
D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

Project Number 260041

SUPPORTING ACTION

EnRiMa
Energy Efficiency and Risk Management

in Public Buildings

Deliverable 4.4: DSS Kernel Prototype
Implementation

Start date of the project: October 1, 2010

Duration: 42 months

Organisation name of lead contractor for this deliverable: SU

Lead authors: SU, CET, TECNALIA, IIASA

Revision: 11, final public, March 29, 2013

Project funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

2 / 90

Contents

List of Figures .. 5

List of Acronyms .. 6

Executive Summary ... 7

1 Introduction .. 8

1.1 Architecture of the Kernel Prototype ... 9

2 Database Structure .. 11

2.1 System Tables .. 11

2.2 Strategic Model Input Tables .. 12

2.2.1 Overview .. 12

2.2.2 Configuration ... 13

2.2.3 Building .. 14

2.2.4 Technologies .. 15

2.2.5 Pollution parameters ... 16

2.3 Operational Model Tables ... 17

2.4 Scenario Generator Tables ... 19

2.5 Solver Manager Tables .. 20

3 Data Services .. 22

3.1 Data Services – Example ... 23

4 Data Import/Export Services (CET) ... 25

4.1 Implemented Functionality .. 25

4.2 Architecture Overview of the Web Service ... 25

4.3 Usage of the Web Service Client ... 26

4.3.1 Upload Operational DSS Result ... 27

4.3.2 Upload BMS Data .. 27

4.3.3 Upload Weather Forecast ... 27

4.3.4 Download BMS Set Points ... 28

4.4 Example Data .. 28

4.4.1 Energy Demand from BMS.. 28

4.4.2 Weather Forecasts .. 29

4.4.2.1 Weather Underground ... 29

4.4.3 Operational Optimization Result .. 32

4.5 Integration of MatLab® for Operational Optimization ... 33

4.6 Integration of KUBIK’s BMS ... 36

4.6.1 BMS Client Architecture .. 36

4.6.2 BMS Client Database Structure ... 37

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

3 / 90

4.6.2.1 Measurement Database ... 37

4.6.2.2 Forecast Database ... 38

4.6.3 Database Structure used by the Data Transfer ... 39

4.6.4 Transfer processes .. 40

4.6.4.1 Weather forecast: From Tecnalia Meteo to the FTP server 40

4.6.4.2 Weather forecast: from the FTP server to Tecnalia database 41

4.6.4.3 KUBIK Measurements: from KUBIK Database to Tecnalia Database 41

4.6.4.4 KUBIK Measurements: from Tecnalia Database to DSS 42

4.6.4.5 Weather Forecast: from Tecnalia Database to DSS 43

4.6.4.6 DSS Output: from DSS to Tecnalia Database .. 43

4.7 Integration of Pinkafeld’s & ENERGYbase’s BMS ... 43

5 Scenario Generator Implementation Overview .. 45

6 Solver Manager Implementation Overview ... 46

7 Conclusion .. 47

Acknowledgements .. 48

References .. 49

Appendix I - Web Service Server & Client Source Code .. 50

Package eu.enrima.ws.processfile .. 50

Package eu.enrima.ws.processfile.retrieve ... 58

Package eu.enrima.ws.processfile.save .. 60

Appendix II - Weather Forecast Quality Analysis ... 63

Weather Forecast Analysis ... 63

Access Weather Underground .. 63

Weather Forecast Data ... 66

Historical Weather Data ... 66

Comparison and Conclusion .. 66

References for Appendix II .. 67

Appendix III - BACnet
TM

 ... 68

Building Automation System (BAS) .. 68

BAS within EnRiMa .. 69

BAS at Pinkafeld Campus .. 69

Building Automation and Controls NETwork (BACnet) .. 69

Required IT components and expertise .. 69

FAQ .. 70

Where is BACnet
TM

 located? ... 70

Can BACnet
TM

 be accessed behind a router/firewall? ... 71

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

4 / 90

Where is DESIGO
TM

 located within the BAS? .. 72

How can we predefine set-points in general/in Pinkafeld? .. 72

Which BACnet
TM

 objects are available at Campus Pinkafeld? 72

BACnet
TM

 security ... 72

BACnet
TM

 Configuration ... 72

Available BACnet Tools .. 73

BACnet
TM

 Tool .. 73

BACnet4J ... 74

Are the BACnet
TM

 Objects at Campus Pinkafeld Accessible? .. 80

References for Appendix III ... 80

Appendix IV - Generic Kernel Prototype Implementation .. 82

Overview of the Generic Kernel .. 83

Functional View ... 83

Key Features ... 84

Software Developer’s View ... 85

Generic Kernel Architecture .. 86

GitHub Repository ... 88

Conclusions .. 89

References for Appendix IV .. 89

List of Acronyms for Appendix IV .. 90

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

5 / 90

List of Figures

Figure 1-1: Overview of the prototype architecture ... 8

Figure 1-2: Overview of the kernel prototype architecture .. 10

Figure 2-1: System administrative tables ... 12

Figure 2-2: Strategic model input tables overview .. 13

Figure 2-3: Strategic model configuration tables ... 14

Figure 2-4: Strategic model building parameter tables .. 15

Figure 2-5: Strategic model technology tables ... 16

Figure 2-6: Strategic model pollution tables .. 17

Figure 2-7: Operational model input tables overview .. 18

Figure 2-8: Scenario generator tables ... 20

Figure 2-9: Solver manager tables ... 21

Figure 3-1: Example code for the Building data service .. 24

Figure 4-1: The data import/export web service architecture .. 26

Figure 4-2: Example output by using the data import/export web service client 27

Figure 4-3: KUBIK BMS client architecture ... 37

Figure 4-4: Measurement database schema. .. 38

Figure 4-5: Forecast database schema. ... 39

Figure 4-6: IO_Weather table, data example. .. 39

Figure 4-7: IO_ZoneTemp table, data example ... 40

Figure 4-8: BuildingProp table, data example ... 40

Figure 4-9: Kubik server. Database schema. .. 42

Figure 4-10: Possible Campus Pinkafeld data processing environment 44

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

6 / 90

List of Acronyms

API Application Programing Interface

BACnet Building Automation and Controls network

BMS Building Management System

DSS Decision Support System

EnRiMa Energy Efficiency and Risk Management in Public Buildings

GUI Graphical User Interface

HTTP Hyper Text Transfer Protocol

JPA Java Persistence API

JSON JavaScript Object Notation

kB kilo Byte

SMS Symbolic Model Specification

TCP/IP Transmission Control Protocol / Internet Protocol

WS Web Service

WSDL Web Service Description Language

XML eXtensible Markup Language

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

7 / 90

Executive Summary

The goal of this deliverable is to describe the DSS kernel prototype implementation of the

EnRiMa decision support system. The kernel is a typical server-side software that does not

have a graphical user interface. Its functionality is rather to provide the other modules in the

system with core functionality. To offer this functionality, the kernel prototype consists of

several software modules that provides application programming interfaces (API:s) for the

other software modules in the system. The following functionality is provided by the

implemented prototype kernel:

 Structured data access that enables the user interface module to retrieve and store

information is the DSS database. This is provided via a set of data services.

 Interfaces for running the scenario generator tool and solver. This is provided via

proxies.

 Functionally to handle users, their authentication and preferences. This is provided via

the data services.

 Functionality to store and retrieve so-called model-instances, which are a coherent set

of data that are used for a single optimization.

 Interfaces for interconnecting with external systems. This is provided via an

import/export web service.

The prototype implementation described in this deliverable is the first prototype version of the

kernel. It will be further improved during the project.

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

8 / 90

1 Introduction

This deliverable describes the prototype implementation of the Decision Support System

(DSS) kernel. The DSS kernel is a central part of the DSS prototype software since it acts as a

coordinator and service provider for the other modules in the DSS. In essence, the kernel is

responsible for managing the overall system data, including input from the graphical user

interface and outputs from the solvers, as well as communication with the external systems,

such as Building Management Systems (BMS) through web-services. The kernel has been

developed as part of task 4.6 (Implementation of the DSS Kernel) and task 4.4 (Data

warehouse and data services). The design of the integration with the KUBIK laboratory test

site as reported in this deliverable has been performed as a part of task 5.3 (Testing the GUI-

enabled DSS at the laboratory facility). The design of the kernel has been influenced by the

work in task 4.3 (Architecture) and task 5.1 (Enterprise services requirements analysis and

design) as well as the ongoing work in work package 6. The kernel prototype also draws on

the architecture design as presented in D5.1, Draft specifications for services and tools (SU et.

al, 2012).

This deliverable describes the first version of the kernel prototype and a second version of the

prototype will be described at the end of the project in deliverable D4.7, DSS Kernel

implementation.

The general structure of the prototype software is illustrated in Figure 1-1. The boxes

illustrate the main software modules, while the arrows denote control and information flow.

As can be seen in the figure the kernel sits between the GUI and the modules performing the

pre-processing (Scenario generator tool) and optimization (Solver manager). Together with

the database and surrounding modules the kernel forms the DSS Engine.

Figure 1-1: Overview of the prototype architecture

Before describing the implementation of the modules within the kernel, the role and contents

of each part in the architecture will be briefly summarized below. A description of the

modules can also be found in deliverable D5.1, Draft specification for services and tools (SU

et. al, 2012). Note that we first focus on the overall architecture, that is, those modules that are

surrounding the DSS kernel (marked with a dashed background in Figure 1-1).

DSS Kernel

DataHandler

SolverProxy

ScenGenProxy

Database

Data
import/export

web service

Data Services
Scenario
gen. tool

Solver
manager

Building mgr
system/ex.t

sources

Graphical user interface (GUI)

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

9 / 90

The graphical user interface consists of the modules responsible for the interaction with the

user. The user accesses the DSS via a Web browser. The user interface access the kernel

functionality via the data access services described in this deliverable. For example, the user

interface can retrieve a list of buildings to display for the user via the kernel data services.

The access protocol is in-process Java calls. The user interface prototype is further described

in deliverable D5.2, GUI prototype and evaluation (SU et. al, 2013).

The DSS kernel is responsible for providing functionality needed to manage the system data

and to run the scenario generator tool and solver. The kernel also supports user handling,

access control, and users performing queries of the result data. The kernel is interfacing the

database via a JPA compliant object-relational mapper (ORM). The kernel inner structure is

further described in this deliverable.

The solver manager is responsible for managing the optimizations. Essentially, it extracts the

needed information from the database, runs an optimization and puts the result back. The

solver manager is started by the kernel by creating a new process on the server. The solver

manager is briefly described in this deliverable, and further described in deliverable D4.3,

Stochastic optimization prototype (URJC, 2013).

The scenario generator tool creates a tree of scenarios to be used by the solver. It is started

by the kernel by creating a new process on the server. Like the solver manager the scenario

generator tool fetches input parameters from the database and stores the result in the database

as well. The scenario generator is briefly described in this deliverable, and further described

in deliverable D3.2, Scenario generation software tool (SINTEF, 2012).

The GUI, kernel, solver manager and scenario generator tool will be deployed on the same

server, while the database due to administrative reasons will be deployed on a dedicated

database server.

Overall, the architecture of the prototype is aligned with the architecture as outlined in D5.2.

However, during the development work several changes were made. Firstly, modules in need

of large data structures for their input and output are now getting these data from the database

interface, rather than via the kernel. This includes the modules solver manager, scenario

generator tool and the import/export module. The change was prompted by the need to

simplify the data access, and letting the modules make use of the standardized database access

mechanisms rather than a custom-made kernel API. Secondly, the GUI interface towards the

kernel is also simplified to in-process java calls. This change was made to reach improved

performance, but mostly to speed up the development by use of standardized tools. These

changes affected the inner structure of the kernel, however the kernel retains its main

functionality as stated in D5.1. An approach for making the kernel implementation more

generic can be found in Appendix IV.

1.1 Architecture of the Kernel Prototype

Figure 1-2 shows an overview of the kernel prototype architecture. Note that the figure

contains only the inner kernel module of Figure 1-1. The largest part of the functionality of

the kernel is located in the data services. The data services ensure a structured access to the

database and provide an easy-to use object layer for the solverproxy and scengenproxy

modules. Note that the data import/export web service is inserting sets of data to the database

and does thus not use the data services finer grained access.

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

10 / 90

Figure 1-2: Overview of the kernel prototype architecture

The SolverProxy and ScenGenProxy will act as proxies for the solver manager and the

scenario generator tool, respectively. Both proxies will prepare the inputs to respective

module, and then execute the module. Currently, a solverproxy for the operational model is

developed, the current implementation uses a MatLab® installation as the solver.

The data handler manages complex queries and updates to the database. Typically updates

that spans multiple data services in a complex way are located in the data handler. One

example of use in the current prototype implementation is the copying of input data (called

case instances) in which a single copy request to the data handler can result in hundreds of

objects to be copied. For simpler data access needs the data services are used directly.

The data services represent a structured access path to the database. Essentially, each table in

the database got its own data service. The data services are used by the user interface and

proxies to update and retrieve information from the database. The data services are described

further in the “Data Services” section of this deliverable.

As stated earlier in this deliverable, the data import/export module manages the import and

export of information to external systems. This module is implemented as a web service,

making it remotely accessible for external systems. This module is further described in the

“Data Import/Export Services” section of this deliverable.

DSS Kernel

DataHandler

SolverProxy

ScenGenProxy

Database

Data
import/export

web service

Data Services

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

11 / 90

2 Database Structure

The database is a central part of the DSS, since it stores both the values as entered by the user

and the optimization results. The kernel prototype implementation makes use of a MySQL

database. To have a structured approach for data handling, the prototype database is divided

into five parts:

System – stores information about the user and the basic information of the building

Strategic model – stores the configuration for the strategic model. This includes storing the

technologies that should be considered during optimization, energy prices used in the strategic

model and so forth.

Operational model – stores the configuration of the operational model. For example, this

includes the desired room temperature, per hour.

Scenario generator – this includes the information the scenario generator needs to be

executed, as well as its output.

Solver – this part stores the solver-internal configuration of the parameters, as well as the

result from the optimization.

Even though there are five parts in the database, they are all integrated. Central to this

integration is the use of case instances. Essentially, a case instance (sometimes referred to as a

model instance), contains the information needed to perform one optimization. When a user

starts an optimization, via the GUI, a new case instance is created. This case instance is used

by the modules of the DSS to process the optimization.

In subsequent sections, we include a database schema for each part of the database. The

database schema graphically gives an overview of the tables used and their respective

columns (for example, see Figure 2-1). While the lines between the tables denote the

relationships between data stored in the tables, we also include the names of the columns in

each table. To define the possible values of the columns in the database schema we use a set

of standard data types. Most common is the INT, DOUBLE and VARCHAR data types. Here

we use INT to store identifiers as well as integer numbers, the INT(11) datatype refers to the

use of integers that are displayed using 11 positions. VARCHAR is used to store text, the

VARCHAR(30) is referring to a 30-character text. DOUBLE is used for most columns that

are included in the optimization calculations. DOUBLE refers to a double-precision decimal

value.

2.1 System Tables

The system tables (Figure 2-1) handles information that is important for the system as a

whole. This includes the access to building information (table Building), the users and their

selected buildings (tables UserBuilding and EnrUser). Furthermore, a description of the

parameters used in the strategic and operational model is stored in the SymbolDesc table. The

system log containing errors are stored in the EnrLog table.

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

12 / 90

Figure 2-1: System administrative tables

2.2 Strategic Model Tables

2.2.1 Overview

The strategic model tables (Figure 2-2) are used for storing and providing access to data

needed for the strategic optimization. These tables are divided into four basic groups:

Configuration, Building, Technologies, and Pollution. These groups are described in more

detail in the following sections.

Central to the handling of optimization data is the use of a case instance (CaseInstance table).

The case instance binds together all parameter data that belongs to a certain optimization. A

case instance is associated to a specific building (Building table). All tables containing

parameter data are associated directly or indirectly with a specific case instance. For each

optimization a new case instance is created to store the data used for that specific

optimization.

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

13 / 90

Figure 2-2: Strategic model input tables overview

2.2.2 Configuration

The configuration group of tables (Figure 2-3) contains information that is used to regulate

the scope of an optimization and provide repeatable distributions sets for the various

stochastic parameters.

Each case instance has a diverse amount of input branches that are considered each year of the

optimization, this information is in the StInputBranches table. One or more uncertainty

distributions (StUncertType table) can be defined for a case instance. These uncertainty

distributions have associated values (StUncertType table) which provide the mean increase or

decrease and the standard deviation to be applied to a stochastic parameter value, for each

year of the optimization.

To provide for seasonal variations in hourly values the StProfileParameterValue table

contains hourly values. A set of these values is based on a given profile season

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

14 / 90

(StProfilePeriod table), profile parameter (StProfileParameter table) and case instance

combination. A season or period consists of a period and its relative weight. For example,

data for a summer day might have a weight of “0.5” if the summer season is considered to be

50% of a year. A profile parameter consists of its name and the unit used for its measure.

Figure 2-3: Strategic model configuration tables

2.2.3 Building

The building group of tables (Figure 2-4) contains information that is directly related to each

building. Information which describes a building and which should not change between

individual case instances is contained in the Building table. A building’s name and the

country, in which it is located, are two examples of values stored in the Building table.

Conversely, information contained in the BuildingProp table might change depending on the

case it is associated to. These two tables (BuildingProp and Building) are common to both the

strategic and the operational model.

The StDemand table stores information regarding the various energy type demands in a

building and how the demand should be distributed. A building’s required energy efficiency

and its investment limit are stored in the StBuildReq table. This table also contains

information on how the values should be distributed throughout the period of an optimization.

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

15 / 90

Figure 2-4: Strategic model building parameter tables

2.2.4 Technologies

The technology group tables (Figure 2-5) contain information regarding the various

technologies a building might have installed or are considered for installation. Please note

these are just the possible technologies, in principle, and the optimization decides which

technologies to adopt. These technologies fall into the following categories:

generation/production, storage and passive. While each of these technologies has its own

unique attributes they also have many in common. The StTechnology table contains the

parameters which are common to all types of technologies. A technology can have a

maintenance cost that is distributed over the period of an optimization (StTechMaint table).

The same technology can have costs that come at regular time intervals (StTechmaintPerYear

table). A passive technology (StTechPassive table) can save energy of a given type; the

amount of energy can be distributed over the period of an optimization. A storage tech

(StTechStorage table) has many stochastic parameters regarding the charging or discharging

of energy. A production technology (StTechProduction table) has various parameters

regarding the production of energy. Each generation/production technology in turn can

produce one or more associated types of pollutions (StTechPollutionTech table).

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

16 / 90

Figure 2-5: Strategic model technology tables

2.2.5 Pollution parameters

The pollution parameters group of tables (Figure 2-6) contain information regarding

pollutants along with a table for energy types. The StEnergyType table is used to define the

various types of energy that can be associated to energy parameters in other tables. The

StPollutant table is used to define the different pollution types that can be associated to

pollutant parameters in other tables. The parameters that define the limit allowed of the

various pollutants in a given case instance are stored in the StPollutionLimit table.

Information regarding the additional costs that can be incurred by the usage of the different

energy types is found in the StTariff table. These costs can be in the form of multiple

pollutants (StPollutionTariff table). information.

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

17 / 90

Figure 2-6: Strategic model pollution tables

2.3 Operational Model Tables

The operational model input tables (Figure 2-7) are used for inputting, storing and providing

access to data needed for operational optimization. Just as for the strategic model tables, each

case instance (CaseInstance table) is associated to a specific building (Building table), all

other tables are associated directly or indirectly with a specific case instance. For each

operational optimization a new case instance is created to store the data used for that specific

case.

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

18 / 90

Figure 2-7: Operational model input tables overview

Information which describes a building and which should not change between individual case

instances is contained in the Building table. More details about this in section 2.2.3.

The OpZoneTempRange table stores information regarding the temperature bandwidth which

has to be considered during the operational optimization procedure. All already installed

distributed energy technologies (e.g. CHP), HVAC systems, and additional information are

stored in the tables OpAvailTechs, OpTechHVACSystem, and OpTechHeatSystem. The

OpResults table contains the results regarding energy demand (electricity, heating, and

cooling). All this tables starting with “OpAvail” store the already in place technologies for the

sites. The OpShortTermEnergyCosts table contains all information regarding buying and

selling energy (buy and sell electricity, buy and sell heat, buy natural gas) on an hourly base

for all types of energy which are considered at the moment (electricity, natural gas, district

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

19 / 90

heating). The OpShortTermLoad table contains the values for internal load and the electricity

consumption which is divided into electricity demand for lighting, information technology

and communication demand, and other electrical end use.

Energy costs forecasts, weather forecasts, historical real weather information, historical real

zone temperature and optimized zone temperatures the tables IO_EnergyCosts, IO_Weather

respectively IO_ZoneTemp are used.

2.4 Scenario Generator Tables

The scenario generator tables (Figure 2-8) are used for storing the input, configuration and

output of the scenario generator tool.

The input to the scenario generator (parameters and their statistical properties) is stored in the

SG_StochParams table, and related tables. Information about the on-going scenario

generation is store in the central SG_CaseInstances table, note that this table will be linked

with the case instance as contained in the other database tables. This will ensure that all data

belonging to a single optimization is retrievable.

Central to the input for the scenario generator in the handling of scenario tree branches (table

SG_Input_Bransches), and the set of tables handling the seasonal profiles, including the

SG_EmbStochParamProfiles table. The output from the scenario generator is a set of tree

nodes, stored in the SG_Output_ScenarioNodes table, and profile values stored in the

SG_Output_EmbProfiles and associated tables.

Several of the scenario generator tables contains configurations that are used within the

scenario generator. This includes, for example, the SG_InputCorrelations and

SG_InputTramsformations tables.

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

20 / 90

Figure 2-8: Scenario generator tables

2.5 Solver Manager Tables

The data model (Figure 2-9) supporting the operations of the Solver manager module

provides the support for the following tasks:

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

21 / 90

 Storing information about the abstract model definitions, including sets, parameters

and output variables, which will be the basis to create the specific instances associated

to each case of analysis. The main tables involved in this task are "SMS_set",

"SMS_par", "SMS_var" and "SMS_model"

 Storing the values corresponding to specific instances for each analysis case. The main

tables linked to this feature are "SMS_mod_instances" as well as the three

"SMS_instance_*" tables.

 Holding the results (output variables) of each analysis case, stored in table

"SMS_output_vars". This permits other components such as the GUI to retrieve this

information and present it to the end-user.

Figure 2-9: Solver manager tables

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

22 / 90

3 Data Services

The kernel data services consist of a set of classes performing data access to the database. By

the use of these classes it is possible to query and update the database in a structured way.

Currently the prototype consists of about 40 data services, each handling a table in the

database. The implementation of the data services follows the JPA standard, and is making

use of the open source persistence framework EclipseLink.

Besides handling the data used for the optimization, such as technology costs and energy

demands, the data services also handle internal properties that are important for consistent

data handling. This includes:

Creation of identifiers for new data. The data services and the underlying JPA framework are

used to generate new unique identifiers when data is added to the database.

Version control. Each data service ensures that data is not becoming inconsistent if there are

multiple users that are running at the same time. The version control is handled by the

standardised JPA optimistic locking functionality.

The data service structure mirrors the tables in the database that is described in section 2 of

this deliverable. Currently, we have implemented the following data services in the kernel

prototype:

 BuildingDat

 BuildingPropDat

 CaseInstanceDat

 EnrLogDat

 EnrUserDat

 IO_EnergyCostsDat

 IO_WeatherDat

 IO_ZoneTempDat

 OpResultsDat

 BuildingDat

 BuildingPropDat

 CaseInstanceDat

 EnrLogDat

 EnrUserDat

 IO_EnergyCostsDat

 IO_WeatherDat

 IO_ZoneTempDat

 OpResultsDat

 OpShortTermEnergyCostsDat

 OpShortTermLoadDat

 OpShortTermWeatherDat

 OpTechHeatSystemDat

 OpTechHVACSystemDat

 OpZoneTempRangeDat

 StBuildReqDat

 StDemandDat

 StEnergyTypeDat

 StInputBranchesDat

 StPollutantDat

 StPollutionLimitDat

 StPollutionTariffDat

 StPollutionTechDat

 StProfileParameterDat

 StProfileParameterValueDat

 StProfilePeriodDat

 StResultDat

 StResultTechToInstallDat

 StTariffDat

 StTechMaintDat

 StTechMaintPerYearDat

 StTechnologyDat

 StTechPassiveDat

 StTechProductionDat

 StTechStorageDat

 StUncertTypeDat

 StUncertValueDat

 SymbolDescDat

 UserBuildingDat

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

23 / 90

3.1 Data Services – Example

Each data service contains a mapping to a database table, and a set of methods to retrieve and

update information in the database. To illustrate how a data service is structured the following

box (Figure 2-8) shows a simplified code extracted from the StBuildingDat data service.

The @Id and @Version annotations at the beginning of the code are used to indicate which

attributes contain the generated identifier, and which are used for version control. The code

continues with declarations of the building attributes, along with their minimum and

maximum sizes. This enables the data service to validate the data and keep the database

consistent.

The loadBuilding method is an example of how data retrieval is done via the data service. In

this case a single building is retrieved based on its identifier. The copy method is an example

of how the DataHandler module is used to copy building information. In this case the copying

of building information is only used by administrators which desire to create a new building

based on an already existing one.

@Entity

@Table(name = "Building")

public class BuildingDat implements Serializable {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private int id;

 @Version

 private int version;

 @Size(min = 3, max = 30)

 private String name;

 @Size(min = 2, max = 30)

 private String city;

 @Size(min = 0, max = 100)

 private StringString description of the JPA classes.;.;

 private int defaultCaseId; // Default data/case set for the building

/** Retrieve a single building **/

 public static EntityItem<BuildingDat> loadBuilding(int buildingId) {

 JPAContainer<BuildingDat> cont =
JPAContainerFactory.makeBatchable(BuildingDat.class,DB_PERSISTENCE_UNITNAME);

 cont.addContainerFilter(new Compare.Equal("id", buildingId));

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

24 / 90

 EntityItem<BuildingDat> item = cont.getItem(buildingId);

 return item;

 }

 /** copies buildings, return a map of the newly created id:s **/

 public static Map<Integer, Integer> copy(Map<Integer, Integer> buildIdMap) {

 return DataHandler.copyEntity(BuildingDat.class, "id", buildIdMap);

 }

…..

Figure 3-1: Example code for the Building data service

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

25 / 90

4 Data Import/Export Services (CET)

This section describes the prototype implementation of the data import/export web services

within the EnRiMa project. Web service (WS) technology is used to simplify the

communication between the test sites and the EnRiMa Server which is also known as EnRiMa

decision support system (DSS).

One master web service has been designed to fulfill all project required needs regarding

file/data transfers. The already available WS can be accessed via the following web address:

http://enrima.dsv.su.se/wsEnRima/

4.1 Implemented Functionality

An initial version of web services was developed to show the principle of uploading and

downloading of building, weather, and optimization result files. The following functions are

implemented in the prototype:

 collect and store building management system (BMS) data from the test sites on the

EnRiMa server (as e.g. historical room temperatures, ambient air temperature, heating

load, cooling load, electricity demand)

 collect and store weather forecast from e.g. Weather Underground where global

weather data are available or from local weather data provider as e.g. at KUBIK. An

initial weather forecast quality analysis has been done to check the quality of the

Weather Underground service (see Appendix I - Web Service Server & Client Source

Code and Appendix II - Weather Forecast Quality Analysis).

 store operational EnRiMa results in the EnRiMa database (see chapter 4.5 Integration

of MatLab® for Operational Optimization) (used to test the operational DSS in the

prototype)

 retrieve results of the operational optimization (temperature set points) from the server

and tunnel the results to the test site and store it there for BMS integration.

The following activity is still on-going:

 finalize the BACnet
TM

 communication which should exchange data with the existing

building BMS (get historical values as e.g. room temperature, ambient air temperature,

energy demand for heating/cooling/electrical uses; set temperature set points as an

result of the operational DSS). This task is complicated and time consuming since it

involves software and BMS vendors that are not involved in the EnRiMa project.

Thus, retrieving this proprietary BMS communication information is crucial in

EnRiMa and might create limitations for the EnRiMa functionalities. For more

information about BACnet
TM

 see chapter Appendix III - BACnet.

4.2 Architecture Overview of the Web Service

The figure below shows the overall architecture of the data import/export web service. One

master web service (WS) is used to manage all data transfers (upload & download).

http://enrima.dsv.su.se/wsEnRima/

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

26 / 90

Figure 4-1: The data import/export web service architecture

The architecture has the following main constituents:

Data import/export Web Service: This is the main modules that are accessible via HTTP

using standard Web Service protocols.

Local WS client: In order to import and export data from/to the building management system

BMS) at the test site there is a need to install Java communication client at the test site. This

client communicates with the data import/export web service installed at the server. Note that

the actual integration with the BMS is still under investigation.

More details about the web services server and client is available in Appendix I - Web Service

Server & Client Source Code.

4.3 Usage of the Web Service Client

This section shows some examples on how the “Local WS Client” can be used to do required

import and export tasks.

The following figure shows how the WS client can be used to do all required data transfers.

Database (DB)
Data Import/Export

Web Service

Solver Manager (R),
Operational Model

(MatLab®)

EnRiMa server

Local WS
Client

EnRiMa Test Site

input op. DSS results

input BMS history

output zone temperature set points

Key flows:

input weather forecast

BMS - Building
Management

System

Weather Forecast
System

(WUnderground.com)

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

27 / 90

Figure 4-2: Example output by using the data import/export web service client

4.3.1 Upload Operational DSS Result

The following command is used to upload the operational results (from operational EnRiMa

optimization) into the EnRiMa database via the available web service:

C:\dev\enrima> java -jar wsClient.jar bldgID I0 -file fileName

Where:

bldgID reflects one of the test sites: FASAD, Pinkafeld, KUBIK, or ENERGYbase.

fileName has to be replaced by e.g. “103\1023\results.txt”.

This command is used to store the operational optimization results into the EnRiMa database

by use of a server-to-server communication. The whole script for the MatLab®

implementation of the operational EnRiMa DSS is available in chapter 0.

4.3.2 Upload BMS Data

The following command is used to upload BMS data into the EnRiMa database via the

available web service:

C:\dev\enrima> java -jar wsClient.jar bldgID I1 -file fileName

Where:

bldgID reflects one of the test sites: FASAD, Pinkafeld, KUBIK, or ENERGYbase.

fileName reflects the file which contains the historical BMS data

4.3.3 Upload Weather Forecast

The following command is used to upload weather forecast data from Weather Underground

into the EnRiMa database via the available web service:

C:\dev\enrima> java -jar wsClient.jar bldgID I2 -url fileName

Where:

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

28 / 90

bldgID reflects one of the available data service providers: KUBIK, or wunderground.com.

fileName has to be replaced by the following URL if weather data should be retrieved from

wunderground.com and stored within the EnRiMa database for Campus Pinkafeld:

http://api.wunderground.com/api/7b8bbd47a9bfa800/hourly/q/Austria/Pinkafeld.xml.

4.3.4 Download BMS Set Points

The following command is used to get the optimization results back to the test site via the

available web service:

C:\dev\enrima> java -jar wsClient.jar bldgID O1 -file fileName

Where:

bldgID reflects one of the test sites: FASAD, Pinkafeld, KUBIK, or ENERGYbase.

fileName has to be replaced by a filename where the optimisation results should be stored in.

At the moment the values are just shown on the screen.

4.4 Example Data

This section includes examples of the data that are currently used by the import/export web

service.

4.4.1 Energy Demand from BMS

At ENERGYbase every day a file as shown below is created to reflect the hourly energy

demand as well as the hourly temperatures:

,W/m2,W/m2,W/m2,W/m2,W/m2,W/m2,W/m2,W/m2,%RH,°C,m/s,°C,kWh,kWh,kWh,kWh,kWh,kWh,kWh
,kWh,k
Wh,kWh,kWh,kWh,kWh,kWh,kWh,kWh,kWh

,WS-01 BestrahlungUV-Sensor 30°,WS-02 Südfassade 60° Glas,WS-03 Südfassung 1 30°
24h_a,WS-03 Südfassung 30° global,WS-04 Schattenring Süd. 30° PV,WS-05
Vertikalausrichtung Nord (2),WS-06 Südfassung 30° PV,WS-06 Südfassung 30° PV_a,WS-
07 Aussenfeuchte,WS-08 Temp.Aussen (2),WS-09 Windgeschweindikgeit, WS-10
Aussentemperatur,Solar-35 primär Wärmemenge,Solar-30 sekundärWärmemenge,LA01-40
ErhitzerSorptionWärmemenge,LA02-40 ErhitzerSorptionWärmemenge,WP-42 Wärmepumpe-
WärmemengeVerbraucher,WP-39 Wärmepumpe-Wärmemenge-WMP2,WP-36 Wärmemenge-WMP1,LA01-
39 ErhitzerWärmemenge,LA01-41 ErhitzerPPWärmemenge,LA01-42
ErhitzerSüdWärmemenge,LA02-39 ErhitzerWärmemenge,LA02-41
ErhitzerPPWärmemenge,LA02-42 ErhitzerSüdWärmemenge,LA03-22
ErhitzerWärmemenge,LA03-23 Kühlung Wärmemenge,WP-49 KM-ZählerBrunnenpumpe 1,WP-47
KM-ZählerBrunnenpumpe 2,WP-48 KM-ZählerVerbraucher,WP-31 1-Stromverbrauch,WP-33 E-
Zähler Wärmepumpe 2,WP-34 Stromverbrauch WMP1+2,WP-32
StromverbrauchBrunnenpumpe,Solar-29 Stromverbrauchgesamt,KW-05 E-Zähler KW-
Verbraucher,WP-35 Heizungsverbraucher,BTA-21 StiegeWestNord-
ElektrischeEnergiePumpe,BTA-22 StiegeWestSüd-ElektrischeEnergiePumpe,BTA-23
StiegeOstNord-ElektrischeEnergiePumpe,BTA-24 StiegeOstSüd-
ElektrischeEnergiePumpe,LA01-37 Stromgesamt,"LA01-36
StromVentillatoren,Befeuchter,WRG","LA01-51 E-Zähler Vor-, Nachheizregister",LA01-
38 StromSorptionserhitzerElektrisch,LA02-37 Stromgesamt,LA03-19 E-Zähler,PV Summe

13/10/2012
00:00,0,0,197.91,0,0,140.5,0,213.82,95.56,11.08,0.02,11.16,330743,318997,80538,802

http://api.wunderground.com/api/7b8bbd47a9bfa800/hourly/q/Austria/Pinkafeld.xml

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

29 / 90

90,628170,273180,267280,19338,27691,5081,18076,27354,2989,89616,10055,288980,24424
0,557840,57203,64236,20603,54610,2335,3106,2814,1208,2833,1373,3664,4784,78275,290
,184,63626,35536,0

…

13/10/2012
23:00,0,0,197.91,0,0,371.2,0,213.82,75.5,11,3,10.8,331029,319274,80538,80290,62823
0,273180,267280,19338,27691,5081,18076,27354,2989,89616,10055,289370,244250,558220
,57203,64236,20609,54623,2336,3110,2815,1209,2834,1373,3666,4786,78277,290,184,636
31,35538,0

4.4.2 Weather Forecasts

4.4.2.1 Weather Underground

To enable the EnRiMa development team to develop an integrated weather forecast feature a

free developer account has been created at http://www.wunderground.com. Details about the

API are Available from: http://www.wunderground.com/weather/api/d/docs.

In the following sub-chapter it is shown that wunderground.com can provide the weather

forecast either in an “Extensible Markup Language” (XML) or a “JavaScript Object Notation”

(JSON) format. The main difference at this stage is that XML has bigger overhead within the

file as JSON has. The file transfer of a weather forecast as XML file has 64 kB while a JSON

file as only 44 kB. This is a reduction in transferred data by about 30%.

By using the weather underground weather forecast service we are able to get the following

weather information:

 time for the forecast

 air temperature

 relative air humidity

 wind speed

 wind direction

 probability of precipitation

An information regards the solar irradiation is not available in this weather forecast service.

4.4.2.1.1 XML File from Weather Underground

The following table shows an “Extensible Markup Language” (XML) file for a 24 hour

requested by the following API call (which is directly provided by wunderground.com):

http://api.wunderground.com/api/7b8bbd47a9bfa800/hourly/q/Austria/Pinkafeld.xml:

<response>

 <version>0.1</version>

 <termsofService>http://www.wunderground.com/weather/api/d/terms.html
</termsofService>

 <features>

 <feature>hourly</feature>

 </features>

http://www.wunderground.com/
http://www.wunderground.com/weather/api/d/docs
http://api.wunderground.com/api/7b8bbd47a9bfa800/hourly/q/Austria/Pinkafeld.xml
http://www.wunderground.com/weather/api/d/terms.html

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

30 / 90

 <hourly_forecast>

 <forecast>

 <FCTTIME>

 <hour>21</hour><hour_padded>21</hour_padded><min>00</min><sec>0</sec>
<year>2013</year><mon>2</mon><mon_padded>02</mon_padded>
<mon_abbrev>Feb</mon_abbrev><mday>25</mday><mday_padded>25</mday_padded>
<yday>55</yday><isdst>0</isdst><epoch>1361822400</epoch> <pretty>9:00 PM CET on
February 25, 2013</pretty><civil>9:00 PM</civil><month_name>February</month_name>
<month_name_abbrev>Feb</month_name_abbrev><weekday_name>Monday</weekday_name>
<weekday_name_night>Monday Night</weekday_name_night>
<weekday_name_abbrev>Mon</weekday_name_abbrev>
<weekday_name_unlang>Monday</weekday_name_unlang>
<weekday_name_night_unlang>Monday Night</weekday_name_night_unlang>
<ampm>PM</ampm><tz/><age/>

 </FCTTIME>

 <temp>

 <english>31</english>

 <metric>0</metric>

 </temp>

 <dewpoint>

 <english>17</english>

 <metric>-8</metric>

 </dewpoint>

 <condition>Chance of Rain</condition>

 <icon>chancerain</icon>

 <icon_url>http://icons-ak.wxug.com/i/c/k/nt_chancerain.gif</icon_url>

 <fctcode>12</fctcode>

 <sky>73</sky>

 <wspd>

 <english>3</english>

 <metric>4</metric>

 </wspd>

 <wdir>

 <dir>WSW</dir>

 <degrees>252</degrees>

 </wdir>

 <wx/>

 <uvi>0</uvi>

 <humidity>55</humidity>

 <windchill>

 <english>-9998</english>

 <metric>-9998</metric>

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

31 / 90

 </windchill>

 <heatindex>

 <english>-9998</english>

 <metric>-9998</metric>

 </heatindex>

 <feelslike>

 <english>31</english>

 <metric>0</metric>

 </feelslike>

 <qpf>

 <english/>

 <metric/>

 </qpf>

 <snow>

 <english/>

 <metric/>

 </snow>

 <pop>20</pop>

 <mslp>

 <english>30.19</english>

 <metric>1022</metric>

 </mslp>

 </forecast>

…

 </hourly_forecast>

</response>

4.4.2.1.2 JSON File from Weather Underground

The following table shows the “JavaScript Object Notation” (JSON) file for a 24 hour

requested by this API call (which is directly provided by wunderground.com):

http://api.wunderground.com/api/7b8bbd47a9bfa800/hourly/q/Austria/Pinkafeld.json

{

 "response": {

 "version": "0.1"

 ,"termsofService": "http://www.wunderground.com/weather/api/d/terms.html"

 ,"features": {

 "hourly": 1

 }

 }

 ,

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

32 / 90

 "hourly_forecast": [

 {

 "FCTTIME": {

 "hour": "17","hour_padded": "17","min": "00","sec": "0","year": "2013","mon":
"2","mon_padded": "02","mon_abbrev": "Feb","mday": "7","mday_padded": "07","yday":
"37","isdst": "0","epoch": "1360252800","pretty": "5:00 PM CET on February 07,
2013","civil": "5:00 PM","month_name": "February","month_name_abbrev":
"Feb","weekday_name": "Thursday","weekday_name_night": "Thursday
Night","weekday_name_abbrev": "Thu","weekday_name_unlang":
"Thursday","weekday_name_night_unlang": "Thursday Night","ampm": "PM","tz":
"","age": ""

 },

 "temp": {"english": "32", "metric": "0"},

 "dewpoint": {"english": "26", "metric": "-3"},

 "condition": "Clear",

 "icon": "clear",

 "icon_url":"http://icons-ak.wxug.com/i/c/k/clear.gif",

 "fctcode": "1",

 "sky": "1",

 "wspd": {"english": "8", "metric": "12"},

 "wdir": {"dir": "NNW", "degrees": "347"},

 "wx": "",

 "uvi": "0",

 "humidity": "77",

 "windchill": {"english": "26", "metric": "-2"},

 "heatindex": {"english": "-9998", "metric": "-9998"},

 "feelslike": {"english": "26", "metric": "-2"},

 "qpf": {"english": "", "metric": ""},

 "snow": {"english": "", "metric": ""},

 "pop": "0",

 "mslp": {"english": "29.77", "metric": "1008"}

 }

 ,

…

]

}

4.4.3 Operational Optimization Result

The initial implementation of the operational DSS was done in MatLab®. Therefore also

these results have to be saved within the database. The table below shows an exemplary

result:

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

33 / 90

1 16 0 16 46.625 24.77 0.00020206 33.768 0 0 12 0.15 0.12
 0.06

…

24 16 0 16 33.076 19.891 0.0001317 33.076 0 0 12 0.17
 0.15 0.08

This table contains the following columns:

1. t: hour of day; all following parameter are related to this hour

2. zoneTemp: average air temperature within the zone according to the optimization

3. extAir: proportion of external air (HVAC system parameter)

4. saTemp: supply air temperature (HVAC system parameter)

5. heatRad: amount of heat from the radiator heating system

6. retWaterTemp: return water temperature (radiator system parameter)

7. flowWater: amount of water (radiator system parameter)

8. heatDemand: overall heating demand in the zone

9. lowAir: air flow (HVAC system parameter)

10. coolDemand: overall cooling demand in the zone

11. elecDemand: overall electricity demand in the zone

12. costElec: electricity costs

13. costHeat: heat purchase costs

14. costCool: purchase costs for cooling

4.5 Integration of MatLab® for Operational Optimization

At the moment the operational optimization engine is realized with MatLab®. In this section

it is shown how the operational DSS is integrated in the overall EnRiMa DSS. If within the

EnRiMa user interface the user decided to start an operational optimization the following

command is started as a background job by the kernel:

C:\dev\enrima> matlab.cmd bldgNo caseNo bldgName

Where:

bldgNo: is the internal building number where an operational optimization should be

performed (e.g. 1).

caseNo: is the internal case instance number to differ multiple optimization cases within the

EnRiMa system (e.g. 1002).

bldgName: is the unique building name which is necessary to identify the building for the WS

client to associate the according data to the according building (e.g. Pinkafeld).

By using the mentioned example values the matlab.cmd is started as follows:

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

34 / 90

C:\dev\enrima> matlab.cmd 1 1002 Pinkafeld

The last action within the matlab.cmd script is to import the optimization results by using the

already available EnRiMa import/export web service (descripted in detail in chapter 4.2). The

whole matlab.cmd script is shown in the listing below.

@echo off

rem ***

rem matlab.cmd

rem do an operational optimization (operative EnRiMa)

rem

rem designed be CET, 2013

rem ***

rem check parameter and available directories

IF "%1"=="" (set bldg=1) else (set bldg=%1)

IF "%2"=="" (set unique=1) else (set unique=%2)

IF "%3"=="" (set uniqueBldgName=unknownBldgId) else (set uniqueBldgName=%3)

rem define some paramters

set MATLAB_PATH=C:\Program Files (x86)\MATLAB\MATLAB Compiler
Runtime\v717\runtime\win32

set opEnRiMaStdOut=opEnRiMaStdOut.%bldg%.%unique%.txt

set ENRIMA_WS=wsEnRiMaClient.jar

set optDir=%bldg%\%unique%

if exist %optDir%\%opEnRiMaStdOut% (del %optDir%\%opEnRiMaStdOut%)

if not exist %bldg% (mkdir "%bldg%")

if not exist %bldg% (echo "problem by creating directory %bldg%" >>
%optDir%\%opEnRiMaStdOut%)

if not exist %bldg% (exit /b 1)

if not exist %bldg%\%unique% (mkdir "%bldg%\%unique%")

if not exist %bldg%\%unique% (echo "problem by creating directory %bldg%\%unique%"
>> %optDir%\%opEnRiMaStdOut%)

if not exist %bldg%\%unique% (exit /b 1)

SETLOCAL ENABLEEXTENSIONS

for /f "tokens=1-3 delims=-/ " %%i in ('echo %date%') do (

 set 'dd'=%%i

 set 'nn'=%%j

 set 'yy'=%%k)

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

35 / 90

for /f "tokens=1-4 delims=:,.-/ " %%i in ('echo %time%') do (

 set 'hh'=%%i

 set 'mm'=%%j

 set 'ss'=%%k

 set 'ff'=%%l)

ENDLOCAL & SET v_Hour=%'hh'%& SET v_Minute=%'mm'%& SET v_Second=%'ss'%& SET
v_Fraction=%'ff'%& SET v_Day=%'dd'%& SET v_Month=%'nn'%& SET v_Year=%'yy'%

set timestring=%V_Hour%%V_Minute%%v_Second%.%v_Fraction%

set datestring=%V_Year%%V_Month%%v_Day%

rem switch to the working directory

c:

cd \dev\htdocs\enrima.eu\matlab

rem if result files exists delete them now

if exist results.txt (del results.txt)

rem start the log file

echo ---
-- >> %optDir%\%opEnRiMaStdOut%

rem copy the files required for the optimization

cd %bldg%

cd %unique%

del results.txt >> %opEnRiMaStdOut%

copy ..\..\opEnRiMa.exe . >> %opEnRiMaStdOut%

copy ..\..\dataLoad.txt . >> %opEnRiMaStdOut%

copy ..\..\results.fakeopt.txt . >> %opEnRiMaStdOut%

if not exist dataSystem.txt (copy ..\..\dataSystem.txt . >> %opEnRiMaStdOut%)

rem if MATLAB Runtime Compiler is installed start the opEnRiMa.exe

rem otherwise copy the result template file

if exist %MATLAB_PATH% (

 set PATH=%MATLAB_PATH%;%PATH%

 echo execute opEnRiMa.exe >> %opEnRiMaStdOut%

 opEnRiMa.exe >> %opEnRiMaStdOut%

 del results.fakeopt.txt >> %opEnRiMaStdOut%

) else (

 echo copying fakeopt >> %opEnRiMaStdOut%

 copy results.fakeopt.txt results.txt >> %opEnRiMaStdOut%

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

36 / 90

 del results.fakeopt.txt >> %opEnRiMaStdOut%

)

rem clean up after the optimization is done

del opEnRiMa.exe >> %opEnRiMaStdOut%

cd ..\..

rem import the result file into the EnRiMa DSS (DB) by use of the EnRiMa WS

if exist %ENRIMA_WS% (

 echo execute JAVA: java -jar %ENRIMA_WS% %uniqueBldgName% I0 -file
%bldg%\%unique%\results.txt >> %optDir%\%opEnRiMaStdOut%

 java -jar %ENRIMA_WS% % uniqueBldgName % I0 -file %bldg%\%unique%\results.txt >>
%optDir%\%opEnRiMaStdOut%

) else (

 echo %ENRIMA_WS% client is not available! >> %optDir%\%opEnRiMaStdOut%

)

echo matlab.cmd | FINISHED >> %optDir%\%opEnRiMaStdOut%

exit /b 0

4.6 Integration of KUBIK’s BMS

This section describes the design of a BMS Client that can perform automatic data transfer

between the local system of the KUBUIK laboratory site at Tecnalia and the DSS. The design

will be implemented in forthcoming versions of the DSS. Main data transfers include:

 From KUBIK test site to the DSS: Measurements and weather forecast

 From DSS to Tecnalia server: Optimization results

The communication between KUBIK and the EnRiMa DSS will be based on the existing web

service (WS) described in section 4.2 within this deliverable. Note thus that the intension with

the web service as described earlier is that it should be used by all external systems that are in

the need of communicating with the EnRiMa DSS.

4.6.1 BMS Client Architecture

In the premises of Tecnalia a server has been installed which acquires local information from

two data sources:

 Measurements: The local measurements used in the EnRiMa project are executed by

the KUBIK building management system (BMS) and stored in a KUBIK MySQL

local database (kubik_db).

 Specific weather forecasts for the KUBIK location are daily generated by

TecnaliaMeteo and uploaded to the Tecnalia FTP server (ftp.tecnalia.com). Tecnalia

Meteo Area within Tecnalia Energy and Environment Division provides the weather

ftp://ftp.tecnalia.com/

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

37 / 90

forecast to the Basque Government through Euskalmet trademark

(http://www.euskalmet.euskadi.net). In fact, it is the regional Basque Government

meteo public service.

Note that a common web service for transferring data from the test sites and KUBIK to the

EnRima DSS is developed. The specification, structure and design of this web service is

presented in the previous section.

The tecnalia server pulls these two data sources periodically and stores the information in a

local database (tecnalia_db). From here to the DSS data base it is transferred through the web

service.

The following figure specifies the communication architecture, identifying the different

services, servers and data transfer processes, in order to allow the data transfer automation

from KUBIK site in Tecnalia to EnRiMa’s DSS currently hosted at parner SU.

Figure 4-3: KUBIK BMS client architecture

4.6.2 BMS Client Database Structure

The local database tecnalia_db is internally split in two databases, one for measurements

(mangodb) and one for forecasts (GElocal).

4.6.2.1 Measurement Database

The measurements available in the KUBIK local database are periodically pulled by the

Tecnalia server into the measurement database, being the pulling period configurable

(nowadays the pulling period is 1 minute). The information is acquired by means of a remote

SQL connection to the kubik_db.

KUBIK BMS

SQL queries

Weather

forecast

simulation

(Tecnalia Meteo

is the service

provider)

Tecnalia

FTP Server

Data parser

Web service

Client

Batch cycle

Weather

forecast data

Kubik dynamic data

Kubik dynamic

data

Weather forecast data

EnRiMa DSS

output

GUI

Kubik static

data

EnRiMa

DSS server Tecnalia server with KUBIK BMS Client

kubik_db

tecnalia_db

Data import/

export web

service

Server

Through

common web

service

http://www.euskalmet.euskadi.net/

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

38 / 90

These measurements are stored in the table pointvalues. The time stamp of the measurements

(pointvalues.ts) represents the instant in which the measured variable reflects a predefined

threshold variation (in the case of temperature variables it is either 0.1 or 1ºC). Therefore the

measurements available in the table pointvalues are not evenly distributed in time and

represent the instants when the variables change their values.

Figure 4-4: Measurement database schema.

4.6.2.2 Forecast Database

The information from the weather forecast is acquired through an FTP datasource and stored

in the forecast database. This datasource manages a FTP client that connects periodically

(now daily) to the Tecnalia FTP server so as to download the CSV files that contain the

weather forecasts provided by TecnaliaMeteo. The forecasted values are stored in the table

testimdata.

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

39 / 90

Figure 4-5: Forecast database schema.

4.6.3 Database Structure used by the Data Transfer

EnRiMa’s DSS database contains tables which stores information and make it available to

other modules: such as the solver of the strategic module or operational module.

The tables identified below are the ones used for transferring the data from:

 The weather forecast service to the EnRiMa DSS.

 The KUBIK parameters: static ones through the user interface and dynamic ones from

the data transfer automation.

Or from the DSS to the site.

Figure 4-6: IO_Weather table, data example.

Weather (Figure 4-6): Parameters of the weather forecast (“F” value in “Weather type”

column) or of the weather real measured values (“H” value in “Weather type” column).

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

40 / 90

Figure 4-7: IO_ZoneTemp table, data example

Zone temperature (Figure 4-7): Parameters of the real zone temperature set-point (“H” value

in “Set-point type” column) or the result of the optimization given by the DSS (“O” value in

the “Set-point type” column).

Figure 4-8: BuildingProp table, data example

Buildings (Figure 4-8): Static parameters of the building to be introduced by the user through

the interface. The data base is located in a server identified with the following DNS name:

atlas.dsv.su.se.

4.6.4 Transfer processes

This section will specify the files or data transfer associated to four processes between the

different servers in the previously specified architecture:

1. Transfer of weather forecast files containing weather forecast data provided by

TecnaliaMeteo. These files are uploaded into the FTP server by TecnaliaMeteo and

downloaded by the Tecnalia EnRiMa server.

2. Query of values measured in KUBIK building and available in Kubik database to the

Tecnalia EnRiMa server.

3. Transfer of data (values of the weather forecast and measurements of Kubik) from the

Tecnalia EnRiMa server to the Stockholm University EnRiMa server via web services.

4. EnRiMa DSS output from Stockholm University EnRiMa server to Tecnalia EnRiMa

server via web services.

4.6.4.1 Weather forecast: From Tecnalia Meteo to the FTP server

Tecnalia’s Meteo Area owns Meteo models able to provide weather forecasts. This model

should be run automatically once a day, at a certain hour (for instance 23:00), and the results

stored in a CSV file. The name of the CSV file follows the format:

“Derio_yyyyMMddhhmmss_yyyyMMddhhmmss _yyyyMMddhhmmss .txt”.

The 3 date fields in the filename represent:

 First field: Forecast date. The date when the forecast model has been executed.

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

41 / 90

 Second field: Start date. The start date of the first data period stored in the file.

 Third field: End date. The end date of the last data period stored in the file.

The file will contain data forecasts in Derio, where the KUBIK building is located:

 temperature (ºC),

 relative humidity (%),

 wind speed (km/h)

 and solar irradiation (W/m
2
)

The values will be given in one hour time intervals for the following 24 hours.

Next lines show the format of the data contained in the file:

20130204000000 20130204010000 6.7 88 17.1 0

20130204010000 20130204020000 6.9 91 15.2 0

20130204020000 20130204030000 7.2 93 13.5 0

…

20130204130000 20130204140000 7.2 93 9.5 308

…

20130204230000 20130205000000 10.2 95 7.2 0

The first two fields represent the start and the end of each data period, and the following four

fields represent the data itself.

The file containing the results of the forecasts will be transferred to the FTP server

(ftp.tecnalia.com) at the folder (/Meteo) and secured by login and password.

4.6.4.2 Weather forecast: from the FTP server to Tecnalia database

A java application will be periodically launched to check if there are new forecast files

available in the FTP server. In that case, those files are parsed and the contained information

will be stored in the forecast database (table testimdata). The filename of the already

processed files will be stored in the table tftpfiles, so that in subsequent connections the

information is not parsed again. The format of the CSV files is defined in the table

tftpcolumns, so that the Java application can parse the files correctly.

4.6.4.3 KUBIK Measurements: from KUBIK Database to Tecnalia Database

The KUBIK database is a MySQL database, where different values measured by KUBIK

sensors are registered.

ftp://ftp.tecnalia.com/

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

42 / 90

Figure 4-9: Kubik server. Database schema.

These sensors are identified by ID identifiers in the KUBIK database (table t_datosdef).

Concretely for the EnRiMa project, the agreed and needed values to be registered selected and

transferred to the EnRiMa DSS database through the Tecnalia server and associated database

are:

 External measured temperature (ID=36).

 Internal temperature set-point in the KUBIK cell under test (ID=280)

 Internal measured temperature in the KUBIK cell under test (ID=65).

Between brackets, it is specified the ID number of the magnitude in the KUBIK data base in

table t_datosdef.

The KUBIK database registers these magnitudes once the value has changed from a given

threshold. The reason for this is not to overload the database.

The table t_histdata holds all the measurements while the table t_online data just holds the

last measured value of each variable.

A Java application running in the Tecnalia server periodically queries t_online so as to check

if a new measurement is available for the three monitored variables in EnRiMa. Therefore, the

measurement profile associated to each variable is exactly the same both in the KUBIK

database and the Tecnalia database. The delay for having this information updated in the

Tecnalia database depends on the pulling period of the application, which is now 1 minute.

4.6.4.4 KUBIK Measurements: from Tecnalia Database to DSS

However, the EnRiMa application, for simpler implementation and search in EnRiMa’s

database would need to receive from the Tecnalia server the information regarding

measurements synchronized in a fixed measurement period, i.e.15 minutes.

So, an application is needed to:

 Query the measurement database for acquiring the value profile of all the EnRiMa

variables within a certain communication period.

 Sample the profiles depending on the configured measurement period.

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

43 / 90

 Generate a common file with synchronized information for all the variables.

 Send that information to DSS by means of a web service.

The communication period will be equal to or multiple of the measurement period, depending

on the compromise desired between data traffic load and update frequency in the DSS server.

For instance, if the communication period is one hour the information sent to DSS will be

parsed in four 15 minute period registers.

4.6.4.5 Weather Forecast: from Tecnalia Database to DSS

In this case, the information available in the forecast database is already synchronized in fixed

hourly periods. Anyway, another application is needed to query the information and send it to

DSS after it is downloaded from the FTP server. This application will use the same web

service client as the application that sends the KUBIK measurements.

4.6.4.6 DSS Output: from DSS to Tecnalia Database

The output from the DSS, and concretely from the operational module is stored in table

IO_ZoneTemp (see table 3 of this report).

The user executes the analysis via the user interface, once he/she introduces the static

parameters of the building through the interface, and provided that the dynamic weather

forecast data and KUBIK data have been automatically transferred.

The question is how the Tecnalia serves notices that a certain result has been stored in the

table. With this purpose, a flag will be available in a specific table of the database . If the flag

value is 24, then the DSS has stored certain set-points for the next 24 hours. If the flag value

is 6, then the DSS has stored the optimum set-points for the following 6 hours. If the Flag

value is 0, then no optimization result has been stored.

The time step of the DSS output is always one hour.

This table of the database would be composed by a flag index, the flag value and the time

when the values have been stored in the database. The existence of a new flag index will be

the indicator of having a new output result.

The server side of the web service will read the value of the highest index flag every time it

receives the Tecnalia client web service request GET method. In case it is higher than the

previously read index, the flag value and the related results will be retrieved. In case it is not,

no information will be retrieved.

4.7 Integration of Pinkafeld’s & ENERGYbase’s BMS

This section shows an integration EnRiMa WS approach if the BMS environment is easier as

mentioned in the chapter before. The data collection and distribution process at Campus

Pinkafeld and ENERGYbase is quite easy. On a daily base the DESIGO building

management system or more specific the DESIGO Insight Manager creates an ASCII file

which contains all required values on an hourly base. The WS client presented in chapter 4.3

is executed on the BMS client to initiate the communication with the EnRiMa DSS via the

central web service. The WS client can be used to upload this file daily and to download the

optimization results back to the test site. All communication is initiated from the test site.

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

44 / 90

Therefore also firewalls are no problems. Figure 4-10 shows a simple layout of a future full

automatic data processing environment for Campus Pinkafeld.

Figure 4-10: Possible Campus Pinkafeld data processing environment

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

45 / 90

5 Scenario Generator Implementation Overview

The scenario generation tool creates a scenario tree representing possible decisions that affect

the building management. The scenario tree is based on the configuration values as set by the

user via the GUI. The output from the scenario generator is fed into the solver manager that

produces the solution that is shown to the user.

The input to the scenario generator is data about the parameters with their statistical properties

and about the structure of the scenario tree. The input data is fetched by the tool from the

Kernel database, where the tool stores the output as well. Essentially, the tool transforms the

information the user has about parameters to information which can be used by the

optimization model. In this sense, the tool does not generate new information; it merely

processes all available information in the best possible way. The tool itself is embedded

within the DSS Engine, making it (normally) invisible to the average user. For a more

advanced user, input and output values may be visible as they are communicated to and from

the tool, but beyond this, the tool will appear as a "black box" also to these users. The

prototype of the tool is currently running at servers located at SINTEF, but will be moved to

the DSS Engine server when it will be fully integrated.

A detailed description of the tool is given in deliverable D3.2, Scenario generation software

tool (SINTEF, 2012).

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

46 / 90

6 Solver Manager Implementation Overview

The Solver manager is the module within the DSS Engine responsible for providing the

solution for stochastic optimization problems. This module can work as an independent tool,

though in the context of EnRiMa it works in coordination with the rest of the DSS Engine

modules: the Scenario Generation tool and the Kernel. As a low-level tool (that is, running

without direct interaction with end-users), it takes the models and parameters provided by

other modules through the common DSS database. Then, the solver manager prepares these

input data, applies the appropriate algorithms and computations, and it returns a solution.

Once the solution is ready, it is delivered to the kernel database so that the GUI can retrieve it

directly.

The Solver manager interacts with the Kernel through a data communication and preparation

interface written in Python. The information exchange with the Kernel, and thereby the other

DSS modules, is done via the Kernel database. In turn, the core of the Solver manager

includes additional data preparation (both input and output) modules that interface with the

optimizer, following suitable protocols. These data preparation modules in the core of the

Solver manager have been created using the R statistical software and programming language.

The interface for the optimizer is generic, in the sense that different abstract models can be

defined to match specific scenarios and problems. Once the abstract model has been defined,

multiple instances can be executed, each one running a specific stochastic optimization

problem, receiving the new parameters defined by end-users on the GUI. The prototype of the

solver manager is currently running at servers located at partner URJC, but will be moved to

the DSS server when it will be fully integrated.

Please refer to deliverable D4.3, Stochastic optimization prototype, (URJC, 2013) for

additional information and details about the internal structure of the Solver manager.

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

47 / 90

7 Conclusion

This deliverable describes the kernel prototype implementation. Currently, the prototype is

able to handle the input and retrieval of information that is needed to configure and run both

the operational model and the strategic model. The data services of the kernel are currently in

use and serve the user interface with a structured and version controlled access to the

information. The solver for the operational model is connected to the kernel and thus provides

the ability to run the operational model (via the user interface). Moreover, as described in this

deliverable, an import/export web service is implemented that can be used in the

communication with external systems, including building management systems. A

import/export web service client is developed that can easily be distributed and operated.

Next step of the implementation is to integrate the solver for the strategic model, as well as

the scenario generator. The project will also implement the design of the KUBIK BMS Client

as described in this document. This will enable the EnRiMa DSS to communicate with the

BMS at the KUBIK laboratory site.

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

48 / 90

Acknowledgements

This deliverable is created in a joint effort of several authors. Martin Henkel (SU) and Janis

Stirna (SU) have acted as editors and contributors, Wayne Westmoreland (SU) provided the

overview of the database. Markus Groissböck (CET) contributed with the import/export web

service description, the description of the database for the operational model, the integration

of the operational solver, and also Appendix I and III, while David Berger (CET) wrote

Appendix II. Moreover Eugenio Perea and Ana Mera (TECNALIA) contributed with the

section on the design of the BMS Client at KUBIK. Marek Makowski, Hongtao Ren, and

Janusz Granat (IIASA) contributed in particular to the description of the generic kernel

design. Michal Kaut and Adrian Tobias Werner (SINTEF) wrote the description of the

scenario generator tool, while Emilio Lopez Cano and Felipe Ortega (URJC) wrote the

description of the solver manager.

In the course of the internal review of this document Michael Stadler (CET), Emilio Lopes

Cano and Felipe Ortega (URJC) provided valuable comments.

We would like to thank the Austrian Federal Ministry for Transport, Innovation and

Technology that also supports the Center for Energy and innovative Technologies (CET)

through the “Building of Tomorrow” program. Additionally, the Theodor Kery Foundation of

the province of Burgenland also supports the Center for Energy and innovative Technologies

(CET) in course of EnRiMa. We also want to thank the University of Applied Science at

Pinkafeld and University of Applied Science at Vienna (ENERGYbase) for their support.

http://www.bmvit.gv.at/en/index.html
http://www.bmvit.gv.at/en/index.html

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

49 / 90

References

UCL, IIASA, CET, SINTEF, TECNALIA, and HCE (2012), A Mathematical Formulation of

Energy Balance and Flow Constraints, EnRiMa Deliverable D2.2, European Commission FP7

Project Number 260041.

URJC (2013), Stochastic Optimization Prototype, EnRiMa Deliverable D5.3, European

Commission FP7 Project Number 260041.

URJC, UCL, IIASA (2012), Symbolic Model Specification, EnRiMa Deliverable D4.2,

European Commission FP7 Project Number 260041.

SINTEF (2012), Scenario generation software tool – Documentation for the software tool,

part of EnRiMa Deliverable D3.2, European Commission FP7 Project Number 260041.

SU, CET, HCE (2013), GUI prototype and evaluation, EnRiMa Deliverable D5.2, European

Commission FP7 Project Number 260041.

SU, IIASA, SINTEF, URJC, and CET (2012). Draft Specification for Services and Tools.

EnRiMa Deliverable D5.1, European Commission FP7 Project Number 260041.

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

50 / 90

Appendix I - Web Service Server & Client Source Code

The web service is based on the “Axis2 Web Services” provided within the development

environment Eclipse. Four packages have been created within this WS server and client

software package:

 eu.enrima.ws.processfile contains all required files for the WS server and

client interactions

 eu.enrima.ws.processfile.retrieve contains the code required for the retrieve data

features

 eu.enrima.ws.processfile.save contains the code required for the save data

features

 eu.enrima.ws.processfile.tools contains some generic tools and functions

required in more than one package/class

Package eu.enrima.ws.processfile

The package eu.enrima.ws.processfile contains of four Java classes whereof two have been

created completely by the Axis2 component within Eclipse:

 ProcessFileWSCallbackHandler.java

 ProcessFileWSStub.java

A main class for the WS server is the class ProcessFileWS.java (within the package

eu.enrima.ws.processfile) which represents the main functions of the web services. It is shown

in the list below.

// designed be CET, 2013

package eu.enrima.ws.processfile;

import eu.enrima.ws.processfile.retrieve.*;

import eu.enrima.ws.processfile.save.*;

import eu.enrima.ws.processfile.tools.Tools;

public class ProcessFileWS {

 public String retrieve (String bldgId, String importId, String date, String
time, String objectId) {

 RetrieveFile rfP = new RetrieveFile();

 rfP.doIt(bldgId, importId, date, time, objectId);

 return rfP.retCode;

 }

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

51 / 90

 public String save (String bldgId, String importId, String date, String time,
String objectId) {

 SaveFile sfP = new SaveFile();

 sfP.doIt(bldgId, importId, date, time, objectId);

 return sfP.retCode;

 }

 public int addTwoNumbers(int firstNumber, int secondNumber){

 return firstNumber + secondNumber;

 }

}

The main class for the WS client ProcessFileWSclient.java (within the package

eu.enrima.ws.processfile) is shown below and is responsible for the interaction with the

customer on the customer site (also known as Local WS client).

// designed be CET, 2013

package eu.enrima.ws.processfile;

import java.io.BufferedReader;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.net.HttpURLConnection;

import java.net.MalformedURLException;

import java.net.URL;

import java.rmi.RemoteException;

import org.apache.axis2.client.Options;

import org.apache.commons.codec.binary.Base64;

import eu.enrima.ws.processfile.ProcessFileWSStub.Retrieve;

import eu.enrima.ws.processfile.ProcessFileWSStub.RetrieveResponse;

import eu.enrima.ws.processfile.ProcessFileWSStub.Save;

import eu.enrima.ws.processfile.ProcessFileWSStub.SaveResponse;

import eu.enrima.ws.processfile.retrieve.RetrieveFile;

import eu.enrima.ws.processfile.save.SaveFile;

import eu.enrima.ws.processfile.tools.Tools;

@SuppressWarnings("unused")

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

52 / 90

public class ProcessFileWSclient {

 /**

 * @param args

 * @throws Exception

 */

 public static void main(String[] args) throws FileNotFoundException,
InterruptedException, MalformedURLException, IOException {

 String strReadFileName = null, strToTransfer = null, line = null;

 String strFileType = null, strBldgId = null, strTypeOfImport = null;

 int typeOfImport = 0, sizeString = 0;

 URL url = null;

 File file = null;

 InputStream is = null;

 BufferedReader inReader = null;

 boolean urlExists = true;

 ProcessFileWSStub stub = new ProcessFileWSStub();

 Tools.doLog("");

 Tools.doLog("EnRiMa - data wrapper (upload & download service)");

 Tools.doLog("V.1.00 | designed by CET");

 Tools.doLog("");

 if(args.length != 4) {

 Tools.doLog(Level(1) + "Usage:");

 Tools.doLog(Level(2) + "JAVA_DIR\\java -jar wsClient.jar bldgID typeInOut [-
url|-file|-bacnet] [fileName|bacnetID]");

 Tools.doLog("");

 Tools.doLog(Level(2) + "arg1: bldgID (unique building identifier)");

 Tools.doLog(Level(3) + "possible source names are:");

 Tools.doLog(Level(4) + "EnRiMa sites: FASAD, Pinkafeld, KUBIK, ENERGYbase");

 Tools.doLog(Level(4) + "other sources: wunderground.com, EXX");

 Tools.doLog("");

 Tools.doLog(Level(2) + "arg2: typeInOut (typeOfInput I* or typeOfOutput
O*)");

 Tools.doLog(Level(3) + "I0 ... operational DSS results");

 Tools.doLog(Level(3) + "I1 ... historical BEMS information");

 Tools.doLog(Level(3) + "I2 ... weather forecast");

 Tools.doLog(Level(3) + "I3 ... price forecast");

 Tools.doLog("");

 Tools.doLog(Level(3) + "O1 ... set point temperatures");

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

53 / 90

 Tools.doLog("");

 Tools.doLog(Level(2) + "arg3: -url | -file | -bacnet");

 Tools.doLog("");

 Tools.doLog(Level(2) + "arg4: fileInput | fileOutput | bacnetID");

 Tools.doLog(Level(3) + "name of file which should be processed or BACnet
object ID for communication");

 Tools.doLog(Level(3) + "supported file format:");

 Tools.doLog(Level(4) + "csv (semicolon or comma as separators)");

 Tools.doLog("");

 Tools.doLog("");

 Tools.doLog(Level(1) + "For further assistance contact EnRiMa's development
team");

 Tools.doLog(Level(2) + "via http://www.enrima-project.eu/ or
development@enrima-project.eu .");

 Tools.doLog("");

 System.exit(0);

 }

 else {

 strBldgId = args[0];

 if (strBldgId.substring(0,5).equals("FASAD") ||
strBldgId.substring(0,9).equals("Pinkafeld") ||

 strBldgId.substring(0,16).equals("wunderground.com") ||
strBldgId.substring(0,3).equals("EEX") ||

 strBldgId.substring(0,5).equals("KUBIK") ||
strBldgId.substring(0,9).equals("ENERGYbase")) {

 Tools.doLog("origin of data: " + strBldgId);

 }

 else {

 Tools.doLog("Unknown data source: " + strBldgId);

 Tools.doLog("");

 Tools.doLog(Level(1) + "For further assistance contact EnRiMa's
development team");

 Tools.doLog(Level(2) + "via http://www.enrima-project.eu/ or
development@enrima-project.eu .");

 Tools.doLog("");

 System.exit(0);

 }

 // check if type of import is numeric and between 1 and 3

 strTypeOfImport = args[1];

 if(strTypeOfImport.equals("I0")) {

 Tools.doLog("input operational DSS results");

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

54 / 90

 } else if(strTypeOfImport.equals("I1")) {

 Tools.doLog("input historical BEMS information");

 } else if(strTypeOfImport.equals("I2")) {

 Tools.doLog("input weather forecast");

 } else if(strTypeOfImport.equals("I3")) {

 Tools.doLog("input price forecast");

 } else if(strTypeOfImport.equals("O1")) {

 Tools.doLog("output optimized temperature set points");

 } else {

 Tools.doLog("Unknown data source: " + strTypeOfImport);

 Tools.doLog("");

 Tools.doLog(Level(1) + "For further assistance contact EnRiMa's
development team");

 Tools.doLog(Level(2) + "via http://www.enrima-project.eu/ or
development@enrima-project.eu .");

 Tools.doLog("");

 System.exit(0);

 }

 strFileType = args[2];

 strReadFileName = args[3];

 if (strFileType.contentEquals("-url") ||

 strFileType.contentEquals("-file") ||

 strFileType.contentEquals("-bacnet")) {

 if (strFileType.equals("-url")) {

 Tools.doLog("input remote file");

 } else if (strFileType.equals("-file")) {

 Tools.doLog("input local file");

 } else if (strFileType.equals("-file")) {

 Tools.doLog("BACnet communication");

 }

 } else {

 Tools.doLog("Argument3 must be eighter '-file', '-url' or '-bacnet'. Is '"
+ strFileType + "'!");

 System.exit(0);

 }

 Tools.doLog("");

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

55 / 90

 urlExists = checkIfWSExists(SaveService.SAVESERVICE_WSDL_LOCATION.
toString());

 if (!urlExists) {

 Tools.doLog("Error: EnRiMa WS is NOT up and running or is NOT
accessible!");

 Tools.doLog(" Please conntact your EnRiMa partner.");

 Tools.doLog("");

 System.exit(0);

 }

 else {

 Tools.doLog("EnRiMa WS is up and running.",1);

 }

 }

 if (strTypeOfImport.substring(0,1).equals("I")) {

// INPUT procedure

 if (! strFileType.equals("-bacnet")) {

 try {

 if (strFileType.equals("-url")) {

 url = new URL(strReadFileName);

 inReader = new BufferedReader(new
InputStreamReader(url.openStream()));

 }

 else {

 file = new File(strReadFileName);

 inReader = new BufferedReader(new FileReader(file));

 }

 // Read the file

 strToTransfer = "";

 while ((line = inReader.readLine()) != null) {

 if (strToTransfer.length() == 0)

 strToTransfer = line;

 else

 strToTransfer = strToTransfer + "\n" + line;

 }

 // Close the output stream

 inReader.close();

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

56 / 90

 } catch (IOException e) {

 if (strFileType.equals("-url")) {

 Tools.doLog("Argument4 must be an valid / existing remote file name.
Is '" + strReadFileName + "'!");

 }

 else {

 Tools.doLog("Argument4 must be an valid / existing local file name. Is
'" + strReadFileName + "'!");

 }

 System.exit(1);

 }

 }

 // encoding byte array into base 64

 byte[] encoded = Base64.encodeBase64(strToTransfer.getBytes());

 // and convert it into a String

 String strEncoded = new String(encoded);

 // call the web service to transfer the file to the EnRiMa web server

 Tools.doLog("Initiate data transfer to EnRiMa's file transfer web service
... ",0);

 // define parameter for save WS

 Save sav = new Save();

 sav.setBldgId(strBldgId);

 sav.setImportId(strTypeOfImport.substring(1,2));

 sav.setDate(Tools.GetDate());

 sav.setTime(Tools.GetTimeS());

 sav.setObjectId(strEncoded);

 // call save WS

 SaveResponse saveRes = stub.save(sav);

 sizeString = saveRes.get_return();

 if (sizeString > 0) {

 Tools.doLog("Successfully transfered " + sizeString + " bytes.",1);

 System.exit(0);

 }

 else {

 Tools.doLog("Return code: " + sizeString,1);

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

57 / 90

 Tools.doLog("Either your file or the combination of buildingNumber and
typeOfImport is invalid.",1);

 System.exit(1);

 }

 }

 else if (strTypeOfImport.substring(0,1).equals("O")) {

// OUTPUT procedure

 Tools.doLog("Initiate EnRiMa's result transfer web service ... ",1);

 // define parameter for save WS

 Retrieve ret = new Retrieve();

 ret.setBldgId(strBldgId);

 ret.setImportId(strTypeOfImport.substring(1,2));

 ret.setDate(Tools.GetDate());

 ret.setTime(Tools.GetTimeS());

 ret.setObjectId(strToTransfer);

 for (int hour=Integer.parseInt(Tools.GetHour()); hour<=24; hour++) {

 String strTime = Tools.GetHour() + ":00:00";

 // call retrieve WS

 RetrieveResponse retRes = stub.retrieve(ret);

 sizeString = retRes.get_return();

 if (sizeString > 0) {

 Tools.doLog("Set point temperature for " + strTime.substring(0,2) + "
o'clock: " + Double.valueOf(sizeString)/100 + " grad Celsius",1);

 System.exit(0);

 }

 else {

 Tools.doLog("Return code: " + sizeString,1);

 Tools.doLog("Either your file or the combination of buildingNumber and
typeOfImport is invalid.",1);

 System.exit(1);

 }

 }

 }

 else {

 Tools.doLog("Invalid input/output type: " + strTypeOfImport);

 System.exit(0);

 }

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

58 / 90

 }

 private static String Level(int level) {

 int spacesPerLevel = 3;

 String strLevel = "";

 for(int i=0; i<(level*spacesPerLevel); i++){

 strLevel += " ";

 }

 return strLevel;

 }

 public static boolean checkIfWSExists(String targetUrl) {

 HttpURLConnection httpUrlConn;

 try {

 httpUrlConn = (HttpURLConnection) new URL(targetUrl).openConnection();

 httpUrlConn.setRequestMethod("HEAD");

 httpUrlConn.setConnectTimeout(5000);

 httpUrlConn.setReadTimeout(5000);

 return (httpUrlConn.getResponseCode() == HttpURLConnection.HTTP_OK);

 } catch (Exception e) {

 return false;

 }

 }

}

Package eu.enrima.ws.processfile.retrieve

The main file within the export procedure is the class RetrieveFile.java (within the package

eu.enrima.ws.processfile.retrieve) is shown below.

// designed be CET, 2013

package eu.enrima.ws.processfile.retrieve;

import java.sql.Connection;

import eu.enrima.ws.processfile.tools.Tools;

import eu.enrima.ws.processfile.tools.DBtools;

public class RetrieveFile {

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

59 / 90

 public String retCode;

 public RetrieveFile () {

 }

 public void doIt (String bldgId, String fileTypeId, String date, String time,
String fileContentToProceed) {

 // check if bldgId is valid

 String tmpInstanceId = null;

 Connection connect = null;

 connect = DBtools.connectDB (connect);

 tmpInstanceId = DBtools.getUniqueId(connect, bldgId);

 if (tmpInstanceId.equals("0")) {

 Tools.doLog("Used unique building string is invalid: " + bldgId);

 }

 else {

 Tools.doLog("Case instance ID: " + bldgId + " => " + tmpInstanceId);

 DBtools.disconnectDB(connect);

 // continue work if unique building id is available

 int intImportId = 0;

 String retValue = "";

 intImportId = Integer.parseInt(fileTypeId);

 switch (intImportId) {

 case 1:

 retValue = retrieveBEMS(tmpInstanceId, fileTypeId, date, time, bldgId);

 break;

 default:

 System.out.println("'get' bldg <" + bldgId + ">, file type '" +
fileTypeId + "' is not defined!");

 break;

 }

 retCode = retValue;

 }

 }

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

60 / 90

 private String retrieveBEMS(String bldgId, String bType, String date, String
hour, String objectId) {

 String retValue;

 Connection connect = null;

 connect = DBtools.connectDB (connect);

 retValue = DBtools.retrieveBEMS(connect, bldgId, date, hour, objectId);

 DBtools.disconnectDB(connect);

 return retValue;

 }

}

Package eu.enrima.ws.processfile.save

The main file within the import procedure is the class SaveFile.java (within the package

eu.enrima.ws.processfile.save) is shown below.

// designed be CET, 2013

package eu.enrima.ws.processfile.save;

import java.sql.Connection;

import org.apache.commons.codec.binary.Base64;

import eu.enrima.ws.processfile.tools.DBtools;

import eu.enrima.ws.processfile.tools.Tools;

public class SaveFile {

 public String retCode;

 public Tools log = new Tools();

 public SaveFile () {

 }

 public void doIt (String bldgId, String fileTypeId, String date, String time,
String fileContentToProceed) {

 // check if bldgId is valid

 String tmpBldgId = null, tmpInstanceId = null;

 Connection connect = null;

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

61 / 90

 connect = eu.enrima.ws.processfile.tools.DBtools.connectDB (connect);

 tmpBldgId = DBtools.getBldgId(connect, bldgId);

 if (tmpBldgId.equals("0")) {

 Tools.doLog("Used unique building string is invalid: " + bldgId);

 }

 else {

 Tools.doLog("Unique building ID: " + bldgId + " => " + tmpBldgId);

 tmpInstanceId = DBtools.getUniqueId(connect, bldgId);

 if (tmpBldgId.equals("0")) {

 Tools.doLog("Used unique building does not deliver a building ID: " +
bldgId);

 }

 else {

 Tools.doLog("Case instance ID: " + bldgId + " => " + tmpInstanceId);

 eu.enrima.ws.processfile.tools.DBtools.disconnectDB(connect);

 // continue work if unique building id is available

 // decoding byte array into base64

 byte[] strByte = fileContentToProceed.getBytes();

 byte[] decoded = Base64.decodeBase64(strByte);

 // and convert in into a String

 String strDecoded = new String(decoded);

 int intFileTypeId = 0;

 intFileTypeId = Integer.parseInt(fileTypeId);

 switch (intFileTypeId) {

 case 0:

 saveOpResults(tmpBldgId, tmpInstanceId, date, time, strDecoded);

 break;

 case 1:

 saveBEMS(tmpBldgId, date, time, strDecoded);

 break;

 case 2:

 saveWeather(tmpBldgId, date, time, strDecoded);

 break;

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

62 / 90

 case 3:

 savePrice(tmpBldgId, date, time, strDecoded);

 break;

 default:

 Tools.doLog("'save' for data source <" + bldgId + ">, file type '" +
fileTypeId + "' is not defined!");

 strDecoded = "";

 break;

 }

 retCode = Integer.toString(strDecoded.length());

 }

 }

 }

 private int saveOpResults(String bldgId, String instanceId, String date, String
time, String str) {

 return OpResults.saveIt(bldgId, instanceId, date, time, str);

 }

 private int saveBEMS(String bldgId, String date, String time, String str) {

 return BEMS.saveIt(bldgId, date, time, str);

 }

 private int saveWeather(String bldgId, String date, String time, String str) {

 return Weather.saveIt(bldgId, date, time, str);

 }

 private int savePrice(String bldgId, String date, String time, String str) {

 return Price.saveIt(bldgId, date, time, str);

 }

}

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

63 / 90

Appendix II - Weather Forecast Quality Analysis

Assessment for Pinkafeld Campus

As EnRiMa is a project with the aim to improve energy efficiency at different places in

Europe the aim was to find a weather data provider that is able to fulfil this project

requirement. Also having only one weather data provider for all European (test) sites was

intended. Therefore the weather forecast service from Weather Underground (wunderground,

2013a) has been investigated in this report and an initial analysis of the weather forecast

quality for Pinkafeld Campus (one of our Austrian test site) has been performed by CET.

As Weather Underground is a service provider that is able to deliver worldwide weather

forecasts it has been chosen to be EnRiMa’s primary weather service provider. Beside this

weather forecast service other services can be considered as well. For example for KUBIK

there is a TECNALIA internal approach to do the weather forecast on a daily base and collect

those forecasts with the web-services and store it on the EnRiMa server.

"Weather Underground is committed to delivering the most

reliable, accurate weather information possible. Our state-of-the-art

technology monitors conditions and forecasts for locations across the

world, so you'll always find the weather information that you need"

(wunderground, 2013b).

Weather Underground monitors conditions and forecasts for locations across the world. It’s a

network of personal weather stations with almost 23,000 stations in the US and over 13,000

across the rest of the world (wunderground, 2013b). Everyone how owns a personal weather

station (PWS) can share his data with the rest of the world. The list below shows how it works

to be integrated in the wundground.com weather services (wunderground, 2013d):

1. Purchase Weather Station Hardware

2. Placing Your Weather Station to Report Accurate Readings

3. Installation and Configuration of Software

4. Upload Your Data to Weather Underground

Weather Forecast Analysis

An initial weather forecast quality analysis for Pinkafeld Campus will be shown in this

chapter by considering the weather forecast and the historical weather data from Weather

Underground.

Access Weather Underground

The weather forecast data will be obtained by a wunderground.com provided API requests

which are made over HTTP. The returned data can be called as a JSON- or XML format

depending on the used API call. By replacing the “xml” tag through the “json” tag the XML

or JSON formatted weather forecast will be delivered by wunderground.com. This file is

further processed and stored in the EnRiMa database by the use of the web service described

in section 4.

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

64 / 90

(http://api.wunderground.com/api/7b8bbd47a9bfa800/hourly/q/Austria/Pinkafeld.xml). More

details about that can be found on the Weather API Introduction (wunderground, 2013c) (a

screenshot of the API description is available in the picture below).

Figure A2-1: Weather forecast API introduction (wunderground.com)

To get the recent weather forecast for Pinkafeld the following link was used in a browser to

obtain the required weather forecast data: http://english.wunderground.com/cgi-bin/

findweather/getForecast?query=Pinkafeld,at&hourly=1&yday=65&weekday=Donnerstag.

The figure below shows the output of this link. The figure shows all data which has been

required for the weather forecast analysis (point in time, temperature at this time).

http://api.wunderground.com/api/7b8bbd47a9bfa800/hourly/q/Austria/Pinkafeld.xml
http://english.wunderground.com/cgi-bin/%20findweather/getForecast?query=Pinkafeld,at&hourly=1&yday=65&weekday=Donnerstag
http://english.wunderground.com/cgi-bin/%20findweather/getForecast?query=Pinkafeld,at&hourly=1&yday=65&weekday=Donnerstag

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

65 / 90

Figure A2-2: Weather forecast Pinkafeld for 7 March 2013 (wunderground.com)

For test purposes we created a developer account at Weather Underground with the ID

7b8bbd47a9bfa800. The username and the according password are available through CET.

The recent XML respectively JSON file for Pinkafeld can be accessed via the following links:

 http://api.wunderground.com/api/7b8bbd47a9bfa800/hourly/q/Austria/Pinkafeld.xml

 http://api.wunderground.com/api/7b8bbd47a9bfa800/hourly/q/Austria/Pinkafeld.json

http://api.wunderground.com/api/7b8bbd47a9bfa800/hourly/q/Austria/Pinkafeld.xml
http://api.wunderground.com/api/7b8bbd47a9bfa800/hourly/q/Austria/Pinkafeld.json

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

66 / 90

Weather Forecast Data

For the initial weather forecast quality analysis the browser based approach (see Figure A2-2

above) has been used. The table below shows the weather forecast for 19
th

 February to 21
st

February 2013 which has been evaluated every day at 8 AM. The table shows the ambient air

temperature (°C) for each observed hour.

Table A2-1: Weather forecast (ambient air temperature, °C) (wunderground.com)

date / time 07:00 10:00 13:00 16:00 19:00 22:00

19.02. -3 -1 0 -1 -3 -5

20.02. -9 -5 -2 -5 -4 -6

21.02. -6 -7 -4 -5 -4 -5

Historical Weather Data

The actual temperatures at Pinkafeld have been taken from the following wunderground.com

link: http://www.wunderground.com/q/zmw:00000.3.11185. The actual weather data for

Pinkafeld is shown in the table below.

Table A2-2: Actual Weather Data (ambient air temperature, °C) (wunderground.com)

date / time 07:00 10:00 13:00 16:00 19:00 22:00

19.02. -3.6 -1.7 -0.8 -1.2 -5.6 -7.5

20.02. -8.2 -5.3 -1.3 -3.0 -5.0 -5.8

21.02. -7.2 -6.5 -4.1 -3.8 -5.2 n/a

Comparison and Conclusion

The following Figure A2-3 compares the weather forecast temperatures (blue line) with the

historical weather temperatures (red line). Wunderground.com uses the Austrian

“Zentralanstalt für Meteorologie und Geodynamik” (ZAMG, http://www.zamg.ac.at) to get

the forecasts and the historical weather data. The green line shows the temperature difference

of historical and forecasted temperatures.

http://www.wunderground.com/q/zmw:00000.3.11185

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

67 / 90

Figure A2-3: Comparison of forecast and historical weather temperature (based on

wunderground.com)

The weather forecast quality from Weather Underground can be assessed with satisfactory as

the difference between the weather forecast and the observed historical temperature is

between +2 and -3 °C which should be sufficient.

References for Appendix II

wunderground (2013a): Weather Forecast & Reports, Long Range & Local [Online].

Available from: http://www.wunderground.com (Accessed: 30 January 2013).

wunderground (2013b): About Us | The First Internet Weather Forecast Service [Online].

Available from: http://www.wunderground.com/about/background.asp (Accessed: 7 March

2013).

wunderground (2013c): About Us | The First Internet Weather Forecast Service [Online].

Available from: http://www.wunderground.com/weather/api/d/docs?d=index (Accessed: 30

January 2013).

wunderground (2013d): Personal Weather Stations | Worldwide Weather Station Project

[Online]. Available from: http://english.wunderground.com/weatherstation/setup.asp

(Accessed: 19 March 2013).

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

68 / 90

Appendix III - BACnetTM

This appendix describes the use of BACnet
TM

 for the integration of the Pinkafeld site. In

doing so the appendix also identifies a set of issues that need to be resolved in order to use

BACnet
TM

.

Several standards are in use for the integration of building management systems. Some of

them are designed for wired (e.g. KNX - Konnex, LONWorks, BACnet
TM

) devices while

others are designed for wireless devices (e.g. Zigbee, Z-Wave, GPRS - general packet radio

service, PLC – programmable logic controller). In the first sections of this appendix, we

introduce the available building systems, before describing the specifics about the EnRiMa

DSS and the BACnet
TM

 protocol.

Building Automation System (BAS)

The building automation (BA) is the aggregate of monitoring, control, automatic, and

optimization appliances/devices within a building. It is an important part of the facility

management. The overall goal is a trade-spanning automatic process, which operates within

given constraints (parameters) and simplifies the use and control of the whole system. All

sensors, actors, controls, consumers and other technical equipment within a building are

connected with each other via the automation controllers.

The main goal of building management and building automation is to increase efficiency, to

reduce costs and emissions. Furthermore, safety could be an additional occasion to deal with

building automation. The following topics are covered within building automation

(Technologies, 2011):

 building management

 lighting control

 HVAC control

 energy production

 energy distribution and safety

Figure A3-1 shows an example structure of a building automation system (BAS).

Figure A3-1: Three-layer model in building automation (Merz, Hansemann & Hübner,

2009)

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

69 / 90

Merz, Hansemann & Hübner (2009) shows three levels within the building automation

system: the management level, where the human interface device is located; the automation

level, where the small intelligent system – the so-called direct digital control (DSS) - is

located; and the field level, where the sensors and actors are located.

BAS within EnRiMa

A major goal of EnRiMa is to optimize the short-term supply and demand like cooling,

heating and electricity, as well as local distributed Energy Resources (DER). To minimize

human interaction a direct communication with the test site and the building automation (BA)

would be favourable. The main goal of this work is to explore this direct communication

possibility and influence to set temperature set points directly.

Therefore, it is crucial to test the communication between the EnRiMa components and the

building management system. In WP1 and WP2 we already demonstrated the communication

from DESIGO™ to EnRiMa in one way and are now able to read data from DESIGO™, but

overwriting set points and communication in the other direction seems to have a lot of

barriers. Besides all these technical barriers it needs to be noted that in course of WP1 we got

strong stakeholder feedback that this direct communication is not expected nor wished by the

building owner due to liability issues. Thus, this BACnet communication work is just

intended to demonstrate the communication for the exploitation plan in WP7 and maybe to

diminish the stakeholders concerns of direct communication for the operations version of

EnRiMa.

BAS at Pinkafeld Campus

A new version of DESIGO
TM

 was implemented during autumn 2012. Some enhancements are

important for the EnRiMa project.

Building Automation and Controls NETwork (BACnet)

BACnet is an abbreviation for “building automation and controls network”. “A key design

criterion (enumerated in some detail at the kick-off meeting in Nashville) was that the

protocol had to be applicable to all building automation needs. To accomplish this, BACnet

specifies nearly all of the most common functions: analog and binary input, output and

values; control loops; schedules, etc., that clearly apply to almost any kind of monitoring or

control application.” BACnet is a European standard protocol within CEN, the Committee for

European Standardization (BACnet, 2012).

Required IT components and expertise

The following software tools and skills are required to fulfill the overall target of EnRiMa.

 EnRiMa server (database, web-server, solver, scenario generator)

 data wrapper (retrieve BACnet
TM

 object details from BMS, weather data provider

and so on)

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

70 / 90

 set point reader (read the optimization results from the EnRiMa server and write

them into the BMS; periodical task to define the set-points). This is basically the

focus of this study.

 BACnet
TM

 enabled BMS

 BACnet
TM

 communication software (e.g. BACnet4J, 2012) and BACnet
TM

 software

experts (e.g. Siemens)

 BACnet experts (e.g. Siemens)

As this lists contains items as “BACnet
TM

 experts”, “BACnet
TM

 software experts “, and

“BACnet
TM

 enabled BMS” also vendors which are not part of the EnRiMa consortium are

required to fulfill this building automation tasks. Therefore it is not known at the moment of

writing this deliverable if the project team is able to get in contact with the required experts

(which are not part of the EnRiMa project consortium) to achieve the functionality to extend

EnRiMa with this mentioned BACnet
TM

 communication.

FAQ

Where is BACnetTM located?

It can operate within all three levels of the building automation system: the management, the

automation and the field level. If a proposed Java tool should be able to interact with the

management and/or automation level it is required to understand the BACnet
TM

 protocol

stack. A Java implementation of the BACnet
TM

 protocol stack is available (BACnet4J, 2012).

The protocol stack is an implementation of a computer networking protocol suite. The terms

are often used interchangeably. Strictly speaking, the suite is the definition of the protocols,

and the stack is the software implementation of them.

The BACnet
TM

 implementation at Campus Pinkafeld is given by Figure A3-1 (based on

information from Campus Pinkafeld) and consists of a BMS server and controller as well as

several sensors and actors.

Campus Pinkafeld Network
172.x.x.x

Campus Pinkafeld Network
172.x.x.x

BMS ControllerBMS Controller
BMS ServerBMS Server

Sensors / Actors
(BACnet Objects)

...

Figure A3-1: BACnet
TM

 infrastructure at Campus Pinkafeld

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

71 / 90

Can BACnetTM be accessed behind a router/firewall?

Yes, it is possible. Figure A3-2 shows TCP/IP or more correctly UDP/IP based BACnet
TM

network could look like.

As the security of most of the building owners does not allow to access their building

management system from outside of the building it is necessary to initiate the communication

to the EnRiMa server from inside of the building.

Figure A3-2: Example BACnetT
M

/IP Network (Merz, Hansemann & Hübner, 2009)

Figure A3-3 shows the ISO layer concept and where the BACnet stack is placed within this

model.

Figure A3-3: BACnet
TM

 layers compared with OSI layers (Merz, Hansemann & Hübner,

2009)

UDP and TCP are within layer 4 of the 7-layer ISO model. The ‘transmission control

protocol’ (TCP) is a connection oriented protocol while the ‘user datagram protocol’ (UDP) is

a connectionless protocol. Therefore, for UDP there is no handshake sequence necessary to

exchange information. UDP is less reliable as TCP but was designed with less communication

overhead.

As BACnet/IP is based on TCP/IP it can be routed via router and firewalls. Of course the

BACnet port 47808 (= 0xBAC0) (for default configurations) respectively 47816 (= 0xBAC8)

for the installation at Campus Pinkafeld has to be allowed.

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

72 / 90

Where is DESIGOTM located within the BAS?

DESIGO
TM

 is part of the management level within the building automation system (BAS).

But it has access to the automation level (controller) to do the required actions as e.g. set a

threshold, read a recent value of a BACnet object.

How can we predefine set-points in general/in Pinkafeld?

If we want to set the values for the next e.g. 24 hours we need a tool which sets the

temperature every hour. This means we need a tool at the test buildings to interact with the

BMS directly. It is possible to overwrite the target value of e.g. the inlet temperature of the

heating system or the inlet temperature of the air ventilation system. By doing this the

required zone air temperature can be achieved. The change of a target value has to be done at

least once an hour. Maybe every 15 minutes is possible as well. This depends on the

definition of the time step within the operational module.

Which BACnetTM objects are available at Campus Pinkafeld?

We arranged that Mr. Michtner from Siemens Austria will deliver this list, which will allow

us to test the BACnet
TM

 communication via a java tool (see chapter 0). We are still waiting

for an up-to-date BACnet
TM

 object list for Campus Pinkafeld.

BACnetTM security

According to Mr. Michtner from Siemens Austria there is no possibility to add a security

layer. If a client can access the BACnet
TM

 network it is automatically possible to read and

write all available BACnet
TM

 objects.

It should make no difference if the BACnet
TM

 server or the BACnet
TM

 controller is used for

the communication.

BACnetTM Configuration

Within Campus Pinkafeld the BACnet
TM

 port 0xBAC8 (47816) is used while the default port

is 0xBAC0 (47808). The BAS computer and the controller are located within the TCP/IP

address field of 172.16.120.x/255.255.255.0. The TCP/IP address of the BAS computer and

the controller are:

172.16.120.10 … BMS server - BACnet-ID: 2100001, BACnet-Port: 0xBAC8 = 47816

172.16.120.11 … BMS controller

172.16.120.12 … BMS configuration laptop

The default BACnet
TM

 port was changed from the default 0xBAC0 (47808) to 0xBAC8

(47816). The address for the BMS configuration laptop is available for Siemens during the

DESIGO
TM

 installation/update procedure. Each BACnet
TM

 object value has to be unique and

is defined by an object instance number, an object type, and an object instance. Therefore an

example to address a BACnet
TM

 object is shown below according to Mr. Michtner from

Siemens Austria:

object-instance-no 2098177

object-typ 0

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

73 / 90

object-instance 7

Available BACnet Tools

The list below shows some JAVA-based BACnet tools:

 http://sourceforge.net/projects/bacnet4j/ (http://bacnet4j.sourceforge.net)

 http://bacnetstack.com (OS independent)

 http://sourceforge.net/projects/bacnet/?source=directory

 http://sourceforge.net/projects/bacrabbit/

 https://github.com/Frozenlock/Bacnet-scan

 https://github.com/HariYadav/JBACnet

 https://github.com/diekmann/BACnetSim

 https://github.com/snowwindwaverider/mango

 https://github.com/alclabs/bacnet

 https://github.com/mlab/mlep

The list below shows some BACnet
TM

 tools designed and compiled for Windows:

 http://sourceforge.net/projects/vts/ (Windows)

 http://www.bacnet.org/Developer/index.html

 http://www.cimetrics.com/index.php/product-solutions.html

 http://www.newron-system.com/BACnet-Software,26?lang=en

 http://www.polarsoft.biz/products.html

 http://www.scadaengine.com/index.html

Within the following chapters some BACnet
TM

 tools are described briefly.

BACnetTM Tool

The open source command line tool can be downloaded from sourceforge.net [13]. "This

BACnet
TM

 protocol stack library provides a BACnet
TM

 application layer, network layer and

media access (MAC) layer communications services. It is an open source, royalty-free library

for an embedded system, Windows, Linux, or other operating system. Example BACnet
TM

client and server applications are included." [13]

This is a collection of several command line programs which can be used to read, write, and

scan single and multiple BACnet
TM

 object details. Our purposed BACnet
TM

 environment

setup si:

c:\> set BACNET_IP_PORT=47816 # port: 0xBAC8 = 47816

c:\> set BACNET_BBMD_PORT=47816

c:\> set BACNET_BBMD_ADDRESS=172.16.120.10 # BAS computer

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

74 / 90

search BACnet devices:

c:\> bacwi -1

read all details from the BACnet object 2098177:

c:\> bacepics -v 2098177

BACnet4J

The open source Java package (classes) BACnet4J can be downloaded from sourceforge.net.

BACnet4J is "a high-performance implementation of the BACnet
TM

 I/P protocol written for

Java by Serotonin Software. Supports all BACnet
TM

 services and full message segregation.

Can be used for field devices or for control platforms." (BACnet4J, 2012).

This collection of Java classes has been modified by CET to the needs within the project

EnRiMa to be able to read, write, and scan single and multiple BACnet object details. It is

planned to use the bnEnRiMa.jar file to be able to communicate with the BMS system. If

everything works the command below can be used to do the BACnet
TM

 communication:

C:\> java.exe -jar bnEnRiMa.jar localIPaddress broadcastIPaddress portNo

 localDeviceID remoteDeviceID

Where:

localIPaddress: is the local TCP/IP address which should be used for the communication

broadcastIPaddress: is the TCP/IP broadcast address which should be used to do broadcasts

in the local network

portNo: is the TCP/IP port which should be used for the BACnet
TM

 communication

localDeviceID: is the BACnet
TM

 object ID for the software client

remoteDeviceID: is the BACnet
TM

 object ID which will be contacted

/*

 * Copyright (C) 2006-2009 Serotonin Software Technologies Inc.

* @author Serotonin Software Technologies Inc., Matthew Lohbihler

* @modifications Copyright (C) 2012 CET

* CET team: Markus Groissböck, Michael Stadler, David Berger

*/

package com.serotonin.bacnet4j.test;

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

import com.serotonin.bacnet4j.*;

public class QuickTest {

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

75 / 90

 private LoopDevice loopDevice;

 private final LocalDevice localDevice;

 public static String broadcastAddress = "255.255.255.255";

 private static int portNo = 1234;

 private static int localDeviceID = 1234;

 private static int startDeviceID = 260001;

 // remote devices found

 final List<RemoteDevice> remoteDevices = new ArrayList<RemoteDevice>();

 /* Note same Broadcast address, but different ports!!!

 * @param args

 * @throws java.lang.Exception

 */

 public static void main(String[] args) throws Exception {

 System.out.println();

 System.out.println("bnEnRiMa - read BACnet object details");

 System.out.println("(c) by CET");

 System.out.println("(based on BACnet4J)");

 System.out.println();

 if (args.length != 4) {

 System.out.println("usage: /> java.exe -jar bnEnRiMa.jar broadcastAddress
portNo localDeviceID remoteDeviceID");

 System.out.println();

 System.exit(0);

 }

 broadcastAddress = args[0];

 portNo = Integer.parseInt(args[1]);

 localDeviceID = Integer.parseInt(args[2]);

 startDeviceID = Integer.parseInt(args[3]);

 System.out.println("broadcast address: " + broadcastAddress);

 System.out.println("local port: " + portNo);

 System.out.println("local object ID: " + localDeviceID);

 System.out.println("remote object ID: " + startDeviceID);

 System.out.println();

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

76 / 90

 QuickTest dt = new QuickTest(broadcastAddress, portNo);

 try {

 dt.setLoopDevice(new LoopDevice(QuickTest.startDeviceID, broadcastAddress,
portNo+1));

 }

 catch (RuntimeException e) {

 dt.localDevice.terminate();

 throw e;

 }

 try {

 dt.doDiscover();

 dt.printDevices();

 }

 finally {

 dt.localDevice.terminate();

 System.out.println("Cleanup loopDevice");

 dt.getLoopDevice().doTerminate();

 }

 }

 public QuickTest(String broadcastAddress, int port) throws IOException {

 localDevice = new LocalDevice(localDeviceID, broadcastAddress);

 localDevice.setPort(port);

 localDevice.getEventHandler().addListener(new DeviceEventListener() {

 public void listenerException(Throwable e) {

 System.out.println("DiscoveryTest listenerException");

 }

 public void iAmReceived(RemoteDevice d) {

 System.out.println("DiscoveryTest iAmReceived");

 remoteDevices.add(d);

 synchronized (QuickTest.this) {

 QuickTest.this.notifyAll();

 }

 }

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

77 / 90

 public boolean allowPropertyWrite(BACnetObject obj, PropertyValue pv) {

 System.out.println("DiscoveryTest allowPropertyWrite");

 return true;

 }

 public void propertyWritten(BACnetObject obj, PropertyValue pv) {

 System.out.println("DiscoveryTest propertyWritten");

 }

 public void iHaveReceived(RemoteDevice d, RemoteObject o) {

 System.out.println("DiscoveryTest iHaveReceived");

 }

 public void covNotificationReceived(UnsignedInteger
subscriberProcessIdentifier,

 RemoteDevice initiatingDevice, ObjectIdentifier
monitoredObjectIdentifier,

 UnsignedInteger timeRemaining, SequenceOf<PropertyValue> listOfValues) {

 System.out.println("DiscoveryTest covNotificationReceived");

 }

 public void eventNotificationReceived(UnsignedInteger processIdentifier,
RemoteDevice initiatingDevice,

 ObjectIdentifier eventObjectIdentifier, TimeStamp timeStamp,
UnsignedInteger notificationClass,

 UnsignedInteger priority, EventType eventType, CharacterString
messageText, NotifyType notifyType,

 Boolean ackRequired, EventState fromState, EventState toState,
NotificationParameters eventValues) {

 System.out.println("DiscoveryTest eventNotificationReceived");

 }

 public void textMessageReceived(RemoteDevice textMessageSourceDevice, Choice
messageClass,

 MessagePriority messagePriority, CharacterString message) {

 System.out.println("DiscoveryTest textMessageReceived");

 }

 public void privateTransferReceived(UnsignedInteger vendorId,
UnsignedInteger serviceNumber,

 Encodable serviceParameters) {

 System.out.println("DiscoveryTest privateTransferReceived");

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

78 / 90

 }

 public void reinitializeDevice(ReinitializedStateOfDevice
reinitializedStateOfDevice) {

 System.out.println("DiscoveryTest reinitializeDevice");

 }

 @Override

 public void synchronizeTime(DateTime dateTime, boolean utc) {

 System.out.println("DiscoveryTest synchronizeTime");

 }

 });

 localDevice.initialize();

 }

 /**

 * Send a WhoIs request and wait for the first to answer

 *

 * @throws java.lang.Exception

 */

 public void doDiscover() throws Exception {

 // Who is

 System.out.println("Send Broadcast WhoIsRequest() ");

 // Send the broadcast to the correct port of the LoopDevice !!!

 localDevice.sendBroadcast(loopDevice.getPort(), new WhoIsRequest(null, null));

 // wait for notification in iAmReceived() Timeout 2 sec

 synchronized (this) {

 final long start = System.currentTimeMillis();

 this.wait(2000);

 System.out.println(" waited for iAmReceived: " + (System.currentTimeMillis()
- start) + " ms");

 }

 // Another way to get to the list of devices

 // return localDevice.getRemoteDevices();

 }

 @SuppressWarnings("unchecked")

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

79 / 90

 private void printDevices() throws BACnetException {

 for (RemoteDevice d : remoteDevices) {

 localDevice.getExtendedDeviceInformation(d);

 List<ObjectIdentifier> oids = ((SequenceOf<ObjectIdentifier>)
localDevice.sendReadPropertyAllowNull(d, d

 .getObjectIdentifier(), PropertyIdentifier.objectList)).getValues();

 PropertyReferences refs = new PropertyReferences();

 // add the property references of the "device object" to the list

 refs.add(d.getObjectIdentifier(), PropertyIdentifier.all);

 // and now from all objects under the device object >> ai0, ai1,bi0,bi1...

 for (ObjectIdentifier oid : oids) {

 refs.add(oid, PropertyIdentifier.all);

 }

 System.out.println("Start read properties");

 final long start = System.currentTimeMillis();

 PropertyValues pvs = localDevice.readProperties(d, refs);

 System.out.println(String.format("Properties read done in %d ms",
System.currentTimeMillis() - start));

// printObject(d.getObjectIdentifier(), pvs);

 for (ObjectIdentifier oid : oids) {

 printObject(oid, pvs);

 }

 }

 System.out.println("Remote devices done...");

 }

 private void printObject(ObjectIdentifier oid, PropertyValues pvs) {

 System.out.println(String.format("\t%s", oid));

 for (ObjectPropertyReference opr : pvs) {

 if (oid.equals(opr.getObjectIdentifier())) {

 System.out.println(String.format("\t\t%s",
opr.getPropertyIdentifier().toString()));

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

80 / 90

 }

 }

 }

 /**

 * @return the loopDevice

 */

 public LoopDevice getLoopDevice() {

 return loopDevice;

 }

 /**

 * @param loopDevice

 * the loopDevice to set

 */

 public void setLoopDevice(LoopDevice loopDevice) {

 this.loopDevice = loopDevice;

 }

}

Are the BACnetTM Objects at Campus Pinkafeld Accessible?

No. The problem we have is that up to now no BACnet
TM

 object has responded any of our

requests. We hope that we can fix this issue in the next months. However, this depends on the

support of Siemens, the DESIGO
TM

 vendor at Pinkafeld, which is not an official partner in the

EnRiMa project. So far the support of Siemens was limited and no specific information

regarding the communication (i.e. are our IP addresses and BACnet
TM

 object references

correct) could be obtained from Siemens or Campus Pinkafeld. Furthermore, as pointed out in

WP1 this is also a liability issue and Campus Pinkafeld might object such a fully automated

procedure.

References for Appendix III

BACnet (2012) BACnet Tutorials [Online]. Available from:

http://www.bacnet.org/Tutorial/index.html (Accessed: 28 November 2012).

BACnet4J (2012) BACnet4J [Online]. Available from:

http://sourceforge.net/projects/bacnet4j/ (Accessed: 04 December 2012).

Merz, H., Hansemann, T. & Hübner, C. (2009), Building Automation: Communication

Systems With EIB/KNX, LON und Bacnet. Berlin: Springer.

Technologies (2011) Building Automation [Online]. Available from:

http://www.technologies.co.il/beta/Resources/Pages/1968/5a.pdf (Accessed: 28 November

2012).

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

81 / 90

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

82 / 90

Appendix IV - Generic Kernel Prototype Implementation

This appendix presents an overview of the implementation of the EnRiMa DSS generic kernel

prototype. The purpose of the generic kernel is to explore ways to make the kernel

implementation more generic, so that it is applicable to a wider range of problems, including a

wider range of buildings and corresponding mathematical models. The generic kernel is

developed according to the requirement analysis and the architecture specification, both

described in detail in Deliverable 4.1a [4]. The full description of the generic kernel prototype

implementation is provided in [3].

The generic kernel development is complementary to the kernel described in the main part of

this report. The latter is a dedicated implementation focused on the EnRiMa DSS prototype

currently being developed, while the generic one was designed and implemented to be

reusable without substantial software modifications for a wide class of buildings and the

corresponding mathematical models.

The generic kernel is a rather complex software component, thus its full documentation would

result in an excessively long report. Therefore, a large part of the documentation has been

posted in the GitHub repository web hosting service; these elements are only shortly

commented on in this report. Moreover, descriptions of several issues included in [4] are not

duplicated in this report. In particular, a key issue of the role of the Symbolic Model

Specification (SMS) discussed in detail in Section 2.1 of [4] is only briefly mentioned in this

appendix.

Below we provide an overview of the generic kernel, including characteristics of the kernel’s

key features. Next, the kernel architecture is described, followed by the short presentation of

the GitHub kernel repository, and conclusions.

The full description [3] covers the following topics:

 The XML schema, i.e., the formal specification of the common (for the generic kernel

and all DSS components using its services) data structures and operations on the data.

 The presentation of the Web-Services (WSs) composed of an overview and simple

characteristics of each implemented WS.

 The summary of the basic information about the Data-Warehouse (DW).

 Overview of the interface between the generic kernel and other DSS components.

 Detailed description of the environment developed for testing the generic kernel

prototype; it is composed of a summary of testing done with a dedicated testing tool,

followed by the presentation of three applications (test-GUI, data-wrapper, scenario

generator) developed for both testing the kernel, and demonstrating the use of kernel

services by three different types of applications; moreover, a complete integrity test is

presented; this part contains also a description of use a modern issue- and bug-tracking

environments. The testing environment is posted at the GitHub site described below.

 Supplementary documentation:

o An example of the XML-format representation of the WS input and output;

o Four views on data entities and their relations, each view focused on a specific

aspect.

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

83 / 90

Overview of the Generic Kernel

The generic kernel is one of the three components of the EnRiMa Decision Support System

Engine (DSSE) that is the backbone of the EnRiMa DSS providing to its users three types of

stateless services, each through one of the DSS components, namely the DSS Kernel, Solver

Manager, and Scenario Generator. The general assumption of the generic kernel architecture

is that all DSSE services used by end-users will be accessed through the User Interface (UI),

and provided through Web-Services (WSs). The overview of the generic kernel architecture is

provided in Section 2 of [4]; therefore it is not discussed in this report, which focuses on only

the generic kernel.

The generic kernel is built on the Structured Modeling (SM) methodology, originally pro-

posed by Geoffrion [1] and implemented for the integrated modeling systems, see e.g., [2].

The SM provides a proven, generic, framework supporting the whole modeling cycle, which

is especially effective for development of non-trivial model-based DSS, which is typically

done by interdisciplinary teams working at distant locations. Separation of model

specification from management of data used for model instances was a break-through in

modeling technology, and it is now considered to be a key element of good modeling practice.

The SMT, see e.g., [5], extends the original SM framework by offering additional

functionality, in particular optional attributes of the SMS, which facilitate development and

maintenance of the UI, as well by providing a DW infrastructure accessible through WSs.

This enables on the one hand efficient handling of also huge amounts of data having complex

indexing structures, on the other hand separating the modeling activities into two parts. First,

handled by users through a UI; second, provided by a server that maintains all persistent

elements of the model and the corresponding modeling process. SMT also extends the SM

approach by providing the Data Warehouse (DW) that handles all data of the whole modeling

process in a way transparent to the model users. The SMS plays a key role in assuring

consistency of these data. The generic kernel provides Web-services through which all needed

modeling information is exchanged. Thus, the generic kernel is model-independent, and

therefore can be re-used for other models.

Functional View

Figure A4-1 illustrates the functional view on the Web Services (WSs) provided by the

generic kernel; these services are used (consumed) by other EnRiMa DSS components, called

clients. The DSSE provides state-less services therefore the requests are coming from the

other DSS components, and the corresponding services are provided by the kernel. The

communication between clients and the kernel is provided by the XML-based SOAP (Simple

Object Access Protocol). Each service is composed of a pair of related WSs, first used for the

service request (by the client), and second for the response provided by the kernel.

Additionally, the kernel provides services used for triggering the execution of some clients;

this is done through an HTTP or a system call.

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

84 / 90

Figure A4-1: The Generic Kernel Web Services.

Key Features

The generic DSSE architecture described in detail in [3] has several important properties

discussed there. We summarize here only those related to the kernel architecture and

implementation, and present them by outlining the generic kernel’s key features:

 The kernel enables robust integration of heterogeneous (i.e., developed and run on

diverse hardware and software platforms, possibly at distant locations) components into

a DSS fitting particular needs.

 The modular structure supports efficient development and modifications of the DSS

components, with minimum interdependencies during the whole cycle of software

development use, and maintenance. New functionality can be provided by new modules

without causing problems to the already developed components.

 The WSs are defined automatically in the WSDL (Web-Service Description Language)

using public domain tools, which also generate the documentation of the WSs. Each

needed DSS functionality is provided in the same way to the DSS clients, which assures

consistency and supports effectiveness of the software development.

 The WSs are based on a common (for all DSS components) Symbolic Model

Specification (SMS), which enables easy assurance of consistency of use DSS

components (both software and elements of the underlying model). More details about

the SMS role are provided in Section 2.1 of [4].

 The EnRiMa Data-Warehouse (DW) handles not only all DSS data (model parameters,

sets and subsets of indices, results of diverse model analysis) but also all other needed

for processes of the model-based decision-making support. The DW structure is

transparent for the clients, which communicate using the relevant elements of the

common SMS.

 The DW supports data versioning in a very effective way through the mechanism of

defining (in a way transparent to the users) data updates. This supports the required data

persistency (after data is committed it will always be available.) with possibilities of

modifying the data. Reliable reuse of data is supported through definitions of the model

instances.

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

85 / 90

 The concerted use of the SMS, WSs, and the DW assures semantic consistency of the

model entities across the DSS components. The data is provided in structures

corresponding to the SMS; moreover, organization of indices into corresponding sets

and (optionally indexed) subsets effectively supports a proper use of also complex

indexing structures of the model entities.

 The kernel supports the control of access (read and write permission) to the data and

applications triggered by the Kernel. It implements the ACL (Access Control Lists)

mechanism which provides an easy to use way of granting permissions to either

individual users, or groups of users defined by the DSS administrator.

 The kernel supports use of bug-tracking utilities (such as Jira, see [3]) for supporting

rational software development process, as well as facilitating efficient reporting and

handling of problems that the DSS users want to share with the DSS developers.

 The kernel design and implementation facilitate reusability of software, data, and results

of the model analyses. In particular, modifications of the SMS require changes neither

in the DW structure nor in the implementation of the WSs; depending on the technology

used for the UI (see [3]) it also may not require any changes in the UI.

In summary, the generic kernel has been designed and implemented in such a way that it can

be used for other buildings without substantial modifications. Actually, the modifications are

limited to adaptation of the SMS to the new building, and provision of the corresponding data.

Software Developer’s View

Figure A4-2: The Kernel Web Services consumed by other EnRiMa DSS components:

software developer’s view.

Figure A4-2 illustrates the client developer’s view on the generic kernel. As already

mentioned, each service is composed of the {request, response} pair of WSs; the interface

between the kernel and the clients is provided through the SOAP based on the automatically

generated and parsed XML-format documents. The WSs are published by the kernel in the

automatically generated WSDL; they are specified using the XML schema (WSs and XML

schema are described in [3]), currently composed of four elements defining the structures of

the SMS, data, analysis, and WSs, respectively. The WSDL representation is used by the

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

86 / 90

Kernel for validation of the XML-based requests. The marshaling and unmarshaling functions

shown in Figure A4-2 are used by both the generic kernel and the clients for serialization the

WS-domain objects (called DTOs, Data Transfer Objects) to XML, and for the reverse

process (also called unmarshaling), respectively.

Additionally, the kernel can support triggering execution of the clients; this is done by either

the HTTP or the system calls. Such a call typically contains a small number of parameters to

enable identification of the task the client is requested to perform; typically, such parameters

are used in the subsequent WS-requests by the client for receiving from the kernel the needed

data in WS-responses. There is an easy way to develop one version of an application that can

be executed through either HTTP or call providing the same set of parameters. The HTTP

calls are used for remote calls, and the system calls are used when the kernel has the

authorization to access the client either through ssh, or rsh, or directly on a shared file-system.

Moreover, the system call is very useful for the off-line software development and

maintenance. More details on the WSs consuming by the DSS clients are provided in [3].

Generic Kernel Architecture

The actual implementation of the generic kernel prototype follows the architecture presented

in Section 3.6 of [4], which in turn conforms to the requirement analysis of the DSSE also

discussed in detail in [4], and earlier in [6]. The current description of the generic kernel

architecture is based on Section 3 of [4].

The Kernel architecture follows the SOA methodology of software design based on services,

i.e., collections of software modules, each providing a tightly defined functionality. The

services are state-less (function independently) and loosely coupled with hardware and soft-

ware technology. Thus, the services can be easily reused (both within an application, and with

different applications); moreover an application can be composed of software modules run on

different hardware and software platforms. In other words, interoperations of tightly defined

services provide collectively the desired functionality of the application. This methodology

has been applied to the design and implementation of the generic kernel and its web-services.

As already explained, the other DSS components (clients) access the kernel functionality only

through WSs. Such a single interface type has obvious advantages for development and

maintenance of the rather complex Kernel software component. This also implies that the

clients are independent of changes in the Kernel implementation (as long as the WS

specification will not be changed). Moreover, the Kernel may be moved to another hardware,

or use another DBMS, or even its architecture can be changed; none of these would cause any

changes to the clients.

Actually, the developers of the DSS clients do not need to be familiar with the kernel

architecture or implementation of the data services or any other element of the kernel, because

all these components are transparent for the clients. However, for documenting the Kernel

implementation, we summarize here the kernel architecture. The Kernel consists of seven

modules illustrated in Figure A4-3. The kernel components developed in the Java

programming language communicate through Java methods.

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

87 / 90

Figure A4-3: The Generic Kernel Components

The function and characteristics of each Kernel component are as follows:

Service adapter: provides link between WSs and the internal data services; transform for-

mats between Web services domain objects and database domain objects; makes the

data services transparent (a black box) for components that do not belong to the Kernel.

Web services domain: the DTOs based on the contract (WSDL file) are used for generating

objects through an Object/XML mapping (OXM) tool (e.g., JAX-WS, JIBX, XStream,

gSoap). Such tools also generate classes for applications consuming WSs in other DSS

components (UI, Solver Manager, Scenario Generator, data wrappers and other

applications integrated with the ICT infrastructure of each building); more details are

provided in [3].

Database domain: the Java Persistence API (JPA) entity objects generated using the database

schema through object-relational mapping tools, such as Hibernate, Eclipse link,

Toplink, etc.

Data services: transactional business logic, read/store data from/to DBMS through JPA which

will handle conversion of DTOs into the Data-Warehouse schema that will be indepen-

dent of the DTOs thus remaining transparent for clients and stable, i.e., not requiring

modifications when DTOs will be modified.

Data Warehouse: dedicated data structures implemented within a DBMS, accessible to ex-

ternal (to the Kernel) clients only through the WSs provided by the Kernel. Therefore

neither a DBMS choice nor the corresponding DBMS schema influences other (than

Kernel) DSS components. Currently, PostgreSQL is used for prototyping. More details

are provided on DW are provided in [3].

Utilities: a container of diverse back-office applications that support various functions needed

by the Kernel.

The multi-layered representation of the Kernel is illustrated in Figure 4. The top layer con-

tains the WSs published within the WS-domain in the WSDL format, and endpoints

indicating a location for accessing the service. This domain is shared by all components of the

EnRiMa DSS. The middle layer contains the service adapter which maps the requested

operations into the domain data services. Data services layer provides stateless transactional

business logic, the data access layer provides interface to the data warehouse built on a

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

88 / 90

DBMS. The data access and services layers share cross-cutting applications, e.g., for handling

logging, transaction management and security. More details on the Kernel data services are

provided in Section 3.4.1 of [4].

Figure A4-4: The generic kernel multi-layered representation.

GitHub Repository

Most probably, every software development team uses a version control system. The

development team uses GitHub, a free and open source distributed version control system.

We use Git for private repositories of software and documents organized into projects shared

with collaborators working in remote locations; projects can also be openly shared, but to

access the file it is necessary to install the Git. To overcome this requirement, we have created

the EnRiMa repository at the GitHub, the web-based hosting service that offers free account

for open source projects.

The GitHub site for the generic kernel, https://github.com/enrima-dev410 has currently only

one repository called kernel which contains the generic kernel-related software and

documentation.

The content of the repository is managed through the Git, thus versioning of the files is sup-

ported. This is an open access repository; therefore everyone can upload files from it. Users

who have the Git installed on a local computer can follow the Git Read-Only link to

download the file. Users who have no Git installed can use the ZIP download option.

The enrima-dev4/kernel GitHub repository contains several elements that are essential parts

of the Kernel implementation, but – due to either size or nature – have not been included in

the deliverable. These include the source-code of the client-applications developed with two

purposes: first, to additionally test the generic kernel prototype; second, to show a simple way

of the WSs integration with three types of application (developed in Java and C++

programming languages, and with a framework for the GUI development). Each of these

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

89 / 90

clients is accompanying with the developer guide, which documents its implementation at a

local computing environment.

The repository is organized into a directory structure, and documented on line. Therefore the

structure description is not duplicated in this report; moreover, new items will most likely be

added to the repository, therefore such a description would soon be outdated.

Conclusions

A generic kernel consisting of several modular software components has been developed to

support decision-making aimed at improving energy-efficiency of buildings. The generic

kernel is also reusable, i.e., easily adaptable to other buildings or facilities. The generic

architecture based on the WSs and SMT enables effective development of DSS components

that can be combined into a robust model-based DSS for operators of energy-efficient

buildings.

The generic kernel prototype implementation follows the corresponding requirements

described in [4]. The WSs provided by the kernel prototype enable efficient interface between

components that consume WSs, and use of the SMS assures data consistency across all

components accessing data through WSs. Moreover, the DTOs can be specified according to

the needs of each component, and the public-domain tools support the automatic generation of

the corresponding classes that can be directly embedded into the client applications. The

DBMS schema used for implementation of the DW is independent of data models used by

clients; moreover the use of the DBMS is transparent for the client applications. The client

applications can be developed on heterogeneous hardware and software platforms, and run at

distant locations. There are public-domain tools supporting use of WSs within all

programming languages and software tools commonly used for modeling tasks. The generic

kernel implementation is built on the SMT that has been successfully used for collaborative

interdisciplinary research on the development of large and complex models.

Thus the generic kernel inherits efficient and robust modeling methodology and technology

that supports efficient development and implementation of the DSS, as well as its use,

maintenance, and reusability. Thus, the implemented generic kernel prototype provides a

good basis for development of the remaining kernel functionality.

References for Appendix IV

[1] GEOFFRION , A. An introduction to structured modeling. Management Science 33, 5

(1987), 547–588.

[2] GEOFFRION , A. Integrated modeling systems. Computer Science in Economics and

Management 2 (1989), 3–15.

[3] IIASA. DSS generic-kernel prototype implementation. Technical report, European

Commission FP7 project number 260041, Brussels, Belgium, 2013. Limited distribution: the

report is available on request.

[4] IIASA, URJC, SINTEF, AND TECNALIA. Requirement analysis of the decision support

system engine. Deliverable D4.1a, European Commission FP7 project number 260041,

Brussels, Belgium, 2012.

D4.4 DSS Kernel Prototype Implementation EC FP7 Project 260041

90 / 90

[5] MAKOWSKI , M. A structured modeling technology. European J. Oper. Res. 166, 3

(2005), 615–648. draft version available from

http://www.iiasa.ac.at/˜marek/pubs/prepub.html.

[6] SU, IIASA, SINTEF, AND CET. Draft specification for services and tools. Deliverable

D5.1, European Commission FP7 project number 260041, Brussels, Belgium, 2012.

List of Acronyms for Appendix IV

AJAX Asynchronous JavaScript and XML API Application Programing Interface DB

 Data-Base

DBMS Data-Base Management System

DoW Description of work, Annex 1 to the EnRiMa Grant Agreement

DTO Data Transfer Object

DSS Decision Support System

DW Data Warehouse

GitHub Web-based hosting service for software development

GUI Graphical User Interface

HTTP The Hypertext Transfer Protocol

ICT Information and Communication Technology

JAXB Java Architecture for XML Binding

JAX-WS Java Architecture for Web Services

OOP Object-Oriented Programing

OXM Object–XML Mapping rsh remote shell

SM Structured Modeling

SMS Symbolic Model Specification

SMT Structured Modeling Technology

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

ssh Secure shell

UI User Interface

WSDL Web Service Definition Language

WS Web-Service

XML Extensible Markup Language

