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Glossary

Building parameters
The BuildPars expression used in some constraints refers to any feature of the building that
can be a parameter in the model. Thus, it is measured in corresponding measurement units.

Combined Heat and Power
CHP is a technology that can transform input primary fuels such as natural gas or biomass
into both electricity and heat energy. It is considered an efficient technology as the heat
produced in electricity generation is recovered for thermal energy needs in the building.

Continuous sized energy-creating technologies
Technologies whose installation capacity of providing energy is continuous, that is, any power
capacity can be installed within the building limits.

Discrete sized energy-creating technologies
Technologies whose installation capacity of providing energy is discrete, that is, each installed
device has a nominal capacity, and the total installed capacity of the technology is the product
of the number of devices installed by the nominal capacity.

Energy-absorbing technology
We denote by energy-absorbing technologies those technologies that allow the building to
demand less input energy, in contrast to energy-creating technologies, that provide the energy
demanded. These technologies can be storing technologies (e.g. batteries) or passive measures
(e.g. isolation).

Energy portfolio
By energy portfolio we mean the set of energy resources that are available in a building or
site to provide the requested energy to the different loads (demand), including purchases in
the market.

Energy technologies portfolio
The energy technologies portfolio is the set of energy technologies, including generation,
storage, and passive measures, that can be adopted in a building or site.

Fictitious market
Fictitious markets are used in the formulation to take into account several inputs of energy
that are not purchased in any market. For example, sun irradiation to produce energy through
PV panels, or heat exchange through venting.

Forward markets
Energy markets where future contracts can be traded in order to fix a price in advance.

Spot markets
Markets where energy is available to be directly purchased.

Space measurable passive technologies
Passive technologies which have an additive effect in the demand. They entail savings over
the whole building, depending on its physical dimensions.

Technologies parameters
The TechPars expression used in some constraints refers to any feature of the devices of a
given technology that can be a parameter in the model. Thus, it is measured in corresponding
measurement units.
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Unitary measurable passive technologies
Passive technologies which have a multiplicative effect in the demand, that is, the higher the
demand, the higher the savings. They entail savings over the use of the energy regardless the
building dimensions.
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Executive summary

In this deliverable, the Symbolic Model Specification (SMS) of the models developed within de
EnRiMa project is described. The Symbolic Model Specification defines the mathematical repre-
sentation of the stochastic model of all relevant energy subsystems and their interactions, which
is a core part of the Decision Support System (DSS) Engine. This mathematical representation
is composed of variables, parameters, and relations between them. In mathematical modelling,
indices and sets are used to symbolize algebraically individual items (variables and parameters)
in the model. In particular, two different models have been developed: strategic and operational.
The strategic model has been designed in order to make strategic decisions concerning which tech-
nologies to install and/or decommission in the long term, that is, the energy technologies portfolio
planning. Besides technologies, this planning includes forward markets contracts. The operational
model deals with decisions involving the dispatching of energy through the installed technologies in
the short term or through purchases in spot markets, that is, the energy portfolio selection. With
the aim of coping with short- and long-term decisions concurrently, the strategic model includes
a simplified version of operational energy-balance constraints, and the operational model, in turn,
includes some realisations of the strategic decisions as parameters. In this way, both models feed
back to each other, becoming a holistic DSS.

The EnRiMa models go beyond the state-of-the-art as they take into account uncertainties in
prices and loads, which is a novel feature at the building level. Furthermore, the models provide the
user with the capability to manage risk, pollutants emissions, and energy efficiency directly along
with reducing costs, the possibility of taking financial positions where available, and long-term and
inter-period Conditional Value-at-Risk (CVaR) constraints. This is done by solving the models
within a stochastic programming framework. This framework allows the definition of a new kind of
Sankey diagrams, so-called stochastic Sankey diagrams, which show how the flows of energy change
depending on the risk aversion of the user of the model. In fact, this is another contribution of this
deliverable to the state-of-the-art. The models can be as specific and detailed as the needs of the
users are. In particular, the operational model has been designed to be used by operators taking
care of the building physics and thermodynamics, making it possible to include these characteristics
also at a strategic level. Thus, the contribution of the strategic model is that it embeds a simplified
version of operational constraints, which allows accounting for short-term decisions and parameters
when making long-term decisions. The contribution of the operational model is that the traditional
definition of demand for heating or cooling is replaced by user requirements for temperature. This
leads to lower-level energy-balance constraints that reflect the thermodynamics of heating and
cooling systems as well as building physics.

The generation of the definitions and equations describing the SMS for this deliverable has been
done dynamically using the R software [10]. This framework, easily portable to any other environ-
ment, allows adding new entities and constraints to the SMS easily. In fact, this is especially useful
when updating and adapting the models to new circumstances such as new buildings, technologies,
markets, etc.

The Symbolic Model Specification contained in this deliverable (D4.2), along with the related
deliverables D2.2 and D3.2, provides the framework for the next steps of the EnRiMa project,
especially the development of the DSS Engine and the Graphical User Interface (GUI). Particularly,
task 4.5 (Stochastic optimisation algorithms and solvers) will continue this work, building the
complete implementation for the test sites and selecting algorithms and computational requirements
afterwards. This work will be carried out in close cooperation with the one in task 4.6 and Work
Package 5 (WP5), which will be fed with the structure defined herein.
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1. Introduction

One of the EnRiMa project’s innovations is the capability to optimise adoption and deployment of
energy-efficient equipment taking into account long- and short-term decisions. Thus, two different
models are being developed: strategic and operational. Moreover, strategic decisions are influenced
by the operational performance, while operations depend on historic strategic decisions. Opera-
tional decisions are those involving the dispatch of installed technologies in the short term, whereas
strategic decisions concern, in the long term, to which technologies to install and/or decommission,
or how much energy buy in forward markets. In an attempt to tackle short- and long-term de-
cisions as a whole, the strategic model includes a simplified version of operational energy-balance
constraints. The operational model, in turn, includes the realisation of the strategic decisions as
parameters. Figure 1 is reproduced here from D2.2 to show the interplays between both models
and their Decision Variables (DV) and constraints.

EnRiMaDSS
Strategic
Module

Operational
Module

StrategicDVs

Strategic
Constraints

Upper-Level
Operational DVs

Upper-Level
Energy-Balance
Constraints

Lower-Level
Energy-Balance
Constraints

Lower-Level
Operational DVs

Figure 1: EnRiMa DSS Scheme (from D2.2).

Finally, including the information about the volatility of market and energy inputs/outputs to
the models through stochastic optimisation, the EnRiMa Decision Support System (DSS) becomes
a valuable risk management framework for energy efficiency. The main instrument included in the
EnRiMa project for managing risks is the use of stochastic programming for optimisation.

The Symbolic Model Specification (SMS) defines the mathematical representation of the stochas-
tic model of all relevant energy subsystems and their interactions, which is core part of the DSS
Engine. This mathematical representation is composed of variables, parameters, and relations
between them. In mathematical modelling, indices and sets are used to symbolize algebraically
individual items (variables and parameters) in the model. Therefore, we first define indices and
sets, decision variables, and parameters for the strategic and operational mathematical program-
ming models in Sections 3 and 4, respectively. At the end of these sections, the constraints and
objectives for each model are specified. The core of the work has been the specification of the
deterministic models in order to introduce them into the definitive stochastic framework. Once
these models have been developed, it is straightforward to extend them into stochastic models
(Section 5), thereby providing the capacity for risk management to the SMS. In Appendix A, the
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data tables with the objects of the SMS can be found. Appendix B contains some examples of
the code developed using the R software1 for the SMS generation and implementation, through a
very simple example. This code constitutes a real SMS and is especially useful when updating and
adapting the models to new circumstances such as new buildings, technologies, markets, etc. The
complete code is available in the private area of the EnRiMa web server. Credentials will be sent
to project stakeholders upon request.

The proposed models proceed beyond the state-of-the-art as they take into account uncertainties
in prices and loads, which is a novel feature at the building level. Furthermore, the models provide
the user with the capability to manage risk, pollutants emissions, and energy efficiency directly
along with reducing costs, the possibility of taking financial positions where available, and long-
term and inter-period Conditional Value-at-Risk (CVaR) constraints. The models developed in the
EnRiMa project extend existing deterministic approaches such as DER-CAM [11, 12] or MCEEM
[8] into a stochastic one capable of dealing with short- and long-term uncertainties inherent to
typical energy resources and loads. In addition, a new kind of Sankey diagrams is developed, so-
called stochastic Sankey diagrams which are based on the risk aversion included in the stochastic
modelling. Furthermore, our operational models are designed to be used by operators as they take
care of the building physics and thermodynamics.

The Symbolic Model Specification contained in this deliverable (D4.2) makes use of the Require-
ment Analysis developed in deliverable D4.1, Requirement Analysis [5], extending it with a more
detailed description of the variables and parameters, based on the information provided in deliv-
erable D1.1, Requirement Assessment [3], which contains the information about the test sites in
Spain and Austria. Concretely, the key uncertainties described in D4.1 based on the information
provided by D1.1 have been used to outline the general formulation of the parameters suitable to be
treated as stochastic. In any case, the models are general and, therefore, the SMS can be adapted
to the needs of each specific site in question at any time. For the design of the way in which
stochastic Sankey diagrams are going to be displayed, the information in deliverable D2.1 has been
taken into account. Along with the related deliverables D2.2 and D3.2, this deliverable provides the
framework for the next steps of the EnRiMa project, especially the development of the DSS Engine
and the GUI. Particularly, task 4.5 (Stochastic optimisation algorithms and solvers) will continue
this work, building the complete implementation for the test sites and selecting algorithms and
computational requirements afterwards. This work will be carried out in close cooperation with
task 4.6 (Implementation of the DSS Kernel) and WP5, which will be fed with the structure defined
herein.

The structure of this document is as follows:

� Section 2 describes the EnRiMa models and the relationship between them and the EnRiMa
DSS, including a description of the scenario trees used for the stochastic modelling.

� Section 3 contains the main result of this deliverable, consisting in a description of the objects
in the strategic model (sets, variables, parameters) and their mathematical representation and
relations between them.

� In Section 4 the lower-level constraints from D2.2 are reproduced for completeness.

� Section 5 describes the extension of the models to the stochastic approach. This section
includes the definition of the so-called “Stochastic Sankey diagrams”.

� Appendix A contains the data tables containing the SMS described in this document.

1The R software is used in this deliverable for prototyping. It is not decided yet which software tools and languages
that be used in the final implementation within next tasks in WP4 next tasks and WP5.
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� In Appendix B some examples of the code used to generate the SMS and an example model
is provided.

2. EnRiMa Models

The EnRiMa models replace the deterministic components of classical models by new stochastic
representations in order to support the analysis of stochastic parameters, such as: prices, demands,
and systems availability. Thus, the models are enhanced exploiting the advantages of stochastic
modelling over deterministic. The main advantage is that the stochastic formulation allows opti-
mising the expected value taking into account uncertainties, which are modelled through scenario
generation.

2.1. Scenarios

Stochasticity is represented through “scenario trees”. A scenario is a possible realization of all
the stochastic parameters in the model, see deliverable D3.2 [7] for an in-depth explanation. The
number of possible scenarios depends on the stages of the stochastic programming model and the
number of branches in each scenario tree node. It is important to remark that a “stage” in the
stochastic model is not the same as the real decision point of time. A stage is a model feature,
which represents the point of time when new information arrives to the model. In theory, there may
be as many decision periods as stages, but we need to reduce the number of stages in order to have
a solvable model. Thus, between two stages, there may be several decision periods. Moreover, for
each stage, there are several branches representing possible realizations of the uncertain parameters.
These branches are also simplified as described in deliverable D3.2 [7]. Figure 2 illustrates a possible
scenario tree. The cubes represent the stages of the stochastic optimisation model and the spheres
represent the decision periods. Thus, in this scenario tree, during the second period, let us say a
year, new information arrives about the stochastic parameters, resulting in three possible scenarios
with a given probability. Four years later, new information is available with two possible scenarios
for each of the branches coming from the second stage. Hence, after the last decision period there
is a total of 6 scenarios.

In the SMS, the groups of parameters that can be stochastic are identified. The real data in the
SMS implementation provides the nature of each individual parameter and, if available, information
about the variability of the parameter to the scenario generation tool. A desired tree configura-
tion can be also set in the implementation, for example: create scenarios for unveiled uncertainties
every five years. The scenario generation tool will return the scenarios to the DSS that, jointly
with the SMS, builds the stochastic implementation for the solver. Figure 3 shows a scheme of this
framework.

The models in this deliverable gather the information from WP1 regarding the building config-
uration, used technologies and main uncertainties, WP2 regarding the energy balance equations,
and WP3 regarding the scenario generation. This information is used to represent the optimisation
models (first deterministic, then stochastic), the illustrative implementation, and numerical exam-
ples. As the EnRiMa project is continuously evolving, the models developed for this deliverable are
not definitive, and changes will probably be needed as the project advances. Specifically, during
the development of the DSS GUI (WP5) and during the algorithms and solvers implementation
(task 4.5 in WP4), improvements and needed changes to the model may be identified. They will
eventually be added to the stochastic optimization prototypes until reaching the final version.

The EnRiMa models comprise innovative modelling issues. Energy flowing through HVAC (Heat-
ing, ventilation, and air conditioning) technologies is modelled at the operational level. Passive
measures are included in the strategic model at an abstract level taking into account the building
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Figure 2: Illustrated scenario tree.
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Figure 3: Relationship between the models and the DSS.
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configuration implicitly. Moreover, at the operational level, building basic physics and thermody-
namics are explicitly treated, resulting in enhanced energy flow modelling.

2.2. Energy Flow Schema

The EnRiMa models symbolise the energy flow through decision variables. Energy flows as fol-
lows: Energy from the markets (including fictitious markets such as renewable sources) flows to
energy-creation technologies, energy-storage technologies, sales to the market, or is used for directly
supplying the demand. The generated energy can supply the demand, be stored or be sold to the
market. Storage technologies receive energy from markets and generation technologies, and supply
the demand. Figure 4 shows schematically this energy flow including some of the symbols defined
in the following section, as the relevant sets and the variables that symbolise the energy flows.

Market

Demand

Purchases

Fictitious

Generation 
Technologies

Storage
Technologies

N

K

J

I
Sales

K y

u

u

u

w

u

w

z

qi
qo

qi

Figure 4: Energy Flow within the EnRiMa models

3. Strategic Symbolic Model Specification

This section presents the SMS for the strategic model. As already mentioned, the strategic model
is used in order to make strategic decisions concerning which technologies to install and/or de-
commission in the long term. In an attempt to tackle short- and long-term decisions as a whole,
the strategic model includes a simplified version of operational energy-balance constraints, and the
operational model, in turn, includes the realisation of the strategic decisions as parameters. In this
way, both models feed back to each other.

At the end, the goal of the DSS is to support different stakeholders, which will likely have dif-
ferent goals, in their decision processes concerning energy planning (strategic model) or energy
dispatching (operational model). This section lists and briefly describes the basic elements of the
strategic SMS, namely: indices, sets, variables and parameters. For non-evident concepts, consult
the glossary at the beginning of this document and Figure 4. Then, constraints are built by com-
bining those basic objects through the appropriate relations. After this, the objective function for
minimising total costs is symbolised and described. This is the main objective identified in previous
stages of the EnRiMa project, in particular, in D4.1 [5]. This total cost is formed from different
components such as investment costs, decommissioning costs, operational costs, and purchasing
costs. Subsidies and energy sales are subtracting terms in this objective function. It is important
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to remark that the framework presented in this SMS is general enough to customise the EnRiMa
DSS and, thus, provide different objective functions for different stakeholders (building managers,
policy makers, etc.) to the solvers.

The definitions and equations presented in this section have been dynamically generated as
illustrated in Appendix B. This framework, easily portable to any other environment, allows adding
new entities and constraints to the SMS easily. In fact, this constitutes a real framework to develop
symbolic model specifications.

3.1. Indices and Sets

Small Latin letters represent the index that goes with variables and parameters as subscripts or
superscripts. The counterpart capital letter indicates the number of elements in the corresponding
set, which is represented by“stylised”capital letters (I,M, etc.). Some auxiliary indices are needed
for the equations, related with other sets, as P, M, or K. Similarly, subsets used for delimiting
sums in the equations are defined. Note that the sets can be expanded with new subsets as new
items are available for other buildings or technologies (e.g. biomass).

3.1.1. Indices

Sets’ indices:

i Energy-creating technology; i ∈ I.

j Energy-absorbing technology; j ∈ J .

k Energy type; k ∈ K.

l Pollutant; l ∈ L.

m Mid-term period; m ∈M.

n Energy market; n ∈ N .

p Long-term period; p ∈ P.

t Short-term period; t ∈ T .

Auxiliary indices:

a Technology age. Age of technologies to indicate effect of aging for energy-creating (c.f. p).

a1 Auxiliary index. Auxiliary index to compute capacity available during each long-term period
(c.f. p).

a2 Auxiliary index. Auxiliary index to compute capacity available during each long-term period
(c.f. p).

kk Output energy type. Auxiliary index for type of energy output when converting energy types
(c.f. k).

mm Ancestor mid-term period. Auxiliary index for ancestor mid-term periods when setting for-
ward contracts (c.f. m).

q Decommissioning period. Long-term period for decommissioning-strategic decision (c.f. p).

12



3.1.2. Sets and subsets

Energy-creating technologies (supply side)

I ⊃ IE ∪ IH ∪ IC

IE Technologies that generate electricity.

IH Technologies that generate heat.

IC Technologies that generate cooling.

Discrete sized energy generating technologies
IZ ⊂ I

Continuous sized energy generating technologies
IR ⊂ I

Energy-absorbing technologies (– demand side)

J ⊃ JS ∪ JPS ∪ JPU

JS Storage technologies.

JPS Space measurable passive technologies.

JPU Unitary measurable passive technologies.

Energy type

K ⊃ KE ∪ KH ∪ KC ∪ KG ∪ KS

KE Electricity.

KH Heat.

KC Cooling.

KG Natural Gas.

KS Solar.

Input energy types for each technology
KI (i) ⊂ K

Output energy types for each technology
KO(i) ⊂ K

Primary energy output of energy-creating technology i
KF (i) ⊂ K

13



Types of pollutants

L (no subsets).

Mid-term representative period (profile, e.g. day)

M

Mid-term periods when energy is purchased in forward markets
MA ⊂M

Mid-term periods when energy is sold in forward markets
MS ⊂M

Markets for energy products and primary fuels

N ⊃ NE ∪NH ∪ND ∪NG

NE Electricity markets.

NH Heating markets.

ND Fictitious markets.

NG Natural gas markets.

Markets where a type of energy can be bought
NB(k) ⊂ N

Markets where a type of energy can be sold
NS(k) ⊂ N

Long-term period for strategic decisions (e.g. year)

P (no subsets).

Short-term decision period (e.g. hour)

T (no subsets).

3.2. Decision Variables

Each variable is represented by one or more small Latin letters along with one or more of the
indices described above. After a description of the variable and the related sets, the units of the
variable are shown. Note that, for the sake of generalization, we do not distinguish between the
different types of energy in the units. For example, if a technology produces electricity, the units for
the capacity should be kWe, but we write simply kW . Similarly, when describing the parameters
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in the following subsection, if a technology produces heat using natural gas as input, the units
should be kWh/kWhth, but we simply write kWh/kWh. Along with the units, possible data types
for database design purposes are given in brackets: dec for decimal values and int for integer values.

Strategic decisions:

spi Available capacity in long-term period p, energy-creating technology i. (kW [dec]).

sdp,qi Number of devices / capacity to be decommissioned in long-term period p, energy-creating
technology i, decommissioning period q > p. (devices [int/dec]).

sipi Number of devices / capacity to be installed in long-term period p, energy-creating technology
i. (devices [int/dec]).

xpj Available capacity in long-term period p, energy-absorbing technology j. (kWh [dec]).

xdp,qj Number of devices / capacity to be decommissioned in long-term period p, decommissioning
period q, energy-absorbing technology j. (kWh [dec]).

xipj Number of devices / capacity to be installed in long-term period p, energy-absorbing technology
j. (kWh [dec]).

Operational decisions:

ep,m,t Energy consumption in long-term period p, mid-term period m, short-term period t. (kWh
[dec]).

qip,m,tk,j Energy added to storage in long-term period p, mid-term period m, short-term period t,
energy type k, energy-absorbing technology j. (kWh [dec]).

qop,m,tk,j Energy released from storage in long-term period p, mid-term period m, short-term period
t, energy type k, energy-absorbing technology j. (kWh [dec]).

rp,m,tk,j Energy to be stored in long-term period p, mid-term period m, short-term period t, energy
type k, energy-absorbing technology j. (kWh [dec]).

up,m,t,mmk,n Purchase of energy in long-term period p, mid-term period m, short-term period t, energy
type k, energy market n, ancestor mid-term period mm. (kWh [dec]).

wp,m,t,mmk,n Sale of energy in long-term period p, mid-term period m, short-term period t, energy
type k, energy market n, ancestor mid-term period mm. (kWh [dec]).

yp,m,ti,k Input of energy in long-term period p, mid-term period m, short-term period t, energy-
creating technology i, energy type k. (kWh [dec]).

zp,m,ti,k Output of energy in long-term period p, mid-term period m, short-term period t, energy-
creating technology i, energy type k. (kWh [dec]).

3.3. Parameters

Each parameter is represented by one or more capital Latin letters along with one or more of the
indices described above. After a short description of the parameter and the related sets, the units
of the parameter are given. Similarly to the notation for variables, we do not distinguish between
the different types of energy in the units (see example above). Along with the units, possible data
types for database design purposes are given in brackets: dec for decimal values and int for integer
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values. Next, a longer description is included for some parameters. Finally, the nature of the pa-
rameter (stochastic or deterministic) is stated. Note that if the parameter could be stochastic for
some of the indices and deterministic for others, the nature is represented by “either”. In particular,
the most important uncertainties to be accounted on are those referring to energy loads (demand)
and prices. Note that the former can be influenced by “external” parameters such as the weather.
Moreover, the availability parameter for technologies allows dealing with breakdowns and similar
uncertainties.

Building parameters:

BA Total building area (m2 [dec]). Nature: Deterministic.

BV Total building volume (m3 [dec]). Nature: Deterministic.

FA Building floor Area for (m2 [dec]). Nature: Deterministic.

HO Number of operating periods (number [int]). Nature: Deterministic.

RA Building roof area (m2 [dec]). Nature: Deterministic.

Demand parameters:

Dp,m,t
k Energy demand for long-term period p, mid-term period m, short-term period t, energy type

k (kWh [dec]). Note that in the strategic model it is a parameter, while in the operational
it is a decision variable. Energy demand for a type of energy is composed by all the loads
for a type of energy. These loads can be supplied by direct purchases in the market, energy
generation, energy storage and natural gains (vent, sun, etc.) Nature: Stochastic.

Energy Efficiency parameters:

Bk,n Primary energy ratio energy type k, energy market n (kWh/kWh [dec]). Units of primary
energy from the market required to make one unit of energy for use. Nature: Deterministic.

Finance parameters:

CDa
i Decommissioning cost for energy-creating technology i, technology age a (EUR/kW [dec]).

Nature: Either.

CDSaj Decommissioning cost for technology age a, energy-absorbing technology j (EUR/kWh
[dec]). Nature: Either.

CIp,ai Installation/maintenance cost for long-term period p, energy-creating technology i, technol-
ogy age a (EUR/kW [dec]). Nature: Either.

CISp,aj Installation/maintenance cost for long-term period p, technology age a, energy-absorbing
technology j (EUR/kW [dec]). Nature: Either.

COSp,m,tk,j Operation cost for long-term period p, mid-term period m, short-term period t, energy
type k, energy-absorbing technology j (EUR/kWh [dec]). Nature: Either.

CP p,m,tk,n Purchasing cost for long-term period p, mid-term period m, short-term period t, energy
type k, energy market n (EUR/kWh [dec]). Nature: Either.

EF Required energy efficiency of the site for (kWh/kWh [dec]). Nature: Deterministic.

ILp Budget constraint for long-term period p (EUR [dec]). Nature: Deterministic.
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SP p,m,ti,k,n Selling price for long-term period p, mid-term period m, short-term period t, energy-
creating technology i, energy type k, energy market n (EUR/kWh [dec]). Nature: Stochas-
tic.

Model parameters:

DMp
m Profile duration for long-term period p, mid-term period m (days [int]). Mid-term periods

define a profile of the relevant parameters over a given number of consecutive short-term
periods. This parameter if for the number of mid-term periods within a long-term period.
Nature: Deterministic.

DT Length of the decision-making period (hours [dec]). Nature: Deterministic.

Policy parameters:

COp,m,ti,k Operating Cost for long-term period p, mid-term period m, short-term period t, energy-
creating technology i, energy type k (EUR/kWh [dec]). For many index values, this is also
a financial parameter. It is included here to take into account “feed-in-tariffs” as a source of
variability due to policy maker’s decisions. Nature: Either.

PLpl Emissions limit for long-term period p, pollutant l (kg [int]). Nature: Either.

PP p,m,ti,k,n Purchasing price long-term period p, mid-term period m, short-term period t, energy-
creating technology i, energy type k, energy market n (EUR/kWh [dec]). Possible time-of-
use tariffs. Nature: Stochastic.

SUpi Subsidies for long-term period p, energy-creating technology i (EUR/kW [dec]). This is
also a financial parameter, but it is included here due to the importance of optimising policy
decisions for the EnRiMa project. Nature: Stochastic.

Technologies parameters:

Ap,m,ti Availability factor for long-term period p, mid-term period m, short-term period t, energy-
creating technology i (kW/kW [dec]). Nature: Stochastic.

AGai Aging factor for energy-creating technology i, technology age a (kW/kW [dec]). Nature:
Deterministic.

ASai Aging factor for energy-creating technology i, technology age a (kW/kW [dec]). Nature:
Deterministic.

Ci,l,n Pollution emissions for energy purchases for energy-creating technology i, pollutant l, energy
market n (kg/kWh [dec]). Nature: Deterministic.

Ei,k,kk Conversion coefficient for energy-creating technology i, energy type k, output energy type
kk (kWh/kWh [dec]). Nature: Deterministic.

Gi Nominal capacity for energy-creating technology i (kW/device [dec]). Equals 1 for i ∈ IR. It
is the power that each installed device can supply to the demand side. Nature: Deterministic.

GSj Storage capacity for energy-absorbing technology j (kW/kW [dec]). Nature: Deterministic.

Hi,k,l Pollution emissions for energy generation for energy-creating technology i, energy type k,
pollutant l (kg/kWh [dec]). Nature: Deterministic.

LSp,m,ti Loss per unit of stored energy for long-term period p, mid-term period m, short-term
period t, energy-creating technology i (kWh [dec]). Nature: Deterministic.
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OAk,j Charging lower limit for energy type k, energy-absorbing technology j (kWh/kWh [dec]).
Lower limit on the fraction of storage capacity that must be charged with a type of energy.
Nature: Deterministic.

OBk,j Charging upper limit for energy type k, energy-absorbing technology j (kWh/kWh [dec]).
Upper limit on the fraction of storage capacity that must be charged with a type of energy.
Note that 0 ≤ OA ≤ OB ≤ 1. Nature: Deterministic.

ODk,j End use demand reduction per unit for energy type k, energy-absorbing technology j
(kWh/kWh [dec]). Nature: Deterministic.

OIk,j Charging ratio to storage for energy type k, energy-absorbing technology j (kWh/kWh
[dec]). Some energy is lost when storing. This parameter is between 0 and 1. Nature:
Deterministic.

OOk,j Discharging ratio from storage for energy type k, energy-absorbing technology j (kWh/kWh
[dec]). Some energy is lost when releasing from storage. This parameter is greater than 1.
Nature: Deterministic.

ORk,j Discharging availability for energy type k, energy-absorbing technology j (kWh/kWh [dec]).
Not all the stored energy is available for discharging. This parameter is between 0 and 1.
Nature: Deterministic.

OSk,j Energy storage availability between short-term periods for energy type k, energy-absorbing
technology j (kWh/kWh [dec]). This parameter represent the loses in the storage between
periods, being between 0 and 1. Nature: Deterministic.

SCpi Storage capacity for long-term period p, energy-creating technology i (kWh [dec]). Nature:
Deterministic.

3.4. Constraints

The constraints presented in the SMS are general enough to cover a wide range of buildings,
technologies and policies. Hence, some of the constraints are expressed as functions of the actual
parameters in a specific implementation. In such cases, examples are provided.

Before the equations, an explanation for the constraint is given. Following the expression of
the constraint, the sets are stated for which the constraint must hold. Below the equation, the
units of each term (variable or parameter) are given, separated by commas (,) in order to check
consistencies. Finally, an indicative number of constraints is provided given the size of the relevant
sets.

3.4.1. Strategic Constraints

Available generating technologies calculation
The available capacity to generate a type of energy for each technology in a long-term period
equals the number of total devices available times their nominal capacity, corrected by the
aging factor.

spi = Gi

p∑
a1=0

AGp−a1
i

(
sia1
i −

p∑
a2=a1+1

sda1,a2
i

)
p ∈ P, i ∈ I, (1)

kW ∼ kW/device, kW/kW, devices, devices P×I constraints.
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Available storing technologies calculation
The available capacity to store a type of energy for each technology in a long-term period
equals the number of total devices available times their nominal capacity, corrected by the
aging factor.

xpj = GSj

p∑
a1=0

ASp−a1
i

(
xia1
j −

p∑
a2=a1+1

xda1,a2
j

)
p ∈ P, j ∈ J, (2)

kWh ∼ kW/kW, kW/kW, kWh, kWh P×J constraints.

Generation technologies decommissioning limit
The number of devices to be decommissioned must be less than the number of devices previ-
ously installed. ∑

a1>p

sdp,a1
i ≤ sipi p ∈ P, i ∈ I, (3)

devices ∼ devices P×I constraints.

Storage technologies decommissioning limit
The number of devices to be decommissioned must be less than the number of devices previ-
ously installed. ∑

a1>p

xdp,a1
j ≤ xipj p ∈ P, j ∈ J, (4)

kWh ∼ kWh P×J constraints.

Budget limit
The total investment in technologies must be lower than a specified budget limit. This includes
installation and decommissioning costs. ∑

i∈I
CIp,0i ·Gi · si

p
i +

∑
j∈J

CISp,0j ·GSj · xi
p
j

(5)

+
∑
i∈I

Gi

(
p∑

a1=0

CDp−a1
i

p∑
a2=a1+1

sda1,a2
i

)
+
∑
j∈J

(
p∑

a1=0

CDSp−a1
j

p∑
a2=a1+1

xda1,a2
j

)
≤ ILp p ∈ P,

EUR/kW , kW /device, devices,EUR/kW , kW /kW , kWh, kW /device,EUR/kW , devices,EUR/kWh, kWh ∼ EUR P constraints.

Emissions limit
The total emissions must be lower than the allowed limit per year.

∑
m∈M

DMp
m

(∑
i∈I

∑
k∈K

∑
t∈T

Hi,k,l · y
p,m,t
i,k +

∑
n∈N

∑
k∈K

∑
t∈T

Ci,l,n · u
p,m,t,mm
k,n

)
≤ PLpl p ∈ P, l ∈ L,

(6)

days, kg/kWh, kWh, kg/kWh, kWh ∼ kg P×L constraints.

19



Physical limit for energy-creation technologies installation
The available capacity of a given energy-creation technology, is limited by the physical space
needed. This is a function of both building and technology configuration. For example, for
PV technologies it would be the ratio roof/technology surfaces. Note that the function must
return the appropriate units.

spi ≤ f(BuildPars,TechPars i) p ∈ P, i ∈ I, (7)

kW ∼ kW P×I constraints.

Physical limit for energy-absorbing technologies installation
The available capacity of a given energy-absorbing technology is limited by the physical
space needed. This is a function of both building and technology configuration. Note that
the function must return the appropriate units.

xpj ≤ f(BuildPars,TechParsj) p ∈ P, j ∈ J, (8)

kWh ∼ kWh P×J constraints.

Efficiency constraint
Minimum efficiency required in the building.

∑
p∈P

∑
m∈M

∑
t∈T

∑
k∈K

(
Dp,m,t
k +

∑
m∈M

∑
n∈N

wp,m,t,mmk,n

)
≥ EF ·

∑
p∈P

∑
m∈M

∑
t∈T

ep,m,t (9)

kWh, kWh ∼ kWh/kWh, kWh constraints.

Primary energy calculation
The primary energy (not from a fictitious market) consumed is the sum of the processed
energy of each type and the one used as an input fuel.

ep,m,t =
∑
m∈M

∑
k∈K

∑
n∈N

(
up,m,t,mmk,n ·Bk,n +

∑
n∈N

up,m,t,mmk,n

)
p ∈ P, m ∈M, t ∈ T, (10)

kWh ∼ kWh, kWh/kWh, kWh P×M×T constraints.

3.4.2. Operational Constraints

Meet Loads
The energy supplied must meet the energy demand minus the energy saved due to absorbing
technologies. It is composed of the energy produced with energy-creating technologies plus
the energy purchased in the market minus the energy for sale, energy for storage and energy
for production. On the demand side, the energy released from storage and the energy saved
with passive technologies diminish the total demand.

These passive technologies can be modelled in two ways: on the one hand, the space-
measurable ones and, on the other hand, the unitary-measurable ones. Regarding space-
measurable passive technologies, Φ is a function used to calculate the energy savings ob-
tained by the inclusion of passive technologies such as room-enclosing opaque surfaces, energy-
efficient windows, etc. Depending on the technology a particular calculation for Φj is made
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(using a closed-form formula or simulations). Notice that we include these technologies as
additive different terms in the constraint (depending on the way Φj is defined). With respect
to unitary measurable passive technologies, ODk,j is the proportion of savings in energy de-
mand type k per unit of passive technology j available compared to a configuration of the
building without passive technology j. For example, consider that we want to decide whether
installing or not a new kind of lamps in a building whose lightning demand due to these
lamps corresponds to a 10% of the total electricity demand Dp,m,t

k . If the current demand
per lamp is 75kW and, after installing technology j, the new demand will be 50kW , then
ODk,j = 75−50

75 · 0.10 = 0.033.∑
i∈I

zp,m,ti,k +
∑

n∈NB(k)

∑
mm∈MA

up,m,t,mmk,n (11)

−
∑
i∈I

yp,m,ti,k −
∑

mm∈MS

∑
n∈NS(k)

wp,m,t,mmk,n

∑
j∈JS

qip,m,tk,j ≥ Dp,m,t
k

−
∑
j∈JS

qop,m,tk,j −
∑
j∈JPS

Φp,m,t
j −

∑
j∈JPU

ODk,j · x
p
j ·D

p,m,t
k p ∈ P, m ∈M, t ∈ T, k ∈ K,

kWh, kWh, kWh, kWh, kWh ∼ kWh, kWh, kWh, kWh/kWh, kWh, kWh P×M×T×K constraints.

Technologies short-term availability
The energy that can be supplied by a technology is constrained by the availability of the
technology.

zp,m,ti,k ≤ DT ·Ap,m,ti · spi p ∈ P, m ∈M, t ∈ T, i ∈ I, k = KF (i), (12)

kWh ∼ hours, kW/kW, kW P×M×T×I×K[F (i)] constraints.

Energy output calculation
The total energy output by each technology for a type of energy output is the sum of all
the energy outputs over the energy inputs, computed as the energy input corrected by the
conversion factor.

zp,m,ti,kk =
∑

k∈KI(i)

(
Ei,k,kk

)−1 · yp,m,ti,k p ∈ P, m ∈M, t ∈ T, i ∈ I, kk ∈ KO(i), (13)

kWh ∼ kWh/kWh, kWh P×M×T×I×K[O(i)] constraints.

Energy stored calculation
The energy stored each period is the energy stored in the previous period, plus the energy
sent to storage, minus the energy released from storage. All flows are corrected by the losses
ratio parameters.

rp,m,tk,j = OSk,j · r
p,m,t−1
k,j +OIk,j · qi

p,m,t−1
k,j −OOk,j · qo

p,m,t−1
k,j , (14)

p ∈ P, m ∈M, t ∈ T, k ∈ K, j ∈ JS ,

kWh ∼ kWh/kWh, kWh, kWh/kWh, kWh, kWh/kWh, kWh P×M×T×K×J [S] constraints.

Energy discharging limit
The amount of energy that may be discharged from any energy-storage technology is limited
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by the storage level.

qop,m,tk,j ≤ ORk,j · r
p,m,t
k,j p ∈ P, m ∈M, t ∈ T, k ∈ K, j ∈ JS , (15)

kWh ∼ kWh/kWh, kWh P×M×T×K×J [S] constraints.

Energy storage lower limit
The amount of energy that may be stored from any energy-storage technology must be greater
than the capacity installed corrected by the minimum charge allowed.

rp,m,tk,j ≥ OAk,j · x
p
j p ∈ P, m ∈M, t ∈ T, k ∈ K, j ∈ JS , (16)

kWh ∼ kWh/kWh, kWh P×M×T×K×J [S] constraints.

Energy storage upper limit
The amount of energy that may be stored in any energy-storage technology must be lower
than the capacity installed, corrected by the maximum charge allowed.

rp,m,tk,j ≤ OBk,j · x
p
j p ∈ P, m ∈M, t ∈ T, k ∈ K, j ∈ JS , (17)

kWh ∼ kWh/kWh, kWh P×M×T×K×J [S] constraints.

3.4.3. Integer Variables Constraints

Discrete sized technologies devices to install
The number of devices of discrete sized technologies to be installed must be integer.

sipi ∈ Z p ∈ P, i ∈ IZ , (18)

P×I[Z] constraints.

Discrete sized technologies devices to decommission
The number of devices of discrete sized technologies to be decommissioned must be integer.

sdp,qi ∈ Z p ∈ P, i ∈ IZ , (19)

P×I[Z] constraints.

3.4.4. Non-negativity Constraints

Non-negative energy supply
The energy supply must always be non-negative.

zp,m,ti,k ≥ 0 p ∈ P, m ∈M, t ∈ T, i ∈ I, k ∈ K, (20)

kWh ∼ kWh P×M×T×I×K constraints.

Positive generating devices to install
The number of devices to install must always be non-negative.

sipi ≥ 0 p ∈ P, i ∈ I, (21)

devices ∼ devices P×I constraints.
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Positive devices to decommission
The number of devices to decommission must always be non-negative.

sdp,qi ≥ 0 p ∈ P, i ∈ I, q > p, (22)

devices ∼ devices P×I×p constraints.

Positive available capacity
The total available capacity for each technology must always be non-negative.

spi ≥ 0 p ∈ P, i ∈ I, (23)

kW ∼ kW P×I constraints.

Positive energy to store
The energy to be stored from the supply side must always be non-negative.

rp,m,tk,j ≥ 0 p ∈ P, m ∈M, t ∈ T, k ∈ K, j ∈ J, (24)

kWh ∼ kWh P×M×T×K×J constraints.

Positive storage devices to install
The number of devices to install must always be non-negative.

xipj ≥ 0 p ∈ P, j ∈ J, (25)

kWh ∼ kWh P×J constraints.

Positive storage devices to decommission
The number of devices to decommission must always be non-negative.

xdp,qj ≥ 0 p ∈ P, j ∈ J, (26)

kWh ∼ kWh P×J constraints.

Positive available storage capacity
The total available capacity by technology must always be non-negative.

xpj ≥ 0 p ∈ P, j ∈ J, (27)

kWh ∼ kWh P×J constraints.

Positive input energy
The input energy must always be non-negative.

yp,m,ti,k ≥ 0 p ∈ P, m ∈M, t ∈ T, i ∈ I, k ∈ K, (28)

kWh ∼ kWh P×M×T×I×K constraints.
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Positive purchased energy
The purchased energy must always be non-negative.

up,m,t,mmk,n ≥ 0 p ∈ P, m ∈M, t ∈ T, k ∈ K, n ∈ N, mm ∈MS , (29)

kWh ∼ kWh P×M×T×K×N×M [S] constraints.

Positive sold energy
The sold energy must always be non-negative.

wp,m,t,mmk,n ≥ 0 p ∈ P, m ∈M, t ∈ T, k ∈ K, n ∈ N, mm ∈M, (30)

kWh ∼ kWh P×M×T×K×N×M constraints.

Positive consumed energy
The consumed energy must always be non-negative.

ep,m,t ≥ 0 p ∈ P, m ∈M, t ∈ T, (31)

kWh ∼ kWh P×M×T constraints.

3.5. Objective Function

In this Symbolic Model Specification, we show an objective function to minimize total costs, as
this is the objective identified in previous stages of the project [3, 5]. Note that using the structure
presented in this SMS, we can convert a constraint to a new objective function in the future, when
new users of the DSS arise. For example, constraint (6) could be an objective function, becoming
(32) a constraint up to a cost limit, or it can be an additional objective function in a multi-objective
optimization model. In this way, if the new objective is the minimisation of pollutants, all we have
to do is to change the code in Appendix A and modify the nature of (6) from “constraint” to
“objective”.

Minimize total cost
The objective is to minimize the total cost. It is composed of the cost of installing and
maintaining technologies (both energy creating and energy absorbing), the operational cost
of the technologies and the cost of purchasing energy in the market. The sales of energy and
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subsidies are incomes that we have to subtract from the total cost.

min
∑
p∈P

(∑
i∈I

CIp,0i ·Gi · si
p
i (32)

+
∑
j∈J

CISp,0j ·GSj · xi
p
j (33)

+
∑
i∈I

Gi

(
p∑

a1=0

CDp−a1
i

p∑
a2=a1+1

sda1,a2
i

)
(34)

+
∑
j∈J

(
p∑

a1=0

CDSp−a1
j

p∑
a2=a1+1

xda1,a2
j

)
(35)

+
∑
m∈M

DMp
m

∑
i∈I

∑
k∈K

∑
t∈T

COp,m,ti,k · zp,m,ti,k (36)

+
∑
m∈M

DMp
m

∑
j∈J

∑
k∈K

∑
t∈T

COSp,m,tk,j · rp,m,tk,j (37)

−
∑
m∈M

DMp
m

∑
i∈I

∑
k∈K

∑
n∈NS(k)

∑
mm∈MA

∑
t∈T

PP p,m,ti,k,n · u
p,m,t,mm
k,n (38)

−
∑
m∈M

DMp
m

∑
i∈I

∑
k∈K

∑
n∈NS(k)

∑
mm∈MS

∑
t∈T

SP p,m,ti,k,n · w
p,m,t,mm
k,n (39)

−
∑
i∈I

SUpi ·Gi · si
p
i

)
(40)

∼ EUR/kW, kW/device, devices

, EUR/kW, kW/kW, kWh

, kW/device, EUR/kW, devices

, EUR/kWh, kWh

, days,EUR/kWh, kWh

, days,EUR/kWh, kWh

, days,EUR/kWh, kWh

, days,EUR/kWh, kWh

,EUR/kW, kW/device, devices 1 objective.

The terms (32) and (33) are the total cost of installing and maintaining energy-creating and energy-
absorbing technologies respectively. The terms (34) and (35) are the total cost of decommissioning
energy-creating and energy-absorbing technologies, respectively. The terms (36) and (37) are the
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total operational cost for energy-creating and energy-absorbing technologies respectively. The term
(38) is the total cost of purchasing energy in the market. The term (39) is the total income from
energy selling. The term (40) is the total income from subsidies.

4. Operational Symbolic Model Specification

The operational model deals with decisions involving the dispatch of energy by the installed tech-
nologies in the short term. As already mentioned, this model gets feedback from the strategic
model by including the realisation of the strategic decisions made as parameters.

Given that operational constraints concerning lower-level performance of energy subsystems often
depend on the specific building configuration and balance constraints, for completeness we repro-
duce in Subsection 4.1 the lower-level constraints provided in deliverable D2.2 [6], which will be
added to the solvers during task 4.5 (Stochastic optimisation algorithms and solvers). A detailed
description of the operational constraints and their motivation can be consulted in deliverable D2.2.

During the implementation of the model in subsequent stages of the project, the part-load effi-
ciency of the technologies analysed will be taken into account by reshaping the constraints pertaining
the suitable technologies as explained in Appendix C of deliverable D2.2 [6].

4.1. Lower-level Constraints

The low-level constraints are often specific for each building. Therefore, in some cases they may be
defined with specific symbols different to the ones defined above. Thus, we include all the nomen-
clature used in these constraints. For a thorough explanation of each constraint, see deliverable
D2.2 [6].

4.1.1. Nomenclature

Time

δ length of operational decision-making period (s)

η number of seconds in an hour (s/h)

TO ⊂ T set of short-term decision-making periods

t short-term time period index

Physical Constants and Parameters

γwater specific heat capacity of water (kJ/kg·K)

ρwater density of water (kg/m3)

γair specific heat capacity of air (kJ/kg·K)

ρair density of air (kg/m3)

Environmental Parameters

χt external temperature during short-term period t ∈ TO (◦C)

σt fraction of maximum solar insulation incident (weighted average over different wall directions)
during short-term period t ∈ TO (kW/m2)
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Building Parameters

ψ volume of the zone (m3)

ν heat transition coefficient of the wall (kW/m2 ·K)

αwall heat transfer area of the wall (m2)

αglass total area of windows (m2)

ε mean energy transmission coefficient of glass

φ mean sun protection factor of all components of the thermal envelope of building

αfloor area of the floor of the zone (m2)

λt internal load (from people, lighting, working machines, etc.) per area of the zone during
short-term period t ∈ TO (kW/m2)

κt lower limit for the required zone temperature during short-term period t ∈ TO (◦C)

κt upper limit for the required zone temperature during short-term period t ∈ TO (◦C)

Heating System Parameters

ζ supply water temperature at the radiator inlet (◦C)

ι maximum amount of heat that can be provided by the conventional heating system in any
given short-term time period (kWh)

µwater maximum water flow rate in radiator (m3/s)

µ
water

minimum water flow rate in radiator (m3/s)

ξ mean nominal heat transfer capacity of all radiators installed (kW)

ϕ radiator coefficient

% mean logarithmic temperature difference (K)

HVAC System Parameters

µvent maximum air flow rate of the HVAC system (m3/s)

µ
vent

minimum air flow rate of the HVAC system (m3/s)

τ lower limit of the proportion of air that may be taken externally

τ upper limit of the proportion of air that may be taken externally

EHVAC,electricity,cooling

electricity required to produce one unit of cooling (kWhe/kWh)

Eboiler,NG,hot water

NG required by the boiler to produce one unit of hot water (kWh/kWh)

ω electricity required to pump the air at a given flow rate (kWhe/(m3/s))

χ external temperature limit at which the AHU performs cooling (◦C)

χ external temperature limit at which the AHU performs heating (◦C)

ς AHU’s supply-air temperature for heating (◦C)

ς AHU’s supply-air temperature for cooling (◦C)
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Energy Market Parameters

CP tk,n price of energy type k ∈ K purchased from market n ∈ NB,k during short-term time period
t ∈ T (e/kWh or e/kWhe)

State Variables

Γt return water temperature at the outlet of the radiator during short-term time period t ∈ TO
(◦C)

Decision Variables

Λt zone temperature during short-term time period t ∈ TO (◦C)

Ωt
water flow rate for water to conventional heating system during short-term time period t ∈ TO

(m3/s)

Ωt
vent flow rate for air to HVAC system during short-term time period t ∈ TO (m3/s)

Υt supply-air temperature from the HVAC system’s air-handling unit (AHU) during short-term
time period t ∈ TO (◦C)

Φt fraction of external air used by the AHU during short-term time period t ∈ TO

Ψt heat from radiator during short-term time period t ∈ TO (kWh)

Dt
k demand for end-use energy type k = {space heat, cooling} during short-term time period
t ∈ TO (kWh)

yti,k requirement of energy type k = {electricity} as input to energy-creating technology i =
{HVAC} during short-term time period t ∈ TO (kWhe)

4.1.2. Constraints

Computation of zone temperature

Λt =

(
1

γair·ρair·ψ
δ + ν · αwall + Ωt

vent · ρair · γair

)
·
[
γair · ρair · ψ

δ
· Λt−1

+Ψt · η
δ

+ ν · αwall · χt−1 + σt−1 · ε · φ · αglass + λt−1 · αfloor

+ρair · γair · Ωt
vent ·Υt

]
,∀ t ∈ TO (41)

Zone temperature constraint

κt ≤ Λt ≤ κt,∀ t ∈ TO (42)

Transmission of heat from radiators

Ψt =
δ

η
· ξ ·

 (
ζ − Γt

)
ln
(
ζ−Λt

Γt−Λt

) · 1

%

ϕ

,∀ t ∈ TO (43)

Heat exchange inside radiators

Ψt =
δ

η
· Ωt

water · ρwater · γwater ·
(
ζ − Γt

)
,∀ t ∈ TO (44)
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Heat required inside the boiler to change temperature

Dt
space heat =

δ

η
· Ωt

water · ρwater · γwater ·
(
ζ − Γt−1

)
, ∀ t ∈ TO (45)

Return water temperature constraint

Λt ≤ Γt ≤ ζ,∀ t ∈ TO (46)

Maximum heat demand allowed

Dt
space heat ≤ ι, ∀ t ∈ TO (47)

Water flow rate constraint

µ
water

≤ Ωt
water ≤ µwater,∀ t ∈ TO (48)

Setting of the supply-air temperature for the AHU

Υt =


Φt · χt−1 +

(
1− Φt

)
· Λt−1 if ventilation only

ς if cooling and χt−1 < χ

ς +
(
ς−ς
χ−χ

)
·
(
χt−1 − χ

)
if cooling and χ ≤ χt−1 < χ

ς if cooling and χ ≤ χt−1

,∀ t ∈ TO (49)

Cooling demand calculation

Dt
cooling = Ωt

vent · ρair · γair ·
δ

η
·
(
Φt · χt−1 +

(
1− Φt

)
· Λt−1 −Υt

)
,∀ t ∈ TO (50)

Electricity for ventilation or cooling calculation

ytHVAC,electricity =

{
ω · Ωt

vent if ventilation only
EHVAC,electricity,cooling ·Dt

cooling if cooling

,∀ t ∈ TO (51)

Proportion of external air taken in by the AHU constraint

τ ≤ Φt ≤ τ , ∀ t ∈ TO (52)

AHU’s air-flow rate during each period constraint

µ
vent
≤ Ωt

vent ≤ µvent, ∀ t ∈ TO (53)

4.2. Operational objective function

For the operational model, different objective functions could be defined depending on the goals of
the managers of the facilities where the model is applied to. For instance, if the problem of interest
involves the heating and cooling system, we can restrict the scope of the problem at the operational
level to minimising energy consumption or costs while meeting the site’s temperature requirements
for each period (see deliverable D2.2 of the project). In this case, the operational objective function
would be:

min
∑
t∈TO

(
CP telectricity · ytHVAC,electricity + CP theat ·Dt

space heat

)
(54)

As already mentioned, it is straightforward to define more complex or specific objective functions
from the parameters and variables defined as part of the operational model. Since here we describe
here a general SMS, we outline an example of an objective function and during the implementation
more complex options will be available for the decision makers.
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5. Stochastic Model

Stochastic optimisation is the main risk management tool applied in the EnRiMa project. The risk
management will be tackled in two ways:

1. Managing uncertainties by including the variability of the parameters through scenario gen-
eration.

2. Managing the specific risk assumptions for different public buildings.

The EnRiMa models deal with the first risk management approach through the scenario gen-
eration tool described in [7] and introduced in Sec. 2. The information provided by the scenario
generation tool condenses the variability of the stochastic parameters in order to find the solution
taken into account the most probable scenarios.

The importance of the second risk management approach relies in the fact that some public
buildings can assume fewer risks than others. For example, we have a wide range of types of public
buildings, namely: leisure, education, health care, governmental, etc, with a different risk percep-
tion. Similarly, two similar buildings devoted to store materials may have different points of view
about risks, depending on the kind of materials stored; let us say medicines or food. Therefore, the
users of the EnRiMa DSS may have different risk perception. In decision theory, the underlying
concept to deal with this fact is “risk aversion”. Our stochastic models include a risk weight term
β, 0 ≤ β ≤ 1 reproducing this information. All in all, the solution provided by the EnRiMa DSS
embed the available information concerning risks regarding both approaches.

We can identify uncertainty for parameters in both the operational and the strategic DSSs. The
main uncertain parameters affecting operational decisions are energy loads (demands), building
occupancy, weather (in particular, temperature, wind speed, and solar irradiation), and short-term
variations of energy prices. The latter parameter concerns foremost electricity prices in the case of
real-time pricing. As energy loads are strongly correlated with building occupancy and weather,
they can be derived from these parameters as described in deliverable D3.1. For the strategic DSS,
recall that the embedded operational relations shall give indications about how the installed equip-
ment would perform under various conditions, i.e., is it robust and flexible enough to satisfy daily
user needs and to deliver acceptably under extraordinary conditions? In addition, the relations help
to estimate the operating costs of the chosen investments. Hence, scenarios for the corresponding
uncertain operational parameters are determined by selecting series of critical and typical values
(profiles) from observations. Finally, uncertain parameters directly affecting the strategic decisions
comprose technology efficiency and prices (including availability of new technologies), government
subsidies for some equipment, and new tariffs, in particular, the availability of real-time pricing
contracts. Also, the long-term development (trend) of energy prices is considered uncertain. Note
that the latter parameter needs to be combined with the selected short-term price profiles, for
example, as described in deliverable D3.2. For a more detailed description of how the scenarios for
the single uncertain parameters are created and of suitable scenario tree structures we refer to the
deliverables in WP 3, D3.1 and D3.2.

5.1. EnRiMa Stochastic Modelling

The previously described models lead in their simpler version to a linear model. This model will
take the standard linear programming program formulation:

30



minx CTx (55)

subject to Ax = B (56)

x ≥ 0, (57)

where x is a vector containing all the variable expressions of the model, and C, A, and B are the
coefficients of the model. From the point of view of the SMS, such coefficients are parameters or
combinations of parameters in the SMS. The C matrix, called“cost matrix”, contains the coefficients
affecting the objective function; the B matrix contains the so-called “right-hand-side” coefficients,
that is, those that are not multiplying any decision variable in the constraints; and the A matrix,
known as the “technology matrix”, contains the coefficients affecting the decision variables in the
constraints. For the sake of simplicity we will follow this simplified formulation in the following ex-
planations. This formulation is specially understandable in order to be straightforwardly extended
to its stochastic version.

As already mentioned, since the uncertainties may seriously affect long-term decisions, the model
should be formulated as a stochastic optimization problem. Among the main stochastic parame-
ters are fuel prices and demands. In the presence of uncertainties, there is a dilemma to choose an
efficient technological portfolio in real time while pursuing long-term goals. Therefore, the solution
of the problem involves the so-called multi-stage dynamic stochastic optimization models with a
rolling horizon. However, for the sake of clarity we will describe here a two-stage dynamic version
of the model, where some decisions (so-called first-stage decisions) regarding investments into new
energy technologies have to be taken before uncertainties are resolved and some others (so-called
second-stage decisions) will be taken once values for uncertain parameters become known, thereby
providing a trade-off between long- and short-term decisions.

Let us consider the simplest EnRiMa model. This would be a dynamic stochastic strategic
planning model where the goal would be to find a combination of technologies installed at the
beginning of each year t so that the mixture of these technologies operating in each period j would
ensure a safe energy “provision” plan minimizing investment costs Cti (which in the more complex
model described in Sec. 3 would correspond with the parameter CIp,ai ), deterministic equipment
maintenance costs ctij (which in the more complex model described in Sec. 3 would correspond with

the parameter COp,m,ti,k ) and stochastic operation costs which may include stochastic fuel prices
Pij(ω) (which in the more complex model described in Sec. 3 would correspond with the parameter
CP p,m,tk,n ). Notice that in this simplified version of the model instead of dividing periods in long- mid-
and short-term periods, we just consider years and operational periods (e.g. hours). In summary,
to show the stochastic extension of the SMS we consider just two variables: equipment installation
(that we will denote by x) and energy generation (that we will denote by y). The inclusion of more
variables and periods leading to the use of the models defined above is straightforward, but the
notation would be less clear than the one used in the following description for this simpler model.
Schematically, the structure of the modeling framework is presented in Fig 5.

With this notation, constraints (11,12, 20) become now:

I∑
i=1

ytij ≥ Dt
j ∀j, t (58)

ytij ≤ Atijstij ∀i, j, t (59)

yij ≥ 0 (60)

In constraints (58)-(60), instead of the deterministic demand Dt
j we have now to satisfy stochastic

demand scenarios Dt
j(s) for scenarios s = 1, . . . , S. Since this means that for a given in advance
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First stage decisions: xi

Second stage decisions: i, 1y i, Jy...
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t

J

t
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Figure 5: Schematic representation of the two-stage dynamic stochastic strategic model for robust
planning energy efficiency and risk management in public buildings

(ex-ante) long-term investments into technologies xti equation (58) may not be fulfilled for some
t, we assume a worst case scenario and substitute Dt

j(s) by maxsD
t
j(s). This would be a very

conservative and costly assumption. Instead, we introduce in (60) a so-called back-up technology
n + 1 (basically, a slack variable that allows the fulfilling of the constraint). The “stock” of this
backup technology will be unbounded (always available) however it may come at high price. Thus,
equation (58) is modified to:

∑
i

ytij(ω
s) + ytn+1j(ω

s) = Dt
j(ω

s) ∀s, j, t. (61)

In this way, by using Conditional Value at Risk (CVaR), the dynamic stochastic model is formu-
lated now as follows:

min
x,y

f(x, y) =
∑
t

∑
i

Ctix
t
i +
∑
t

E

∑
j

∑
i

ctijy
t
ij +

∑
j

ctn+1jy
t
n+1j

 (62)

under constraint (61) and safety constraints:

P

[∑
i

P tij(ω)ytij < qtj

]
< 1− α ∀j, t (63)

where α is the safety level of the solution and qtj denotes the value at risk (VaR), that is, the
maximum acceptable cost for safety level α, see [2] for the details. The problem can be reformulated
as:

min
x,y

f(x, y) + β
∑
t

∑
j

(
qtj + E

[
max{0,

∑
i

P tij(ω)ytijq
j
t }

]) , (64)
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where 0 ≤ β ≤ 1 is the term that represents the risk aversion described above. Using discrete ran-
dom scenarios of uncertain parameters demand (Dts

j ) and prices (P tsij ), where the s in the superindex
denotes the scenario, the previous objective function is substituted by its linear approximation:

min
x,y

∑
t

∑
i

Ctix
t
i (65)

+
∑
t

S−1
∑
t

∑
s

∑
j

∑
i

ctijy
ts
ij +

∑
j

ctn+1jy
ts
n+1j

+

β
∑
t

∑
j

(
qtj + (1− α)−1

∑
s

ptsj (ω)ztsj

)
(66)

under constraints

ztsj ≥
∑
i

P tij(ω
s)ytijq

j
t ∀s, i, t, j, (67)

where ptsj in eq. (65) is the probability of scenario s in time t and period j.

Note that all we have to do in the EnRiMa SMS to extend the deterministic approach the the
stochastic programming formulation, is adding a new index for the scencarios to the stochastic
parameters besides the probabilities of the scenarios.

5.2. Stochastic Transition Matrices

When adding scenarios, the problem size increases. Let eq. (66) be denoted as:

R(y) =
∑
t

∑
j

(
qtj + (1− α)−1

∑
s

ptsj (ω)ztsj

)
. (68)

Notice that ztsj are implicitly defined within the ytijs and therefore, for the sake of simplicity, we
denote the risk term as R(y). Now, the problem size increases, and takes the matrix form:

minx CTx+ P T y + βR(y) (69)

subject to Ax = B (70)

Tx+Wy = H (71)

x ≥ 0 (72)

y ≥ 0. (73)

where we have divided the x variables in model (55)-(57) into the variables corresponding to the
stages of the stochastic problem (x and y) and added the new constraints.

The stochastic transition matrices can be explicitly represented by a flow matrix where each
scenario is visualised within the overall model, with the transfer coefficients inside, that is:
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x y y . . . y

T 1 W H1

T 2 W H2

... . . . . . .
Tn W Hn

Notice that the stochastic transition matrix depends on the specific implementation and solution
of the stochastic optimisation problem, and therefore it will be explicitly generated at the time
when the problem is being solved. It is important to remark that the core work in this SMS
is the modelling of the deterministic problem. Once this has been done, the previous matrix is
generated using the scenarios generated for the stochastic parameters. The stochasticity information
in Table 1.

It is important to remark that some parameters may be stochastic or deterministic depending
on the specific configuration of the building at hand. These parameters are referred in the table as
“either” since their nature may have both considerations.

5.3. Stochastic Sankey Diagrams

Sankey diagram charting is a powerful tool for representing energy flows. A Sankey diagram shows
the different energy flows as arrows whose width is proportional to the amount of energy. Input
energy flows from the left side become output energy flows as they cross the technologies in the
building.

Sankey diagrams for the current configuration of the test sites were delivered in [4]. Fur-
thermore, an on-line tool has been developed by the EnRiMa partner CET, available at http:

//www.cet.or.at/enrima/sankey_en.php. Sankey diagrams like the one in Fig. 6 for the back-up
site ENERGYbase in Vienna, Austria, can be generated for each past day using real data. See [6]
for a description of the tool.

A Sankey diagram can be produced using historical data to analyse the performance of a building
during a specific period of time in the past. We can also generate a foreseen Sankey diagram with the
solution of a given optimisation problem, let us name them “solution Sankey diagrams”. Thus, the
represented energy flows will correspond to the decisions made and the values of the parameters. As
we have a dynamic stochastic optimisation model with several periods, the solution Sankey diagram
can be referred to the whole period considered in the problem, that is, throughout all the period
indices, or to a sub-period of the whole time span, e.g. each year. We go now one step beyond and
define the “stochastic Sankey diagrams” as a set of Sankey diagrams related to the solutions of a
stochastic optimisation problem for different “risk aversion” environments, that is, different values
of the β risk term introduced in eq. (64). Consequently, we can visualise the energy flows that
will result as the solution of the problem considering all the scenarios, for several decision maker’s
skills.

The stochastic Sankey diagrams depend on the specific implementation and solution of the
stochastic optimisation problem. Therefore, they will be generated along with the solver results in
task 4.6 (Stochastic optimisation algorithms and solvers), and implemented in the DSS GUI. As an
example, we show in Fig. 7 an artificial Sankey diagram for hypothetical solutions of a stochastic
formulation of the example described in Appendix. B.
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Figure 6: Sankey diagram for EnRiMa’s back-up site ENERGYbase
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Table 1: Parameters for stochastic modelling

id symbol nature tag units group expr dataType

1 E Deterministic convCoeff kWh/kWh Technologies Ei,k,kk dec

2 D Stochastic enerDemand kWh Demand Dp,m,t
k dec

3 AG Deterministic ageFactorGen kW/kW Technologies AGai dec

4 CO Either opCost EUR/kWh Policy COp,m,ti,k dec

5 CI Either techCost EUR/kW Finance CIp,ai dec
6 CD Either decomCost EUR/kW Finance CDa

i dec
7 DM Deterministic profDur days Model DMp

m int
8 SU Stochastic subsInc EUR/kW Policy SUpi dec

9 LS Deterministic stoLoss kWh Technologies LSp,m,ti dec
10 SC Deterministic stoCap kWh Technologies SCpi dec

11 A Stochastic techAvail kW/kW Technologies Ap,m,ti dec
12 IL Deterministic InvLim EUR Finance ILp dec
13 H Deterministic polUnit kg/kWh Technologies Hi,k,l dec

14 PL Either polLimit kg Policy PLpl int
15 DT Deterministic timeDur hours Model DT dec
16 HO Deterministic operPeriods number Building HO int
17 RA Deterministic roofArea m2 Building RA dec
18 BA Deterministic buildArea m2 Building BA dec
19 BV Deterministic builVol m3 Building BV dec
20 G Deterministic NomCap kW/device Technologies Gi dec

21 SP Stochastic sellPrice EUR/kWh Finance SP p,m,ti,k,n dec

39 PP Stochastic PurchPrice EUR/kWh Policy PP p,m,ti,k,n dec

22 EF Deterministic effBuilding kWh/kWh Finance EF dec
23 OD Deterministic demRed kWh/kWh Technologies ODk,j dec

24 C Deterministic polUnit kg/kWh Technologies Ci,l,n dec

25 AS Deterministic ageFactorSto kW/kW Technologies ASai dec
26 GS Deterministic ageCapSto kW/kW Technologies GSj dec

27 CIS Either techStoCost EUR/kW Finance CISp,aj dec

28 COS Either techStoOperCost EUR/kWh Finance COSp,m,tk,j dec

29 CDS Either decomStoCost EUR/kWh Finance CDSaj dec

30 CP Either purchCost EUR/kWh Finance CP p,m,tk,n dec

31 B Deterministic primEner kWh/kWh Energy Efficiency Bk,n dec

32 FA Deterministic floorArea m2 Building FA dec
33 OS Deterministic storeAvail kWh/kWh Technologies OSk,j dec

34 OI Deterministic storeAvail kWh/kWh Technologies OIk,j dec

35 OO Deterministic storeAvail kWh/kWh Technologies OOk,j dec

36 OR Deterministic availDischarging kWh/kWh Technologies ORk,j dec

37 OA Deterministic lowerCharge kWh/kWh Technologies OAk,j dec

38 OB Deterministic upperCharge kWh/kWh Technologies OBk,j dec
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Figure 7: A stochastic Sankey diagram for β = 0, β = 0.5, and β = 1.
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6. Conclusions

This deliverable contains the Symbolic Model Specification for the EnRiMa DSS. It has been de-
veloped in a sequential way from the “atomic” elements of the models up to the stochastic models.
The different elements of the models such as variables, parameters and their relations have been
defined and represented both as mathematical equations and data-driven entities, ready to use in
forthcoming stages of the project. As innovative results in this deliverable we have defined stochas-
tic Sankey diagrams, which will be visually improved in the final DSS GUI. The stochastic model
described gathers the main risk management issues tackled in the DSS, extending the optimisation
models (strategic and operational) described previously and based in the research carried out so far
in the EnRiMa project. The SMS has been illustrated through the implementation in a simulated
building with a basic configuration.

The Symbolic Model Specification contained in this deliverable (D4.2), along with the related
deliverables D2.2 and D3.2, provides the framework for the next steps of the EnRiMa project,
especially the development of the DSS Engine and the GUI. Particularly, task 4.5 (Stochastic
optimisation algorithms and solvers) will continue this work building the complete implementation
for the test sites and selecting algorithms and computational requirements afterwards. This work
will be carried out in close cooperation with the one in task 4.6 and WP5, which will be fed with
the structure defined herein.
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A. Data Tables

Symbolic Model

The tables in this subsection contain the model objects (indices, variables and parameters). De-
scriptions are dropped for the sake of space. The complete descriptions are in Sec. 3.

Table 2: Sets and Indices

id symbol isSet ref dif short corr rep fromNill greater

1 p TRUE long-term period FALSE
2 m TRUE mid-term period FALSE
3 t TRUE short-term period FALSE
4 i TRUE energy-creating technology FALSE
6 k TRUE energy type FALSE
7 l TRUE pollutant FALSE
8 q FALSE p -1 decommissioning period 0.5 TRUE FALSE TRUE
9 a FALSE p 0 technology age 1.0 FALSE TRUE FALSE
10 j TRUE energy-absorbing technology FALSE
11 a1 FALSE p 0 auxiliary index 1.0 FALSE FALSE FALSE
12 a2 FALSE p 0 auxiliary index 1.0 FALSE FALSE FALSE
14 n TRUE energy market FALSE FALSE FALSE
15 mm FALSE m 0 ancestor mid-term period 1.0 FALSE FALSE FALSE
16 kk FALSE k 0 output energy type 1.0 FALSE FALSE FALSE

Table 3: Subsets

id set subset desc

1 4 E Technologies that generate electricity
3 4 H Technologies that generate heat
5 4 C Technologies that generate cooling
7 6 E Electricity
8 6 H Heat
9 6 C Cooling
10 6 G Natural Gas
11 6 S Solar
12 10 S Storage technologies
13 10 PS Space measurable passive technologies
14 10 PU Unitary measurable passive technologies
15 14 E Electricity markets
16 14 H Heating markets
17 14 D Fictitious markets
18 14 G Natural gas markets
19 2 Mid-term periods
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Table 4: Sets partition groups

id set subsets

1 1 4 Z
2 2 4 R
3 3 6 I(i)
4 4 6 O(i)
5 5 2 A
6 6 2 S
7 7 6 F(i)
8 8 14 B(k)
9 9 14 S(k)

Table 5: Decision variables

id symbol nature tag units dataType expr

1 si Strategic xInst devices int/dec sipi
2 sd Strategic zDecom devices int/dec sdp,qi
3 s Strategic sAvail kW dec spi
4 z Operational zOut kWh dec zp,m,ti,k

5 r Operational vSto kWh dec rp,m,tk,j

6 x Strategic xAvail kWh dec xpj
7 xi Strategic xInst kWh dec xipj
8 xd Strategic xDecom kWh dec xdp,qj
9 y Operational yInput kWh dec yp,m,ti,k

10 u Operational uPurchase kWh dec up,m,t,mmk,n

11 w Operational wSale kWh dec wp,m,t,mmk,n

12 e Operational eCons kWh dec ep,m,t

13 qi Operational qStored kWh dec qip,m,tk,j

14 qo Operational qReleased kWh dec qop,m,tk,j
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Table 6: Variables indices

var ind loc sub

1 1 4 sub
2 1 1 sup
3 2 4 sub
4 2 1 sup
5 2 8 sup
6 3 4 sub
7 3 1 sup
8 4 4 sub
9 4 6 sub

10 4 1 sup
11 4 2 sup
12 4 3 sup
13 5 6 sub
14 5 10 sub
15 5 1 sup
16 5 2 sup
17 5 3 sup
18 6 1 sup
19 6 10 sub
20 7 1 sup
21 7 10 sub
22 8 10 sub
23 8 1 sup
24 8 8 sup
25 9 4 sub
26 9 6 sub
27 9 1 sup
28 9 2 sup
29 9 3 sup
30 10 14 sub
31 10 6 sub
32 10 1 sup
33 10 2 sup
34 10 3 sup
35 10 15 sup
36 11 14 sub
37 11 6 sub
38 11 1 sup
39 11 2 sup
40 11 3 sup
41 11 15 sup
42 12 1 sup
43 12 2 sup
44 12 3 sup
45 13 1 sup
46 13 2 sup
47 13 3 sup
48 13 6 sub
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49 13 10 sub
50 14 1 sup
51 14 2 sup
52 14 3 sup
53 14 6 sub
54 14 10 sub
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Table 7: Parameters

id symbol nature tag units group expr dataType

1 E Deterministic convCoeff kWh/kWh Technologies Ei,k,kk dec

2 D Stochastic enerDemand kWh Demand Dp,m,t
k dec

3 AG Deterministic ageFactorGen kW/kW Technologies AGai dec

4 CO Either opCost EUR/kWh Policy COp,m,ti,k dec

5 CI Either techCost EUR/kW Finance CIp,ai dec
6 CD Either decomCost EUR/kW Finance CDa

i dec
7 DM Deterministic profDur days Model DMp

m int
8 SU Stochastic subsInc EUR/kW Policy SUpi dec

9 LS Deterministic stoLoss kWh Technologies LSp,m,ti dec
10 SC Deterministic stoCap kWh Technologies SCpi dec

11 A Stochastic techAvail kW/kW Technologies Ap,m,ti dec
12 IL Deterministic InvLim EUR Finance ILp dec
13 H Deterministic polUnit kg/kWh Technologies Hi,k,l dec

14 PL Either polLimit kg Policy PLpl int
15 DT Deterministic timeDur hours Model DT dec
16 HO Deterministic operPeriods number Building HO int
17 RA Deterministic roofArea m2 Building RA dec
18 BA Deterministic buildArea m2 Building BA dec
19 BV Deterministic builVol m3 Building BV dec
20 G Deterministic NomCap kW/device Technologies Gi dec

21 SP Stochastic sellPrice EUR/kWh Finance SP p,m,ti,k,n dec

39 PP Stochastic PurchPrice EUR/kWh Policy PP p,m,ti,k,n dec

22 EF Deterministic effBuilding kWh/kWh Finance EF dec
23 OD Deterministic demRed kWh/kWh Technologies ODk,j dec

24 C Deterministic polUnit kg/kWh Technologies Ci,l,n dec

25 AS Deterministic ageFactorSto kW/kW Technologies ASai dec
26 GS Deterministic ageCapSto kW/kW Technologies GSj dec

27 CIS Either techStoCost EUR/kW Finance CISp,aj dec

28 COS Either techStoOperCost EUR/kWh Finance COSp,m,tk,j dec

29 CDS Either decomStoCost EUR/kWh Finance CDSaj dec

30 CP Either purchCost EUR/kWh Finance CP p,m,tk,n dec

31 B Deterministic primEner kWh/kWh Energy Efficiency Bk,n dec

32 FA Deterministic floorArea m2 Building FA dec
33 OS Deterministic storeAvail kWh/kWh Technologies OSk,j dec

34 OI Deterministic storeAvail kWh/kWh Technologies OIk,j dec

35 OO Deterministic storeAvail kWh/kWh Technologies OOk,j dec

36 OR Deterministic availDischarging kWh/kWh Technologies ORk,j dec

37 OA Deterministic lowerCharge kWh/kWh Technologies OAk,j dec

38 OB Deterministic upperCharge kWh/kWh Technologies OBk,j dec
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Table 8: Parameter indices

par ind loc

1 1 4 sub
2 1 6 sub
3 1 16 sub
4 2 6 sub
5 2 1 sup
6 2 2 sup
7 2 3 sup
8 3 4 sub
9 3 9 sup

10 4 4 sub
11 4 6 sub
12 4 1 sup
13 4 2 sup
14 4 3 sup
15 5 4 sub
16 5 1 sup
17 5 9 sup
18 6 4 sub
19 6 9 sup
20 7 2 sub
21 7 1 sup
22 8 4 sub
23 8 1 sup
24 9 4 sub
25 9 1 sup
26 9 2 sup
27 9 3 sup
28 10 4 sub
29 10 1 sup
30 11 4 sub
31 11 1 sup
32 11 2 sup
33 11 3 sup
34 12 1 sup
35 13 4 sub
36 13 6 sub
37 13 7 sub
38 14 7 sub
39 14 1 sup
40 20 4 sub
41 21 4 sub
42 21 6 sub
43 21 14 sub
44 21 1 sup
45 21 2 sup
46 21 3 sup
47 39 4 sub
48 39 6 sub
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49 39 14 sub
50 39 1 sup
51 39 2 sup
52 39 3 sup
53 23 10 sub
54 23 6 sub
55 24 4 sub
56 24 7 sub
57 24 14 sub
58 25 4 sub
59 25 9 sup
60 26 10 sub
61 27 10 sub
62 27 1 sup
63 27 9 sup
64 28 10 sub
65 28 6 sub
66 28 1 sup
67 28 2 sup
68 28 3 sup
69 29 10 sub
70 29 9 sup
71 30 14 sub
72 30 6 sub
73 30 1 sup
74 30 2 sup
75 30 3 sup
76 31 6 sub
77 31 14 sub
78 33 6 sub
79 33 10 sub
80 34 6 sub
81 34 10 sub
82 35 6 sub
83 35 10 sub
84 36 6 sub
85 36 10 sub
86 37 6 sub
87 37 10 sub
88 38 6 sub
89 38 10 sub
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Table 9: Constraints

id title direction nature

1 1 Available generating technologies calculation = Strategic
2 9 Available storing technologies calculation = Strategic
3 2 Meet Loads ≥ Operational
4 3 Technologies short-term availability ≤ Operational
5 4 Generation technologies decommissioning limit ≤ Strategic
6 10 Storage technologies decommissioning limit ≤ Strategic
7 5 Budget limit ≤ Strategic
8 6 Emissions limit ≤ Strategic
9 7 Physical limit for energy-creation technologies installation ≤ Strategic

10 8 Physical limit for energy-absorbing technologies installation ≤ Strategic
11 11 Efficiency constraint ≥ Strategic
12 12 Primary energy calculation = Strategic
13 13 Energy output calculation = Operational
14 14 Energy stored calculation = Operational
15 15 Energy discharging limit ≤ Operational
16 16 Energy storage lower limit ≥ Operational
17 17 Energy storage upper limit ≤ Operational
18 3001 Discrete sized technologies devices to install ∈ Integer
19 3002 Discrete sized technologies devices to decommission ∈ Integer
20 1001 Non-negative energy supply ≥ nn
21 1002 Positive generating devices to install ≥ nn
22 1003 Positive devices to decommission ≥ nn
23 1004 Positive available capacity ≥ nn
24 1005 Positive energy to store ≥ nn
25 1006 Positive storage devices to install ≥ nn
26 1007 Positive storage devices to decommission ≥ nn
27 1008 Positive available storage capacity ≥ nn
28 1009 Positive input energy ≥ nn
29 1010 Positive purchased energy ≥ nn
30 1011 Positive sold energy ≥ nn
31 1012 Positive consumed energy ≥ nn

Table 10: Objectives

id title direction nature

32 2001 Minimize total cost objective
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B. Code Examples

In this appendix we present very preliminary application of the Symbolic Model Specification using
the R programming language and statistical software [10]. The SMS of the EnRiMa DSS will
be implemented within the DSS Architecture using the tools and technologies chosen in WP5.
Nevertheless, the implementation presented here can be translated easily to any other system.
The choice of R for this “demo” implementation is due to: (1) It is open source; (2) It allows
“literate programming” ([9]); (3) SMS, examples, equations and solvers can be integrated in a
single framework.

This appendix contains examples of the code developed as a prototype to dynamically generate
the EnRiMa models. The objects of the SMS are stored in data objects, which main fields are “id”
and “symbol”. (see Appendix A to see the tables). The tables are populated by calls to functions
that add information to the tables. These tables are related through the “id” fields. Once the data
objects are created, functions devoted to mathematically represent them print the equations within
the document along with additional information as the nature of the parameters, categorization, or
descriptions. The objects can eventually be used to create the “model objects” ready to be delivered
to the solver in the appropriate format.

SMS Infrastructure Examples

The first step to build the SMS is the creation of the data objects that will contain the SMS objects
and their symbols. The following code is used to create the sets data.frame object:

> smsSets <- newDataset(fields = c("id",

"symbol",

"isSet",

"desc",

"bounds",

"ref",

"dif",

"short",

"corr",

"rep",

"firstNill",

"greater"))

Once the data object is created we can add the sets. For example, the following code add the set
which symbol is p.

> smsSets <- addObject (smsSets , list(id = 1,

symbol = "p",

isSet = TRUE ,

desc = "Long -term period for strategic decisions (e.g. year)",

bounds = "",

ref = "",

dif = "",

short = "long -term period",

corr = NA,

rep = NA,

fromNill = FALSE ,

greater = NA))

Note that in subsequent calls to this set, the “id” is always used. Hence, we can just change the
value of the symbol in this chunk of code, and all the SMS is automathically updated (variables,
parameters, constraints, etc.) including descriptions. Besides sets, we create subsets to coerce the
scope of the sets throughout the constraints.
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Similarly to sets, decision variables and parameters are created. We add indices to variables and
parameters with specific functions. The following code add the indices to the si variable (id = 1):

> smsIndVar <- addObject(smsIndVar ,

list(var = 1,

ind = 4,

loc = "sub",

sub = NA))

> smsIndVar <- addObject(smsIndVar ,

list(var = 1,

ind = 1,

loc = "sup",

sub = NA))

Once the sets, variables and parameters are created, the expressions of variables and parameters
are obtained. For example, for the variables:

> smsVars[, "expr"] <- getVarExpr ()

> smsVars[, "bounds"] <- getVarBounds ()

What this functions do is creating the expressions in LATEXformat through the symbols stored.
For example the function getVarExpr build the expressions of the variables:

function () {

expr <- numeric ()

for (i in 1:( nrow(smsVars))){

expr[i] <- paste(smsVars[i, "symbol"],

"_{",

paste(getInd("sub", smsVars[i, "id"]),

collapse = ","),

"}^{",

paste(getInd("sup", smsVars[i, "id"]),

collapse = ","),

"}",

sep="")

}

return(expr)

}

The constraints can be created afterwards. They are composed by terms, at the right or left side.
The terms can be affected by other mathematical symbols before and/or after them, e.g. parenthe-
sis, operators, sums, etc. A comparison operator is also needed between both sides. Complementary,
we add to the constraint information about the replications of the constraint throughout the sets
in the variables and parameter indices, the total number of constraints based in these replications,
and the measurement units of each term to allow consistency check. The following code creates eq.
(17):

> #Add constraint

> smsConsts <- addObject(smsConsts ,

list(id = 17,

title = "Energy storage upper limit",

desc = "The amount of energy that may be stored from any

energy -storage technology must be lower than the

capacity installed corrected by the maximum charge

allowed",

direction = "\\leq",

nature = "Operational"))

> #Set replications

> smsConstRep <- addObject(smsConstRep ,

list(const = 17,
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ind = c(1,2,3, 4,10),

rel = " \\in ",

subset = c(rep("", 4),

smsSubsets[smsSubsets[, "id"] == 12 , "subset"]),

set = toupper(smsSets[smsSets[, "id"] %in% c(1,2,3, 4, 10),

"symbol"])))

> #Add terms

> smsCTerms <- addObject(smsCTerms ,

addTerm("sms", 17, "V", 5, "l"))

> smsCTerms <- addObject(smsCTerms ,

addTerm("sms", 17, "P", 38, "r", dot="r"))

> smsCTerms <- addObject(smsCTerms ,

addTerm("sms", 17, "V", 6, "r"))

The function addTerm is a simplfied way to add “simple” terms, without subsets or complex
expressions:

function(prefix = "sms",

toConst ,

type = "V",

id,

inSide ,

withSign = "",

sums = NULL ,

bracket = NULL ,

dot = ""){

if (!(type %in% c("V", "P"))) stop("Invalid type")

obj <- get(paste(prefix , type , "ars", sep=""))

newTerm <- obj[obj[, "id"] == id ,]

if (length(sums) > 0){

setSums <- get(paste(prefix , "Sets", sep=""))

setSums <- setSums[setSums[, "id"] %in% sums , "symbol"]

allSums <- paste("\\sum_{",

setSums ,

"\\in \\ mathcal{",

toupper(setSums), "}}",

collapse = " ")

}

else allSums = ""

return(list(const = toConst ,

term = newTerm[, "expr"],

units = newTerm[, "units"],

side = inSide ,

sign = withSign ,

before = paste(allSums ,

ifelse(bracket == "l" , " \\left ( ", ""),

ifelse(dot == "l", " \\cdot ", ""),

sep = ""),

after = paste(ifelse(bracket == "r" , " \\right ) ", ""),

ifelse(dot == "r", " \\cdot ", ""),

sep = ""

)))

}

Note that we create objective functions in a similar way by changing the“nature”of the constraint.
This allows customising the SMS to different decision makers.

Finally, in order to show the mathematical representation in a document, the SMS is printed
through several functions devoted to this task. They take the data in the tables and formulate
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the appropriate expressions. Their use is very simple, for example the following code prints all the
variables:

> printVars ()

The code of the printVars function is the following:

function(nature = NA){

smsVars <- smsVars[order(smsVars[, "symbol"]) ,]

if (!is.na(nature)){

smsVars <- smsVars[smsVars[,"nature"]==nature ,]

}

cat("\\begin{description}")

for (i in 1:( nrow(smsVars))){

cat(paste("\n\\item [$",

smsVars[i, "expr"],

"$]",

smsVars[i, "desc"],

smsVars[i, "bounds"],

" (\\ textit{",

smsVars[i,"units"],

"} \\ texttt {[",

smsVars[i,"dataType"],

"]}).",

sep=""))

}

cat("\n\\end{description}")

}

The function that prints constraints and objective functions (printConst) has a similar be-
haviour, but more elaborated:

function (nature){

this.consts <- smsConsts[smsConsts[, "nature"] == nature ,]

cat("\\begin{description }\n")

for (i in seq(along = this.consts[, "id"])) {

this.const.id <- this.consts[i, "id"]

this.reps <- smsConstRep[smsConstRep[,"const"] == this.const.id

,]

reps <- character ()

for (j in seq(along = this.reps[, "ind"])) {

reps <- paste("\\;", reps ,

paste(smsSets[smsSets[, "id"] == this.reps[j, "ind"],

"symbol"],

this.reps[j, "rel"],

ifelse(this.reps[j, "set"] == toupper(this.reps[j,

"set"]),

"\\ mathcal{", "{"),

this.reps[j, "set"],

"}_{",

this.reps[j, "subset"],

"},",

sep=""),

sep = "\\;")

}

whatPrinting <- ifelse(nature == "objective", "1 \\; objective.

",
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"constraints.")

tcons <- paste(paste(paste(this.reps[, "set"],

ifelse(this.reps[, "subset"] != "", "[",""),

this.reps[, "subset"],

ifelse(this.reps[, "subset"] != "", "]","")),

collapse = "\\times "),

"\\,\\ mathrm{",

whatPrinting ,

"}")

cat("\\item[",

smsConsts[smsConsts[, "id"] == this.const.id, 2],

"]\\ hfill \\\\\n",

smsConsts[smsConsts[, "id"] == this.const.id, 3],

".\n\\ begin{align}\n",

"\\label{eq:const:",

this.const.id,

"}\n",

paste(t(as.matrix(smsCTerms[smsCTerms[, "side"] == "l" &

smsCTerms[, "const"] == this.const.id,

c("sign", "before", "term", "after")])),

sep = ""),

smsConsts[smsConsts[, "id"] == this.const.id, 4],

paste(t(as.matrix(smsCTerms[smsCTerms[, "side"] == "r" &

smsCTerms[, "const"] == this.const.id,

c("sign", "before", "term", "after")])),

collapse = " "),

" & ",

reps ,

"\\\\ \\ nonumber \\\\ \n \\ nonumber",

ifelse(nature == "objective", " & ",""),

"\\ scriptstyle",

paste("\\ mathit{",

smsCTerms[smsCTerms[, "side"] == "l" &

smsCTerms[, "const"] == this.const.id,

"units"],

"}",

collapse = " ,\\, "),

ifelse(nature == "Integer", "", "\\; \\sim \\; "),

paste(smsCTerms[smsCTerms[, "side"] == "r" &

smsCTerms[, "const"] == this.const.id,

"units"],

collapse = " ,\\, "),

" & \\ qquad ",

#ifelse(nature == "objective", " & ",""),

"\\ scriptstyle ",

tcons ,

"\n\\end{align}\n",

sep = "")

}

cat("\\end{description }\n")

}

SMS Realisation Example

In this example the SMS described in this document is parameterised with specific characteristics
of a simulated building with a hypothetical simple configuration. Simulated data are assigned to
the parameters. With simulated data we mean data taken from several sources that could be real
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in a given building individually, but not necessarily as a whole. Moreover, these data might be
approximate. Note that this example is focused in the strategic model. Examples of use for the
operational model can be consulted in deliverable D2.2 [6].

This very simple example simulates a public building with only energy demand for electricity and
heating. The energy inputs can be purchases from markets (electricity and natural gas) and energy
generation from a CHP unit. Heat will be met using the CHP unit and the remaining electricity is
sold to the grid.

The CHP unit used for this example is the model DACHS G 5.5 whose technical parameters
can be found in http://www.baxi-senertec.co.uk/html/baxi_senertec_dachs.htm. The rest
of parameters are taken from the information of the test sites in [3, 5] and other public sources.
Following, the tables with the sets and parameter are shown.

Example Data

A new object which contains all the implementation of the SMS is created:

> smsExample <- newImplem ()

This object (smsExample) contains the elements: sets, parameters, variables, and constraints.
The sets are added through the function fillImplemSet. For example, for the set P:

> smsExample <- fillImplemSet(smsExample , 1, c("2013", "2014", "2015"))

All the sets for this simple example are in Tables 11 to 16.

Table 11: Simulated example set P
p long-term period

1 2013
2 2014
3 2015

Table 12: Simulated example set M
m mid-term period

1 hot
2 cold

Table 13: Simulated example set T
t short-term period

1 day
2 night
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Table 14: Simulated example set I
i energy-creating technology

1 Dachs G 5.5

Table 15: Simulated example set K
k energy type

1 Electricity
2 Heating
3 NG

Table 16: Simulated example set N
n energy market

1 Grid
2 NG vendor

54



The functions that add elements to the implementation go over the SMS data objects containing
the SMS objects and then save them in the implementation object. For example, the function
addImplemPars creates all the parameters of the implementation with value 0:

function(implem) {

for (i in seq(along = smsPars[, "id"])) {

thisPar <- smsPars[i, "id"]

thisIndPar <- list()

for (j in seq(along = order(smsIndPar[smsIndPar[, "par"] ==

thisPar , "ind"]))) {

thisSet <- smsIndPar[smsIndPar[, "par"] == thisPar , "ind"][

j]

if (smsSets[smsSets[, "id"] == thisSet , "isSet"]){

if (!is.null(implem [["sets"]][[ smsSets[smsSets[, "id"]

== thisSet ,

"symbol"]]])){

thisIndPar [[ smsSets[smsSets[, "id"] == thisSet , "

symbol"]]] <-

seq(1, nrow(implem [["sets"]][[ smsSets[smsSets[,

"id"] == thisSet , "symbol"]]]))

}

}

else{

shift <- as.numeric(smsSets[smsSets[, "id"] == thisSet ,

"fromNill"])

thisIndPar [[ smsSets[smsSets[, "id"] == thisSet , "symbol

"]]] <-

seq(1 - shift , findRef(implem , thisSet) - shift)

}

}

if (length(thisIndPar) == 0){

implem [["parameters"]][[ smsPars[smsPars[, "id"] == thisPar ,

"symbol"]]] <-

data.frame(value = 0)

}

else{

implem [["parameters"]][[ smsPars[smsPars[, "id"] == thisPar ,

"symbol"]]] <-

data.frame(expand.grid(thisIndPar), value = 0)

}

}

return(implem)

}

Then, specific parameter values are assigned to the suitable indices of the parameters. For
example, with the following code, the price of electricity is assigned to the parameter CP p,m,tk,n for
the indices n = 1 and k = 1:

> elecPrice <- 0.15

> smsExample <- setImplemPars(smsExample , par = 30,

whichInd = getExprSetPars(ind = c(14, 6), values = c(1, 1)),

values = elecPrice)

For the sake of space, we print only, in text mode instead of in tables, the first and last chunks
of the complete parameter values tables. All the values are printed then sequentially. Note that
each value corresponds to a combination of the parameter indices. For example, for the parameters
(Ei,k,kk, D

p,m,t
k , and CP p,m,tk,n ) we have the following values:
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Parameter: E

------------------------------------

i k kk value

1 1 1 1 0.0000

2 1 2 1 0.0000

3 1 3 1 3.7037

4 1 1 2 0.0000

5 1 2 2 0.0000

6 1 3 2 1.6400

7 1 1 3 0.0000

8 1 2 3 0.0000

9 1 3 3 0.0000

Parameter: D

------------------------------------

k p m t value

1 1 1 1 1 59.4

2 2 1 1 1 0

3 3 1 1 1 0

4 1 2 1 1 59.4

... ... ... ... ... ...

33 3 2 2 2 0

34 1 3 2 2 0

35 2 3 2 2 200

36 3 3 2 2 0

Values: 59.4 0 0 59.4 0 0 59.4 0 0 59.4 200 0 59.4 200 0 59.4 200 0 0

0 0 0 0 0 0 0 0 0 200 0 0 200 0 0 200 0

Parameter: CP

------------------------------------

n k p m t value

1 1 1 1 1 1 0.15

2 2 1 1 1 1 0

3 1 2 1 1 1 0

4 2 2 1 1 1 0

... ... ... ... ... ... ...

69 1 2 3 2 2 0

70 2 2 3 2 2 0

71 1 3 3 2 2 0

72 2 3 3 2 2 0.05

Values: 0.15 0 0 0 0 0.05 0.15 0 0 0 0 0.05 0.15 0 0 0 0 0.05 0.15 0 0

0 0 0.05 0.15 0 0 0 0 0.05 0.15 0 0 0 0 0.05 0.15 0 0 0 0 0.05 0.15

0 0 0 0 0.05 0.15 0 0 0 0 0.05 0.15 0 0 0 0 0.05 0.15 0 0 0 0 0.05

0.15 0 0 0 0 0.05

Decision Variables

The number of variables in the model arising from the sets we are implementing is in Table 17.
We have also built the names of all the implemented variables through the symbol and indices.

Table 18 shows the first and last variable names.
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Table 17: Simulated example number of implemented variables

symbol size

1 si 3
2 sd 3
3 s 3
4 z 36
5 y 36
6 u 144
7 w 144

8 Total 369

Table 18: Simulated example implemented variables names

Name

1 si.i1p1
2 si.i1p2
3 si.i1p3
4 sd.i1p1q2

...
366 w.n1k2p3m2t2mm2
367 w.n2k2p3m2t2mm2
368 w.n1k3p3m2t2mm2
369 w.n2k3p3m2t2mm2
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Constraints and Objectives

Finally, we save the coefficientes of each variable for all the constraints and the objective function.
For example, for equation (13) and indices p = 1, m = 1, t = 1, i = 1, and NA assign coefficients
to the technology matrix:

> smsExample [["const"]] <- data.frame(Variable = smsExample [["

variables"]][["varNames"]],

stringsAsFactors = FALSE)

> dataConst <- smsExample [["const"]]

> dataConst[, "c13"] = 0

> dataConst[dataConst[, "Variable"] == "z.i1k1p1m1t1", "c13"] <- 1

> dataPar <- smsExample [["parameters"]][["E"]]

> dataConst[dataConst[, "Variable"] == "y.i1k1p1m1t1",

"c13"] <- (subset(dataPar , i == 1 & k == 3 & kk == 1, value))

^(-1)

> smsExample [["const"]] <- dataConst

Thus, we have the specific constraint:

z1,1,1
1,1 − (E1,3,1)−1 · y1,1,1

1,3 = 0, (74)

with all the coefficients equal to zero but the following:

Variable c13

10 z.i1k1p1m1t1 1.0000000

46 y.i1k1p1m1t1 0.2700003

Doing the same for all the constraints and objective function, we have in the object smsExample
all the data needed by the solver. More complex implementations and models will be tackled in
subsequent stages of the project, including the stochastic models described in Sec. 5 by adding a
new set for the scenarios.
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Session Info

This is the session information provided by the R system regarding the environment where the code
used in this document has been executed.

> sessionInfo ()

R version 2.14.2 (2012 -02 -29)

Platform: i686 -pc-linux -gnu (32-bit)

locale:

[1] LC_CTYPE=en_US.UTF -8

[2] LC_NUMERIC=C

[3] LC_TIME=es_ES.UTF -8

[4] LC_COLLATE=en_US.UTF -8

[5] LC_MONETARY=es_ES.UTF -8

[6] LC_MESSAGES=en_US.UTF -8

[7] LC_PAPER=es_ES.UTF -8

[8] LC_NAME=es_ES.UTF -8

[9] LC_ADDRESS=es_ES.UTF -8

[10] LC_TELEPHONE=es_ES.UTF -8

[11] LC_MEASUREMENT=es_ES.UTF -8

[12] LC_IDENTIFICATION=es_ES.UTF -8

attached base packages:

[1] splines grid stats graphics grDevices

[6] utils datasets methods base

other attached packages:

[1] psych_1.2.1 Hmisc_3.9-2 survival_2.36 -12

[4] lpSolve_5.6.6 xtable_1.7-0 rj_1.1.0 -1

loaded via a namespace (and not attached):

[1] cluster_1.14.2 lattice_0.20-0 rj.gd_1.1.0 -1

[4] tools_2.14.2
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