which will handle conversion of DTOs into the Data Warehouse schema that will be

independent of the DTOs thus remaining transparent for clients and stable, i.e., not

requiring modifications when DTOs will be modified.

6) Data warehouse: It will be implemented within a DBMS, and will be accessed external (to

the kernel) clients only through the kernel data services. Therefore a DBMS choice does

not influence other DSS components. Currently, PostgreSQL is used for prototyping, and

is planned to be used for the final version.

7) Utilities: This is container of diverse applications that support various functions needed by

the kernel.

The multi-layered representation of the kernel is illustrated in Figure 2-5. The top layer

contains the WSs published within the WS-domain in the WSDL format, and endpoints

indicate a location for accessing the service. This domain is shared by all components of the

EnRiMa DSS. The middle layer contains the service adapter that maps the requested

operations into the domain data services. The data services layer provides stateless

transactional business logic, while the data access layer provides interface to the data

warehouse built on a DBMS. The data access and services layers share cross-cutting

applications, e.g., for handling logging, transaction management and security.

D5.1 Draft specifications for services and tools EC FP7 Project 260041

17 / 45

Figure 2-5 DSS Kernel layers

Figure 2-6 shows the main principles when developing and using the WSs. One starts with the

requirements from clients, i.e., other DSS components (user interface, solver manager, etc.),

and develops the XML schema and the WSDL file that meet the requirements. After this is

completed, the clients can use the web services directly. Marshalling the WS-domain objects

to XML, unmarshalling XML to WS-domain objects, and translations between WS-domain

and DB-domain are totally transparent for the clients.

Figure 2-6 DSS Kernel web services

Moreover, there are tools for generating definitions of objects (e.g., classes) directly from the

XML schema for all widely used programming languages and tools. A selection of such tools

is illustrated in Figure 2-7. Therefore, using the philosophy outlined above, along with the

corresponding tools reduces substantially the resources needed for the development of

applications in diverse components, enables parallel development, supports consistency

between these applications. Thus, it contributes to the effectiveness of the software

development and to the reliability of the applications.

D5.1 Draft specifications for services and tools EC FP7 Project 260041

18 / 45

 Figure 2-7 Examples of technology for the kernel clients

Input/output interface. Web Services (WS) receiving and sending messages composed of:

 Envelope containing data needed to identify the user, model id, data version, etc.

 Request (specification of the service)

 Response (specification of the response to the service)

 DTO (Data Transfer Object) containing structured data needed for processing the

request or the response. DTO optionally contains specification of objects transferred as

attachments for requests of storing/retrieving objects (files) that are not processed by the

kernel.

The main types of the WSs handled by the DSSE are:

 Storing the provided data (parameters of the model, specification of model analysis

tasks, results of model analysis, data needed for administration of the DSS)

 Checking consistency of the provided data with the SMS (Symbolic Model

Specification)

 Providing the stored data to the DSS components in the requested DTOs.

 Generating scenarios for stochastic optimization

 Performing model analysis, including stochastic optimization, and possibly other

methods of integrated model analysis

 Management of the DSS users, including authentication, specification of roles, access

rights

Selected technology

For the implementation of the kernel the Java programming language will be used. For

hosting the services Apache Tomcat open source web server will be used. A JPA-compliant

framework will be used for the database access.

D5.1 Draft specifications for services and tools EC FP7 Project 260041

19 / 45

2.1.3.2 Solver manager

Responsibility.

The Solver Manager is responsible for providing the solution of the optimization problem to

the kernel. To achieve this objective, it fetches the symbolic model specification, the

generated scenarios and the model instance data from the kernel. Next, the data are prepared

in the appropriate format needed by the particular solver that is used for the specific instance.

Then, a call to the solver is made, passing the information it needs. Finally, the output of the

solver is prepared again in order to be sent to the kernel for storage.

Input/output interface

Input:

 The symbolic model specification: symbols and descriptions for sets, variables,

parameters and equations. For more details on the parameter data, see deliverable D4.2,

“Symbolic Model Specification” (URJC et al., 2012).

 The model instance: parameter values, sets elements, variables and equations to use, and

objective (e.g. minimize a certain variable, risk term value, etc.).

 The scenario tree: values and probabilities for stochastic parameters at each tree node.

For more information on the scenario tree, see deliverable D3.2, “Scenario generation

software tool” (SINTEF, 2012).

 Other configuration or user information: e.g. default solver

Output:

 The optimal values for the variables

 Further analysis, depending on the solver used, e.g. sensitivity analysis

Selected technology

The technology to be selected depends on the solvers and algorithms analysed and selected in

task T4.5, which has started just before the delivery date of this deliverable (D5.1) and

continues until the end of the project. Some of the needed features are:

 Capability to consume the web services provided by the kernel.

 Capability to generate different file formats (e.g. MPS, GAMS, AMPL, etc.).

 Capability to communicate with different third party software, both stand-alone solvers

and optimization software.

 Specific solvers and optimization software including stochastic optimization

capabilities.

Even though decisions have not been made at the time this deliverable is being written, some

examples of the technologies that are being considered are:

 Matlab has been used for prototyping and examples on WP2 and WP4.

 GAMS is being used for first implementations of the models in the SMS.

 The open source R language and statistical software is being considered as an integrated

framework to interface the kernel and the solvers. See http://www.R-project.org.

 The resources at the COIN-OR (COmputational INfrastructure for Operations Research)

project are being explored in order to include open source solvers, as well as open

standards (e.g. Optimization Services) when possible. See http://coin-or.org.

D5.1 Draft specifications for services and tools EC FP7 Project 260041

20 / 45

2.1.3.3 Scenario generation tool

Responsibility. The scenario generation tool provides realizations for the stochastic

parameters for all nodes in a scenario tree, based on input data about the parameters with their

statistical properties and about the structure of the scenario tree. An overview of the scenario

generation tool is given here; it is in more detail described in deliverable D3.2, “Scenario

generation software tool” (SINTEF, 2012).

Input/output interface.

Input:

The scenario generation tool will have three main inputs; module type, parameter data and

scenario tree:

 Module type (operational or strategic)

 Parameter data and their statistic properties: weather data (for operational model:

predicted, for strategic model: observed), electricity and district heating prices from the

test sites (as available), electricity prices from exchange (for example from the

European Energy Exchange, EEX) (hourly for Time-Of-Use tariffs); long-term trends of

energy prices, technology development and prices, government subsidies (as needed).

For more details on the parameter data, see deliverable D3.2.

 Scenario tree structure: time periods, number of stages, number of branchings.

Output:

Tables with values of the stochastic parameters for each node in the scenario tree, together

with information about the tree structure (parent/predecessor node, stage and probability).

This basically consist of a set of realizations of each stochastic parameter for each scenario

tree node – and "directions" how to put them in the multistage stochastic model to be built.

Selected technology.

The scenario generation tool is implemented as a C++ application. The XML input and output

will be parsed and generated using the Boost C++ libraries. The use of web services will be

implemented through the gSOAP framework.

2.1.3.4 Data wrapper

Responsibility.

The data wrapper module is responsible for communicating with external data sources, and

converting relevant data into a format suitable for storage by the kernel. The data wrapper

module can be triggered by an FTP file upload from an external source (push), or being set to

fetch information from external sources on a regular interval (pull). The data wrapper module

can also be triggered from the user interface (e.g. by requesting an upload of the latest energy

consumption data of the building) or on an automated way (e.g. FTP upload started by the

BMS). This is described in the dynamic view.

Within the project it is necessary to convert input data from building information systems

(BMS) (e.g. DESIGO format, CSV format), weather data from weather.com (e.g. XML,

JSON, CSV), energy prices from EEX (e.g. WebAccess Eurex/Xetra). The target format of

the data conversion is predefined by the XML format of the kernel or the predefined database

structure.

Input/output:

D5.1 Draft specifications for services and tools EC FP7 Project 260041

21 / 45

Input depends on the source of data. Within the project it is necessary to convert some input

data from building information systems (BMS) (e.g. DESIGO
TM

 format, CSV format),

weather data from weather.com (e.g. XML, JSON, CSV), energy prices from EEX (e.g.

WebAccess Eurex/Xetra).

Output: the DTO of the WS used for uploading the data in the kernel.

Selected technology. There might exist several wrappers, depending on how specific the

formats are for each external data source. If possible wrappers could be deployed at each site,

thus taking care of the site-specific data formats. If this impossible or undesirable, for

example when interfacing with external sources for weather forecasts, the wrapper will be

deployed at the same location as the kernel. The wrapper will be developed using the Java

programming language; DTOs will be generated by JAX-WS import tool based on the data

management schema which published by the kernel; for organizing different data formats, the

OpenCSV, Apache POI maybe needed; for calling the data management web services,

Apache axis2 or JAX-WS will used. An open source too, e.g. Apache Camel can be used for

assisting in format conversions.

2.1.3.5 Database

Responsibility. The database will be storing the information given by the kernel. The database

will ensure consistent data by the use of mechanisms such as transaction handling.

Input/output interface.

The input/output interface of the database is a interface allowing for the querying, updates and

deletes of table based data according to the structure defined in the project.

Selected technology.

Currently, the open source PostgreSQL database management system is used for prototyping,

and is planned to be used for the final version. The database management system will be

configured with the appropriate structure that can hold the data for the DSS. Moreover, during

the project the database will be populated with data used for the two test sites.

2.2 Information view

To have an overview of the information handled by the system an information model can be

used. The information model can then be divided into fragments that can be used in the

communication between the modules of the system. For example, when displaying

information about technologies in the user interface only the information model parts related

to technologies will be of use.

Figure 2-8 shows the information model for the EnRiMa DSS, using a simplified UML class

diagram notation. In a class diagram each rectangle represents the main information concepts

used. The content of each of the rectangles lists the attributes/properties of each concept,

while the lines in the information model indicate which concepts that are related. To make it

simpler to map the information model concepts and attributes to the symbolic model

specification the letters used for parameters and indices in the model specification are

included in the information model.

As can be seen in the information model, the concepts of energy markets (EnergyMarket in

Figure 2-8), technologies (Technology) and energy types (EnergyType) are central concepts.

While some relations are shared between different types of technologies, we can also note that

D5.1 Draft specifications for services and tools EC FP7 Project 260041

22 / 45

the energy creating technologies (ECreatingTech) and energy absorbing technologies

(EAbsorbingTech) need to be described using separate attributes and relations. The set of

concepts listed on the left in Figure 2-8 are concepts related to building information, such as

the volume and the area of glass. Moreover, the general input and output of the optimization

to be performed are shown in the upper respective the lower part of the information model.

The information model as included in this deliverable is based on the deliverables defining the

symbolic model specification, D4.2 (URJC et al., 2012) and D2.2 (UCL et al., 2012). During

further design this model need to be extended. For example, information that makes it easier

for the user to handle the information, such as names of buildings and technologies need to be

added. As the symbolic model evolves, so will this model, and the message structures sent

between the modules of the system.

D5.1 Draft specifications for services and tools EC FP7 Project 260041

Figure 2-8: Information model

EnergyMarket-n

0..*

1

TechEmissionRate i,k,l,n

Rate-H&C (kg/kWh)

Technology-i&j

ECreatingTech-i

Type [elec,heat,cooling]

PrincipalOutput-F (??)

Size [discrete, continuous]

Capacity-G (kW/device)

EAbsorbingTech-j

Type [storage,spass, upass]

StorageCapacity-GS (ratio)

ProdEfficiency i,kk,k

Coefficient-E (ratio)

EnergyType-k&kk

Type [elec,heat,cool,ng,solar]

Pollutant-l

Pollutionrate k,l,n

MeanRate-C (kg/kWh)

MarketOffer k,n

Direction [sell, purch]

UnitOfPEnergy-B (ratio)

Demand-D k,pmt

Time-pmt

Demand-D (kWh)

0..*

1

0..*

1

0..*
1

Output-kk/KO
0..* 1

Input-k/KI

1

2

0..*

1

0..*

1

0..*

1

0..*

1

0..*
1

0..*

1

BuildingTarget

RegEnergEff-EF (ratio)

NumOperPeriods -HO

LenghtOfPeriof-DT (h)

ETransaction k,n

Direction [purch,sale]

PurchTime-mm

Delivtime-pmt

Amount-u&w (kWh)

Consumption

Time-pmt

Consumption-e (kWh)

TechAvail j&i

Time-p

Capacity-x&s (kWh,kW)

NoOfUnits-s&xi&si

Installed-si&xi

Polution l,pmt

Time pmt

Amount-v (kg)

InputOutputTech-y i,k

Time-pmt

Input-y (kWh)

Output-z (kWh)

StorageTechCapacity k,j

LowCap-OA (fraction)

UpperCap-OB (fraction)

DemandReduc-OD (ratio)

Charging-OI (ratio)

Discharge-OO (ratio)

DischargeAvail-OR (ratio)

Avail-OS (ratio)

StorageTechUse k,j

Time-pmt

Release-qo (kWh)

Addition-qi(kWh)

Strorage-r (kWh)

0..*

1

0..*

1

0..*

1

1..*

1

0..*

1

0..*

1

0..*

1

0..*

1

0..*

1

Output: Decision variables

Input: Paramenters & indices

0..*

1

EnvironmentP t

Time-t

ExtTemp-χ (C)

MaxSolar-σ (kW/m
2
)

InternalBuildingP t

Time-t

IntLoad-λ (kW/m
2
)

LowerTLimit-κ (C)

UpperTLimit-κ (C)

Building

Volume-Ψ&BV (m
3
)

HTransCoeff-ν (kW/m
2
*K)

WallArea-αw (m
2
)

GlassArea-αg (m
2
)

GlassEnerTrans- ϵ (ratio)

SunProtection-ϕ (ratio)

FloorArea-αF&FA (m
2
)

Area-BA (m
2
)

RoofArea-RA (m
2
)

HeatSystemP

SupplyTemp-ζ (C)

MaxHeat-ι (kWh)

MaxFlow-µ (m
3
/s)

Min Flow-µ (m
3
/s)

HeatTranfsCap-ξ (kW)

RadCoefficient-φ (ratio)

TempDiff-ϱ (C)

HVACSystemP

MaxFlow-µ (m
3
/s)

MinFlow-µ (m
3
/s)

LowerLimExtAir-τ (ratio)

UpperLimExtAir-τ (ratio)

ElektReq-ω (kWh/(m
3
/s))

ExtAirLimCooling-χ (C)

ExtAirLimHeat-χ (C)

SuppAirTempHeat-ς (C)

SuppAirTempCool-ς (C)

TechControl

Time-t

Temp-Λ (C)

WaterFlow-Ωw (m
3
/s)

HVACAirFlow-Ωv (m
3
/s)

HVACsAirTemp-Υ (C)

ExtAirUsed-Φ (ratio)

RadiatorHeat-Ψ (kWh)

Both param & decision

EMarketPrice t,k,n

Time-t

Price-CP (€/kWh)

0..*

1

0..*

1

TechDecom i&j

StartTime-p

EndTime-q

NoOfUnits-sd&xd

0..*

1

TechDecomCost i&j

Age-a

Decom-CD&CDS (€/kw)

AgingFactor-AG&AS (ratio)

TechInstCost i&j

Time-p,m,t

Installation-CI&CIS (€/kw)

TechOperCost k,j&i

Time-p,m,t

Opercost-CO&COS (€/kWh)

BuildingBudget

Time-p

Budget-IL (€)

Price i,k,n

Time-p,m,t

SellPrice-SP (€/kWh)

PurchPrice-PP (€/kWh)

0..*

1

0..*

1

0..*

1

EmissionLimit l

Time-p

Limit-PL (kg)

TechSubsidies i

Time-p

Subsidies-SU (€/kW)

TechAvail i

Time-p,m,t

Avail-A (bool)

Afactor-A (ratio)

Loss-LS (kWh)

Storagecap-SC (kWh)

0..*

1
0..*1

0..*
1

0..*

1

0..*

1

0..*

1

0..*1

D5.1 Draft specifications for services and tools EC FP7 Project 260041

2.3 Workflow view

The workflow view describes the types of users that the architecture should serve and a

generic workflow that defines the main activities the system should support. The purpose with

the workflow view is to give an overview of the work context in which the system will be

used.

2.3.1 Stakeholder and user types

Deliverable D4.1 identified the following organizational stakeholder types: building owner’s

financial manager, building owner’s operations manager, outsourced maintenance manager,

energy service company, utility, energy consultants, policy makers, and energy auditors.

Many of these roles will use the same functionality of the DSS but for different purposes. This

is similar to what was described in the module view; some requirements will be handled by

the architecture in a similar way. To simplify the description of stakeholder types we have

defined a set of user types that have the same access needs to the system. Below is a list with

the main types of users that need to be supported with specific functionality and user interface

components. In comparison to D4.1, we have added the roles of system administrator and

product provider to cover the users involved in system installation and maintenance.

User types of the system:

 System administrator – configuring the system, importing data from sites, weather and

pricing, as well as managing users

 EnRiMa product provider, such as the DSS developers – installing and configuring the

system according to customer requirements (building set up, external data sources, user

data).

 External users, such as energy auditors, consultants, policy makers and technology

providers – running operational and strategic optimizations, viewing past optimization

results and other historical data, possibly restricted to a specific subset of technologies

and or building configurations.

 Building managers, such as building owners operations manager, – running operational

and strategic optimizations, viewing past optimization results and other historical data.

 Building operators, such as building owners operations manager and the maintenance

manager, – running the operational optimizations, viewing past optimization results and

other historical data.

Other stakeholder types such as, controllers, analysts, and politicians aiming to use the DSS

for seeking advice regarding, for instance, subsidies and CO2 reduction measures, should

assume one of the user types listed above.

We envision that not all of the data providers will not initiate communication with the

EnRiMa DSS from outside. Instead the EnRiMa DSS will check for updated data at

predefined times. Use cases for the external data management are further described in the

module view and dynamic view.

D5.1 Draft specifications for services and tools EC FP7 Project 260041

25 / 45

2.3.2 Sequence of activities

A generic sequence of activities for users performing operational and strategic optimization

tasks is:

 Setting up the data for building, the environment, specifying internal load, budget

limitations, etc. Viewing building energy flows in the form of Sankey Diagrams.

 Setting the optimization goal (e.g. reduce CO2 emissions, reduce costs), target

temperature interval

 View summary of optimization settings and start optimization

 View results, save and/or export to a predefined file format if desired.

Figure 2-9: Generic sequence of activities for using EnRiMa DSS

The generic workflow will be customised in terms of input data types (defined in the

information model), and output layouts for each site defined during the system installation

and configuration phase. Each step in the process will be supported by a user interface screen,

se e.g. figure 2-10 showing a prototype screen containing results from running the operational

module.

D5.1 Draft specifications for services and tools EC FP7 Project 260041

26 / 45

Figure 2-10: Screen prototype for displaying results of running the operational module

In addition to the optimization functionality supported by the workflow, the EnRiMa DSS

should also be customizable by experts, for example energy consultants. Examples of

customizations are creating a new way of representing optimization results, and extending the

DSS with new analysis models and services. These activities will be performed independently

of the optimization workflow. Currently we foresee the following activities:

 Upload/define/save historical data

 Upload/define new equipment details (e.g. in an predefined XML format) supplied by

an equipment manufacturer

 Configure and/or extend available analysis models (e.g. cost or CO2 minimization)

 Create a new analysis model (e.g. NOx minimization)

 Change/extend available parameter definitions (e.g. weather details). This could

potentially require customizing the data import module.

 Set-up and configure a new site

 Find the best medium-term/long-term investment plan. This could require running the

strategic model independently and making a comparison of results.

These tasks require more detail control over the DSS than what the user interface of the DSS

can provide. These tasks will instead be performed by using suitable development tools, for

example using the DBMS data import tools to import large sets of historical data into the

database, or using a development environment to change the logic of the solver manager

and/or user interface modules.

D5.1 Draft specifications for services and tools EC FP7 Project 260041

27 / 45

3 Part II - System technical design specification

In this part, the system technical design specification, the modules interactions, their

deployment and the validation of the architecture will be described.

3.1 Communication / protocol view

The communication / protocols view describes the protocols used when communicating

between the modules in the architecture. The following UML component diagram gives an

overview of the protocols that will be utilizes by the DSS:

Figure 3-1: Overview of protocols

In the following subsections the use of the protocols will be described.

3.1.1 Web browser to user interface

The user interface module will create HTML, CSS and JavaScript that is executed in the

browser. When executing in the browser the application will send request to the server via the

Vaadin User Interface Description Language (UIDL). The UIDL is transferred on top of

HTTP using JSON structures, employing the same principles as AJAX applications.

The UIDL protocol is designed in such a way that only changes to the interface are sent to the

browser, which minimizes the information that need to be transferred. However the

application will be interactive, i.e. for each interaction performed by the user (for example

clicking a button) a request will be sent to the server. To keep the application responsive a

normal latency (below 200ms) is preferred.

When needed the HTTPS secure protocol will be used when communicating from the browser

to the user interface server.

Scenario gen. tool

DSS Kernel

Form
framework

Graph tool
User interface

Data
wrapper

Database

In-process Java calls

HTTP Web services,
XML data transfer

HTTP Web services,
XML data transfer

JPA
Framework

HTTP Web services,
XML data transfer

Building mgr
system/Ext sources

Dependig on source.
FTP or Web services

Executrable file, plain
parameter passing

Solver manager

HTTP request

HTTP Web services,
XML data transfer

D5.1 Draft specifications for services and tools EC FP7 Project 260041

28 / 45

The choice of protocol for the web browser to user interface server is based on the need for

having an interactive application, rather than a web page. The choice of the Vaadin

framework for the user interface constructions also mandates the use of the protocols, since

they are built into the Vaadin framework. The Vaadin framework contains logic that handles

data transfer security threats, such as cross scripting.

3.1.2 User interface to DSS Kernel

The user interface server will connect to the engine via XML web services on top of the

HTTP protocol. The interface provided by the kernel will be based on WSDL defining defines

a set of methods that the user interface server can call. Data passed to/from the kernel will be

in XML format, as defined in an XML Schema. The XML format supports the inclusion of

binary data, for example by using base 64 encoding.

The user interface server will use the XML structures to convert to/from java objects. This

means that from the user interface server side the web services will the used as a mechanism

to serialize java object structures. The kernel will be able to deliver complex non-cyclic object

structures to the client side via this mechanism.

While it is possible to use the secure HTTPS protocol for the communication, another option

is to deploy the user interface server and the kernel in the same machine, thereby addressing

security threats to the communication. A description of deployment options can be found in

the deployment view.

The decision to use web services as the protocol for the user interface to kernel interaction are

based on the desire to create an flexible modular solution where the user interface

implementation is independent of the implementation technology used in the kernel.

The proposed use of the communication protocol has been validated in a prototype, see

Section 3.4.1, User interface and kernel .

3.1.3 DSS Kernel to solver manager and scenario generation tool

The interfaces between the kernel and the solver manager and scenario generation tool will

make use of the same protocols, therefore they are described together here.

Both the scenario generator and the solver manager will be implemented as standalone tools

that can be started via a HTTP request. This means that the interface of these two modules

will consist of a few parameters passed via the HTTP request.

To fetch the required data (scenario tree respective a model instance) the modules will reach

the kernel by a sequence of XML based web services calls via HTTP/HTTPS. The web

service interface of the kernel will expose methods that the modules can call in order to

retrieve data.

The decision that the solver manager and scenario generator will fetch data from the kernel by

the use of web services, rather than the other way around, is based on that the modules need to

fetch data that are appropriate for the task to be computed. Moreover, the use of simple HTTP

request to start the tools eliminates the need for the modules to implement more complex

interfaces, like web services. However the possibility of using other protocols (such as RPC)

for starting both the solver manager and the scenario tool will be investigated further during

the implementation.

D5.1 Draft specifications for services and tools EC FP7 Project 260041

29 / 45

3.1.4 Data wrapper to external data sources

There will be several different external data sources that the DSS needs to communicate with.

This means that several different data wrappers need to be developed, each addressing the

specific protocols and format as handled by each data source. To describe the general

structure of the data wrappers we here describe the options for triggering and formats.

Triggering. The data wrapper module can be triggered by an external source (push), or being

set to fetch information from external sources on a regular interval (pull). The data wrapper

modules can also be triggered from the user interface (e.g. by requesting an upload of the

latest energy consumption data of the building) or on an automated way (e.g. FTP upload

started by the BMS). Use cases showing how this is handled are described in the dynamic

view.

Formats. Within the project it is necessary to convert some input data from building

information systems (BMS) (e.g. DESIGO format, CSV format), weather data from

weather.com (e.g. XML, JSON, CSV), energy prices from EEX (e.g. WebAccess

Eurex/Xetra). The target format of the data conversion is predefined by the XML format of

the kernel or the predefined database structure.

Note that the data wrappers can be deployed at the sources locations or at the same location as

the engine. For example, the architectural prototype that was done to test the integration

capabilities deployed a small data wrapper at a site to collect data from the building

management system.

3.2 Dynamic view

To exemplify the relationship of the modules this section includes three scenarios. Each

scenario corresponds to a use case in deliverable D4.1, thus they are mapped to the business

requirements. The three scenarios are chosen to represent interaction patterns among the

modules:

 Use case “Data provision for strategic planning”: Involves user interface, kernel and

data wrapper module interaction.

 Use case “Scenario generation”: Involves user interface, kernel, scenario generation tool

interaction.

 Use case “Strategic planning”: Involves user interface, kernel and solver manager

interaction.

In this deliverable the use cases are used to highlight the type of interaction that the system

architecture needs to support. More use cases can be found in deliverable D4.1.

3.2.1 Use case “Scenario generation”

(Use case 9.4.3. in deliverable D4.1, page 72)

The use case “Scenario generation” is here extended to provide a more detailed description of

how the modules in the DSS will interact. The use case involves the user interface, kernel, and

the scenario generation tool modules. The following steps are included:

1) The user starts an action that requires a scenario tree to be generated. The user interface

module sends a triggering request to the kernel web services. The request contains an

D5.1 Draft specifications for services and tools EC FP7 Project 260041

30 / 45

identifier that can be used by the kernel to fetch the data to be used by the scenario

generator.

2) The kernel reads the necessary symbolic model specification and the parameters needed,

including the scenario tree structure, from the database. For example the parameters can

include weather data and electricity prices. For a description of parameters, please refer to

the description of the scenario generation tool module.

3) The scenario generator tool is started by the kernel. The engine passes identifiers that

identify the needed parameters.

4) The scenario generator fetches the stored parameters and scenario tree structure from the

engine.

5) The scenario generator generates values for the nodes in the tree.

6) When the generation of the scenario tree is done, the scenario generator forwards the

result to the engine. The result consists of values for each node in the scenario tree. Please

see the description of the scenario generation tool module for a full description of the

result.

7) The kernel stores the information in the database for further use, for example when it is

needed for strategic planning (See use case “Strategic Planning”).

The following communication diagram shows the interaction among the modules.

Figure 3-2: Scenario generation

3.2.2 Use case “Strategic planning”

(Use case 9.3.2 in D4.1, page 70)

This use case describes how the user starts an analysis and views the results. Involved main

modules are user interface, kernel and solver manager. Compared to the use case description

in deliverable D4.1 the use case here is extended to include more details on how the modules

interact. The use case contains the following steps:

Scenario gen. tool

DSS Kernel

Form
framework

Graph tool
User interface

Data
wrapper

Database

1. Trigger

3. Start
(asynchronous)

2. Read parameters
7. Store result

5. Generate

Building mgr
system/Ext sources

4. Fetch
Parameters

6. Send result

Solver manager

D5.1 Draft specifications for services and tools EC FP7 Project 260041

31 / 45

Steps 1-6, setting parameters:

1) The user requests the user interface to review parameters. For example, the user can

review the building information.

2) The user interface fetches the needed subset of parameters from the kernel, via the kernel

web services.

3) The kernel gets the desired parameters from the database.

4) The user changes the parameters, for example the desired temperature intervals. The user

also selects the type of analysis to be performed, for example an operational or strategic

analysis, and the parameters of this analysis that represent his/her preferences.

5) The user interface sends the changed values to the kernel, thought the engine web

services.

6) The kernel stores the values in the database.

Steps 7-16, running the analysis:

7) User triggers the optimization.

8) The user interface requests an optimization to be started by forwarding identifiers of the

selected parameters, and identifiers (such as name and date) for the analysis to be

performed to the engine.

9) The kernel prepares an instance of the model to be analyzed by reading and parsing;

a. Reading the symbolic model specification

b. Reading the parameter values for the models, such as weather forecasts and

desired temperature intervals.

c. Reading the prepared scenario tree specifications, and associated stochastic

parameters (see results from use case “Scenario generation”).

10) The kernel starts the solver manager. The engine passes identifiers that identify the needed

data set.

11) The solver manager fetches the model instance from the kernel.

12) The solver manager starts the optimization. This can take a couple of minutes, or hours

depending on the task to optimize. If needed for solving the task the solver manager

employs several solvers.

13) The solver manager forwards the result to the kernel.

14) The kernel performs processing of the result, if needed.

15) The kernel stores the result (the decision variables) in the database. The result can for

example be the estimated energy flows of the building, and the hourly use of technologies.

16) -17) The user interface, upon user request, displays the result. For example, this can be

done by using the graph tool to display the optimization result in a chart. During the

optimization process the user interface can use a kernel web service to check information

provided by the solver about the optimization progress and status.

D5.1 Draft specifications for services and tools EC FP7 Project 260041

32 / 45

The following communication diagram shows the module interaction. Note that the call to the

solver manager is asynchronous.

Figure 3-3: Strategic planning

3.2.3 Use case “Data provision for strategic planning”

(Use case 9.3.3 in D4.1, page 71)

This use case is an example that involves the user interface, kernel, data wrappers modules

and data external sources. Examples of data provisioning includes getting weather forecast

(temperatures, solar irradiation) and energy prices from external sources as well as getting

building data (energy consumption, airflows) from the sites building management system. The

use case in D4.1 contains the following generic steps:

1) Upload data

2) Check consistency

3) Commit data

4) Send notification.

As the above use case is generic is has been specialized into two variants in this deliverable,

manual upload and automatic upload. This specialization into two use cases is done to show

how the modules interact in order to handle data from external sources.

3.2.3.1 Alternative 1 – Automatic upload via an external source

Data could be provided by the building management system in an automatic fashion, for

example via FTP upload. This has been successfully tested for the ENERGYbase site. A

benefit with automatic uploading is that the user does not have to manually upload the data

regularly. Note that the interaction between the EnRiMa DSS and the external system can also

Scenario gen. tool

DSS kernel

Form
framework

Graph tool
User interface

Database

1. Review parameters
4. Change parameters & type of analysis
7. Start optimization
16. View results

10. Start
(asynchronous)

17 Display chart2. Fetch params
5. Change params
8. Request analysis

3. Get parameters
6. Store changed parameters
15. Store results

9. Prepare model instance
14. Post-processing

11. Fetch model instance
13. Send result

Solver manager

12. Run solvers

D5.1 Draft specifications for services and tools EC FP7 Project 260041

33 / 45

be reversed. This is that the EnRiMa system could fetch data from the external system, for

example via FTP or via XML web services. The following use case illustrates the actions

needed for automated upload.

1) The external building management system uploads data to the data wrapper module.

Alternatively, the wrapper downloads the data from the building management system. The

data exchange can also be triggered by a scheduler based on either status of the available

data or time intervals.

2) The wrapper converts the data into the corresponding XML structure.

3) The wrapper module submits the data to the kernel by the use of web services.

4) The kernel checks the data consistency with the symbolic model specification and stores

the data.

5) The kernel commits the data to the database, if it is consistent. The information can later

be accessed via the web services of the kernel, for example for displaying it in the user

interface.

The following communication diagram shows how the modules can interact in order to

support the use case when the upload is triggered by the building management system.

Figure 3-4: Automatic upload from BMS

3.2.3.2 Alternative 2 – Manual upload of data via the user interface

This specialized use case describes the case when the user themselves fetches the data from

external sources, as files, and upload the files to the DSS. For example manual upload can be

necessary if the building management system is not connected to a network.

1) The user requests an upload via the user interface and provides a file to upload. The file

can for example contain a weather forecast, or information on a building’s energy

consumption.

Scenario gen. tool

DSS Kernel

Form
framework

Graph tool
User interface

Data
wrapper

Database Building mgr
system/Ext sources

1. Upload

5. Commit data

2. Convert

4. Check consistency

Solver manager

3. Submit data

D5.1 Draft specifications for services and tools EC FP7 Project 260041

34 / 45

2) The file is forwarded to the kernel.

3) The kernel checks the data consistency according to the symbolic model specification.

4) The kernel commits the data to the database. If the data is to be displayed by the user

interface (see next step) the kernel returns the data using the ordinary exchange format for

user interface to kernel communication. If complex conversion is needed, the kernel might

use a data wrapper module to perform the conversion.

5) The user interface displays the uploaded data, for example as a table of values.

The following communication diagram shows how the modules can interact in order to

support the use case when the upload is triggered via the user interface. Note that all

interactions are synchronous; the calling module waits until the call is finished.

Figure 3-5: Manual upload of data

Scenario gen. tool

DSS Kernel

Form
framework

Graph tool
User interface

Data
wrapper

Database

1. Upload request

2. File forward

4. Commit data

3. Check consistency

6. Display data

Building mgr
system/Ext sources

Solver manager

D5.1 Draft specifications for services and tools EC FP7 Project 260041

35 / 45

3.3 Deployment view

The developed DSS needs to be deployed on computers. Since the architecture is modular and

protocols such as web services are used it is possible to deploy the system in several different

configurations. For example, the user interface layer of the system can be deployed to the

same computer as the engine layer, or on another computer, possible at another location. To

determine the components of the system that can run at another location it is important to

determine possible distribution boundaries, and thereby units of deployment. In essence, the

components that use frequent or large data interchange, and those components that

communicate using protocols inappropriate for distribution should be in the same deployment

unit, deployed within a fast network.

With an architecture as presented in this deliverable it is reasonable to divide the system into

three deployment units;

 User interface, including the form framework and the graph tool modules. These

modules are tightly integrated and have frequent data exchange.

 Engine, including the kernel, database, solver manager and scenario generation tool.

These modules communicate using protocols that are not suitable for distribution.

However, both the scenario generation tool and solver manager could be deployed to

separate computers if needed during development.

 Data wrappers. These modules can run in a computer where it is readily accessible for

external systems.

In the following sections different deployment options for development, test-sites and

production use will be described. The tool selection as described in the module view makes it

possible to run the system on both Microsoft Windows and UNIX operating systems.

3.3.1 Deployment for development and internal tests

During development it is convenient to run the system in a computer close to the developer,

so that the time for deployment is short, and so that any introductions of errors do not affect

the other developers or end-users. This means that all of the deployment units can run on

different computers during development.

3.3.2 Deployment for test sites

Deployment for test sites within the frame of the project will be done in the same way as the

deployment for internal tests. I.e. the main parts of the system will run on computers hosted

by the project partners. Another option that will be considered is deployment in one computer,

this might give slightly better performance, as latencies are lower and bandwidth higher

within a single computer. Co-location of the engine and the user interface has the advantage

of not having to use encrypted protocols for their communication. The solver manager module

requires a lot of computing power, thus it might be reasonable to deploy that module to a

separate computer.

All the test-sites can use the same deployment. That is, information about the different sites

can be stored in the same database. Each of the users that are making use of the system is

authenticated and authorized to access just their site information. This way of “sharing” a

single installation is sometimes referred to as a multi-tenant installation. All access of the

users will be done via web browsers over the Internet.

D5.1 Draft specifications for services and tools EC FP7 Project 260041

36 / 45

3.3.3 Possible deployments for production

When making use of the system after the project is completed, there can be several

deployment options depending on the business model of the system exploitation:

Deployment at a site, this might be a viable option if the site needs a lot of customizations to

the system, or that there is a need for a very tight integration with existing building

management systems. Furthermore this could be the mandated option if the site has

restrictions concerning the exchange of data with external systems, or the site lacks an

Internet connection.

Deployment at external company. This entails installing the system at a company that sells

configuration services for the DSS. The external company needs to handle user access, and

configurations specific for each new site.

Cloud service deployment. This entails modifying the system to be able to run on a cloud

platform service, such as Google app engine or Amazon EC2. This type of installation can be

done by as site owner, or by an exploitation company for a multiple sites (multi-tenant

installation).

D5.1 Draft specifications for services and tools EC FP7 Project 260041

37 / 45

3.4 Validating the architecture by prototypes

The architecture as described in this deliverable has been validated by the use of prototypes.

This form of prototypes are sometimes referred to as “architectural prototypes”, or “spike

solutions”. Each of these architectural prototypes validates a part of the architecture. The idea

with validation using architectural prototypes is to test the architectural parts that have the

highest risk. Typically these parts contain elements that are challenging, or make use of

technologies that are unknown to the development team.

The purpose of these architectural prototypes is to validate the architecture, that is, test that

the chosen architecture is feasible and will allow constructing the final system in accordance

with the functional and non-functional business requirements. The program code used in these

prototypes can be, but is not necessarily, used in the final product. It is rather the gained

knowledge that is transferred into the construction of the final system. In this deliverable the

initial set of architectural prototypes that has been performed are briefly described. During the

continuation of the project more prototypes will be created when deemed necessary, for

example if there is a need to include new tools or protocols in the architecture.

3.4.1 User interface and kernel communication prototype

The communication between the kernel module and the user interface module has been tested

by retrieving and sending object structures thought the web service protocols. The purpose of

this architectural prototype was to ensure that the user interface and kernel could make use of

the selected protocols and tools to interpret information from the kernel. Moreover the use of

XML schemas as the foundation for creating declarations of the needed XML structures was

tested.

The architectural prototype was created by involving the following development steps:

 Creation of the XML schema describing the kernel interface. The XML schema

description (XSD) defines the structure of the information to be sent to/from the kernel.

Moreover the XML based Web Service Description Language (WSDL) was used to

declare the operations that the kernel supported.

 Implementation of a kernel prototype with access to the database. The implementation

followed the operations as declared by the WSDL file. The kernel was deployed in an

Apache Tomcat server at IIASA (Laxenburg, Austria).

 The user interface Java model classes was created by using XSD and WSDL to generate

Java classes. This was done by the use of an open source JAX-WS tool.

 A user interface was created to access the kernel using the generated Java classes. This

application had a simple user interface created using the Vaadin framework. The

application was deployed as a Java Servlet in an Apache Tomcat server at SU

(Stockholm, Sweden).

The following figure below shows an excerpt of the created WSDL file:

D5.1 Draft specifications for services and tools EC FP7 Project 260041

38 / 45

Figure 3-6: Excerpt of the WSDL used for the communication test

When running the architectural prototypes the following steps are executed:

1) Starting the user interface by opening a web browser and point if to the start address. The

user interface module (Vaadin application) starts and displays a web interface where the

user can start the communication with the engine.

2) The user interface module initiates the connection to the kernel via the generated Java

classes and sends a request to get a list of model objects to the kernel. The JAX-WS (Java

API for XML web services) translates the request into a XML based web service request.

3) The kernel retrieves the XML based request and re-translates in to Java objects suitable

for internal processing. The kernel fetches the requested information from the database

and returns the resulting data structure.

4) The client gets the result as XML and translates that into Java objects. The resulting Java

objects are sent to the Vaadin framework for display in the users web browser.

By the use of the architectural prototypes the communication between the kernel and user

interface was tested. It was shown that the communication could be done by the use generic

web services. At the same time it was tested that the user interface internally could use Java

objects without the need to manually code the translation between XML and Java objects.

This kind of automatic conversion can also save time during development.

D5.1 Draft specifications for services and tools EC FP7 Project 260041

39 / 45

Figure 3-7: The communication test, running in the Eclipse development environment

3.4.2 Data wrapper architectural prototype

An architectural prototype was built to test the interconnection of a building management

system and the DSS. The purpose of this architectural prototype was to test the access to

building information, and how to handle format conversion and in order to get enough

information to calculate the energy flow of a building. Thus this prototype validates part of

the architecture of the data wrapper module. In order to make use of the prototype the

collected information was displayed in a Sankey diagram. Because of readily available data

the ENERGYbase site was selected for this architectural prototype.

The data is collected at the site and then transferred to an FTP server where it can be picked

up and processed in order to create the Sankey diagram. The transferred file includes the daily

energy consumption and weather details, which are stored at 15-minute intervals. The figure

below shows a sample file for the architectural prototype:

Figure 3-8: Excerpt from the file showing weather information from the site

The sequences of actions to get the site data and process it are the following:

D5.1 Draft specifications for services and tools EC FP7 Project 260041

40 / 45

1) At the site, data are collected and stored continuously within the building management

system (BMS). The site uses the DESIGO system from Siemens.

2) With the help of the BMS, a pre-defined set of data is stored within a MS Excel file.

3) Each day at the building operator’s computer, an MS Windows script (cmd) is executed to

transfer the collected data (*.xls file) to a pre-defined FTP server. This FTP server is

managed by CET.

Once at the FTP server the data module can pick up the file and convert it into a format

suitable for handling by the kernel module. To demonstrate that the file was successfully

retrieved the architectural prototype creates a Sankey diagram that can be displayed to show

that the data was correctly received. This architectural prototype shows one way of

communicating with external systems. For other ways, for example that the DSS initiates

contact with external systems via web services, more architectural prototypes need to be built.

The following figure depicts the final Sankey diagram, as created based on the data read from

the site at June 14, 2012 (the latest Sankey diagram can be found at http://enrima-

project.eu/dss/sankey-diagrams):

Figure 3-9: External data from site, shown in a Sankey diagram

3.4.3 User interface, graph tool and framework architectural prototypes

Several architectural prototypes were created to try out the technologies that were selected for

use in the user interface layer of the architecture. The purpose was to see how the user

interface module could make use of the form framework module and the graph tool module.

Furthermore the composition of common user elements was tested, as well as how to bind the

model objects as received by the kernel to user interface elements. Binding entails both

allowing the user to view and update the model objects via the user interface.

D5.1 Draft specifications for services and tools EC FP7 Project 260041

41 / 45

To illustrate the types of architectural prototypes that were built the figure below shows a

simple form containing a data table and a graph. In this case the prototype was run in the

Google Chrome web browser.

Figure 3-10: Form framework and graph tool

The above prototype tests the following elements:

 Data binding of model classes. The table at the top is bound to a list of model objects by

the use of the form frameworks (Vaadin) built-in functions. Data binding work two-

ways, that is, the model objects are updated when the user changes the values in the

table.

 Visualization using the VisualizationForVaadin add-on. This add-on, showing the graph

above, is utilizing the Google visualization toolkit.

 A rich, interactive web application. The architectural prototype is making use of AJAX

calls to quickly update the graphs when requested. The events are handled by the server,

however the Vaadin form framework takes care of updating the screen in the users web

browser. The Vaadin framework creates the needed HTML, CSS and JavaScript code.

D5.1 Draft specifications for services and tools EC FP7 Project 260041

42 / 45

3.4.4 Solver manager and scenario generation architectural prototypes

Prototypes of both the solver manager module and the scenario generation tool module have

been developed. These implementations have been described in other deliverables:

 The scenario generation tool module implementation is a fully functional tool written in

C++. This tool is described in deliverable D3.2 (SINTEF, 2012).

 A prototype solver manager module has been implemented using the open source

language R. This is described in deliverable D4.2 (URJC et al., 2012).

Both of these modules are expected to evolve as the project progresses.

D5.1 Draft specifications for services and tools EC FP7 Project 260041

43 / 45

4 Conclusion

The EnRiMa project will provide a decision support system that enables building owners and

operators of public buildings to improve the buildings energy efficiency. Previous

deliverables produced by the project have described the functionality of the system, such as

the main requirements on the system (D4.1, IIASA et al, 2011), the needed mathematical

models for describing the buildings energy flows (D2.2, UCL et al., 2012), and the strategic

and operational decision support models (D4.2, URJC, 2012).

In this deliverable we have specified the software architecture for services and tools to be

used to build the EnRiMa decision support system. The software architecture describes the

overall structure of the system. Thus while the previous deliverables describe the functionality

and the models needed to calculate energy flows and consumption, this deliverable describes

which software modules are needed to realize the functionality and calculations into a

decision support system.

The software architecture for services and tools as presented in this deliverable defined the

main software modules of the system, and how they interact in order to fulfil business

requirements. Furthermore, the type of services provided by each module is specified as well

as the tools to be used for their construction. The deliverable is divided into several views:

module, information, workflow, communication, dynamic, and deployment views. Each view

is describing a certain aspect of the system to be constructed. The validation of the

architecture has been done by the use of a series of architectural prototypes described in the

deliverable.

This deliverable will be used in the following project activities and deliverables:

 DSS Engine construction (WP4). This deliverable provide the main architecture for how

the DSS Engine modules will interact, their types of information input and output flows

and the main responsibilities of each module. The construction of the DSS Engine will

lead to deliverable D4.4, the DSS Kernel prototype implementation.

 DSS User interface construction (WP5). This deliverable provides the design of the

inbound and outbound communication with the DSS Engine as developed in WP4.

Moreover, it provides a blueprint of the modules and tools needed to build the user

interface. The construction of the user interface will lead to the deliverable D5.2, GUI

Prototype and evaluation.

The architecture as defined in this deliverable provides a robust foundation for building the

EnRiMa DSS. As the project and implementation progresses the architecture of the system

will evolve.

D5.1 Draft specifications for services and tools EC FP7 Project 260041

44 / 45

Acknowledgements

This deliverable has been developed in an iterative process over almost a year. Lead authors

during this process have been SU (Martin Henkel and Janis Stirna). Contributions in the form

of module descriptions, scenarios and comments from IIASA (Marek Makowski, Hongtao

Ren, Janusz Granat), SINTEF (Michal Kaut, Adrian Tobias Werner, Lars Hellemo), URJC

(Emilio Lopez Cano), CET (Markus Groissböck, Michael Stadler) have been integrated into

this deliverable.

Quality control was perfomed by Tecnalia (Eugenio Perea, Ana Mera) and SINTEF (Lars

Hellemo). UCL (Afzal Siddiqui) also provided comments that improved the work.

D5.1 Draft specifications for services and tools EC FP7 Project 260041

45 / 45

References

Ambler S.W., Lines M., (2012), Disciplined Agile Delivery: A Practitioner's Guide to Agile

Software Delivery in the Enterprise, IBM Press, ISBN 978-0132810135.

Fowler, M. (2003), Patterns of Enterprise Application Architecture, Addison-Wesley.

Gamma E., Helm R., Johnson R., & Vlissides J. (1994), Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley, ISBN 978-0201633610

Ghezzi, C., Jazayeri, M., Mandrioli, D. (2002), ”Fundamentals of software engineering”,

Prentice Hall.

Gorton, I. (2006), Essential software architecture, Springer-verlag.

HCE, IIASA, SU, UCL, URJC, SINTEF, CET, and TECNALIA (2011). Requirement

Assessment. EnRiMa Deliverable D1.1, European Commission FP7 Project Number 260041.

IIASA, SU, UCL, URJC, SINTEF, CET, HCE, and TECNALIA (2011), Requirement

Analysis, EnRiMa Deliverable D4.1, European Commission FP7 Project Number 260041.

Krausner, G. E.; Pope S. T., (1988). A Description of the Model-View-Controller User

Interface Paradigm in the Smalltalk-80 System (Report). ParcPlace Systems, Inc., available

http://www.itu.dk/courses/VOP/E2005/VOP2005E/8_mvc_krasner_and_pope.pdf, retrieved

2012-06-20

OMG (2011), OMG Unified Modeling Language (OMG UML), Superstructure, version 2.4.1,

Document Number: formal/2011-08-06, available from www.omg.org

Shneiderman, B. and Plaisant, C. (2010), Designing the User Interface: Strategies for

Effective Human-Computer Interaction: Fifth Edition, Addison-Wesley Publ. Co., Reading,

MA.

SINTEF (2012), Scenario generation software tool – Documentation for the software tool,

part of EnRiMa Deliverable D3.2, European Commission FP7 Project Number 260041.

UCL, IIASA, CET, SINTEF, TECNALIA, and HCE (2012), A Mathematical Formulation of

Energy Balance and Flow Constraints, EnRiMa Deliverable D2.2, European Commission FP7

Project Number 260041.

URJC, UCL, IIASA (2012), Symbolic Model Specification, EnRiMa Deliverable D4.2,

European Commission FP7 Project Number 260041.

